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-undamental distinction appearing in 1830s
Charles Babbage’s Difference Engine No.2

store with data, mill with programs

on Neumann architecture (1958)
data and programs are stored in the same memon
a program could manipulate another program as d
(and even itself!)

"heoretical computer science
Turing machines: the universal TM (1936)
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Reflective system

) CS accessing its own metasystem

Seminal work of Brian C. Smith [Smith82]
 3-LISP

brocess’ integral ability to represent, operate on, c
erwise deal with itself in the the same way that it represer
erates on and deals with its primary subject matter.”

Pattie Maes [Maes8/]

) studyv of OOP in reflective architectures
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Reflection operators [FriedmanVVand84]
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cructural reification
implicit structures accessible as first-class entities

eg. classes, methods, fields in Java Reflection API

ehavioral reification
implicit events of execution accessible as first-class e
eg. MethodCall object with receiver, method, args

eg, creation, field access, finalization, etc., as objects
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A Good Match

reflection provides power for adaptation

OOP provides structure and locality
' encapsulation

) message passing

' object-oriented interfaces

) proper decomposition

incremental specialization of default implementati
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Simple MOP for controlling method calls

 TraceMetaobject extends Metaobject
lic Object handleCall(MethodCall call){
rint("'before calling "+ call.getMethodName());
)bject result = call.perform();

rint(‘returning with result ’+ result.toString());

tor v =(MOPcreate(Vector.class, new TraceMetaobject

implicit protocol explicit protocol
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ffer {

t[] elements = new Object[MAX];

> = 0; thread s:
Object get(){ return elements[top--]; }

void put(Object o){ elements[top++] = o; }

nchronized Object get()

rows InterruptedException { public synchronized void put(O

throws InterruptedExc

’(.)P == 0) while(top == MAX)

’ _ I . Wa|t(),

”O()T c ementS[tOP“], elementS[tOP++] = 0O;
\O. : notifyAll();

J
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Sequential Object Monitors €

' based on a MOP for controlling method calls

schedule: Buffer with: BufferScheduler

class BufferScheduler extends(Schedule
Buffer buf = ...;
void schedule(){
if(buf.isempty()) scheduleOldest(“p
else if(buf.isFull()) scheduleOldest("
else scheduleOldest();

) scheduler

buffer }}
explicit protocol implicit prot



Open Implementations
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eflection in the context of programming langu

reify structure or execution semantics of program:

Notion can be generalized
“implementational reflection”

led to “open implementations”
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Reflection can be used to build malleable systel
of all kind

' not only interpreters and compilers!

' systems also depend on other systems they use

computational
reflection
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reflective architecture

implementational open
reflection | implementation
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ementational reflection

Reflection that involves inspecting and/or
manipulating the implementation structures of
other systems used by a program

 implementation

A system with an open implementation provides
(at least) two linked interfaces to its clients:

|. a base-level interface to the functionality

%3

2.a metalevel interface that reveals some aspect



L VI“II'I...

Computational <> Implementational

1 language interpreter is the implementation of
anguage

the interface of any system can be seen as an
nterpreter for that language

different characterizations of the
same essential abilitv
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base level interface
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-alevel interface ' '

dints at which base-level behavior can be customize
fferent semantics and/or performance

\usal connection is trivial

OPs = Ol of interpreters [Kiczales+91]



D = B N

ontrary to the black-box abstraction principle!!

1y realistic system implies a number of tradec

the higher the level is, the more tradeoffs 2

no single fixed implementation will satisfy all users

1d a large number of brograms perform poorly because
iage’s tendency to hide “what is going on” with the misgi

ntention of “not bothering the programmer with details’
W
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A performance issue in class-based languages

' how are instance variables (slots) implemented!?

fclass position () (defclass person ()
'Y)) (name age address email

many instances,
only few slots used in one
given instance

many instances,
h slots always used
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Open implementation of CLOS [Kiczale

(allocate-instance class)
(get-value class instance slot-name)
(set-value class instance slot-name new-value)

efclass hashtable-class (std-class) ())

efmethod allocate-instance ((c hashtable-class)
.allocate a hashtable to store the slots...
efmethod get-value...) (defmethod set-value...)

(defclass person()
(name age address email...)
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Black-box abstraction: tricks/hacks

White-box abstraction (eg. open source)

' no guarantee that code is well-enough structured

Open implementations:

 reify some aspects of the implementation

“open up the implementation, but in a principled way
[Kic

blicitly focusing on the metalevel as a separate and first-
rface [...] forces a greater attention to exposing importa

b e 99

e o . r¥r 2
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pport variability in a system’s implementation
performance tuning

semantic customization

o need for direct support for rarely-needed fez:
eg. CLOS standard: backward compatibility vs. new «
support a “CLOS region” rather than a “CLOS poin
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languages: CLOS [Kiczales+91]
compilers [Lamping+92, Chiba95]
operating systems: ApertOS [Yokote92]
window systems: Silica [Rao91]

reflective systems: Reflex [Tanter+01]
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Ol design: think of a range of systems
» which range!

® iterative nrace<e feedhaclk refinement
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Declarative style [Kiczales:
) declare expected usage of the module

keSet(“‘n=5, insert=high™) + user friendly, abstract
- automatic choice can |

Strategy style

) choose strategy in fixed list

el - Y + precise selection
keSet(“LinkedList™) - might choose badly

- limited set of strategie
| ayered 'style

) strategy + possible to provide a new strategy

[strategy]

\ |/gCaf/“M\lQaf”\
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Ol Interface styles as design patterns
) eg. Strategy for strategy and layered Ol styles

' but explicit representation of any aspect of a syste
can compromise efficiency badly

 lazy reification for making implementation state ex

Reflection/MOPs

implicit and selective reification of some aspects

) possibly adaptable at runtime

Ols come from generalization of reflection,



- | e W W = LI Ic _V‘WII'I

-undamental though hard to grasp
nany MOP architectures were locality experim

» coarse notions discussed in [Kiczales93+]

feature access individual features

textual indicate what behavior to change
object possibly per-object basis

strategy affect individual strategy
limblementation! simble chance simble. incrementality |
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Kiczales effort to understand locality led to AC

/ery often, the concepts that are most natural to use at
eta-level cross-cut those provided at the base level.”

e are, in essence, trying to find a way to provide two eff
ws of a system through cross-cutting localities.”

e structure of complex systems is such that it is natural
ble to make this jump from one locality to another, and
have to find a way to support that”

[Kiczale:



