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Abstract 
The Oracle RDBMS recently introduced an 
innovative compression technique for reducing 
the size of relational tables.  By using a 
compression algorithm specifically designed for 
relational data, Oracle is able to compress data 
much more effectively than standard 
compression techniques.  More significantly, 
unlike other compression techniques, Oracle 
incurs virtually no performance penalty for SQL 
queries accessing compressed tables.  In fact, 
Oracle's compression may provide performance 
gains for queries accessing large amounts of 
data, as well as for certain data management 
operations like backup and recovery.  Oracle's 
compression algorithm is particularly well-suited 
for data warehouses: environments, which 
contains large volumes of historical data, with 
heavy query workloads.  Compression can 
enable a data warehouse to store several times 
more raw data without increasing the total disk 
storage or impacting query performance. 

1. Introduction 
The amount of data businesses are retaining for data 
warehouse applications is exploding at a record rate 
because. For comprehensive mining purposes data 
warehouses not only keep vast amounts of detailed data 
(e.g. call and click-stream data) but also store this data 
over an extended period of time.  In the past commercially 
available database systems have not heavily utilized 

compression techniques on data stored in relational tables.  
A standard compression technique may offer space 
savings, but only at a cost of much increased query 
elapsed time.  Hence, this trade-off has made compression 
not always attractive for relational databases. 

In this paper we introduce an innovative table 
compression technique, recently introduced in the Oracle 
RDBMS [8] that is very attractive for large relational data 
warehouses.  It can be used to compress tables, table 
partitions and materialized views (these database objects 
are essentially implemented as tables).  The status of a 
table can be changed from compressed to non-compressed 
at any time by simply adding the keyword COMPRESS to 
the table’s meta-data.  Changing the status of a table does 
not compress its existing contents.  Only newly loaded 
rows are compressed allowing for a mixture of 
compressed and non-compressed rows to coexist.  On the 
other hand Oracle’s RDBMS offers the possibility to 
compress an already existing table in its entirety without 
reloading it. 

The reduction of disk space using Oracle table 
compression can be significantly higher than standard 
compression algorithms, because it is optimized for 
relational data.  It has virtually no negative impact on the 
performance of queries against compressed data; in fact, it 
may have a significant positive impact on queries 
accessing large amounts of data, as well as on data 
management operations like backup and recovery.  These 
benefits of compression come at the cost of increased load 
and update times.  However, used in conjunction with 
other features of the Oracle RDBMS these performance 
degradations can be compensated for.  For instance, since 
data in a typical data warehouse application is organized 
chronologically, it can be partitioned by day, month or 
year using Oracle’s partition feature.  As new data from 
the operational database arrives only the most current 
partitions are updated.  In order to avoid performance 
degradation during updates the most current partitions can 
be kept non-compressed until no more updates occur on 
them.  Then they can be compressed. 
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1.1   Other Compression Techniques 

Data compression techniques adopted in other 
RDBMS for Data Warehouse Applications [6,7] also 
implement a lossless dictionary-based approach.  
However, they use static, table-wide dictionaries instead 
of dictionaries optimised on a block level.  Due to its 
global optimality of compression a table-wide dictionary 
approach can result in high compression factors.  This is 
beneficial for uniformly distributed, static data.  
Furthermore, a global dictionary may use less disk space 
compared to a block level approach, which potentially 
repeats dictionary entries across blocks.  However, 
compared to a global dictionary approach Oracle’s block 
based dictionary implementation shows many benefits.  In 
comparison to [6] Oracle’s dictionary entries are created 
by the system rather than requiring the user to specify 
them manually.  A 20-column table using the compression 
technique proposed in [6], requires the user to specify up 
to 20x255=5100 dictionary entries.  On the other hand, 
since data warehouse tables are periodically refreshed, the 
list of the most frequent column values can change over 
time, making it necessary to recreate the entire table.  
Secondly, Oracle’s algorithm dynamically adapts to 
changes in data distribution without compromising the 
compression factor.  While [6] utilizes a table wide list of 
most frequent column values, [7] exploits the column 
value frequency of the first rows to populate the 
dictionary.  This can lead to sub-optimal compression 
when data distributions change over time.  For instance, 
as a data warehouse is refreshed new dates, which are not 
present in the dictionary, enter the system while old dates, 
which are present in the dictionary, are purged out of the 
system.  Thirdly, in order to access a row, in Oracle only 
one block needs to be accessed, as opposed to multiple 
blocks in case of a global symbol table, greatly increasing 
buffer cache efficiency and reducing memory cache 
misses.  If compressed column values are accessed, using 
a global dictionary it is necessary to access multiple 
blocks.  Even if dictionary blocks are pinned into the 
buffer cache, accessing multiple blocks to uncompress a 
column value increases memory cache misses and, 
therefore, adversely increases CPU time. 

