Roles in Agile Software Development Teams

Yael Dubinsky! and Orit Hazzan?

! Department of Computer Science, Technion, Israel
2 Department of Education in Technology & Science, Technion, Israel

Abstract. One of the key elements in describing a software development
method is the roles that are assigned to the members of the software
team. This article describes our experience in assigning roles to students
who are involved in the development of software projects, working in Ex-
treme Programming teams. This experience, which is based on 25 such
projects, teaches us that a personal role for each teammate increases per-
sonal responsibility while maintaining the essence of the software devel-
opment method. In this paper we discuss ways in which different software
development methods address the place of roles in a software develop-
ment team. We also share our experience in refining role specifications
and suggest a way to achieve and measure progress by using the perspec-
tive of the different roles.

1 Introduction

Agile software development methods (SDMs) are composed of several elements,
such as practices, values, roles, techniques, and tools. Different agile SDMs differ
in their role specifications. In fact, one way by which an SDM may emphasize
its main principles is through the roles that it specifies.

In order to achieve personal responsibility of all teammates when guiding Ex-
treme Programming (XP) projects in the academia, we add personal roles to the
original XP roles. By having a personal role, developers are expected to perform
their development tasks as well as the tasks related to their personal role. Thus,
no teammates are merely developers. As it turns out, the two activities have a
mutual positive influence, and consequently, the collaboration between the team
members is enhanced. For example, let us assume that one of the teammates
is a developer who also has the role of the tester (and as such is in charge of
testing activities, such as writing unit tests and guiding other teammates in the
writing of tests). This responsibility leads the teammate to write more tests for
his or her own development tasks. These tests can, in turn, serve as examples
that illustrate to other teammates how unit tests should be written. Another ex-
ample is when a teammate, who is a developer, also has the role of the customer.
On the one hand, telling customer stories leads to an awareness of these stories
when developing ones own tasks; on the other hand, the development work may
inspire the definition of acceptance tests that are to be defined by the customer.
This ”changing of hats” is possible as long as everyone is aware of which hat
is appropriate for each situation. In other words, each team member plays two



roles and switches between them according to the situation; other teammates
comprehend these switches and refer to the appropriate hat depending on the
relevant context.

In this paper we elaborate on the roles in a software development team, share
our experience in adding roles and refining role specifications, and suggest a way
to achieve and measure progress by using the perspectives of these different roles.

2 Role Experience

This section describes the evolution of possible XP roles. The description is based
on the experience of guiding the development of XP projects in five different one-
semester courses, in which 25 projects were developed by about 325 students.
Main lessons are highlighted.

Summer 2002 Semester. Our first experience with XP projects was in the
”Projects in Operating Systems” course given by the Department of Computer
Science at the Technion, Israel. The course is a project-based capstone course.
Since the Summer 2002 semester, XP has been implemented in the course on a
regular basis. The students work in groups of twelve, and each group is guided
by an academic coach. Each group has a dedicated equipped Studio (see [4]) for
the project purposes.

In the said semester, four XP projects were developed. Every student of every
team was required to select one special role out of six possible roles - assistant
coach, tracker, tester, on-site customer, release presenter and iteration presenter
- and to fill that role for a period of half a semester. The grading policy took
the personal XP role into consideration; therefore, each student was required
to have a role. In this first semester we decided that the academic coach would
play the role of XP coach and would act as the main on-site customer. The
role of assistant coach was defined as that of the XP coach but was supervised
over by the academic coach. We identified the continuous integration practice as
a technical obstacle, especially in an academic environment in which students
meet only once a week. Accordingly, during the semester, the responsibility of
continuous integration was added to that of the release and iteration presenters.
Lesson 1. A personal role helps to increase teammates’ involvement in and
commitment to the software development process.

Lesson 2. Role performance improves during the second half of the semester
due to the learning that takes place during the first half of the semester.
Winter 2003 Semester. In this semester, the second in which the ”Projects
in Operating Systems” course was offered, we continued with 2 projects, using
the same 6 roles used in the Summer 2002 semester. In addition, XP was also
introduced, this semester, into a course dealing with operating systems concepts
and the teaching of such, which was attended by 30 prospective computer science
teachers. The class, working as a single team, developed a single XP project.
Roles were assigned in this case as follows: two students were trackers; two
students were responsible for the different stages of the continuous integration,
and the others were developers.



Lesson 3. The academic coach does not have to be the XP coach in order to
evaluate the team’s work. Therefore, the role of XP coach should be given to a
student.

Lesson 4. An XP project can be developed by 30 students, but they will not all
be involved in the actual development process. In addition, those students who
do have specific roles tend to feel that they deserve bonus points for their extra
work.

