
Data Compression in Oracle

Meikel Poess Dmitry Potapov

Oracle Corporation Oracle Corporation
500 Oracle Parkway 500 Oracle Parkway

Redwood Shores, CA 94065 Redwood Shores, CA 94065
USA USA

meikel.poess@oracle.com dmitry.potapov@oracle.com

Abstract
The Oracle RDBMS recently introduced an
innovative compression technique for reducing
the size of relational tables. By using a
compression algorithm specifically designed for
relational data, Oracle is able to compress data
much more effectively than standard
compression techniques. More significantly,
unlike other compression techniques, Oracle
incurs virtually no performance penalty for SQL
queries accessing compressed tables. In fact,
Oracle's compression may provide performance
gains for queries accessing large amounts of
data, as well as for certain data management
operations like backup and recovery. Oracle's
compression algorithm is particularly well-suited
for data warehouses: environments, which
contains large volumes of historical data, with
heavy query workloads. Compression can
enable a data warehouse to store several times
more raw data without increasing the total disk
storage or impacting query performance.

1. Introduction
The amount of data businesses are retaining for data
warehouse applications is exploding at a record rate
because. For comprehensive mining purposes data
warehouses not only keep vast amounts of detailed data
(e.g. call and click-stream data) but also store this data
over an extended period of time. In the past commercially
available database systems have not heavily utilized

compression techniques on data stored in relational tables.
A standard compression technique may offer space
savings, but only at a cost of much increased query
elapsed time. Hence, this trade-off has made compression
not always attractive for relational databases.

In this paper we introduce an innovative table
compression technique, recently introduced in the Oracle
RDBMS [8] that is very attractive for large relational data
warehouses. It can be used to compress tables, table
partitions and materialized views (these database objects
are essentially implemented as tables). The status of a
table can be changed from compressed to non-compressed
at any time by simply adding the keyword COMPRESS to
the table’s meta-data. Changing the status of a table does
not compress its existing contents. Only newly loaded
rows are compressed allowing for a mixture of
compressed and non-compressed rows to coexist. On the
other hand Oracle’s RDBMS offers the possibility to
compress an already existing table in its entirety without
reloading it.

The reduction of disk space using Oracle table
compression can be significantly higher than standard
compression algorithms, because it is optimized for
relational data. It has virtually no negative impact on the
performance of queries against compressed data; in fact, it
may have a significant positive impact on queries
accessing large amounts of data, as well as on data
management operations like backup and recovery. These
benefits of compression come at the cost of increased load
and update times. However, used in conjunction with
other features of the Oracle RDBMS these performance
degradations can be compensated for. For instance, since
data in a typical data warehouse application is organized
chronologically, it can be partitioned by day, month or
year using Oracle’s partition feature. As new data from
the operational database arrives only the most current
partitions are updated. In order to avoid performance
degradation during updates the most current partitions can
be kept non-compressed until no more updates occur on
them. Then they can be compressed.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

1.1 Other Compression Techniques

Data compression techniques adopted in other
RDBMS for Data Warehouse Applications [6,7] also
implement a lossless dictionary-based approach.
However, they use static, table-wide dictionaries instead
of dictionaries optimised on a block level. Due to its
global optimality of compression a table-wide dictionary
approach can result in high compression factors. This is
beneficial for uniformly distributed, static data.
Furthermore, a global dictionary may use less disk space
compared to a block level approach, which potentially
repeats dictionary entries across blocks. However,
compared to a global dictionary approach Oracle’s block
based dictionary implementation shows many benefits. In
comparison to [6] Oracle’s dictionary entries are created
by the system rather than requiring the user to specify
them manually. A 20-column table using the compression
technique proposed in [6], requires the user to specify up
to 20x255=5100 dictionary entries. On the other hand,
since data warehouse tables are periodically refreshed, the
list of the most frequent column values can change over
time, making it necessary to recreate the entire table.
Secondly, Oracle’s algorithm dynamically adapts to
changes in data distribution without compromising the
compression factor. While [6] utilizes a table wide list of
most frequent column values, [7] exploits the column
value frequency of the first rows to populate the
dictionary. This can lead to sub-optimal compression
when data distributions change over time. For instance,
as a data warehouse is refreshed new dates, which are not
present in the dictionary, enter the system while old dates,
which are present in the dictionary, are purged out of the
system. Thirdly, in order to access a row, in Oracle only
one block needs to be accessed, as opposed to multiple
blocks in case of a global symbol table, greatly increasing
buffer cache efficiency and reducing memory cache
misses. If compressed column values are accessed, using
a global dictionary it is necessary to access multiple
blocks. Even if dictionary blocks are pinned into the
buffer cache, accessing multiple blocks to uncompress a
column value increases memory cache misses and,
therefore, adversely increases CPU time.

The remainder of this paper is organized as follows.
In Section 2 we demonstrate how compressed blocks are
stored within the Oracle RDBMS and how load, update
and query operations operate on compressed blocks. In
Section 3, we analyze how well data can be compressed
utilizing data extracted from a life customer data
warehouse. In section 4, we conduct experiments to
evaluate the performance impact of table compression on
common data warehouse operations. In section 5,
utilizing the industry standard data warehouse
benchmarks, TPC-H, we demonstrate the impact of table
compression to load, query and update performance of a
comprehensive data warehouse environment. We draw
our conclusions in Section 6.