The remainder of this paper is organized as follows.  
In Section 2 we demonstrate how compressed blocks are 
stored within the Oracle RDBMS and how load, update 
and query operations operate on compressed blocks.  In 
Section 3, we analyze how well data can be compressed 
utilizing data extracted from a life customer data 
warehouse.  In section 4, we conduct experiments to 
evaluate the performance impact of table compression on 
common data warehouse operations.  In section 5, 
utilizing the industry standard data warehouse 
benchmarks, TPC-H, we demonstrate the impact of table 
compression to load, query and update performance of a 
comprehensive data warehouse environment.  We draw 
our conclusions in Section 6. 

2.   Table Compression Implementation 
The compression algorithm used in Oracle for large data 
warehouse tables compresses data by eliminating 
duplicate values in a database block (aka. database page).  
The algorithm is a lossless dictionary-based compression 
technique.  The compression window for which a 
dictionary (symbol table) is created consists of one 
database block.  Therefore, compressed data stored in a 
database block is self-contained.  That is, all the 
information needed to recreate the uncompressed data in a 
block is available within that block. 

2.1   Compressed vs. Non-Compressed Blocks 

Figure 1 illustrates the differences between storing data in 
a compressed versus non-compressed block.  With the 
exception of a symbol table in the beginning, compressed 
database blocks look very much like regular database 
blocks.  Code modifications done in the Oracle RDBMS 
server to allow for compression are very localized.  Only 
the portions of the code dealing with formatting blocks, 
and accessing rows and columns were modified.  As a 
result, accessing a compressed block is completely 
transparent to the database user or any application, and all 
database features and functions that work on regular 
database blocks also work on compressed database blocks 
with the exception of dropping columns.  The top part of 
Figure 1 shows a typical data warehouse like fact table 
with rowid, invoice id, customer first name, customer last 
name and sales amount.  There are entries for five 
customers showing six purchases.  For data warehouse 
fact table it is very common to have this highly 
denormalized structure.   
The bottom left part of Figure 1 shows how a non-
compressed block stores the data of the fact table: all the 
redundant information is stored.  The bottom right part 
shows how the same data is stored in a compressed block: 
instead of storing all data, redundant information is 
replaced by links to a common reference in the symbol 

 

Figure 1: Compressed Block vs. not Compressed Block 



table, indicated by the black dots (for readability not all 
references are illustrated with arrows).  For each column 
value in all columns, based on length and number of 
occurrences in one block, the algorithm decides whether 
to create an entry into the symbol table for this column 
value.  If column values from different columns have the 
same values, they share the same symbol table entry.  
This is referred to as cross-column compression.  Only 
entire column values or sequences are compressed.  
Sequences of columns are compressed as one entity if a 
sequence of column values occurs multiple times in many 
rows.  This is referred to as multi-column compression.  
This optimisation is particularly beneficial for OLAP type 
materialized views using grouping sets and cube 
operators.  For instance a cube of a table often repeats the 
same values along dimensions creating many potential 
multi-column values.  Multi-column compression can 
significantly increase the compression factor and query 
performance.  In order to increase multi-column 
compression, columns might be reordered within one 
block.  For short column values and those with few 
occurrences no symbol table entry is created limiting the 
overhead of the symbol table and ensuring that 
compressing a table never increases its size.  However, 
this is transparent to any application.   
For instance the name “Henry” occurs twice as first name 
(rows 1 and 2).  Consequently, column values for “Henry” 
are replaced with a link into the symbol table.  The name 
“Todd” appears twice, once as a first name (row 3) and 
once as a last name (row 2).  In this case, the compression 
algorithm references both, first and last name to the same 
symbol table entry (cross-column compression).  For rows 
4 and 5 the compression algorithm uses multi-column 
compression.  Instead of compressing “Tom”, “Smith” 
and “1.99” as separate entities, it combines all three into 
one symbol table entry “Tom|Smith|1.99” reducing the 
number of references in rows 4 and 5 to only one.  Unique 
columns, for instance the invoice id, are not compressed.  
Also, the current implementation does not allow for 
partial column compression.  Hence, the first name in row 
6, “Henry-Todd”, although both name parts exists as 
references in the symbol table does not get compressed. 

2.2   Compression of Database Blocks 

Figure 2 outlines the steps of the compression process. 
During load operations data is first loaded into a block in 
its uncompressed format (Step 1).  The result is a block 
with a compression factor of 1 (= no compression), where 
rows occupy the entire block (NC=block size).  After one 
block is fully loaded, the compression process of this 
block starts (Step 2).  This process tries to convert the 
non-compressed block into its compressed format as 
described in the previous section.  The result is a modified 
block where rows occupy a fraction of the block (C).  A 

local compression ratio (CF1) smaller than 1.032 indicates 
that this block is not worthwhile compressing.  This block 
is written to disk and the next block is filled in Step 1.  A 
local compression ratio larger than 1.03 triggers to 
investigate whether to further compress this block can 
increase its compression ratio.  Its local compression ratio 
is used to determine how many compressed rows are 
likely to fit into an entire block via extrapolation.  That is, 
assuming the local compression ratio CF, the average row 
length and the remaining free block space the algorithm 
calculates the number of rows it can further fit into this 
block.  This number of rows is read into a buffer and 
compressed (Step 3).  If not all buffered rows fit into a 
compressed block, an overflow occurs.  That is, the 
extrapolation calculation based on CF was wrong, due to 
changes in data distribution and this block is written to 
disk.  The remaining rows (overflow rows) are inserted 
non-compressed into the next block (Step 4).  If all 
buffered rows fit into a compressed block, the previously 
calculated compression factor (CF) might be too 
conservative (possible underflow situation).  Considering 
                                                        

