
From Metaprogramming to
Aspect-Oriented Programming

Éric Tanter
University of Chile

DCC/CWR

Outline

• Metaprogramming and Reflection

• Open Implementations

• Aspect-Oriented Programming

Metaprogramming &
Reflection

Programs and Data

• Fundamental distinction appearing in 1830s

• Charles Babbage’s Difference Engine No.2

• store with data, mill with programs

• von Neumann architecture (1958)

• data and programs are stored in the same memory

• a program could manipulate another program as data
(and even itself!)

• Theoretical computer science

• Turing machines: the universal TM (1936)

• Church lambda calculus: higher-order functions (1984)

Concepts
[Maes87]

data

program

processor

computational
system

world

domain

reason / act causal connection

data

program

processor

metasystem

(base)

Reflection

• Reflective system

• CS accessing its own metasystem

• Seminal work of Brian C. Smith [Smith82]

• 3-LISP

• Pattie Maes [Maes87]

• study of OOP in reflective architectures

“A process’ integral ability to represent, operate on, and
otherwise deal with itself in the the same way that it represents,
operates on and deals with its primary subject matter.”

Reflection and Adaptation
• Reflection operators [FriedmanWand84]

base level
(program)

metalevel
(evaluator)

reification
absorption

introspection: program observes its evaluator state

intercession: program modifies its evaluator state

Structure and Behavior

• Structural reification

• implicit structures accessible as first-class entities

• eg. classes, methods, fields in Java Reflection API

• Behavioral reification

• implicit events of execution accessible as first-class entities

• eg. MethodCall object with receiver, method, args

• eg. creation, field access, finalization, etc., as objects

Reflection and OOP

• reflection provides power for adaptation

• OOP provides structure and locality

• encapsulation

• message passing

• object-oriented interfaces

• proper decomposition

• incremental specialization of default implementations

A Good Match

Metaobject Protocols
p
ro
ce
ss
o
r

customized processor

meta

base

implicit
explicit

Example
• Simple MOP for controlling method calls

class TraceMetaobject extends Metaobject {
 public Object handleCall(MethodCall call){
 print(“before calling ”+ call.getMethodName());
 Object result = call.perform();
 print(“returning with result ”+ result.toString());
}}

implicit protocol

Vector v = MOP.create(Vector.class, new TraceMetaobject());

explicit protocol

watch out the infinite recursion!

Example: Concurrency
class Buffer {
 Object[] elements = new Object[MAX];
 int top = 0;
 public Object get(){ return elements[top--]; }
 public void put(Object o){ elements[top++] = o; }
}

thread safe?

public synchronized Object get()
 throws InterruptedException {
 while(top == 0)
 wait();
 Object o = elements[top--];
 notifyAll();
 return o;
}

public synchronized void put(Object o)
 throws InterruptedException {
 while(top == MAX)
 wait();
 elements[top++] = o;
 notifyAll();
}

hard to write & inefficient

A MOP for Concurrency
• Sequential Object Monitors

• based on a MOP for controlling method calls

class BufferScheduler extends Scheduler {
 Buffer buf = ... ;
 void schedule(){
 if(buf.isEmpty()) scheduleOldest(“put”);
 else if(buf.isFull()) scheduleOldest(“get”);
 else scheduleOldest();
}}

schedule: Buffer with: BufferScheduler

[CMT04]

explicit protocol implicit protocol

simple & efficient

buffer

schedulercall mo

t1, put
t2, get

Open Implementations

Open Implementations

• Reflection in the context of programming languages

• reify structure or execution semantics of programs

• Notion can be generalized

• “implementational reflection”

• led to “open implementations”

Implementational Reflection

• Reflection can be used to build malleable systems
of all kind

• not only interpreters and compilers!

• systems also depend on other systems they use

[Rao91]

computational
reflection

reflective architecture

implementational
reflection

open
implementation

Definitions

Reflection that involves inspecting and/or
manipulating the implementation structures of
other systems used by a program

A system with an open implementation provides
(at least) two linked interfaces to its clients:

1. a base-level interface to the functionality

2. a metalevel interface that reveals some aspects
of how the base-level interface is implemented

implementational reflection

open implementation

[Rao91]

Duality...