2. Table Compression Implementation
The compression algorithm used in Oracle for large data
warehouse tables compresses data by eliminating
duplicate values in a database block (aka. database page).
The algorithm is a lossless dictionary-based compression
technique. The compression window for which a
dictionary (symbol table) is created consists of one
database block. Therefore, compressed data stored in a
database block is self-contained. That is, all the
information needed to recreate the uncompressed data in a
block is available within that block.

2.1 Compressed vs. Non-Compressed Blocks

Figure 1 illustrates the differences between storing data in
a compressed versus non-compressed block. With the
exception of a symbol table in the beginning, compressed
database blocks look very much like regular database
blocks. Code modifications done in the Oracle RDBMS
server to allow for compression are very localized. Only
the portions of the code dealing with formatting blocks,
and accessing rows and columns were modified. As a
result, accessing a compressed block is completely
transparent to the database user or any application, and all
database features and functions that work on regular
database blocks also work on compressed database blocks
with the exception of dropping columns. The top part of
Figure 1 shows a typical data warehouse like fact table
with rowid, invoice id, customer first name, customer last
name and sales amount. There are entries for five
customers showing six purchases. For data warehouse
fact table it is very common to have this highly
denormalized structure.
The bottom left part of Figure 1 shows how a non-
compressed block stores the data of the fact table: all the
redundant information is stored. The bottom right part
shows how the same data is stored in a compressed block:
instead of storing all data, redundant information is
replaced by links to a common reference in the symbol

Figure 1: Compressed Block vs. not Compressed Block

table, indicated by the black dots (for readability not all
references are illustrated with arrows). For each column
value in all columns, based on length and number of
occurrences in one block, the algorithm decides whether
to create an entry into the symbol table for this column
value. If column values from different columns have the
same values, they share the same symbol table entry.
This is referred to as cross-column compression. Only
entire column values or sequences are compressed.
Sequences of columns are compressed as one entity if a
sequence of column values occurs multiple times in many
rows. This is referred to as multi-column compression.
This optimisation is particularly beneficial for OLAP type
materialized views using grouping sets and cube
operators. For instance a cube of a table often repeats the
same values along dimensions creating many potential
multi-column values. Multi-column compression can
significantly increase the compression factor and query
performance. In order to increase multi-column
compression, columns might be reordered within one
block. For short column values and those with few
occurrences no symbol table entry is created limiting the
overhead of the symbol table and ensuring that
compressing a table never increases its size. However,
this is transparent to any application.
For instance the name “Henry” occurs twice as first name
(rows 1 and 2). Consequently, column values for “Henry”
are replaced with a link into the symbol table. The name
“Todd” appears twice, once as a first name (row 3) and
once as a last name (row 2). In this case, the compression
algorithm references both, first and last name to the same
symbol table entry (cross-column compression). For rows
4 and 5 the compression algorithm uses multi-column
compression. Instead of compressing “Tom”, “Smith”
and “1.99” as separate entities, it combines all three into
one symbol table entry “Tom|Smith|1.99” reducing the
number of references in rows 4 and 5 to only one. Unique
columns, for instance the invoice id, are not compressed.
Also, the current implementation does not allow for
partial column compression. Hence, the first name in row
6, “Henry-Todd”, although both name parts exists as
references in the symbol table does not get compressed.

2.2 Compression of Database Blocks

Figure 2 outlines the steps of the compression process.
During load operations data is first loaded into a block in
its uncompressed format (Step 1). The result is a block
with a compression factor of 1 (= no compression), where
rows occupy the entire block (NC=block size). After one
block is fully loaded, the compression process of this
block starts (Step 2). This process tries to convert the
non-compressed block into its compressed format as
described in the previous section. The result is a modified
block where rows occupy a fraction of the block (C). A

local compression ratio (CF1) smaller than 1.032 indicates
that this block is not worthwhile compressing. This block
is written to disk and the next block is filled in Step 1. A
local compression ratio larger than 1.03 triggers to
investigate whether to further compress this block can
increase its compression ratio. Its local compression ratio
is used to determine how many compressed rows are
likely to fit into an entire block via extrapolation. That is,
assuming the local compression ratio CF, the average row
length and the remaining free block space the algorithm
calculates the number of rows it can further fit into this
block. This number of rows is read into a buffer and
compressed (Step 3). If not all buffered rows fit into a
compressed block, an overflow occurs. That is, the
extrapolation calculation based on CF was wrong, due to
changes in data distribution and this block is written to
disk. The remaining rows (overflow rows) are inserted
non-compressed into the next block (Step 4). If all
buffered rows fit into a compressed block, the previously
calculated compression factor (CF) might be too
conservative (possible underflow situation). Considering

1
C

NC
CF =

2 This fudge factor was empirically measured to
reflect the overhead of compression

Figure 2: Process of Compressing a Block

the compression factor off all rows just loaded (CF’3), the
algorithm again extrapolates how many more rows are
likely to fit into this block. If the remaining space allows
for at least one more row to be inserted, the algorithm
considers an underflow situation and buffers as many
rows as it extrapolates fit into this block (Step 5). The
resulting compressed block is written to disk and the next
block is loaded in Step 1.

This semi-offline compression technique has been
chosen to achieve local optimality of compression ratio.
The algorithm is greedy, meaning that it tries to load as
many rows as possible into each block. It does not
change row ordering and does not attempt to achieve any
form of global compression ratio optimality. The problem
of global compression ratio optimality is similar to global
space optimality, which is very computationally intensive,
as it is closely related to the problem of single-
dimensional bin packing. If global compression ratio
optimality is desired, the entire set of rows to be
compressed need to be buffered before blocks can be
populated. For large data warehouses this is not feasible
because it would potentially require to buffer terabytes of
data, which is not practical. Therefore, the algorithm
processes the row set to be loaded in a streaming fashion
with some offline characteristics for better compression
quality. Section “Space Savings” shows that this
compression implementation achieves very high
compression ratios on typical data warehouse data. As
discussion with customers show load time is very
important as some only have a limited time window
available for refreshing their data warehouse.

2.3 Query access

Since Oracle’s compression implementation works via
duplication elimination in each block at column level,
column values are present in the block’s symbol table in
their non-compressed format (see Figure 1). This has
many advantages for read only data access of column
values. Firstly, a single row access only touches one
block preserving locality of reference. Secondly, no
expensive decompression operations need to be
performed for read access. Decompression essentially
means to follow short references to columns into the
symbol table and locating the right column or column
sequence.

To take further advantage of compression, a couple of
optimizations are implemented. The first one optimizes
predicate evaluation for sequential row access. Using this
optimization predicates on compressed column, values are
evaluated at most once per block instead of once per row
as in the non-compressed case, giving queries accessing
compressed columns a very substantial benefit. This
optimisation takes advantage of the fact that compressed

3

'
'

C
NC

CF =

blocks contain information about data duplication in a
block. Assuming a query applies the predicate color =
‘green’ too all rows of a table. The query engine
reads one block at a time, accesses the field color for all
rows and evaluates the above predicate. For compressed
column values, after the predicate has been evaluated, the
result is kept. If a subsequent compressed column value
is accessed for the same value, this predicate does not
need to be evaluated since the result is already available.
The reference into the symbol table in this case also refers
to the predicate result.

The second optimization use multi-column
compression to increase column access. In Oracle
columns are chained in order of creation time. In order to
access column Ck of a N-column table (C1,C2,...Ck,… CN)
k-1 references in a linked list need to be traversed. Multi-
column compression can reduce the number of references
that need to be traversed, because multiple columns are
replaced with one reference into the symbol table (see
Section 2.1). However, in case a multi-column
compressed column is accessed, a minor overhead occurs
because the multi-column compression is more expensive
to decompress.

2.4 Updates and Deletes

Update and Delete operations on compressed data work
very similar to update and delete operations on
uncompressed data. The only difference is that if a
compressed column is updated or an entire row is deleted
the symbol table needs to be maintained. As part of each
symbol table entry a reference counter is maintained.
When a column is updated the algorithm checks whether a
symbol table entry for the new value exists. If it exists,
the reference of the updated column is modified to the
new symbol table entry and its reference count is
increased by one. At the same time the reference count of
the old value is decreased by one. On the other hand, if
no symbol table entry exists for the new column value,
that value is inserted non-compressed into the row.
During delete operations all references counters of the
deleted rows are decreased by one. Once a reference
counter becomes zero, the corresponding symbol table
entry is purged from the symbol table. A symbol table is
never deleted from a block even if no reference into it
exists because the overhead of an empty symbol table is
only 4 bytes.

Some update operations can take significant advantage
of compression. For instance, operations that set a
column to the same value in all rows of one table as in:

UPDATE TABLE item
SET i_color = ‘green’
WHERE i_color =’blue’.

In this case a new symbol table entry for the new
value is created in the symbol table and all rows are
updated to reference this entry. If the old column value

(in the above example ‘green’) was also compressed (i.e.
a symbol table existed for it) and its reference count after
the update operation became zero, the old symbol table
entry is replaced with a new symbol table entry without
touching all rows of one block. This is clearly much more
space and time efficient than updating all rows of one
block.

3. Space Savings
Table compression can significantly reduce disk and
buffer cache requirements for database tables. Since the

compression algorithm
utilizes data
redundancy to
compress data at a
block level, the higher
the data redundancy is
within one block, the
larger the benefits of
compression are.
Although there might
be data redundancy
across data blocks, that
data cannot be used to
further compress data.

If a table is defined
“compressed” it will
use fewer data blocks
on disk, thereby,
reducing disk space

requirements. Data from a compressed table is read and
cached in its compressed format and it is decompressed
only at data access time. Because data is cached in its
compressed form, significantly more data can fit into the
same amount of buffer cache (see Figure 3).

In order to avoid any confusion about how
compression and space savings is measured, we define
compression factor and space savings: Compression
factor (CF) of a table is defined as the ratio between the
number of blocks required to store the non-compressed
table compared to the number of blocks needed for the
compressed version:

blockscompressed
blockscompressednonCF

_#
__#=

The space savings (SS) are therefore defined as:

100
__#

_#__# ×−=
blockscompressednon

blockscompressedblockscompressednonSS

Unique fields, (fields with a high cardinality) such as
primary keys cannot be compressed, whereas fields with a
very low cardinality can be compressed very well. On the
other hand, longer fields yield a larger compression factor
since the space saving is larger than for shorter fields.
Additionally, if a sequence of columns contains the same
content, the compression algorithm can apply multi-
column compression. In most cases, larger block sizes
increase the compression factor for a database table as

more column values can be linked to the same symbol
table. Sorting data before loading can further increase the
compression factor. The more fields of the same content
that are concentrated in each block the more efficiently
the compression algorithm works. If one knows that one
or multiple fields of a database object have similar values
- indicated by a low number of unique values - sorting the
data on those fields is likely to increase the compression
factor. However, sorting on fields with very low
cardinality does not necessarily yield a large compression
factor increase. Due to the low cardinality of this field,
rows with the same value can be found already at a high
concentration in each block. Therefore, best results can
be achieved by sorting on a field that is both long and has
a medium cardinality.

3.1 Space Savings on Customer Data

As mentioned in earlier sections compression factors
depend on many parameters such as the frequency of
values, its distribution in the input stream etc. This
section demonstrates compression factors that were
measured on customer data. The data is modeled utilizing
a star schema. The fact table DAILY_SALES is the
center surrounded by the dimensions TIME,
CUSTOMER, SALES REGION, ITEM and PROMOTION.
In addtition to the regular table there are two summary
tables defined on SALES: WEEKLY_SALES and
WEEKLY_AGGR. WEEKLY_SALES aggregates SALES
for each item and customer to weekly numbers.
WEEKLY_AGGR builds on WEEKLY_SALES by
aggregating further on postal codes.

Fact and summary tables are usually the largest tables
in a star schema representing 70% or even more of the
total database size. In contrast dimension tables are very
small. Hence, compressing dimension tables does not
yield an overall large disk savings and should only be
considered when dealing with very large dimensions. We
therefore only compress the fact table and materialized
views of our test schema configuration.

Figure 4 illustrates how well data of the customer star
schema compresses. The size for SALES decreases from
27GB to 8.6GB yielding a compression factor of 3.1. The
two materialized views compress at compression factors
of 2.9 and 4.0. WEEKLY_SALES shrinks from 18.8GB to
6.5GB while WEEKLY_AGGR shrinks from 7.5GB to
1.9GB yielding a space savings of 67 to 75 percent. That
is, the compressed version of WEEKLY_SALES requires
only 25% disk and buffer cache space than their
uncompressed counterpart while the compressed versions
of DAILY_SALES and WEEKLY_SALES/
WEEKLY_AGGR require only 33% of the resources that
their uncompressed counterparts use. The overall
database size reduces from 55GB to 18GB. The space
saving, compressing only the fact tables and their
materialized views, achieved on the customer’s entire star

Figure 3: Data Access Path
with Compression

schema is about 67% at a compression factor of about 3.1.
This shows the key benefit of compression: reduction of
database space by 2/3.

4. Performance Analysis
This section investigates the performance impact of

compressed tables on typical data warehouse operations,
such as the creation (loading), updating and querying of
compressed tables. Compressed tables can be created in
multiple ways, via loading from external media or other
tables. The load experiment reads data from an external
media. Updating compressed tables include UPDATE
and DELETE operations. INSERT operations are omitted
since the code path for inserting new data is already tested
as part of the load experiment. Although the execution
plans of data warehouse queries can be very complex,
possibly involving multiple data access methods, multiple
joins, sort and aggregation operations, only the data
access methods are affected by compressed tables. The
following query experiments focus on full table scans and
row access by row identifier (rowid). They test the two
ways compressed rows are accessed in Oracle, namely
directly from disk or via the buffer cache.

The analysis focuses on the CPU and IO performance
during the above described operations. In order to
compare two performance tests the following measures
are used:

∑
=

−−=
T

t
iii ttcCPUC

1
1)(, where { }Ti cccc ,...,, 21∈

is the CPU utilization for sample i in the measurement
interval T; where { }Ti tttt ,...,,0 10 =∈ , measured in
CPUU (CPU seconds), and

∑
=

−−=
T

t
iii ttioIOC

1
1)(, where { }Ti ioioioio ,...,, 21∈

is the IO utilization for sample i in the measurement
interval T; ti defined as above, measured in MB.

4.1 Experiment Setup

For the experiments conducted in this section we use
one table (SALES), which mimics a star schema like fact
table. It has about 2.5 Million rows and 19 columns.
Loaded into a non-compressed table, its data resides in
152472 data blocks and 28354 data blocks when loaded
into a compressed table. With a data block size of 8 KB,
this is about 1.2GB non-compressed and 221MB
compressed. The compression factor, therefore, is about
5.4. As described in Figure 5 the number of distinct
values in columns of the SALES fact table varies between
1 and 2.5 Million (unique). There is a mixture of
character and number columns.

Column Name Number of distinct values

SS_SOLD_DATE_SK 1707
SS_SOLD_ITEM_SK 10989
SS_SOLD_CUSTOMER_S 9990
SS_SOLD_ADDR_SK 5000
SS_SOLD_STORE_SK 5
SS_TICKET_NUMBER 2488060
SS_QUANTITY 100
SS_WHOLESALE_COST 9888
SS_LIST_PRICE 15570
SS_SALES_PRICE 15570
SS_EXT_DISCOUNT_AM 1
SS_EXT_SALES_PRICE 104442
SS_EXT_WHOLESALE_C 117296
SS_EXT_LIST_PRICE 104442
SS_EXT_TAX 27639
SS_COUPON_AMT 1
SS_NET_PAID 104442
SS_NET_PAID_INC_TAX 148121
SS_NET_PROFIT 30359

Figure 5: Table Characteristics

The system used is a 24 CPU Sun server with 400 MHz
ultra sparc processors and 8 GB of main memory. The
maximum IO throughput exceeds 300MB/s. Hence,
neither IO, main memory nor CPU are bottlenecks during
all tests. However, the degree of parallelism, the
operations are executed, was limited to four, two or one,
making this the bottleneck of the execution.

4.2 Load Test

Typically a data warehouse is loaded initially and then
periodically refreshed in a data maintenance phase during
which data is sometimes transformed to suit the format
and semantics of the data warehouse. Regardless of the
phases and whether transformations occur inside or
outside the database, data needs to be loaded into the data
warehouse in a timely fashion. Oracle’s preferred tool to
load data into data warehouses is its “External Tables”
feature [5].

The load tests consist of loading 2.5 Million rows (1.2
GB) with a parallel degree of four utilizing external tables
into the SALES tables both compressed and non-
compressed. Each load is done with direct insert,
bypassing the buffer cache and any row level logging.
However, full ACID requirements are fulfilled during the

27

8.6

18.8

6.5 7.5
1.9

55

18

0

10

20

30

40

50

60

Ta
bl

e
Si

ze
 [G

B
]

Sales Weekly
Sales

Weekly
Aggr.

Entire DB

Non Compressed Compressed

Figure 4: Compression Results of Customer Star
Schema Tables

load tests. The following database operations share the
same compression code path as parallel load: “move
table compress”4, “move partition
compress”5, “create table as select”6.
Since they show the same performance behavior as
parallel load, they are not analyzed in separate
experiments.

The non-compressed test completes in 181s while the
compressed test takes twice as long (364s). The
compression factor of 5.4 results in 221 MB to be written
by the compressed test and 1191 MB to be written by the
non-compressed test. Figure 6 shows the CPU utilization
during the execution of both loads. During their runs both
tests utilize about 5 CPUs. However, the load into a
compressed table indicated by the triangles takes 1950
CPUU compared to only 897 CPUU for the non-
compressed run; an increase of 117%.

Figure 7 shows the IO utilization of the system during

the two loads. During the non-compressed load the IO
throughput is about 5 MB/s and only about 2 MB/s during
the compressed. The ratio between the total number of

4 compresses an existing table without copying its content
5 compresses an existing partition without copying its content
6 creates a table by querying another table

bytes written in both cases corresponds to the
compression ratio of 5.4.

This is not surprising as the process of transforming an
uncompressed block into its compressed representation is
computationally expensive. Please refer to Section
“Compression Implementation” for a description of the
algorithm. As will be shown in later sections, this
approach to compression benefits the retrieval of
information not its loading. Considering that the majority
of the accesses to a data warehouse are read only this has
been a design goal of table compression.

4.3 Delete and Update (DML) Operations

In data warehouses DML operations, such as delete and
update, are not very common. They are mostly used to
clean erroneously inserted records or to refresh
materialized views. Sometimes delete operations are used
to clean up old records so that the amount of data kept in
the data warehouse is constant, as new rows from the
operational system are inserted. However, this can be
done more efficiently with drop partition operations.
Compared to DML operations in OLTP environments,
where only a few records are purged or updated, DML
operations in data warehouse environments purge or
update many records.

The delete experiments described in this section
consist of purging rows (transaction records) from a non-

compressed and a compressed SALES fact table, which
occurred in three stores (number 1,2 and 3). It deletes 1.5
million rows (60%) of the SALES table with a parallelism
degree of four. Before each test the SALES table is
loaded into the buffer cache to minimize IO interference
(warm cache).

DELETE FROM TABLE sales
WHERE ss_store_id IN (1,2,3)

Figure 8 shows the CPU utilization during the delete
operations of the non-compressed table and compressed

0

1

2

3

4

5

6

0 100 200 300 400
Elapsed Time [s]

C
P

U
 U

til
iz

at
io

n
[C

P
U

] non-compressed compressed

Figure 6: Parallel Load Performance (CPU)

0

1

2

3

4

5

6

7

0 100 200 300 400
Elapsed Time [s]

Th
ro

ug
hp

ut
 [M

B
/s

]

non-compressed compressed

Figure 7: Parallel Load Performance (IO)

0

1

2

3

4

5

6

0 50 100 150
Elapsed Time [s]

C
P

U
 U

til
iz

at
io

n
[C

P
U

] non-compressed
compressed

Figure 8:Delete Operation CPU Utilization

table. The delete operations take about the same amount
of time (100 second) to complete. The total CPU
consumption during the non-compressed delete is about
31 CPUU and 42 CPUU during the compressed delete.
This is an overhead of about 27%.

