
U$ina Prototynical Obiects
to Imolement Shared Behavior

in Obiect Oriented Systems

Henry Lieberman

ArtO~cial Intelligence Laboratory
Massachusetts lnatimte of Technology

Combrid&e, Mass. 02139 USA

Electronic mall (A ~ t) :
Henry@AI .AI .MIT. Edu, Henry@MIT-AI

1. Sets vs. prototypes: a philosophical dilemma
with practical consequences

Abstract

A traditional philosophical controversy between representing
general concepts as abstract sets or classes and representing
concepts as concrete prowrypes is reflected in a controversy
between two mechanisms for sharing behavior between
objects in object oriented progrJmmtng languages.
l ,~,~rance ,pUts the object world into c/asses, which encode
behavior shared among a group of ins~,,ces, which represem
individual membe~ of these sets. The class/instanee
distinction is not needed if the alternative of asing prototypes
is adopted. A prototype repre~ms the d4au/t behavior for a
concept, and new objects can re-use part of the lw~wledge
uored in the prototype by saying how the new object diHers
from the prototype. The prototype approach seems to hold
some advantages for representing default knowledge, and
incrementally and dynamically modifying concepts.
Delegation is the mechanism for implementing this in object
oriented languages. After checking its idiosyncratic behavior,
an object can forward a message to prototypes to invoke more
general knowledge. Because class objects must be oreaw.d
before their instances can be used. arid behavior can only be
associar~l with classes, inheritance fixes the communication
patterns between objects at instance creation dine. Because
any object can be used as a prototype, and any messages can
be forwarded at any time, delegation is the tno~ flexible and
general of the two techniques.

Permission to copy without fee all or part of this matexia] is granted provided
that the copies are not made or di~buted for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by pennimon of the Association for
Computing Machinery. To copy otherwise, or to republish, ~quires a fee and/
or specific permis~on.

© 1986 AC-'M 0-89791-204-7/86/0900-0214 75¢

How do people represent knowledge about generalizations
they make from experience with concrete situations?
Philosophers concerned with the theory of knowledge have
debated this question, but as we shall see, the issue is not
without practical consequences for the task of representing
knowledge in object oriented systems. Because much of
object oriented progrmuming involves constructing
representations of objects in the real world, our mechanisms
for storing and using real world knowledge get reflected in
mechanisms for dealing with objects in computm" languages.
We'll examine how the traditional contmvorsy between
representing concepts as sets versus representing concepts as
prototypes gives rise to two mechanisms, inheritance and
delesatlon, for sharing behavior between related objects in
object oriented languages.

When a person has experience in a particular situation, say
concerning a particular elephant named Clyde. facts about
Clyde can often prove useful when encountering another
elephant, say one named Fred. If we have mental
representations of a concept for Clyde, and a concept for
Fred, the question then becomes: How do the representations
of Clyde and Fred share knowledge? How can we answm"
questions, such as Fred's color, number of less. size. etc. by
reference to what we already know about Clyde? In the
absence of any mechanism for sharing knowledge between
related concepts, we'd have to repeat all the knowledge about
Clyde in a representation of Fred.

There are two points of view we can consider edop~g. The
first is based c~i the idea of abstract sets. Prom learning about
Clyde, we can consmlct a concept of the set [or class] of
e/ephants, which abstracts out what we befieve is true about
all individual animals sufficiently similar m Clyde to be
called elephants. The de__~dption of the set can enumm'ate all
the "essential" properties of elephants. We can view Clyde as
a member or instance of this class. In an object oriented
sysu~, the set approach involves creating an object to
represent t h e s e t of elephants, and establishing a link

214 OOPSLA '86 ~ SOlotemb~ 1966

representing the membership relation between the object
representing Clyde and the set object. Since the description
of the set represents what is true about all its members, we
can answer questions about Clyde by referring to the
description of the set. Establishing the same kind of
membership link between Fred and the set of elephants
enables Fred and Clyde to share some of the same
knowledge. If Fred and Clyde share some additional
properties, such as that of being Indian elephants, that are not
shared by some other elephants, these can be embodied in a
subclass object' which shares all the properties of the
elephant set' adjoining the additional properties relevant to
India.

But there's an alternative point of view. We can consider
Clyde to represent the concept of a prototypical elephant. If I
ask you to "think of an elephant", no doubt the mental image
of some particular elephant will pop to mind, complete with
the characteristics of gray color, trunk, etc. If Clyde was the
elephant most familiar to you, the prototypical elephant might
be an image of Clyde himself. If I ask you a question such as
"How many legs does an elephant have?", a way to answer
the question is to assume that the answer is the same as how
many legs Clyde has, unless there's a good reason to think
otherwise. The concept of Fred can have a connection
marking its prototype as Clyde, as a mechanism for sharing
information between the two weighty pachyderms. The
description of Fred can store any information that is unique to
Fred himself. If I ask "How many legs does Fred have?', you
assume the answer is the same for Fred as for Clyde, in the
absence of any contrary evidence. If you then learn that Fred
is a three-legged elephant, that knowledge is stored with Fred
and is always searched before reference'to the prototype is
made.

2. P r o t o t y p e s have a d v a n t a g e s fo r i n c r e m e n t a l
l e a r n i n g o f concep t s

Thought the concept of a set has proven fruitful in
mthematics, the prototype approach in some ways
corresponds more closely to the way people seem to acquire
knowledge from concrete situations. The difficulty with sets
stems from their abstractness; people seem to be a lot better at
dealing with specific examples first, then generalizing from
them than they arc at absorbing general abstract principles
fast, and later applying them in particular cases. Prototype
systems allow creating individual concepts first, then
generalizing them by saying what aspects of the concept are
allowed to vary. Set-oriented systems require creating the
abstract description of the set first, before individual instances
can be installed as members.

In mathematics, sets are defined either by enumerating their
members, or by describing the unifying principles that
identify membership in the set. We can neither enumerate all
the elephants, nor are we good at making definitive lists of

the essential properties of an elephant. Yet the major impetus
for creating new concepts always seems to be experience with
examples. If Clyde is our only experience with elephants, our
concept of an elephant can really be no different than the
concept of Clyde. After meeting other elephants, the
analogies we make between concepts like Fred and Clyde
serve to pick out the important characteristics of elephants.

Prototypes seem to be better at expressing knowledge about
defaults. If we assert grayness as one of the identifying
characteristics of membership in the set of elephants, we can't
say that there are exceptional white elephants without risking
contradiction. Yet it is easy to say that Fred, the white
elephant, is just like Clyde, except that he is white. As
Wittgenstein observed, it is difficult to say, in advance,
exactly what characteristics are essential for a concept. It
seems that as new examples arise, people can always make
new analogies to previous concepts that preserve some
aspects of the "defaults" for that concept and ignore others.

3. I n h e r i t a n c e i m p l e m e n t s sets , d e l e g a t i o n
i m p l e m e n t s p r o t o t y p e s

Having set the stage with our philosophical discussion of the
issues of concept representation, we turn now to how these
issues affect the more mundane details of implementation of
object oriented programming systems.

Implementing the set-theoretic approach to sharing
knowledge in object oriented systems is traditionally done by
a mechanism called inheritance, fast pioneered by the
language Simula, later adopted by Smalltalk, flavors and
Loops, among others. An object called a class encodes
common behavior for a set of objects. A class also has a
description of what characteristics are allowed to vary among
members of the set. Classes have the power to generate
instance objects, which represent members of a set. All
instances of a class share the same behavior, but can maintain
unique values for a set of state variables predeclared by the
class. To represent Clyde, you create a description for the
class e l e p h a n t , with an instance variable for the elephant's
name, values of which can be used to distinguish Clyde and
Fred. A class can give rise m subclasses, which add
additional variables and behavior to the class.

Implementing the prototype approach to sharing knowledge
in object oriented systems is an alternative mechanism called
delegation, appearing in the actor languages, and several
Lisp-based object oriented systems, such as Director [Kalm
79], T [Rees 85], Orbit [Steels 82], and others. Delegation
removes the distinction between classes and instances. Any
object can serve as a prototype. To create an object that
shares knowledge with a prototype, you construct an
extension object, which has a list containing its prototypes,
which m y be shared with other objects, and personal

September 1986 OOPSLA ~6 Proceedings 215

behavior idiosyncratic to the object itself. When an extension
object receives a message, it first attempts to respond to the
message using the behavior stored its personal pan. If the
object's personal characteristics are not relevant for
answering the message, the object forwards the message on to
the prototyggs to see if one can respond to the message. This
process of forwarding is called delegating the massage. Fred

the elephant would be an extension object that stored

behavior unique to Fred in its personal pan. and referenced
the prototype Clyde in its shared part.

4. Too l s fo r r e p r e s e n t i n g b e h a v i o r a n d i n t e r n a l
s t a t e a r e t he b u i l d i n g b locks o f object o r i e n t e d
sy s t ems

Each object oriented system must provide some linguistic
mechanisms for defining the behavior of objects. The
philosophy of object oriented programming is to use the
object representation to encode both the procedures and data
of conventional languages. Rather than define the procedural
behavior or the data content of an object all at once, it is
convenient to break both aspects of an object into a set of
pans that can be accessed or modified individually by name.

An object's internal state consists of vm, iables or
ucqu~nmnces, which can be accessed in most object oriented
systems by sending the object a message consisting of the
variable's name. An object's procedure for responding to
messages [in actors, we say its script] can be composed of a
set of procedures called met~ts, each of which is specialized
for handling only a certain subset of the messages the object
receives, identified by name. Breaking up an object's state
into named variables means that different portions of the state
can be modified incrementally, without affecting the others.
Breaking up an object's behavior into named methcda means
that different portions of the behavior can be modified
incrementally, without affecting the otben. The language
must then provide ways of combining groups of methods and
variables to form objects, and some means of allowing an
object to share behavior [implemented as methods and
variables] residing in previously defined objects. We will call
these composite objects e x ~ m u . These building blocks
are represented in the illustration "Tools for sharln 8
knowledge', with "icons" to be used in further discussion.

mJ

r

O
Many object oriented languages supply primitive linguistic
mechanisms for creating objects with methods, variables and
extensions. An alternative approach, which is advocated in
the actor formalism, is to define methods, variables and
extensions as objects in their own right, with their behavior
determined by a message passing protocol among ther~
Obviously, an object representing a method cannot itself have
methods, otherwise infinite recursion would result. Using
simple objects ~mitive to the system, a variable is defined to
be an object that remembers a name and a value, and
responds to access and modification messages. A method

responds only to those messages for which it is designed,
rejecting others. Extension objects use delegation to forward
messages from one part of the object to another to locate the
appropriate response.

Everyone who is already convinced of the utility of object
oriented programming shouldn't have much trouble
discernin 8 the advantages of using object oriented
prognunming in the implementation of the knowledge sharing
mechanisms. Foremost among them is the ability to define
other kinds of objects which implement alternatives to the
standard versions. Instead of an ordinary variable, one might
like to have "active" variables that take action when changed.
"read-only" variables, maybe even "write-only" variables,
each of which could be defined as a different type of variable
object. Alternative kinds of method objects can use differing
strategies to combine behavior from contrihodng
components, replacing the so-called "method combination"
feature of the flavors system, and tll~d~g "multiple
inheritance" easier. Different kinds of extension objects can
make different efficiency u'adeoffs on the issue of copying
venus sharing.

Tool* for ~iharlna Knowlc~ln

Methods

Variables

O~cts which have a
procedm for respondin8
to only to a particular
kind of messa8 •

Objem which u.ore a
value and can n=peed
to memql~ to d m ~ it

Extensions

\
,b

I I 4.

O b ~ which bare a
pen~ud m of methods
md vmtablu ud lutve
a pointer to,,, object
with ,hind knowtedge

The mechanisms for sharing knowledge in object oriented
languages have now grown so complicated that it is
impossible to reach universal conse~us on the best
mechanism Using object oriented wogranuning itself to
implement the basic b. i~iqg blocks of state and behavior is
the best approach for allowing e x p e m t a t i o n and co-
existence among competing fonnnlisms.

21S OOPSLA ~ Proc:~gllngs 8q0¢~1~ 1 ~

5. A Logo example illustrates the differences
between delegation and inheritance

An example from the domain of Logo turtle graphics will
illustrate how the choice betwecn delegation and inheritance
fffec~ the control and data structures in an object oriented
system. The delegation approach is illustrar~l in the figure
dded "Skaring Knowledge with Delegatfon". The first thing
we would like to do is create an object representing a pen,
which remembers a location on the screen, and can be moved
to a different location, drawing lines between the old and new
locations.

Sharlna Knowledge with I~ l~ . , t lnn

~ / (so, zoo) '~::/~'/ %~!* " , Pen .t

legMes t Pen at
/ (leO, 200)

A Turtle at
(50, 200) with
heading 90

We start out by creating a prototypical pen object, which has
a specific location on the screen x=200, y=50, and behavior
to respond to the draw message. When we would like to
create a new pen object, we need only describe what's
different about the new pen from the first one, in this case the
x variable. Since the y is the same and behavior for the draw
message is the same, these need not be repca~L

The draw method will have to use the value of the x
variable, and it's important that the correct value of x is used.
When the draw method is delegsced fxom the new pen to the
old pen, even though the draw method of the original pen is
invoked, it should be the x of the new pen that is ~_~1

To irsurc this, whenever a message is dclegatod, it must also
pass along the object that originally rece/ved the messa~.
This is called the SELF variable ill Simul~ Smslltalk
flavors, although I find the term "self" a little misleading,
since a method originally defined for one kind of object often

winds up sending to a "self' of a different kind. In actor
terminology, this object is called the client, since the
object being delegated to can be thought of as performing a
service for the original object. When a pen delegates a draw
message to a prototypical pen, it is saying "I don't know how
to handle the draw message. I'd like you answer it for me if
you can, but if you have any further questions, like what is
the value of my x variable, or need anything done, you
should come back to me and ask." If the message is
delegated further, all questions about the values of variables
or requests to reply to messages are all referred to the object
that delegated the message in the first place.

Suppose now we'd like to create a t u r t l e at the same
location as the original pen, using the original pen as a
prototype. How is a t u r t l e cLifferent from a pen? A tunic
shares some of the behavior of a pen, but has additional state,
namely it's h e a d i n g . Remembering a heading is essential
in imnlementine the additional behavior of being able to
respond to f o r w a r d and back messages by relying on the
behavior of the response to the draw message. We may
choose either to provide a new behavior for the turtle's draw
operation, or rely on the draw operation provided by the
original pen.

Let's look at the same example with the inheritance approach
to sharing knowledge as found in Simula and Smallteik,
instead of delegation. This is ilIustratecl in the figure tided
"Shoring knowledge with bdser~ance'. With inheritance, it is
necessary to create objects representing classes. To make a
pen, it is first necessary to make a pen c l a s s object, which
specifics both the behavior and the names of variables.

Individual pens are created by supplying values for all the
instance variables of the pen class, creating an instance
object. Values for all the variables must be specified, even if
they do not have unique values in the instance. No new
behavior may be attached to an individual pen. Extending
behavior is accomplished by a different operation, that of
creating a new subclass. The step which goes from a instance
to behavior stored in its class is performed by a "hard-wired"
lookup loop in systems like Simula and Smallta]k, not by
message passing, as in the delegation approach.

To extend pens with new behavior, we must f'wst ereate a new
class object. Here a t u r t l e c l a s s adds a new variable
heading along w/th new behavior for the forward
message. Notice that the variables from the pen class, x and

y. were copiod down into the nm/c class. An individual
nude instance must supply values for all the variables of its
class, superclus, and so on. This copying leads to larger
instance objects for classes further and further down the
inheritance hierarchy. The lookup of methods, p e ~ by
a primitive, unchangeable routine in~e_~_ of me___~ge passing,
starts a search for mcthods in the class of an object, and
proceeds up the subclass-to-supesclass chain.

September 1986 OOPSLA '86 Proceedings 217

How does a method inherited from the pen class to the turtle
class access a method implemented in the turtle class? Since
inheritance systems usually do not use message passing to
communicate from subclass to superclass, they can't pass the
turtle object along in the message, as we would in delegation.

Sharine Knowledge with Inherit=nee
I ~ ~ Pen Class

,mltan~t[~ ~ I APen~al

8ub4~lMll~ ~

A Pen st
(100, Z00)

Turtle Chum

A Turtle at
(SO, 2SO) with
beadin8 90

Instead, most use variable binding to bind a special variable
s e l f to the object that originally ~ceives a message. We
shall see later on that this leads to trouble.

In addition, inheritance systems also allow the "shortcut" of
binding all the variables of an instance so that they can be
referenced dix~fly by code running in methods as free
variables. While this is sometimes more efficient, it short-
circuits the message passing mechanism, defeating the
independence of internal representation which is the hallmark
of object oriented programming. Since variable references
use different linguistic syntax than message sends, ff we
wanted to change the coordinate representation from x and y
to polar coordinates using r h o and t h e t a , we'd have to
change all the referencing methods. Sticking to message
passing to access x and y means that even if the coordinates
were changed to polar, we could still provide methods that
compute the rectangular coordinates from the polar, and the
change would be transparent.

I hope these diagrams leave you with the impression that the
delegation approach is simpler. To create two pens and a
turtle, the inheritance approach requires the additional steps

of creating pen class objects and turtle class objects. Also,
wc have m have two different kinds of links between objects,
the subclass link and the instance link, whereas the deles•riCh
approach only requires a message passing relationship
between the linked objects.

6. A r e i n h e r i t a n c e a n d d e l e g a t i o n e q u a l l y
p o w e r f u l ?

• An obvious question to ask about the preceding discussion of
inheritance and delegation is whether the two techniques have
the same expressive power. The answer is no.

Given delegation, it is easy to see how we could implement
the functionality of inheritance. We can create specbl
class objects that respond to messages to create new
instances. We need only arrange that the class objects
observe the copying of variables from the superclass chain
when they create instances. Instance objects are given
behavior that implements the lookup of variables and
methods, roughly as follows.

I f I ' m an INSTJ~NCE o b j e c t
and X = o a o £ ~ a messmgo
w i t h • SELECTOR and 8omo J U g G ~ H T S :

Xf t h o SELECTOR m a t ~ h o s
ono o f t h o VA1aL14BLB names
i n my CLASS [o= 8UPFJACLI~8, o t o .] ,

X = o t u r n t h e c o r z ~ s p o n d i n g v a l u o ,
s t o = o d £n m y s o l f .

O t h o = w £ s o , X l o o k f o r • I T H O D
whoso MAMB m a t o h o 8

t h e 8ELECTOR o f t h e m u n g o
I n t h o l i s t o f lo¢~:]L I~TIE[OD8

of my C L U B .
I f X l a n d ono ,

Z b £ n d t h o v a r i a b l o 81LF t o m¥8o2£
[tho ZNSTANCZ ob:)oot].

Z b £ n d t h o namos o£
t h e v a = £ a b l o 8 o £ my CIJtSS,

[and a l l t h o v a r £ a b l o 8
up t h o 8UPERCLA88 c h a i n]

t o t h e £ = v a l u o s £n t ~ o XNSTJLMCB.
Thon I £ n v o k o the J~THOD.

X£ t h o z l ' e no m o t h o d
£n my CLA88's BTIZ0D l £ s t ,

I t r y t o f i n d 8 mot~hod
£n t h o 8UPERCLA88,
a n d s o on up t h o 8UPBRCLA88 ohaLn.

How about the other way? Can inheritance implement
delegation? Unfortunately noL The reason is s little tricky to
understand, but it has to do with the treatmcat of the s e l f
variable, which prevents a proper implementation of
forwarding of messages.

Often, a method for handling a message may need m ask the
object that o r i i ~ d l y received the message to perf~m some
service. A turdc object which receives s b a c k message
would like to turn it into a f o r w a r d message sent to the

218 OOPSI.A ~6 Proceeclings S e ~ 1966

same object, but negating the number of steps, so that b a c k
100 is like f o r w a r d - i 0 0 . In delegation, when a method
is delegated a message, it receives a component called the
c l i e n t in the d e l e g a t e message, which has the object
that originally received the message.

In inheritance systems, a distinguished variable named s e l f
is automatically bound to the recipient of a message during
the execution of code for a method. When the method search
proceeds from the original class to a superclass, the v~lue of
the self variable doesn't change, so that superclass methods
can reply to the message "as if ' they were methods of the
original object. However, when a user sends a message, the
self variable is always re-bound, so that it is generally not
possible for the user to designate another object to reply in
place of the object which originally received the message.
True delegation cannot be implemented in these systems.

An example, illustrated in the figure 'The SELF Problem"
will make this clear. Suppose we would like to extend a
particular C u t t l e object to create a tunic which draws
dashed instead of solid lines. The obvious way to do this is to
have the dashed-Cuttle intercept the forward message
and break up the in~rval into pieces, delegating • message to

draw a series of shorter fines to a solid-line t u r t l e . If, in
an inheritance system, the dashed-line turtle simply sends •
forward message to the solid-line turtle, then self will be
bound to the solid-line turtle. Our e~lier implementation of
back in terms of forward will then stop worldng, since •
message to the dashed-line turtle to go back will try to send a
f o r w a r d message to s e l f and draw a solid line insteadl

Be careful about confusing this example with an alternative
implementation using inheritance systems, which would
create a d a s h e d - t u r t l e c l a s s as a subclass of

s o l i d - t u r t l e c l a s s . While such an implementation
could have the correct behavior with respect to the b a c k
message, it still wouldn't count as an implementation of
delegation. Remember, what we were Irying to do was to see
if an object could forw~! messages to SOme other oJreody
exLst~n& object. A dashed tunic instance wouldn't be

forwarding any messages to an instance of solid turtle, since
it would just inherit copies of the variables and methods from
solid turtle.

7. W h a t a b o u t e f f ic iency?

The efficiency comparison between delegation and
inheritance boils down to time/space IradeoHs. Some have
argued that inheritance is more efficient because it requires
fewer messages, but this comes at the cost of increasing the
size of objects. Because variables are copied down from
superelass to subclass, instances become larger and larger the
farther down you get in the inheritance hierarchy. With
delegalion, each object need only specify what's different
about it from already existing prototypes, so the size of

The ".KF.I.F" .robltm

A Turtle that
draws solid lines

Wheo rm amla~l to SO BACK mine STEPS:
I s~d a PORWARD n~ssage~
nesming the umber of STEPS,
to "whoever Sot the BACK message"
['SEtFI.

A "rm~le that
draws dadwd lia~

w b m rm u k c d to go PoRwARD,
! sok the Trade who draws sc4id lines
to SO PORWARD abort dimmcm.
s l t am~ly widl the pen up and down
until the dimmce is covmed.

objects does not necessarily depend on the depth in the
hierarchy of shared objects. A look at the diagram illustrating
the data slructures for pen and turtle objects will confirm
inheritance's speed advantage and delegation's space
advantage.

Smaller objects make for faster object creation times, which
can be important in systems that create large numbers of
sm.U objects with short lifetimes, as opposed to small
numbers of large objects with Ion s lifetimes. Reducing the
size of objects may also improve the efficiency of virtual
memory, by improving locality of refacnce,, allowing •
higher density of frequently referenced objects in the primary
memory. With a copying garbage collector, such as that
described in [Lieberman and Hewitt 83], smaller objects can
improve the efficiency of garbage collection by reducing the
copying overhead.

Implementors shouldn't get scared away by the search
required to find methods and variables in the delegation
approach. There's a simple,, effective trick for reducing the
search time: ¢ n c h ~ the result of lookups. Caches are • way
of trading space for speed, mitigating any ucsative effects of
the speed-for-space mmeoff made by delegetion. Caches
make • more effective use of the extra memm7 than

September 1986 OOPSLA '88 Proceedin0s 219

incttscriminately copying instance variables, because the
memory they do use is sure to be in constant use. Caches
don't restrict flexibility in interactively modifying the
programming environment the way copying and compilation
optimizations do.

On conventional machines, probably no implementation of
delegation is going to surpass variable lookup via registers
and stack indexing for raw speed. But in their zeal to speed
up variable lookup, implementors have forced decisions such
as large object size on object-oriented languages, which
adversely affect efficiency. Parallel machines with large
address spaces will make the attractiveness of such register-
oriented optimizations fade.

Smalltalk[Krasner 84] reports a 93% "hit rate" for a
moderately sized cache, 1000 objects. This means that any
savings realized by inheritance over delegation in lookup
could at best affect the remaining 7%. The best thing to do
seems to be to keep a global cache, and invalidate it whenever
any changes are made to the sharing hierarchy. A change will
then slow the system down for the next 1000 messages, or
whatever time the cache takes to fill up again. "Smarter"
alternatives, such as per-object caches are probably not worth
the extra trouble they would cause for incremental software
modification, since the hit rate on a global cache is so high.
Since both inheritance and delegation can be implemented
almost equally efficient•y, it seems that there's little reason to
sacrifice the extra flexibility of delegation on efficiency
grounds.

8. R e - d i r e c t i n g I / 0 s t r e a m s I l lu s t r a t e s a n
i m p o r t a n t a p p l i c a t i o n o f d e l e g a t i o n

Many object oriented systems make good use of object
oriented programming techniques to implement input-output
streams. Such a stream is an object that receives messages to
input or output a character, a line 6f text, an expression.
Systems usually have global variables designating the
"cmrent" sources of input and output, which is by default
bound to an object representing the stream of characters being
displayed on the window of a screen of an interactive display.

The name "sue•re" suggests the continual flow of characters
or pixels between the user and the system. A very useful kind
of object is that which implements a "dam" to divert the
stream to other destinations, or "plumbing" which connects
one stream with another. A dr/bb/e f//e is a sequential file
maintaining a record on disk of the history of input-output
interactions, to provide a more permanent recording of
interactions than the ephemeral twinkling of pixeis. A dribble
file can be implemented by replacing the stream which
represents interactions at the terminal with one that writes
them to disk also.

The dribble stream needs the ability to masquerade as the
terminal steam. It should have the same responses to all the
messages that the ordinary terminal stream, and also provide
the additional behavior of writing to the disk. The streams
should be considered indistinguishable from the point of view
of all programs which perform input-output

To implement the dribble saw.am cleanly, we'd like it to be
the case that the implementation of the dribble stream
shouldn't have to know the precise details of the
implementation of the stream which it is replacing. We
might, for example, like to use a single dribble stream with
both a stream to a directly connected interactive terminal and
a stream interacting over a network.

Can. • d r i b b l e s t r e a m " m | ¢ a u e r t d e " • c • terlTdn M s t r e a m :,

Terminal Stream

q k • Z / O lg l :OSm• plroteQged by qpteuee 11o l i tLmtn, , , I 4we t o ~ l l Z l ~i ~.I~. +/I'lL e I I

~ 1 Disk Stream

Oll l lq la te l In

Dribble Strum

The implementation using delegation is convenient and
straightforward. Messages which do character output are
intercepted and the disk output is interposed.

A DltZlmzdB-8~urdu(£s an o b j e c t
t h a t l o g s £ n t e : a e t £ o n on • a2~ILMG,
a n d : e e o C : £ t on d k a k u a £ n g a gZZdC-NAIm

~Zf Zrm • DItZBBLg-S~UtAM a n d
X g o t • message t o £npue o r o u t p u t

X o u t p u t t h e (2aAIULC~
t o t h e d£sk scream t:o t h e]rzzJI-NANB.

Then X d e l e g a t e t h e message
t o o u t p u t • CRII.RAC'L'r~
t o t h e o = £ g £ n a l $ ~ t l U ~ .

220 OOPSLA '86 Proceedings September 1986

If I'm • DRIBBLE-STREAM and
I got any other message,
I s:i.mply d e l e g a t e t h e message

t o ' ¢ . h • STREAM.

It works to take care of only the single-character input and
output messages because presumably all higher level
messages like p r i n t of a object are ultimately implemented
in terms of the single-character versions. The method which
performs a higher level print operation would ultimately send
a character output message to its client [send to s e l f] .

Surprisingly, many inheritance systems make it difficult to
implement this simple extension to the behavior of streams.
One villain is the insistence of systems like flavors and
Smalltalk on defming separate procedures for handling each
type of message. Attempting to try to implement
d r i b b l e - s t r e a m as a subclass of s t r eam in systems of
this ilk, we would find that there's no easy way to say "... and
send all of the irrelevant messages through to the original
stream". We would be forced to define one method to
intercept the character output message to write to the disk,
another to intercept the p r i n t message, another to intercept
the p r i n t - l i n e message, and so on for every relevant
message. Every time another message was ~d4_~ to the
original stream, another method would have to be added to
the d r i b b l e - s t r e a m , with tediously repetitive code. This
also has the unfortunate effect of making the implementation
of d r i b b l e - s t r e a m now sensitive to the details of exactly
which messages its embe~__ed stream accepts, inhibiting the
ability to re-use the implementation with different types of
sU~Jtms.

Adding to the system the def'mition of a dribble-stream
class or flavor would only give the ability to create new
instances of dribble stream objects. It would not be possible
to create a dribble stream which used a previously existing
stream object. We'd then have to make new terminal
streams, network streams, or other kind of streams, to be able
to take advantage of the recording functionality. We
shouldn't have to reproduce every kind of stream in the
system just to have the dribble capabilityl

If, instead, we attempt to make a dribble stream which holds
the interaction su~un as one of its instance variables, we face
the problem that there is no way for the dribble stream to
cocmcfly forward a message like p r i n t to the value of the
variable. Because of the way these systems handle the s e l f
variable, the forwarding of messages to the original stream
won't work, for the same reason as in the turtle example.
Sending a p r i n t message to the instance variable would re-
bind the s e l f variable, so it would result in sending lower-
level messages directly to the interaction stream and not to
the dribble stream. So it seems as though any straightforward
attempt to implement the dribble stream as a simple
behavioral extension in many inheritance systems is doomed.

9. Parallelism causes problems in inheritance
systems because of the SELF variable

There's,an additional problem in the case that the stream can
accept messages from more than one parallel process.
Because the stream holds modifiable state [such as a screen
bi t••p] , the stream must be protected against t~ ing errors
resulting from two processes u~ing to write to the stream at
the same time. A technique such as serializer objects
[Hewitt, Attardi, Liebermen 79] or monitors must be used.

This means that when the sueam receives a write message, it
"locks", so that subsequent messages to the stream must walt
in a queue for the stream to finish processing the first write
message.

Now, if a message to a serialized dribble sweam tries to
process a p r i n t message by sending a
character-output ~ g e to the self variable, it will
find self bound to a serialized stream which is locked

waiting for that very p r i n t message to completel Dendlockl

Since delegation uses message passing, when the dribble
stream delegates to a tennimd sum•n, it can supply [as the
client in the delegate message] an snser/~/zed version of
itself, which can lnecess the message without waiting.

I0. Delegation is more flexible than Inheritance
f o r c o m b i n i n g b e h a v i o r f r o m m u l t i p l e s o u r c e s

Often, an object will want to utilize behavior that appears in
more than one oth~ already exindng objecL The behavior

that a system needs to implement a particular "rearms" can be
packaged up as a single object, and somedmes an object will
want to combine several of these features to implement its
behavior. For example, window objects might have tides,
borders, size adjustments, etc. A particular window object
may choose some of these features and not others. Features
may be independent of one another, or they nay interact

The soludon in inheritance systems is to create a class object
that mentions a list of other classes whose behavior it wishes
to share. A l l the methods and variables mentioned in any of
the classes are inherited by the combined object. Systems
like flavors allow optionally, on a per-n~thod basis,
supplying an opdon for how to combine behavior when more
than one component conuibutes a method. Typical opdons
are to invoke all the contributing methods, impose an order
on them, or return a list of the results.

The problem with this style of combining behavior from
multiple sources is that it fixes the pattern of communication
between objects before the time an instance object is created.
This limits the extent to which behavior from pp~viously
existing objects can be used dynamically. By contrast, with
delegation, the communication patterns can be determined at
the time a message is received by an object.

September 1986 OOPSLA '86 Proceedings 221

With delegation, a Bathed for an extension object can simply
access the prototypicai objects from which it deflve# behavior
on the s h a r e d List. A window which wants to invoke the
draw action of a pre~ously de~ned r e c t a n g l e object
acting as its borders can simply delegate the draw message
to the recmnBle object Thus delegation doesn't require
"method combination" or an inventory of esoteric combining
operations. The behavior is simply prooanmml in the
method for the combined extension object. Should a
programmer wish to build a library of common combination
techniques, it is easily done by constructing variants on the
sumdard method object, so delegation could he made as
concise as method combination in inhm'itanee systems. With
inheritance, if a window class includes a "bo~ders m/x/n", the
window instance does not contain an independent object
representing its borders, so it is not possible to send a
message to the borders of a window independent of the
window object itself. The window class merely contains a
m/xmre of the methods and variables inherited from the
borders and other contributing components.

In highly responsive in~ractlve systems, it is often necessary
to wait until a message is received to determine how behavior
from component objects will be utilized. Here's a simple
example in which dynamic utilization of behavior from
multiple sources is required, illustrated in the figure
"Delegation allows communication patterns to be decided at
run time".

A bordered b i t m a p can be built from a rectangle,
which can display its borders, and a bLtmap which can
transf~ an array of pixels to the screen. What should the
draw response for the bordered bitmap be7 With
inheritance, you create a hordered-bitmap class
inhents both from rectangle and bitmap, saying that
both draw methods are to be use~ Fu~.

But now suppose we'd like to give the user the option of
changing dynamically which behavior is used. When the
bitmap is dragged across the screen, the u~n~= of the entire
array on every mouse movement might be too slow, so it
might be preferable to give the use~ tha option of just
dragging the outline of the bitmap instead. A reasonable
thing to do is to give the user an on-screen toggle switch to
decide the behavior, and the user can potenl~dly change the
behavior at any time. So the behavior of the bardered biamp
cannot be decided before the object is =cmnd. With
delelpuion, when the bordered bitmap gets a draw n~essage,
it can decide whether to delegate the message to the rectangle
object that it contains, or to the bitmap object, or both.

lnh~tance s y s ~ are also plagued by what I call the
one-Insurers c/ass prob£em. When systems are composed of
l m ~ numhen of objects with slightly vmying behavior, you
wind up having to ca'ente new class objects often just to have
one or s few instances. It is necessary to cn'.ate ad-hoc
classes such as "window w:Lth 8 wlde b o r d e r

tLmem roman f o n t and no t f t l e " j n s t tocombine
features for a single inmnce.

b h , l a l l n n | l l e l n enmmnn lee f l nn lmtl@l.ns

to he deemed st run rims

F-1
A Rtct inl l t /

l m U l m m l

: 1
~ nus

mmmmm • ••mmm

A Bl imp

A Bordered.Bimmp

We O U ' t IJ&]r sdsLok
BKIkM mat;tied g£11
I l l I l o d I I I ~ [l l
tiJJO OI @11,~@Ot OIOJJtJLOl
t A n o

II. Delegation is advantageous for highly
• Interactive, Incremental software development

An important issue ~o consid= when evaluatin8 the aadco~
between inheritance and delegation is the consequences for
incremental software developmant. As we have seen above,
inheritance tends to encourage copying of variables and
methods while delegation encourages sharing. H a
prototypicai object chanses behavior, then all objects which
mention that protoOypo on their s h a r e d list will
automatically "feel" the change. H changes m~¢ ~ to an
inheritance hierarchy, such as adding a new instance variable,
or changin 6 the class sn'uctm'e, information copied from the
old data slrucntrns may be rendered obsolete. Broadcasting
the result of changes to copies puts a burden on the operations
which m,1~. inc~menlal changes in the software
environment. An ¢xumne example of Ibis ocenn in Ihe
flavon system, whece a~bmply adding a method m
v a n i l l a - f l a v o r , the root Of the inhea'itence hierarchy,
~uJts in r a ~ m ~ o n of eve~ flavor in the ~ s)smnl
This effectively prohibits any smxliflcadons to objects near
the top of the inheriumce hiamchy.

Though delegation has been the minority viewpoint in object
orienl~! languages, it is slowly be(xNrnin~ ~ I I

222 OOPSLA ~6 PNXxwdin0s Sq~embm' 1966

important for its added power and flexibility. Part of the
reason for neglect of the delegation approach has been
historical. Simula, one of the first object oriented languages,
adopted the inheritance technique. It fixed communicadon
patterns between objects at compile time, as was appropriate
for a compiled language of the Algol family. The specific
mechanisms for this were then "inherited" by Smalltalk and
others, without reconsidering whether the approach was still
appropriate for an interpretive language in a more highly
interactive programming environment. I hope the preceding
discussion has convinced you that the approach of modeling
concepts using prototypes and implementing behavior in
object oriented languages using delegation has distinct
advantages over the alternative point of view using classes
and inheritance.

12. Acknowledgments

Major support for the work described in this paper was
provided by the System Development Foundation. Other
related work at the Mrr Artificial Intelligence Laboratory
was supported in part by DARPA under ONR contract
N00014-80-C.0505.

Cad Hewitt's ideas concerning actors, and especially the
impact of parallelism on object-oriented programming were
important influences. Kenneth Kahn and l.,uc Steels
implemented object-oriented languages which adopted
delegation mechanisms and also influenced these ideas. Alan
Borning reached similar conclusions in the context of the
ThingLab system implemented in Smalltalk. Koen de Smedt
provided a helpful critique of a talk I gave on these issues in
Nijmegen, the Netherlands.

References

[Bittwisde, Dahl, Myhrhaug, and Nygaard 73]
G. M. Bixtwisde, O-J Dahl, B. Myhrhaug,
IC Nygaard.
Simula Be~in.
Van Nostrand Reinhold, New York, 1973.

[Bobrow 85] D. Bobrow, K. Kahn, M. Stefik,
G. Kiczales.
Common Loops.
Technical Report, Xerox Palo Alto

Research Center, 1985.

[Botm~w, Stefik 83]
Daniel Bobrow and Mark Stefik.
Knowledge Programming in loops.
,41 Magazine, August, 1983.

Alan Borning.
Classes Versus Prototypes in Object-

Oriented Languages.
In Fall Joint Computer Conference.

ACM/IEEE, Dallas, Texas, November,
1986.

[Boming 86]

[Goldberg, Robson 83]

Adele Goldberg and David Robson.
Smalltalk-80: The Language and its

Implementation.
Addison-Wesley, Reading, MA, 1983.

[Hewitt 79] Carl Hewitt.
Viewing Control Structures as Patterns of

Passing Messages.
In P. Winston and R. Brown (editors),

Artificial Intelligence, an MIT
Perspective. MIT Press, Cambridge,
MA, 1979.

[Hewitt, Attardi, Lieberman 79]
Carl Hewitt, Giuseppo Attardi, and Henry
Lieberman.
Security And Modularity In Message

Passing.
In First Conference on Distributed

Computing. IEEE, Huntsville,
Alabama, 1979.

[Kahn 79] Kenneth Kahn.
Creation of Computer Animation from

Story Descriptions.
PhD thesis, Massachusetts Institute of

Technology, 1979.

[Krasner 84] Glenn Krasner, editor.
Smalltalk-80: Bits of History and Words of

Advice.
Addison-Wesley, New York, 1984.

[Lieberman 86a] Henry Lieberman.
Concurrent Object Oriented Programming

in Act 1.
In A. Yonezawa and Tokoro (editors),

Concurrent Object Oriented
Programming. MIT Press, Cambridge,
Mass., 1986.

[Lieberman 86b] Henry Lieberman.
Delegation and Inheritance: Two

Mechanisms for Sharing Knowledge in
Object Oriented Systems.

In J. Bezivin, P. Cointe (editors), 3eme
Journces d' Etudea Langages Orientes
Objets. AFCET, Paris, France, 1986.

[Lieberman and Hewiu 83]
Henry Lieberman and Carl Hewitt.
A Real Time Garbage Collector Based on

the Lifetimes of Objects.
CACM 26(6), June, 1983.

[Moon, Weinteb 84]
David Moon, Daniel Weinreb, eL al.
lisp Machine Manual.
Symbolics, Inc. and MIT, Cambridge,

Mass., 1984.

[Rees 85] Jonathan Rees, et. al.
The T Manual.
Technical Report, Yale University, 1985.

[Steels 82] Luc Steels.
An Applicative View of Object Oriented

Programming.
Technical Report AI Memo 15,

Schlumberger-Doll Research, March,
1982.

Selotember 1986 OOPSLA '86 Proceedings 223