Spring 2003 Semester. Some changes were made in the roles assigned in the
four projects that were developed in the ”Projects in Operating Systems” course.
The number of roles was increased to seven, since there were some groups with
13 students. The roles were: coach, assistant coach, tracker, person in charge of
continuous integration, tester, person in charge of presentations, and person in
charge of documentation. In this semester, the academic coach was no longer
the XP coach. We cancelled the on-site customer student role, assuming that
this role would be the focus of the academic coach. We added a documentation
role that handles the documentation of the development process, as well as the
user’s guide and installation manual. We also separated the topic of continuous
integration from the presentations.

Lesson 5. We realized that we could not do without the on-site customer student
role, but that we could give up the assistant coach role since the role of XP coach
was now played by one of the students. The appropriate steps were taken at the
second release developed later in the semester.

XP was also introduced into two other courses that were held this semester.
The first course was on object-oriented concepts and on the teaching of this topic,
and was attended by 30 prospective computer science teachers. Special roles
were not assigned to the students during this first semester, and the students
developed a single project, working as a single team. Similar to our experience the
semester before, we found that in this way, too, an XP project can be completed,
but again many students were not involved in the actual development process.
The second course into which XP was introduced was a course on software
engineering methods attended by 22 mathematics major students. In this course,
the seven aforementioned roles were assigned, but several roles were performed
by more than one student.

Lesson 6. The upper limit for the group’s size should be about 12 students.
The assignment of personal roles solves the problem of lack of involvement in
the actual project work.

Summer 2003 Semester. During the fourth semester, we had 4 project groups
in the ”Projects in Operating Systems” course with no more than 12 students in
each group. It was in this semester that the list of six roles that we then consid-
ered to be an optimal list was reached: coach, tracker, tester, person in charge of
continuous integration, on-site customer, and person in charge of presentations.
The documentation task was added to the role of the team member who was in
charge of presentations.

Winter 2004 Semester. During the fifth semester of the ”"Projects in Oper-
ating Systems” course we again had four project groups and the same list of



six roles was used as in the previous semester. In addition, XP was used in
two other courses. The first of the two dealt with operating systems concepts
and the teaching of such, and was attended by 18 prospective computer science
teachers. The second course was on object-oriented concepts and was attended
by 25 mathematics major students. In both courses, the class was divided into
two project groups of 9 to 13 students each.

Students were asked to offer topics for projects that were related to the course
topics, and then voted on the different subjects until only two subjects remained.
From previous experience we had learned that projects that are developed in the
framework of courses that are not project-based courses should be based on a
single release that is composed of two iterations. Thus, we assigned 13 roles in
the largest group; one role per student for the entire duration of the semester.
The roles were assigned after several meetings, when the students had become
acquainted with each other. Each group was asked to decide on the best way
to assign roles to students. This way, each student had a single role to learn, to
guide the other teammates accordingly, and to support on-going related activities
during the semester.

The roles, on which we will elaborate in the sequel, were coach, tracker, person
in charge of unit testing, person in charge of functional testing, person in charge
of continuous integration, on-site customer, person in charge of presentations,
person in charge of documentation, person in charge of design, person in charge
of code standards and tools, end user, person in charge of installation shield, and
person in charge of code correctness and efficiency.

Lesson 7. In the coming semester (Spring 2004), which will be the sixth semester
in which we will implement XP in the ”Projects in Operating Systems” course,
one XP role will be assigned to each student for the entire duration of the
semester. This lesson is observed clearly if we examine the learning curve of these
roles, and is based on the positive experience expressed in the other courses (see
Winter 2004 Semester).

Note: In parallel to the above gradual clarification and refinement of the stu-
dent’s roles, the academic coach role was continuously refined as well during the
last five semesters. We began by assuming the roles of the team coach and the
customer to the academic coach, and underwent several phases through which
the responsibility of this role was transferred to the students. A framework for
coaching XP projects in the university is presented in [3].

3 Roles In XP Teams

In the Appendix?®, we describe the roles defined by the different agile software
development methods [5,1,2]. Clearly all agile SDMs have roles that aim to
enhance communication and produce a better product. Differences among the
methods result mainly from the different emphasis of the SDM itself.