The update tests update one field for 20% (about
500,000 rows) of all rows in a compressed and non-
compressed version of the SALES fact table with
parallelism degree of four. Before each test, the SALES
fact table is cached into the buffer cache.

UPDATE store_sales_c_t
SET ss_quantity = ss_quantity+1
WHERE ss_sold_store_sk =1

The non-compressed update test completes in about
87s. With 121s the compressed test takes about 40%
longer to complete. The CPU utilization of the non-
compressed run is slightly higher than that of the
compressed run (see Figure 9). However, since, the
elapsed time of the compressed update test is 20% longer,
total CPU consumption is 40 CPUU, 50% higher than the
non-compressed update test.

Similar to load operations, compression imposes a
slight overhead on delete and update operations because

of their added cost to maintaining the symbol table as
described in Section “Compression Implementation”.

4.4 Full Table Scan

Full table scans (fts) are very often performed as part of a
larger query execution to access tables with no suitable
index defined, for instance during hash join operations.
Otherwise an index scan or regular index access is
performed. The same code path that is used in fts is also
used during partition scans and rowid range scans. The
full table scan test used in this experiment consists of
scanning the entire SALES table in parallel degree 4
aggregating on all fields:

SELECT COUNT(ss_sold_date_sk),
 COUNT(ss_sold_date_item_sk),
 …
 COUNT(ss_net_paid_inc_tax),
 COUNT(ss_net_profitt)
FROM store_sales_c;

The fts of the non-compressed table takes about 12s
while the fts of the compressed table takes only about 6s.
As shown in Figure 10 the compressed test utilizes about
4 CPUs while the non-compressed test utilizes 3 CPUs.
The total CPU used in the non-compressed test is about
the same as in the compressed test (20 CPUU compared
to 21 CPUU). As described in Section “Compression
Implementation” accessing a compressed field adds some
CPU overhead since for each compressed field an
additional pointer needs to be traversed. This test does
not show a significant increase in total CPU consumption
because the CPU savings due to many fewer blocks
processed compensates for the compression overhead.
However, the peak CPU consumption of the compressed
run is higher than the non-compressed run indicating a
higher per block CPU consumption (see Figure 10).

As shown in Figure 11 the maximum IO read
performance of the compressed run is significant lower
than that of the non-compressed run (35MB/s vs.
90MB/s). However, with a total of 1.2GB read in the

0

1

2

3

4

5

0 5 10 15
Elapsed Time [s]

C
P

U
 u

til
iz

at
io

n
[C

P
U

]

non-compressed compress

Figure 10: Parallel Full Table Scan CPU Utilization

0

1

2

3

4

5

0 20 40 60 80 100 120

Elapsed Time [s]

C
P

U
 U

til
iz

at
io

n
[C

P
U

U
]

non-compressed compressed

Figure 9:Update Operation CPU Utilization

0

30

60

90

120

150

0 5 10 15
Elapsed Time [s]

IO
 R

ea
d

Th
ro

ug
hp

ut
 [M

B
/s

]

non-compressed compressed

Figure 11:Parallel Full Table Scan IO Performance

non-compressed tests and 221MB in the compressed tests
the ratio of data read in both tests corresponds to the
compression factor of 5.4.

4.5 Table Access by Rowid

Table access by rowid is a very common operation
performed as part of many data warehouse operations
such as index range scans and star transformed queries.
During a table access by rowid all rows are accessed by
rowid. A rowid contains file, segment, block and block
offset information of the row to be retrieved, which makes
direct access to rows possible. Hence, before rows can be
accessed their rowids need to be collected. This is usually
done through indexes (conventional or bitmap).

The Table Access by Rowid tests consist of accessing a
non-compressed and a compressed SALES table by
rowid. Rowids are identified by performing a range-scan
on an index on ss_quantity. Finally, two columns of the
SALES table are accessed and aggregated. This query
runs in serial:

SELECT MAX(SS_WHOLESALE_COST),
MAX(SS_QUANTITY*

SS_TICKET_NUMBER)
FROM SALES
WHERE SS_QUANTITY between 1 and 3;

The query against the non-compressed table finishes
in about 29 seconds, while the query against the
compressed table finishes in 24 seconds, a savings of
about 17%. Figure 12 indicates that the CPU utilization
of both query runs is identical at about 0.7 CPUs.
Considering that the compressed test finishes 5 seconds
earlier, the total CPU utilization in the compressed case is
abut 17% less than in the non-compressed case. These
queries utilize the buffer cache for both index and data
blocks. The buffer cache is about 5% of the compressed
table and 1.4% of the non-compressed table. This tests
shows that the compressed table utilizes the buffer cache
much more effectively as the non-compressed table.