• Computational <> Implementational

• a language interpreter is the implementation of
language

• the interface of any system can be seen as an
interpreter for that language

different characterizations of the
same essential ability

Structure of an OI

metalevel

interface

base level interface

• metalevel interface

• points at which base-level behavior can be customized with
different semantics and/or performance

• causal connection is trivial

• MOPs = OI of interpreters [Kiczales+91]

• compile-time MOPs = OI of compilers [Lamping+92/Chiba95]

Opening Up Implementations

• contrary to the black-box abstraction principle!!!

• any realistic system implies a number of tradeoffs

• the higher the level is, the more tradeoffs

• no single fixed implementation will satisfy all users

“I found a large number of programs perform poorly because of the
language’s tendency to hide “what is going on” with the misguided

intention of “not bothering the programmer with details”
[Wirth74]

[Kiczales92]

OI Classical Example

• A performance issue in class-based languages

• how are instance variables (slots) implemented?

(defclass person ()
 (name age address email...))

(defclass position ()
 (x y))

many instances,
both slots always used

many instances,
only few slots used in one

given instance

array-like representation hashtable-like representation

The CLOS MOP
• Open implementation of CLOS [Kiczales+91]

(defclass hashtable-class (std-class) ())
(defmethod allocate-instance ((c hashtable-class))
 ...allocate a hashtable to store the slots...
(defmethod get-value...) (defmethod set-value...)

(allocate-instance class)
(get-value class instance slot-name)
(set-value class instance slot-name new-value)

(defclass person()
 (name age address email...)
(:metaclass hashtable-class))

OI Philosophy

• Black-box abstraction: tricks/hacks

• White-box abstraction (eg. open source)

• no guarantee that code is well-enough structured

• Open implementations:

• reify some aspects of the implementation

“open up the implementation, but in a principled way”
[Kiczales92]

“explicitly focusing on the metalevel as a separate and first-class
interface [...] forces a greater attention to exposing important
design and implementation choices”

[Rao91]

OI Advantages

• Support variability in a system’s implementation

• performance tuning

• semantic customization

• No need for direct support for rarely-needed features

• eg. CLOS standard: backward compatibility vs. new design

• support a “CLOS region” rather than a “CLOS point”

Open Implementations

• languages: CLOS [Kiczales+91]

• compilers [Lamping+92, Chiba95]

• operating systems: ApertOS [Yokote92]

• window systems: Silica [Rao91]

• reflective systems: Reflex [Tanter+01]

Providing OIs

• OI design: think of a range of systems

• which range?

• iterative process, feedback, refinement

System

UseCase1 UseCase2 ...

System

System2 ...

[Kiczales+93]

OI Interface Styles
• Declarative style

• declare expected usage of the module

• Strategy style

• choose strategy in fixed list

• Layered style

• strategy + possible to provide a new strategy

makeSet(“n=5, insert=high”)

makeSet(“LinkedList”)

makeSet(“mySet”)

+ user friendly, abstract
- automatic choice can be hard

+ precise selection
- might choose badly
- limited set of strategies

[strategy]
+ open set of strategies
- more complex (for both)

[Kiczales+97a]

Reflection and OIs

• OI Interface styles as design patterns

• eg. Strategy for strategy and layered OI styles

• but explicit representation of any aspect of a system
can compromise efficiency badly

• lazy reification for making implementation state explicit

• Reflection/MOPs

• implicit and selective reification of some aspects

• possibly adaptable at runtime

OIs come from generalization of reflection,
reflection can be used to implement OIs!

[Rao91]

Mastering Locality

• Fundamental though hard to grasp

• many MOP architectures were locality experiments

• 5 coarse notions discussed in [Kiczales93+]

feature access individual features

textual indicate what behavior to change

object possibly per-object basis

strategy affect individual strategy

implementation simple change simple, incrementality

Towards AOP

• Kiczales effort to understand locality led to AOP

“very often, the concepts that are most natural to use at the
meta-level cross-cut those provided at the base level.”

“The structure of complex systems is such that it is natural for
people to make this jump from one locality to another, and
we have to find a way to support that.”

[Kiczales92]

“We are, in essence, trying to find a way to provide two effective
views of a system through cross-cutting localities.”