1 
C

NC
CF =  

2 This fudge factor was empirically measured to 
reflect the overhead of compression 

 

Figure 2: Process of Compressing a Block 



the compression factor off all rows just loaded (CF’3), the 
algorithm again extrapolates how many more rows are 
likely to fit into this block.  If the remaining space allows 
for at least one more row to be inserted, the algorithm 
considers an underflow situation and buffers as many 
rows as it extrapolates fit into this block (Step 5).  The 
resulting compressed block is written to disk and the next 
block is loaded in Step 1. 

This semi-offline compression technique has been 
chosen to achieve local optimality of compression ratio.  
The algorithm is greedy, meaning that it tries to load as 
many rows as possible into each block.  It does not 
change row ordering and does not attempt to achieve any 
form of global compression ratio optimality.  The problem 
of global compression ratio optimality is similar to global 
space optimality, which is very computationally intensive, 
as it is closely related to the problem of single-
dimensional bin packing.  If global compression ratio 
optimality is desired, the entire set of rows to be 
compressed need to be buffered before blocks can be 
populated.  For large data warehouses this is not feasible 
because it would potentially require to buffer terabytes of 
data, which is not practical.  Therefore, the algorithm 
processes the row set to be loaded in a streaming fashion 
with some offline characteristics for better compression 
quality.  Section “Space Savings” shows that this 
compression implementation achieves very high 
compression ratios on typical data warehouse data.  As 
discussion with customers show load time is very 
important as some only have a limited time window 
available for refreshing their data warehouse. 

2.3   Query access 

Since Oracle’s compression implementation works via 
duplication elimination in each block at column level, 
column values are present in the block’s symbol table in 
their non-compressed format (see Figure 1).  This has 
many advantages for read only data access of column 
values.  Firstly, a single row access only touches one 
block preserving locality of reference.  Secondly, no 
expensive decompression operations need to be 
performed for read access.  Decompression essentially 
means to follow short references to columns into the 
symbol table and locating the right column or column 
sequence. 

To take further advantage of compression, a couple of 
optimizations are implemented.  The first one optimizes 
predicate evaluation for sequential row access.  Using this 
optimization predicates on compressed column, values are 
evaluated at most once per block instead of once per row 
as in the non-compressed case, giving queries accessing 
compressed columns a very substantial benefit.  This 
optimisation takes advantage of the fact that compressed 
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blocks contain information about data duplication in a 
block.  Assuming a query applies the predicate color = 
‘green’ too all rows of a table.  The query engine 
reads one block at a time, accesses the field color for all 
rows and evaluates the above predicate.  For compressed 
column values, after the predicate has been evaluated, the 
result is kept.  If a subsequent compressed column value 
is accessed for the same value, this predicate does not 
need to be evaluated since the result is already available.  
The reference into the symbol table in this case also refers 
to the predicate result. 

The second optimization use multi-column 
compression to increase column access.  In Oracle 
columns are chained in order of creation time.  In order to 
access column Ck of a N-column table (C1,C2,...Ck,… CN) 
k-1 references in a linked list need to be traversed.  Multi-
column compression can reduce the number of references 
that need to be traversed, because multiple columns are 
replaced with one reference into the symbol table (see 
Section 2.1).  However, in case a multi-column 
compressed column is accessed, a minor overhead occurs 
because the multi-column compression is more expensive 
to decompress. 

2.4   Updates and Deletes 

Update and Delete operations on compressed data work 
very similar to update and delete operations on 
uncompressed data.  The only difference is that if a 
compressed column is updated or an entire row is deleted 
the symbol table needs to be maintained.  As part of each 
symbol table entry a reference counter is maintained.  
When a column is updated the algorithm checks whether a 
symbol table entry for the new value exists.  If it exists, 
the reference of the updated column is modified to the 
new symbol table entry and its reference count is 
increased by one.  At the same time the reference count of 
the old value is decreased by one.  On the other hand, if 
no symbol table entry exists for the new column value, 
that value is inserted non-compressed into the row.  
During delete operations all references counters of the 
deleted rows are decreased by one.  Once a reference 
counter becomes zero, the corresponding symbol table 
entry is purged from the symbol table.  A symbol table is 
never deleted from a block even if no reference into it 
exists because the overhead of an empty symbol table is 
only 4 bytes. 