5. Compression with TPC-H
In the previous section we have systematically analyzed
basic operations that are widely used in queries on data
warehouses. However, usually queries used in data
warehouses are more complex. They use multiple join
methods, aggregations and sort operations. To
demonstrate the outstanding performance characteristics
of table compression in a large data warehouse
environment Oracle has employed it in a scale factor 100
TPC-H benchmark publication [1]. The benchmark
configuration used is a 4 node Compaq (DEC) AS ES45
68/1000 with 16 Alpha EV 68/1000 MHz CPUs with 8
MB cache running True64 Unix. Please note that the
elapsed times for the compressed runs are taken from the
published TPC-H benchmark, while the non-compressed
times are obtained during the benchmark tuning phase and
have not been published.

TPC-H has been widely accepted as the industry
standard benchmark for data warehouse applications
[3,4]. As of January 2003 there are 35 different results by
7 hardware and 4 database vendors [2]. Its schema
consists of eight base tables modelling the data warehouse
of a typical retail environment (see Figure 13). Tables
such as PART (P), SUPPLIER (S), PARTSUPP (PS) and
CUSTOMER (C) contain relatively static information
about items typical retail companies buy from their
supplier and sells to their customer, while nation and
region are very small tables containing only a few rows.
These tables amount to about 15% of the total database.
The two largest tables, LINEITEM (L) and ORDERS
(O) contribute to the remaining 85% of the total database
size. They contain numerical measurements similar to a
fact table in our star schema example, while the remaining
tables contain detailed data, further describing the
numerical measurements.

TPC-H’s performance test is comprised of a set of 22
business queries and two update functions, designed to
exercise system functionalities in a manner representative
of complex business analysis applications. Queries are
run in a power and throughput mode: the power tests
measures the raw query execution power of the system
when connected with a single active user; the throughput
test measures the ability of the system to process the most

Figure 13: TPC-H and TPC-R Schemas

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30
Elapsed Time [s]

C
P

U
 U

til
iz

at
io

n
[C

P
U

]

non-compressed
compressed

Figure 12: Table Access by ROWID

queries in the least amount of time. TPC’s primary metric
is a combination of the power and throughput tests.
Discussing all 22 queries would be far beyond the scope
of this paper. Therefore, we will limit our discussion to a
representative subset (Query 1, 6 and 15) and the two
update functions.

5.1 Discussion of TPC-H Compression Factor

When loaded with the compression feature,
compression for LINEITEM is the highest at a
compression factor of about 1.6, while ORDER
compresses at a compression factor of about 1.2. (see
Figure 14). Therefore, the compressed versions of
LINEITEM and ORDERS consume only about 60% to
80% of the uncompressed tables, LINEITEM shrinks
from 79 GB to 49 GB while ORDERS shrinks from 17 GB
to 14 GB. The overall compression factor for the TPC-H
database is about 1.4 resulting in a space saving of about
29%.

The compression factors of TPC-H tables are
significantly lower than those of the customer example
described in Section 3.1. This has many reasons. Firstly,
since TPC-H data is programmatically generated, the data
distribution is arbitrary. Most columns have a uniform
distribution. That is, over a given range there are no
clusters with the same values. Analysis of multiple data
from multiple customers shows that real world data is not
uniformly distributed, but clustered. This is especially
common for data warehouse fact and summary tables; in
almost every Data Warehouse environment periodical
data maintenance applies some kind of grouping or
sorting to the new data. For instance, an ETL process,
consolidating new fact table information from sources,
has to compare and aggregate, thus sort, the various
sources prior to the insertion into the fact table. Similar
data clustering occurs naturally in summary tables that
perform group by or advanced OLAP operations such as
rollup and cube. As a matter of fact, TPC-H has been
widely criticized for having mostly uniformly distributed

data. Secondly, in order to increase the table size, TPC-H
tables contain “fill columns” such as COMMENT. These
fields are generated with a very long unique content
making it almost impossible to compress.

5.2 Discussion TPC-H Query Performance

Figure 15 shows the elapsed times and speedups7
achieved with compression of the three TPC-H queries 1,
6, and 15. This shows that Query 1 has a relatively small
slowdown of about 2 percent, which might well be in the
measurement error range, when run against the
compressed table LINEITEM. On the other hand Query 6
and Query 15 show a significant elapsed time speedup.
Query 6 shows a speedup of 35% while Query 15 shows a
38% speedup. The overall speedup8 of all 22 TPC-H
queries run against the compressed database and against
the non-compressed database is about 10%. Elapsed time
for the insert test (rf1) increased by about 3.9% while the
elapsed time for the delete test (rf2) decreased by about
17%. The primary metric for TPC-H, QphH@100GB,
improved by about 10%. For some of the queries we
observed a slight CPU overhead. As demonstrated in the
section about Space Savings, TPC-H data yield a
compression factor of only 1.2 for ORDERS and 1.6 for
LINEITEM. Queries against the compressed database
perform on average 27% fewer disk accesses.

Elapsed Time of Query 1 increases by about 2%. This
can be explained by the slight increase in CPU utilization
and the fact that this query is CPU bound. The total CPU
consumption in the compressed case increases by about
2%. Since there is no CPU left for query execution,
elapsed time increases by about the same amount as the
total CPU consumption increases. The large decrease in
disk utilization of about 38% has very little impact on this
query because the disk subsystem is not the bottleneck
during this query.

