IBM Global Services

Estimation in Agile Projects

Dr. Christoph Steindl
Senior IT Architect and Method Exponent
christoph_steindl@at.ibm.com

Pal Krogdahl
Senior IT Architect and Method Exponent
pal.krogdahl@se.ibm.com

IBM Academy of Technology Best Practices in Project Estimation Conference © 2005 IBM Corporation

|

Goals of this presentation

= Explain (just) a little bit what “Agile” means.

= Describe estimation and NOT planning in agile projects.

= At the conclusion of this session, you should be able to understand:

— There are different processes for “Predictable Manufacturing” and “New Software
Development”.

— Estimation in a highly dynamic environment is done differently

— How estimation is done in an agile way

— What the reasons are for doing it that way

|

Motivation

= Plans are only as good as the estimates, that the plans are based on, and
estimates always come second to actuals. The real world has this horrible habit
of destroying plans.

= The customer has the right to an overall plan, to see progress and to be
informed of schedule changes. Whereas the developer has the right to make
and update his own estimates and to accept responsibility instead of having
responsibility assigned to him.

= You can'’t put 10 pounds of (whatever) into a 5 pound bag.

= Forecasting tomorrow’s weather is much more difficult than telling what the
weather was like yesterday.

= Don'’t try to be too sophisticated; estimates will never be anything other than
approximate, however hard you try.

From: Kent Beck and Martin Fowler: Planning Extreme Programmit

|

Software is New Product Development

Most software is not a predictable or mass manufacturing problem. Software development is

new product development.

Predictable Manufacturing

New Product Development

It is possible to first complete specifications,
and then build.

Rarely possible to create upfront unchanging
and detailed specs.

Near the start, one can reliably estimate
effort and cost.

Near the beginning, it is not possible. As
empirical data emerge, it becomes
increasingly possible to plan and estimate.

It is possible to identify, define, schedule,
and order all the detailed activities.

Near the beginning, it is not possible.
Adaptive steps driven by build-feedback
cycles are required.

Adaptation to unpredictable change is not
the norm, and change-rates are relatively
low.

Creative adaptation to unpredictable change
is the norm. Change rates are high.

A “waterfall” lifecycle, big up-front specifications, estimates, and speculative plans applicable
to predictable manufacturing have been misapplied to software projects, a domain of

inventive, high-change, high-novelty work.

From: Craig Larman: Agile & Iterative Developme

et
el
o

: M»M.E?axao?.tf ow

Backgrounc

.:a.ﬁ%:;pazaB.Ea.x.;m
i e e e g

m g e e e B
_m.mﬂﬁ, S .ffff«.ﬁ.mm

{ P ._..MM‘._. .m.«mowmﬁﬂ.ﬁw? .«.nnw««fu.u.omx
e WW

Complicated

Technology

Simple

A

Wawaa/dy Wwawady
Wouj Je4 03 3501

Certainty

Close to

Ogunnaike and Ray: Process Dynamics, Modelir
.

and Control.

sjuWIINbaY

| approach is the

Empirical models are used when the activities
are not predictable, are non-linear, and are too

complex to define in repeatable detail.
changes in the output (,butterfly effect®, chaos

they run unattended and produce repeatable,
theory)

It is typical to adopt the defined (theoretical)
When you can‘t define things enough so that
acceptable quality output.

Small changes in the input can lead to huge
Control is through inspection and adaptation.

modeling approach when the underlying
mechanisms by which a process operates are

reasonably well understood. When the
process is too complicated for the defined
approach, the empirica

appropriate choice.”

Empirical Processes:

Complexity in development projects

Features & Function Usage THE
STANDISH

GROUP

13%

B Never

O Rarely

Bl Sometimes
O Often

B Always

45%

http://www.xp2003.org/xp2002/talksinfo/johnson.pd

|

Backgrounc

Manifesto for Agile Software Development

We* are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left
more.

" Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler,

James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin,
Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas, 2001.

|

Agile Methods are in Wide-Spread Use

= Extreme Programming (Kent Beck)

= Scrum (Ken Schwaber, Jeff Sutherland, Mike Beedle)
= Crystal (Alistair Cockburn)

DSDM (Arie van Bennekum)

Feature-Driven Development (Jeff De Luca)

Lean Development (Bob Charette)

Adaptive Software Development (Jim Highsmith)

= There are tons of books on the subject.

= Google reports 49.700 hits for ,Agile methods".

|

lterative & Incremental Development

= Frequent inspection and adaptation
— Daily within team, monthly with customer
= Collaboration, close communication

— Daily Stand-up Meetings within team, where
the customer may attend, but not intrude

= Frequent delivery

— Demo increment of potentially shippable
functionality

How

Daily Stand-Up

:, Meetings

1d
Demo

Q Retrospective
1 mo ; /

va_ |

-
= Reflective improvement -’ ‘:/A . =) -

— At the end of each iteration, consider what -
worked well, what did not work well, what to ’

try next iteration
= (Incremental) Emergence of requirements,
technology, and team capabilities Release
’ Backlog
(coarse-grain

= Empowerment and self-organization
— Team makes up the tasks to deliver the

functionality features)

— Team estimates the effort and cost
= Dealing with reality, not artefacts

— Deliver software (mainly) plus additional
requested deliverables

Increment «
Iteration Backlog f,nctionalit

(fine-grain features
and tasks)

Iteration Planning
Meeting: Tasks
emerge from features

Release Planning Meeting:
Features emerge from
vision statement

|

How

Iterative Estimation with Frequent Delivery | pevelopers

The team understands - by and by — its
velocity, how much it can deliver in an
iteration.

