

APUNTES CURSO CI52G

1. Tensiones admisibles de los materiales

• Hormigón:

Hormigón	f'c	f'c Eestático	
	[Kg/cm ²]	[Mpa]	[Mpa]
H-18	144	14	17835
H-20	160	16	18800
H-22,5	180	18	19940
H-25	200	20	21019
H-30	250	25	23500
H-35	300	30	25743
H-40	350	35	27806

Tensiones con un 10% de fracción defectuosa

$$\begin{split} E_{\textit{estático}} &= 4700 \cdot \sqrt{f_c} &\quad \text{[Mpa]} \rightarrow \text{ACI} \\ E_{\textit{sísmico}} &= 19000 \cdot \sqrt{R_{28}} &\quad \text{[Kg/cm}^2\text{]} \rightarrow \text{NCH 433 Of. 72} \\ \\ 1\text{Mpa} &= 100 \text{ T/m}^2 = 10 \text{ Kg/cm}^2 \end{split}$$

Acero :

Acero	Resistencia a la Tracción	Limite de fluencia	
	[Mpa]	[Mpa]	
A44 - 28H	440	280	
A63 - 42H	630	420	

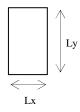
2. Cargas:

Hormigón liviano $\gamma = 850 - 1200 \text{ Kg/m}^2$

3. Prediseño de elementos estructurales

3.1. Losas

• Tipos de losa.



• Espesor mínimo:

$$e = \frac{k \cdot l}{35} + 1.5$$
 [cm]

Tabla con valores de *k* referidos a la longitud mas corta de la losa:

ω	1.0	1.1	1.2	1.3	1.4	1.5
Apoyo						
1	1.00	1.00	1.00	1.00	1.00	1.00
2	0.80	0.88	0.91	0.93	0.94	0.95
3	0.80	0.80	0.80	0.80	0.80	0.80
4	0.60	0.66	0.72	0.78	0.84	0.88
5	0.60	0.60	0.60	0.60	0.60	0.60
6	0.66	0.70	0.72	0.74	0.75	0.76
7	0.58	0.61	0.66	0.70	0.74	0.75
8	0.58	0.58	0.58	0.59	0.59	0.59
9	0.55	0.55	0.56	0.56	0.57	0.58

$$\varepsilon = Ly / Lx$$

- Deformaciones admisibles:
- La deformación instantánea se anula con contraflecha.
- La deformación adicional de largo plazo se limita con los siguientes valores:

Sistema de azotea o entrepiso que soporte o esté ligado a elementos no estructurales susceptibles a sufrir daños por grandes deformaciones	$\frac{l}{480}$
Sistema de azotea o entrepiso que soporte o esté ligado a elementos no estructurales no susceptibles a sufrir daños por grandes deformaciones	$\frac{l}{240}$

Donde *l* es la luz menor de la losa.

3.2. Vigas

- Prediseñar con h = L/10 (caso apoyado-apoyado) y con L/15 (caso empotrado-empotrado).
- Deformaciones máximas:
 - Vigas apoyadas o empotradas

$$\rightarrow$$
 pisos habitables $\Delta < \frac{L}{350}$

$$\rightarrow$$
 subterráneos $\Delta < \frac{L}{250}$

3.3. Muros

• Su espesor está controlado el corte producto de las fuerzas horizontales (sismo), debiéndose cumplir para cada muro:

$$\tau_{\rm m} = Q_{\rm m}/A_{\rm m} \le \tau_{\rm adm}$$

donde:

 τ_m ; esfuerzo de corte en el muro

Q_m: fuerza de corte en el muro

A_m: área de la sección transversal del muro

 τ_{adm} : esfuerzo de corte admisible, que depende del tipo de acero

y de hormigón.

• El esfuerzo de corte medio de los muros se obtiene en forma aproximada, para cada una de las direcciones en las que el sismo actúa, como:

$$au_{medio} = rac{Q_{basal}}{\Sigma A_m}$$

donde:

 Q_{basal} : fuerza de corte basal en la dirección considerada ΣA_m : suma de las áreas de las secciones transversales de los muros principales en la dirección considerada.

• Cálculo aproximado del esfuerzo de corte basal del edificio:

$$Q_{basal} = C \cdot A \cdot q \cdot n$$

en que: C = coeficiente sísmico (0.06 a 0.18).

A =área en planta del piso tipo (m^2).

q = peso sísmico del edificio (t/m²) aprox. 1 t/m².

n = número de pisos del edificio.

3.3. Traspasos de fuerzas verticales

$$\frac{d_1}{d_1}$$

$$\frac{d_2}{e_2}$$

- Evaluar σ_c (tensión de compresión) en las secciones críticas.

$$A_{superior} = e_1 \cdot d_1$$

$$d_1 = d_2 + h/2$$

$$A_{inferior} = e_2 \cdot d_2$$

• Tensiones admisibles de compresión (Estático+Sísmico).

Hormigón	σ _{compresión} [Kg/cm ²]
H30	100
H25	90