Query 6 performance improves by about 35%. This
query being IO bound leaves much of the available CPUs
unused. Consequently, the increase of CPU utilization
can be easily compensated for by the system without
degrading performance.

Similar to Query 6, Query 15 benefits from table
compression showing a 38% performance increase. This
query performs multiple join operations. Similarly to
query 6, this query leaves some of the available CPU
unused decreasing query elapsed time by about 8%. This

7

ssedeNonCompreElapsedTim
deCompresseElapsedTimssedeNonCompreElapsedTim

Speedup
−=

8
∑
=

=

−=
22

1

i

i ssedQieNonCompreElapsedTim
dQieCompresseElapsedTimssedQieNonCompreElapsedTim

edupOverallSpe

79

49

17 14

115

82

0

20

40

60

80

100

120

Ta
bl

e
Si

ze
 [G

B
]

Lineitem Orders Entire DB

non compressed compressed

Figure 14: Compression Factor TPC-H Tables

query benefits greatly from compression reading about
42% less data in case of the compressed database.

Using compressed tables in TPC-H reduces the
elapsed time for most queries in this system setup, but
increases the elapsed time for some. IO bound queries
directly benefit from compression because it reduces the
average consumption of the bottlenecking resource,
namely the disk subsystem. CPU bound queries also
benefit from fewer disk subsystem consumption.
However, the overhead in accessing compressed tables
can hurt elapsed time of these queries.

6. Conclusions
In this paper we presented an innovative compression
technique, recently introduced in the Oracle RDBMS for
reducing the size of relational tables. By using a
compression algorithm specifically designed for relational
data, Oracle is able to compress data much more
effectively than standard compression techniques. In our
example the compression factors vary, depending on the
table content, between 2.9 and 4, yielding a space savings
of 67% to 75%. However, internal analysis of real
customer data during the development of Table
Compression showed compression factors up to 12. The
vast majority of compression factors of production
systems are between 3 and 6.
Unlike other compression techniques, queries against
compressed tables incur virtually no query performance
penalty. Our full table scan experiments show that
compression decreases elapsed time by 50% while
increasing total CPU time slightly (5%). The buffer cache
experiments indicate a 17% performance gain in case of
compressed tables with no significant change in CPU
utilization. Both experiments show how small the actual
overhead of uncompressing blocks is and how large the

performance gain of compression can be, both for direct
and buffer cache reads.

There is very little impact of compression to the
elapsed time of delete operations. However, a CPU
overhead of 27% was observed. Update operations are
slightly more expensive, showing an increase of 20% in
elapsed and 50% in CPU time. Elapsed and CPU for load
operations increases by about 2 times. Additionally, we
demonstrated how data compression was successfully
employed in TPC-H, the industry standard data
warehouse benchmark, to increase Oracle’s performance
by 10%.
Since the target applications for data compression are
mostly read-only systems, e.g. large data warehouses and
OLAP systems, the penalty shift from query to load and
DML operations is a design goal in our implementation.
It originated directly from our customer’s requirements to
have maximum space savings with the least impact on
query performance.

7. Acknowledgements
We would like to thank Ray Glasstone for his

encouragement to write this paper and George Lumpkin,
Cetin Ozbutun, Susy Fan, Hermann Baer and Alexander
Tsukerman for their many useful suggestions.

References
[1] TPC-H 100 GB published 07/15/02 by HP/Oracle on

Alpha Server ES45 and Oracle 9iR2 Executive
Summary:
http://www.tpc.org/results/individual_results/HP/es45_
5578_es.pdf FDR
http://www.tpc.org/results/FDR/tpch/es45_5578_fdr.pd
f

[2] TPC web site: www.tpc.org

[3] Levine, C., Stephens Jr., J.M., DeWitt, D. (Chair),
“Standard Benchmarks for Database Systems”, ACM
SIGMOD 1997 Industrial Session 5
(http://www.tpc.org/
information/sessions/sigmod/indexc.htm)

[4] Poess, M. and Floyd, C., “New TPC Benchmarks for
Decision Support and Web Commerce”. ACM
SIGMOD REORD, Vol 29, No 4 (Dec 2000)

[5] Oracle Data Warehouse Guide: otn.oracle.com

[6] Mark Morri, “Teradata Multi-Value Compression
V2R5.0”, Teradata Whitepaper, July 2002

[7] DB2 V3 Performance Topics, GG24-4284-00,
http://www.frc.utn.edu.ar/campus/ibm/abstract/gg2442
84.htm

[8] Table Compression in Oracle 9i: A Performance
Analysis, An Oracle Whitepaper
http://otn.oracle.com/products/bi/pdf/o9ir2_compressio
n_performance_twp.pdf

264.00
268

15.51 10.03
33.17

20.73

0.00

50.00

100.00

150.00

200.00

250.00

300.00

E
la

ps
ed

 T
im

e
[s

]

Q1 Q6 Q15

non compressed compressed

-2%

35% 38%

Figure 15: Load Performance using External Table