Some update operations can take significant advantage 
of compression.  For instance, operations that set a 
column to the same value in all rows of one table as in: 

UPDATE TABLE item  
SET i_color = ‘green’ 
WHERE i_color =’blue’. 

In this case a new symbol table entry for the new 
value is created in the symbol table and all rows are 
updated to reference this entry.  If the old column value 



(in the above example ‘green’) was also compressed (i.e. 
a symbol table existed for it) and its reference count after 
the update operation became zero, the old symbol table 
entry is replaced with a new symbol table entry without 
touching all rows of one block. This is clearly much more 
space and time efficient than updating all rows of one 
block. 

3.   Space Savings 
Table compression can significantly reduce disk and 
buffer cache requirements for database tables.  Since the 

compression algorithm 
utilizes data 
redundancy to 
compress data at a 
block level, the higher 
the data redundancy is 
within one block, the 
larger the benefits of 
compression are.  
Although there might 
be data redundancy 
across data blocks, that 
data cannot be used to 
further compress data. 

If a table is defined 
“compressed” it will 
use fewer data blocks 
on disk, thereby, 
reducing disk space 

requirements.  Data from a compressed table is read and 
cached in its compressed format and it is decompressed 
only at data access time.  Because data is cached in its 
compressed form, significantly more data can fit into the 
same amount of buffer cache (see Figure 3). 

In order to avoid any confusion about how 
compression and space savings is measured, we define 
compression factor and space savings: Compression 
factor (CF) of a table is defined as the ratio between the 
number of blocks required to store the non-compressed 
table compared to the number of blocks needed for the 
compressed version: 

blockscompressed
blockscompressednonCF

_#
__#=

 

The space savings (SS) are therefore defined as: 

100
__#

_#__# ×−=
blockscompressednon

blockscompressedblockscompressednonSS
 

Unique fields, (fields with a high cardinality) such as 
primary keys cannot be compressed, whereas fields with a 
very low cardinality can be compressed very well.  On the 
other hand, longer fields yield a larger compression factor 
since the space saving is larger than for shorter fields.  
Additionally, if a sequence of columns contains the same 
content, the compression algorithm can apply multi-
column compression.  In most cases, larger block sizes 
increase the compression factor for a database table as 

more column values can be linked to the same symbol 
table.  Sorting data before loading can further increase the 
compression factor.  The more fields of the same content 
that are concentrated in each block the more efficiently 
the compression algorithm works.  If one knows that one 
or multiple fields of a database object have similar values 
- indicated by a low number of unique values - sorting the 
data on those fields is likely to increase the compression 
factor.  However, sorting on fields with very low 
cardinality does not necessarily yield a large compression 
factor increase.  Due to the low cardinality of this field, 
rows with the same value can be found already at a high 
concentration in each block.  Therefore, best results can 
be achieved by sorting on a field that is both long and has 
a medium cardinality. 

3.1   Space Savings on Customer Data 

As mentioned in earlier sections compression factors 
depend on many parameters such as the frequency of 
values, its distribution in the input stream etc.  This 
section demonstrates compression factors that were 
measured on customer data.  The data is modeled utilizing 
a star schema.  The fact table DAILY_SALES is the 
center surrounded by the dimensions TIME, 
CUSTOMER, SALES REGION, ITEM and PROMOTION.  
In addtition to the regular table there are two summary 
tables defined on SALES: WEEKLY_SALES and 
WEEKLY_AGGR.  WEEKLY_SALES aggregates SALES 
for each item and customer to weekly numbers.  
WEEKLY_AGGR builds on WEEKLY_SALES by 
aggregating further on postal codes. 

Fact and summary tables are usually the largest tables 
in a star schema representing 70% or even more of the 
total database size.  In contrast dimension tables are very 
small.  Hence, compressing dimension tables does not 
yield an overall large disk savings and should only be 
considered when dealing with very large dimensions.  We 
therefore only compress the fact table and materialized 
views of our test schema configuration. 

Figure 4 illustrates how well data of the customer star 
schema compresses.  The size for SALES decreases from 
27GB to 8.6GB yielding a compression factor of 3.1.  The 
two materialized views compress at compression factors 
of 2.9 and 4.0.  WEEKLY_SALES shrinks from 18.8GB to 
6.5GB while WEEKLY_AGGR shrinks from 7.5GB to 
1.9GB yielding a space savings of 67 to 75 percent.  That 
is, the compressed version of WEEKLY_SALES requires 
only 25% disk and buffer cache space than their 
uncompressed counterpart while the compressed versions 
of DAILY_SALES and WEEKLY_SALES/ 
WEEKLY_AGGR require only 33% of the resources that 
their uncompressed counterparts use.  The overall 
database size reduces from 55GB to 18GB.  The space 
saving, compressing only the fact tables and their 
materialized views, achieved on the customer’s entire star 

 
Figure 3: Data Access Path 
with Compression 



schema is about 67% at a compression factor of about 3.1.  
This shows the key benefit of compression: reduction of 
database space by 2/3. 