When guiding a software project in the academia, an equal academic load
should be assigned to all students. Therefore, according to the number of stu-

3 You may contact yael@cs.technion.ac.il for the full version including the appendix.



dents in the project team, some roles are split or, alternatively, several roles are
combined into a single role. Indeed, a relevant question that should be asked now
is how different roles are split or combined. We have found that all of the roles
together should cover as many as possible of those practices that we wish our
students to implement throughout the project development. The importance of
this principle is illustrated by the following example. Teammates may be aware
of the importance of continuous integration and may appreciate working at a
sustainable pace. These practices may, however, be applied properly (in most of
the cases) only if one of the team members actively pushes the team in these
directions. Accordingly, we refer to roles as practice representatives.

In Section 2, we explained the process that led to the formulation of the dif-
ferent roles. In total, we identified 13 roles, which are described and grouped into
four major groups in Table 1. The first is the leading group, which consists of
the coach and tracker. The second is the customer group, which consists of three
roles. This group of roles focuses on providing the customer with the required
product. The third group of roles is the code group, which is composed of five
roles and focuses on those aspects of software development that are directly re-
lated to the design and to the code. The fourth group is the maintenance group,
which comprises three roles and focuses mainly on the external presentation of
the product. In addition to this grouping, some of the roles support the com-
munications between the four groups. For example, the team member who is in
charge of continuous integration is also in charge of communications with the
customer group.

4 Using Roles to Achieve and Measure Progress

This section presents an analysis of data that was gathered in a qualitative re-
search during the five aforementioned semesters. The data were gathered from
videotapes of the meetings of one team in each semester, interviews with stu-
dents and academic coaches, students’ electronic forums and reflections, project
presentations, and the impressions and periodical summaries of the various role
holders. This data helps us illustrate how roles can be used to achieve and mea-
sure the progress of the software project.

The progress is examined from the following three perspectives: endowing XP
values, learning XP practices, and increasing awareness to the human aspects
of software development. Measurement of progress using roles is executed by
examining the adherence to the time schedule and to the customer stories.

We found that the XP values establish a valuable framework for teamwork.
Having a role causes each teammate to become more involved and much more
communicative with other team members. For example, it is not possible to
motivate one’s teammates to write unit tests or to write according to specific
coding standards without extensively communicating with them. Courage is re-
quired in order to take on additional responsibility besides being a developer,
to accomplish the required work and to urge the other teammates to follow
one’s instructions within a specific area of responsibility. Feedback is provided



Table 1. Roles in an academic XP team

Role

Description

Leading Group

Coach Coordinates and solves group problems, checks the web fo-
rum and responds on a daily basis, leads some development
sessions.

Tracker Manages the group diary, measures the group progress with

respect to the estimations and tests score, manages and up-
dates the boards.

Customer Group

End user

Performs on-going testing of the software as an end user,
contacts real end users to test the software, collects and pro-
cesses the feedback received.

On site customer

Tells customer stories, makes decisions pertaining to each
release and iteration, provides feedback, defines and develops
acceptance tests.

In charge of acceptance
testing

Works with the customer to define and develop acceptance
tests, learns the topic of first-test development and instructs
the others on the subject.

Code Group

In charge of unit test-
ing

Learns about unit testing, establishes an automated test
suite, guides and supports others in developing unit tests.

In charge of design

Maintains current design, works to simplify design, searches
for locations in the software that need refactoring and en-
sures proper execution of such.

In charge of code stan-
dards and tools

Establishes and refines group code standards, searches for
development tools that can help the team, guides and sup-
ports in the maintaining of standards and use of tools.

In charge of code ef-
fectiveness and correct-
ness

Guides other teammates in the benefits of pair programming,
enforces code inspection in pairs, searches for places in the
code whose effectiveness requires improvement.

In charge of continuous
integration

Establishes an integration environment including source con-
trol mechanism, publishes rules pertaining to the addition of
new code using the test suite, guides and supports other
teammates in the integration task.

Maintenance Group

In charge of presenta-
tions

Plans, organizes and presents version presentations, demos,
and time schedule allocations.

In charge of documen-
tation

Plans, organizes and presents the project documentation:
b

process documentation, user’s guide, and installation in-

structions.

In charge of installation
shield

Plans and develops an automated installation kit, supports
and instructs other teammates as to the appropriate way to
develop software for easy and correct installation.




to others and received from other’s concerning one’s role and performance. In
turn, this feedback increases communication. When assuming responsibility for
a specific topic related to the development of a software project, one wants it to
be as simple as possible in order to easily establish and maintain it. Simplicity
naturally leads to the assuming of the appropriate scope of one’s responsibility.

Table 2 presents students’ feeling about their roles with respect to XP values.

Table 2. Students’ feeling about their roles with respect to XP values

Role

XP Values

Students’ expressions

Tracker

Simplicity

We do it the simplest way because we have tons of
other things to do and we aren’t looking for unnec-
essary complications.