4.   Performance Analysis 
This section investigates the performance impact of 

compressed tables on typical data warehouse operations, 
such as the creation (loading), updating and querying of 
compressed tables.  Compressed tables can be created in 
multiple ways, via loading from external media or other 
tables.  The load experiment reads data from an external 
media.  Updating compressed tables include UPDATE 
and DELETE operations.  INSERT operations are omitted 
since the code path for inserting new data is already tested 
as part of the load experiment.  Although the execution 
plans of data warehouse queries can be very complex, 
possibly involving multiple data access methods, multiple 
joins, sort and aggregation operations, only the data 
access methods are affected by compressed tables.  The 
following query experiments focus on full table scans and 
row access by row identifier (rowid).  They test the two 
ways compressed rows are accessed in Oracle, namely 
directly from disk or via the buffer cache. 

The analysis focuses on the CPU and IO performance 
during the above described operations.  In order to 
compare two performance tests the following measures 
are used: 

∑
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T

t
iii ttcCPUC

1
1)( , where { }Ti cccc ,...,, 21∈  

is the CPU utilization for sample i in the measurement 
interval T; where { }Ti tttt ,...,,0 10 =∈ , measured in 
CPUU (CPU seconds), and 
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is the IO utilization for sample i in the measurement 
interval T; ti defined as above, measured in MB. 

4.1   Experiment Setup 

For the experiments conducted in this section we use 
one table (SALES), which mimics a star schema like fact 
table.  It has about 2.5 Million rows and 19 columns.  
Loaded into a non-compressed table, its data resides in 
152472 data blocks and 28354 data blocks when loaded 
into a compressed table.  With a data block size of 8 KB, 
this is about 1.2GB non-compressed and 221MB 
compressed.  The compression factor, therefore, is about 
5.4.  As described in Figure 5 the number of distinct 
values in columns of the SALES fact table varies between 
1 and 2.5 Million (unique).  There is a mixture of 
character and number columns. 

Column Name Number of distinct values 

SS_SOLD_DATE_SK 1707 
SS_SOLD_ITEM_SK 10989 
SS_SOLD_CUSTOMER_S 9990 
SS_SOLD_ADDR_SK 5000 
SS_SOLD_STORE_SK 5 
SS_TICKET_NUMBER 2488060 
SS_QUANTITY 100 
SS_WHOLESALE_COST 9888 
SS_LIST_PRICE 15570 
SS_SALES_PRICE 15570 
SS_EXT_DISCOUNT_AM 1 
SS_EXT_SALES_PRICE 104442 
SS_EXT_WHOLESALE_C 117296 
SS_EXT_LIST_PRICE 104442 
SS_EXT_TAX 27639 
SS_COUPON_AMT 1 
SS_NET_PAID 104442 
SS_NET_PAID_INC_TAX 148121 
SS_NET_PROFIT 30359 

Figure 5: Table Characteristics 

The system used is a 24 CPU Sun server with 400 MHz 
ultra sparc processors and 8 GB of main memory.  The 
maximum IO throughput exceeds 300MB/s.  Hence, 
neither IO, main memory nor CPU are bottlenecks during 
all tests.  However, the degree of parallelism, the 
operations are executed, was limited to four, two or one, 
making this the bottleneck of the execution. 

4.2   Load Test 

Typically a data warehouse is loaded initially and then 
periodically refreshed in a data maintenance phase during 
which data is sometimes transformed to suit the format 
and semantics of the data warehouse.  Regardless of the 
phases and whether transformations occur inside or 
outside the database, data needs to be loaded into the data 
warehouse in a timely fashion.  Oracle’s preferred tool to 
load data into data warehouses is its “External Tables” 
feature [5]. 

The load tests consist of loading 2.5 Million rows (1.2 
GB) with a parallel degree of four utilizing external tables 
into the SALES tables both compressed and non-
compressed.  Each load is done with direct insert, 
bypassing the buffer cache and any row level logging.  
However, full ACID requirements are fulfilled during the 
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load tests.  The following database operations share the 
same compression code path as parallel load: “move 
table compress”4, “move partition 
compress”5, “create table as select”6.  
Since they show the same performance behavior as 
parallel load, they are not analyzed in separate 
experiments. 

The non-compressed test completes in 181s while the 
compressed test takes twice as long (364s).  The 
compression factor of 5.4 results in 221 MB to be written 
by the compressed test and 1191 MB to be written by the 
non-compressed test.  Figure 6 shows the CPU utilization 
during the execution of both loads.  During their runs both 
tests utilize about 5 CPUs.  However, the load into a 
compressed table indicated by the triangles takes 1950 
CPUU compared to only 897 CPUU for the non-
compressed run; an increase of 117%. 

Figure 7 shows the IO utilization of the system during 

the two loads.  During the non-compressed load the IO 
throughput is about 5 MB/s and only about 2 MB/s during 
the compressed.  The ratio between the total number of 

                                                        
4 compresses an existing table without copying its content 
5 compresses an existing partition without copying its content 
6 creates a table by querying another table 

bytes written in both cases corresponds to the 
compression ratio of 5.4. 

This is not surprising as the process of transforming an 
uncompressed block into its compressed representation is 
computationally expensive.  Please refer to Section 
“Compression Implementation” for a description of the 
algorithm.  As will be shown in later sections, this 
approach to compression benefits the retrieval of 
information not its loading.  Considering that the majority 
of the accesses to a data warehouse are read only this has 
been a design goal of table compression. 

4.3   Delete and Update (DML) Operations 

In data warehouses DML operations, such as delete and 
update, are not very common.  They are mostly used to 
clean erroneously inserted records or to refresh 
materialized views.  Sometimes delete operations are used 
to clean up old records so that the amount of data kept in 
the data warehouse is constant, as new rows from the 
operational system are inserted.  However, this can be 
done more efficiently with drop partition operations.  
Compared to DML operations in OLTP environments, 
where only a few records are purged or updated, DML 
operations in data warehouse environments purge or 
update many records. 

The delete experiments described in this section 
consist of purging rows (transaction records) from a non-

compressed and a compressed SALES fact table, which 
occurred in three stores (number 1,2 and 3).  It deletes 1.5 
million rows (60%) of the SALES table with a parallelism 
degree of four.  Before each test the SALES table is 
loaded into the buffer cache to minimize IO interference 
(warm cache). 

DELETE FROM TABLE sales 
WHERE ss_store_id IN (1,2,3) 

Figure 8 shows the CPU utilization during the delete 
operations of the non-compressed table and compressed 
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Figure 7: Parallel Load Performance (IO) 
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Figure 8:Delete Operation CPU Utilization 



table.  The delete operations take about the same amount 
of time (100 second) to complete.  The total CPU 
consumption during the non-compressed delete is about 
31 CPUU and 42 CPUU during the compressed delete.  
This is an overhead of about 27%.   

The update tests update one field for 20% (about 
500,000 rows) of all rows in a compressed and non-
compressed version of the SALES fact table with 
parallelism degree of four.  Before each test, the SALES 
fact table is cached into the buffer cache. 

UPDATE store_sales_c_t 
SET ss_quantity = ss_quantity+1 
WHERE ss_sold_store_sk =1 

The non-compressed update test completes in about 
87s.  With 121s the compressed test takes about 40% 
longer to complete.  The CPU utilization of the non-
compressed run is slightly higher than that of the 
compressed run (see Figure 9).  However, since, the 
elapsed time of the compressed update test is 20% longer, 
total CPU consumption is 40 CPUU, 50% higher than the 
non-compressed update test.   

Similar to load operations, compression imposes a 
slight overhead on delete and update operations because 

of their added cost to maintaining the symbol table as 
described in Section “Compression Implementation”. 

4.4   Full Table Scan 

Full table scans (fts) are very often performed as part of a 
larger query execution to access tables with no suitable 
index defined, for instance during hash join operations.  
Otherwise an index scan or regular index access is 
performed.    The same code path that is used in fts is also 
used during partition scans and rowid range scans.  The 
full table scan test used in this experiment consists of 
scanning the entire SALES table in parallel degree 4 
aggregating on all fields: 

SELECT COUNT(ss_sold_date_sk), 
 COUNT(ss_sold_date_item_sk), 
 … 
 COUNT(ss_net_paid_inc_tax), 
 COUNT(ss_net_profitt) 
FROM store_sales_c; 

The fts of the non-compressed table takes about 12s 
while the fts of the compressed table takes only about 6s.  
As shown in Figure 10 the compressed test utilizes about 
4 CPUs while the non-compressed test utilizes 3 CPUs.  
The total CPU used in the non-compressed test is about 
the same as in the compressed test (20 CPUU compared 
to 21 CPUU).  As described in Section “Compression 
Implementation” accessing a compressed field adds some 
CPU overhead since for each compressed field an 
additional pointer needs to be traversed.  This test does 
not show a significant increase in total CPU consumption 
because the CPU savings due to many fewer blocks 
processed compensates for the compression overhead.  
However, the peak CPU consumption of the compressed 
run is higher than the non-compressed run indicating a 
higher per block CPU consumption (see Figure 10).  

As shown in Figure 11 the maximum IO read 
performance of the compressed run is significant lower 
than that of the non-compressed run (35MB/s vs. 
90MB/s).  However, with a total of 1.2GB read in the 
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Figure 10: Parallel Full Table Scan CPU Utilization 
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Figure 9:Update Operation CPU Utilization 
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non-compressed tests and 221MB in the compressed tests 
the ratio of data read in both tests corresponds to the 
compression factor of 5.4. 