Coach

Courage

First of all, I don’t have the characteristics of a
manager; I’'m quite shy, not charismatic...

In charge of
continuous

integration

Communication

It’s also hard to urge everyone to do their part ...
All of this is of course understandable, and I believe
I handled it well ... together with the hard work on
the project.

In charge of

documentation

Communication
and feedback

This role is recommended for people who like to
interact with other people, whether if it’s in the
presentation, the making of the presentation, the
coding documentation or the project’s working pro-
cess report. If you don’t like these things too much
- take another role. If you do, I recommend ... Make
sure from the start that people ... It is very impor-
tant that they get used to doing it during the entire
process of coding, and not just at the end, because
... Pay attention to the fact that people are used to
... so you have to be tough...

Customer

Feedback

As a customer, I wrote customer stories and de-
cided... and gave feedback.

Tester

Communication

I continuously pushed them and asked them to
write testing for their units and publish it on the fo-
rum. The main problem was that some of the team
members didn’t finish ... and in some cases I asked
the coach for help in obtaining the test code.

Coach

Courage

I would say that a substantial part of the coach’s
duty was rendered superfluous due to the effort
made by the entire group to work as a team.

The need to learn the XP practices leads to an on-going refinement of role
definitions. Students performed their roles while learning the XP practices. Grad-




ually, they became practitioners. Following are students’ expressions of their
feelings with respect to their perception of the different XP practices.

Customer: I had to follow and see that during implementation time people
were working according to my stories.

In charge of unit testing: I published two documents that explain the testing
subject. I published a request that teammates send me their planned tests
for each module... I gave a short lecture about software testing...

Coach: I provided the team with the applications and operating systems, I
tried to coordinate and make people move fast...

In charge of documentation: I published a documentation guidelines that
also deals with coding techniques, and checked the team’s code to see if they
played along.

The human aspect of software development is a broad area. In this paper, we
focus on students’ feelings and awareness with respect to their roles, as expressed
by them during the development process. Satisfaction on the part of the students
in being role holders was observed, as well as in being able to obtain a global view
of the project in additional to the accomplishment of specific development tasks.
Most of the students reported that they handled this additional responsibility
well and enjoyed it. Following are students’ expressions of their feelings about
their role handling.

Customer: The role gave me a "real life” feeling, not that we have a predefined
task and we just perform it. This is very real, a customer with requirements,...

In charge of continuous integration: I enjoyed seeing that everything was
integrated...

In charge of unit testing: I didn’t enjoy the role at all ... it caused me a
great deal of nervousness in the past two months...

In charge of documentation: So I wrote the documentation that he was
supposed to write...it didn’t kill me, but I consider it as a personal failure.

Measuring the development progress is usually a complicated task. As it
turns out, by using roles we can obtain information on many of the elements
of the progress of a software project in the form of narratives expressed by role
holders. We used three narrative tools: stand-up meetings, periodical summaries
by roles holders, and role holders’ web expressions and reflections. An analyzed
collection of the narratives information at every stage gives quick glances on the
status of the team, and when looking at them over time, the progress in the
different aspects of the project is revealed. Following are quotes taken from role
holders’ summaries of a specific project. These summaries were written at the
beginning of the project after one week of development and two weeks before
the presentation of the first iteration of the first release.

End user: I worked with the customer. We met with the coach in order to
discuss the graphical interface. We defined each button...

Coach: I met most of the teammates in order to coordinate... I worked with
the tracker on the documentation and publishing of the development tasks...



In charge of installation shield: I'm going to search for installation software
and try to learn it for future use.

In charge of unit testing: I learnt about the subject...

In charge of presentations: For now, no actions concerning my role were
required, but there soon will be.

5 Conclusion

It is a well-known fact that software development is a complicated process. In
practice, a very unique kind of teamwork is required in order to accomplish its
many significant elements. This paper raises the question whether each team-
mate in a development team should have one major role in addition to his or
her personal development tasks. It is suggested that when a teammate has a
specific role, his or her personal responsibility and accountability with respect
to that aspect of the software development process represented by the said role,
increase. The total array of roles enables the accomplishment of all practices we
wish to include in the development process and leads to a high involvement of all
teammates in the development process. Although this article presents data anal-
ysis of XP projects conducted in a university setting, we suggest that the above
conclusion need not be limited to the academia, but rather its implementations
for the software industry should be considered as well.

6 Acknowledgements

This research was supported by Technion V.P.R. Fund - B. and G. Greenberg
Research Fund (Ottawa).

References

1. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
2000.

2. Crispin, L. and House, T.: Testing Extreme Programming. Addison-Wesley 2002.

3. Dubinsky, Y. and Hazzan, O.: eXtreme Programming as a Framework for Student-
Project Coaching in Computer Science Capstone Courses. Proceedings of the IEEE
Int. Conf. on Software - Science, Technology & Engineering, pp. 53-59, 2003.

4. Hazzan, O.: The reflective practitioner perspective in software engineering educa-
tion. The Journal of Systems and Software 63(3), pp. 161-171, 2002.

5. Highsmith, J.: Agile Software developments Ecosystems. Addison-Wesley 2002.



APPENDIX: ROLES IN AGILE SOFTWARE DEVELOPMENT METHODS
SDM SDM Roles

XP Seven roles in Extreme Programming (XP):

(Beck, | The programmer analyzes, designs, tests, programs, and integrates. The programmer
2000) |writes tests and refractors the code; working as part of a pair. The programmer
communicates and coordinates closely with other programmers in order to ensure the
project's success. The programmer integrates the code and shares it with the others.

The customer tells and writes stories to be implemented and decides when they will be
implemented. The customer defines tests to verify the correct functionality of the stories.
The customer receives feedback from the team, and makes decisions to help the team
best benefit the project.

The tester uses the customer's viewpoint in order to determine which items most require
verification. The tester must consider the system through the eyes of the customer
(Crispin and House, 2002).

The tracker measures progress quantitatively, by comparing estimations with actual
results. He or she is responsible for monitoring the big picture and informing the
teammates about their progress. The tracker is the team historian, and keeps log of tests
results and reported faults/defects.

The coach is responsible for the process as a whole. He or she keeps track of the
project's process and helps other teammates in their decision making. The coach pairs
off with programmers, identifies/looks for refactoring tasks, and sees to their execution.
The coach also explains the process to upper-level managers.

The roles of consultant and boss are external and are filled by people from outside the
team.

DSDM | Eleven roles in Dynamic Systems Development Method (DSDM):

The executive sponsor is a high-level executive who is responsible for the system and
for its fast development progress.

The ambassador user represents the entire user community.
The visionary user makes sure that the vision of the product is not lost.
The advisor user brings daily business knowledge to the development team.

The project manager is responsible for ensuring project delivery, coordinating and
reporting to the management.

The technical coordinator reports to the project manager and assists all development
teams.

The team leader ensures that the team functions as a whole, and that the objectives are
met.

The senior developer interprets user requirements into prototypes and deliverable code.
The developer assists with these tasks as part of DSDM skills development.

The facilitator is responsible for managing the workshop process, an interactive
communication technique for making decisions.

The scribe records requirements, agreements and decisions reached.

Scrum |Four roles in Scrum:

The scrum master reviews the team's progress team and ensures time estimations are




updated.
The product owner writes user stories and defines acceptance tests.
The scrum team estimates task durations and develops stories and unit tests.

The manager provides directions to keep the work going according to plan and removes
obstacles.

Crystal | Eight roles in Crystal Clear:
Clear -
Distinct roles:
The sponsor provides the mission statement.
The senior designer produces the system design.
The user helps with use cases and screen drafts.
The designer-programmers (designers) design, code and test.
Four additional merged roles are identified in Crystal Clear, which means that they can
come from the people filling the above-mentioned roles:
The business expert can come from the sponsor, user, or senior designer.
The coordinator can come from the senior designer and is responsible for the schedule
and the release sequence.
The tester can come from the designers and is responsible for test results and defect
reports.
The writer can come from the designers and is responsible for the user manual.
FDD | Six [core] roles in Feature-Driven Development (FDD):
The project manager leads the team and reports on its progress.
The chief architect is responsible for system design.
The development manager is responsible for the development activities.
The chief programmers provide technical leadership to the smaller teams.
The class owners are developers who each own one class and are responsible for
making all changes in it.
The domain experts are the users.
Lean |Six rolesin Lean Development:
Develo . .
pment | The customer provides the requirements.
The master developer is responsible for system design.
The expertise leader is responsible for specific technical areas such as GUI design,
database development, and security.
The project leader is responsible for time estimations and the team's progress.
The observer takes notes on the team's process.
The other team members are the programmers.
ASD | Adaptive Software Development (ASD) promotes the leadership-collaboration model,

which focuses on work states rather than on processes, on creating a collaborative
environment, and on creating accountability for results (Highsmith, 2002).

Six roles are mentioned in ASD:




The executive sponsor is responsible for the product being developed.
The developer and customer representatives.

The facilitator plans and leads the development sessions.

The project manager is responsible for product delivery.

The scribe records requirements, agreements and decisions reached.