4.5   Table Access by Rowid 

Table access by rowid is a very common operation 
performed as part of many data warehouse operations 
such as index range scans and star transformed queries.  
During a table access by rowid all rows are accessed by 
rowid.  A rowid contains file, segment, block and block 
offset information of the row to be retrieved, which makes 
direct access to rows possible.  Hence, before rows can be 
accessed their rowids need to be collected.  This is usually 
done through indexes (conventional or bitmap). 

The Table Access by Rowid tests consist of accessing a 
non-compressed and a compressed SALES table by 
rowid.  Rowids are identified by performing a range-scan 
on an index on ss_quantity.  Finally, two columns of the 
SALES table are accessed and aggregated.  This query 
runs in serial: 

SELECT MAX(SS_WHOLESALE_COST), 
MAX(SS_QUANTITY* 

SS_TICKET_NUMBER) 
FROM SALES 
WHERE SS_QUANTITY between 1 and 3; 

The query against the non-compressed table finishes 
in about 29 seconds, while the query against the 
compressed table finishes in 24 seconds, a savings of 
about 17%.  Figure 12 indicates that the CPU utilization 
of both query runs is identical at about 0.7 CPUs.  
Considering that the compressed test finishes 5 seconds 
earlier, the total CPU utilization in the compressed case is 
abut 17% less than in the non-compressed case.  These 
queries utilize the buffer cache for both index and data 
blocks.  The buffer cache is about 5% of the compressed 
table and 1.4% of the non-compressed table.  This tests 
shows that the compressed table utilizes the buffer cache 
much more effectively as the non-compressed table. 

5.   Compression with TPC-H 
In the previous section we have systematically analyzed 
basic operations that are widely used in queries on data 
warehouses.  However, usually queries used in data 
warehouses are more complex.  They use multiple join 
methods, aggregations and sort operations.  To 
demonstrate the outstanding performance characteristics 
of table compression in a large data warehouse 
environment Oracle has employed it in a scale factor 100 
TPC-H benchmark publication [1].  The benchmark 
configuration used is a 4 node Compaq (DEC) AS ES45 
68/1000 with 16 Alpha EV 68/1000 MHz CPUs with 8 
MB cache running True64 Unix.  Please note that the 
elapsed times for the compressed runs are taken from the 
published TPC-H benchmark, while the non-compressed 
times are obtained during the benchmark tuning phase and 
have not been published. 

TPC-H has been widely accepted as the industry 
standard benchmark for data warehouse applications 
[3,4].  As of January 2003 there are 35 different results by 
7 hardware and 4 database vendors [2].  Its schema 
consists of eight base tables modelling the data warehouse 
of a typical retail environment (see Figure 13).  Tables 
such as PART (P), SUPPLIER (S), PARTSUPP (PS) and 
CUSTOMER (C) contain relatively static information 
about items typical retail companies buy from their 
supplier and sells to their customer, while nation and 
region are very small tables containing only a few rows.  
These tables amount to about 15% of the total database.  
The two largest tables, LINEITEM (L) and ORDERS 
(O) contribute to the remaining 85% of the total database 
size.  They contain numerical measurements similar to a 
fact table in our star schema example, while the remaining 
tables contain detailed data, further describing the 
numerical measurements. 

TPC-H’s performance test is comprised of a set of 22 
business queries and two update functions, designed to 
exercise system functionalities in a manner representative 
of complex business analysis applications.  Queries are 
run in a power and throughput mode: the power tests 
measures the raw query execution power of the system 
when connected with a single active user; the throughput 
test measures the ability of the system to process the most 

 
 

Figure 13: TPC-H and TPC-R Schemas 
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queries in the least amount of time.  TPC’s primary metric 
is a combination of the power and throughput tests.  
Discussing all 22 queries would be far beyond the scope 
of this paper.  Therefore, we will limit our discussion to a 
representative subset (Query 1, 6 and 15) and the two 
update functions. 

5.1   Discussion of TPC-H Compression Factor 

When loaded with the compression feature, 
compression for LINEITEM is the highest at a 
compression factor of about 1.6, while ORDER 
compresses at a compression factor of about 1.2.  (see 
Figure 14).  Therefore, the compressed versions of 
LINEITEM and ORDERS consume only about 60% to 
80% of the uncompressed tables, LINEITEM shrinks 
from 79 GB to 49 GB while ORDERS shrinks from 17 GB 
to 14 GB.  The overall compression factor for the TPC-H 
database is about 1.4 resulting in a space saving of about 
29%. 

The compression factors of TPC-H tables are 
significantly lower than those of the customer example 
described in Section 3.1.  This has many reasons.  Firstly, 
since TPC-H data is programmatically generated, the data 
distribution is arbitrary.  Most columns have a uniform 
distribution.  That is, over a given range there are no 
clusters with the same values.  Analysis of multiple data 
from multiple customers shows that real world data is not 
uniformly distributed, but clustered.  This is especially 
common for data warehouse fact and summary tables; in 
almost every Data Warehouse environment periodical 
data maintenance applies some kind of grouping or 
sorting to the new data.  For instance, an ETL process, 
consolidating new fact table information from sources, 
has to compare and aggregate, thus sort, the various 
sources prior to the insertion into the fact table.  Similar 
data clustering occurs naturally in summary tables that 
perform group by or advanced OLAP operations such as 
rollup and cube.  As a matter of fact, TPC-H has been 
widely criticized for having mostly uniformly distributed 

data.  Secondly, in order to increase the table size, TPC-H 
tables contain “fill columns” such as COMMENT.  These 
fields are generated with a very long unique content 
making it almost impossible to compress. 

5.2   Discussion TPC-H Query Performance 

Figure 15 shows the elapsed times and speedups7 
achieved with compression of the three TPC-H queries 1, 
6, and 15.  This shows that Query 1 has a relatively small 
slowdown of about 2 percent, which might well be in the 
measurement error range, when run against the 
compressed table LINEITEM.  On the other hand Query 6 
and Query 15 show a significant elapsed time speedup.  
Query 6 shows a speedup of 35% while Query 15 shows a 
38% speedup.  The overall speedup8 of all 22 TPC-H 
queries run against the compressed database and against 
the non-compressed database is about 10%.  Elapsed time 
for the insert test (rf1) increased by about 3.9% while the 
elapsed time for the delete test (rf2) decreased by about 
17%.  The primary metric for TPC-H, QphH@100GB, 
improved by about 10%.  For some of the queries we 
observed a slight CPU overhead.  As demonstrated in the 
section about Space Savings, TPC-H data yield a 
compression factor of only 1.2 for ORDERS and 1.6 for 
LINEITEM.  Queries against the compressed database 
perform on average 27% fewer disk accesses. 

Elapsed Time of Query 1 increases by about 2%.  This 
can be explained by the slight increase in CPU utilization 
and the fact that this query is CPU bound.  The total CPU 
consumption in the compressed case increases by about 
2%.  Since there is no CPU left for query execution, 
elapsed time increases by about the same amount as the 
total CPU consumption increases.  The large decrease in 
disk utilization of about 38% has very little impact on this 
query because the disk subsystem is not the bottleneck 
during this query. 

Query 6 performance improves by about 35%.  This 
query being IO bound leaves much of the available CPUs 
unused.  Consequently, the increase of CPU utilization 
can be easily compensated for by the system without 
degrading performance.   

Similar to Query 6, Query 15 benefits from table 
compression showing a 38% performance increase.  This 
query performs multiple join operations.  Similarly to 
query 6, this query leaves some of the available CPU 
unused decreasing query elapsed time by about 8%.  This 
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query benefits greatly from compression reading about 
42% less data in case of the compressed database. 

Using compressed tables in TPC-H reduces the 
elapsed time for most queries in this system setup, but 
increases the elapsed time for some.  IO bound queries 
directly benefit from compression because it reduces the 
average consumption of the bottlenecking resource, 
namely the disk subsystem.  CPU bound queries also 
benefit from fewer disk subsystem consumption.  
However, the overhead in accessing compressed tables 
can hurt elapsed time of these queries. 

6. Conclusions 
In this paper we presented an innovative compression 
technique, recently introduced in the Oracle RDBMS for 
reducing the size of relational tables.  By using a 
compression algorithm specifically designed for relational 
data, Oracle is able to compress data much more 
effectively than standard compression techniques.  In our 
example the compression factors vary, depending on the 
table content, between 2.9 and 4, yielding a space savings 
of 67% to 75%.  However, internal analysis of real 
customer data during the development of Table 
Compression showed compression factors up to 12.  The 
vast majority of compression factors of production 
systems are between 3 and 6. 
Unlike other compression techniques, queries against 
compressed tables incur virtually no query performance 
penalty.  Our full table scan experiments show that 
compression decreases elapsed time by 50% while 
increasing total CPU time slightly (5%).  The buffer cache 
experiments indicate a 17% performance gain in case of 
compressed tables with no significant change in CPU 
utilization.  Both experiments show how small the actual 
overhead of uncompressing blocks is and how large the 

performance gain of compression can be, both for direct 
and buffer cache reads. 

There is very little impact of compression to the 
elapsed time of delete operations.  However, a CPU 
overhead of 27% was observed.  Update operations are 
slightly more expensive, showing an increase of 20% in 
elapsed and 50% in CPU time.  Elapsed and CPU for load 
operations increases by about 2 times.  Additionally, we 
demonstrated how data compression was successfully 
employed in TPC-H, the industry standard data 
warehouse benchmark, to increase Oracle’s performance 
by 10%. 
Since the target applications for data compression are 
mostly read-only systems, e.g. large data warehouses and 
OLAP systems, the penalty shift from query to load and 
DML operations is a design goal in our implementation.  
It originated directly from our customer’s requirements to 
have maximum space savings with the least impact on 
query performance. 
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