Team members sign up for tasks, there is no
project manager who assigns the tasks.

Everyone estimates his/her tasks, there is no
estimation guru who estimates all tasks for all
people. The quality of the estimate is

commensurate with the information available.

Everyone estimates often: at the beginning of
the iteration, daily during the iteration to
estimate the remaining effort.

The effort remaining (and not the effort
already spent) is displayed publicly to enable
collaborating teams that work together to
meet the target of the iteration.

Customer
prioritizes
for business
value and
criticality

N
[
!
Release
Backlog

re-estimate effort

O still open daily.
Q Display results
1 | publicly.

| ie
|-':’;//HZL&-ﬁ

Increment «

Iteration functionalit:

Backlog

Team brainstorms necessary
tasks, everyone estimates
his/her tasks.

Team estimates effort and costs
for implementation

|

Agile Principles for Estimation

= |f estimating is difficult, the agile approach increases the feedback

shorten the time from estimating to feedback about accuracy of estimate
increase the frequency of estimating

sketch out options and get feedback from the customer before doing detailed
estimating

The guideline here is: Don't estimate too far into the future, if the future is unclear!

= |f the requirements and assumptions are not really clear, the team develops
multiple estimates (“Options Thinking”):

communicate the constraints / assumptions of the estimates rather than just the
numbers

discuss the constraints / assumptions with the customer and the customer can give

feedback to better align the team's understanding with the business drivers.

= Validate estimates by comparing them with other estimates / experience, use
simple rules, triangulation and intuitive decision making.

= The agile approach relies on self-organization of the team, continuous learning
and emergence of estimates (besides requirements and design).

stimating coarse-grained features How (Scrum

To gain an understanding of the amount of effort to develop the product or
system (long-term view).

Make more effort to reach this estimate for higher priority than lower priority
items, since the lower priority items may change prior to being developed.

Don’t spend too much time on estimating. The goal of the estimates is to gain a
general understanding of the cost of the system or product. This is used to
determine whether it is economic to develop it. Be aware of diminishing returns.
Do enough, but not too much.

The Product Owner works with the business departments and the
development organization to develop estimates (to analyze, design, develop,
document, and test the functionality, i.e. whole lifecycle), usually in person
days.

Use the people who will be staffing the project teams to make the estimates. If
they aren’t known yet, have people of equal skills and project domain
knowledge make the estimates. Do not have experts or outsiders make the
estimates. Their estimates are irrelevant to those who will actually be doing the

work. From: Ken Schwaber: Scrum Methodolo

|

stimating coarse-grained features How (Scrum

Estimating Release Backlog (2/2)
= Estimating is iterative. Estimates change as more information emerges.

= |f you can'’t get a believable estimate for a top priority backlog item, lower its
priority (to delay working on that item until you know more about it).
Alternatively, keep them high priority but reclassify them as an issue. The
work to turn this issue into required functionality might take ten days; so
estimate the issue at ten days.

= Break down features to under 10 days if they ¥R

v (1-9)

are to be implemented within the next 6 months.

1 General Setup development environment 4
1 General Confirm uze of zope as development environment 2
: H H 1 Membership Ahility to sign up for various level of membership 4

|
Lowe r p rl o "ty p rOd u Ct baCkI og Is Vag ue’ a 1 Memberzhip Ahility to uze credit card to pay for memberzhip 1
H H H H H 1 Membership Provide extract from databasze to external sources |3
placeholder for further investigation/thinking e e -
H H H H = 1 Membership Generate receipts and cedificates 5
aS ItS p”or'ty Increases . The eStI mates (Often 1 Memberzhip Tie membership program to hank accounts 5
= 1 Memberzhip Implement open access database (MySQLT) 5]
1 0_4 O d ays) a re n Ot Ve ry re I I a b I e . 2 Mews Autharing environment far newws g
1 Wiehzite Website look, feel, navigation, initial pages 11
3 Founders Page Include agilealiance .org founders page 1
3 Sponsors Dizplay =ponzors and link to web sites 5]
4 Aricles Authoring environment for aricles 1
. . 4 Aticles Organizing and sorting capability for articles 4
From - Ken SChwaber' Scrum MethOdOIOgy 4 Articles Library catalog for articles g

|

stimating coarse-grained features How (Scrum

Adjusting Release Backlog Estimates (1/2)

= To reflect any factors that reduce team effectiveness. Scrum assumes an optimal work
environment. This activity forces an understanding that suboptimal product factors
have a cost.

= The guidelines for adjusting estimates to reflect complexity are just that: guidelines. This
is not a precise science.

= The estimated time for each item can be adjusted by a “complexity factor.” reflecting the
degree of complexity due to requirements and technology that will affect the estimates.

ex |
‘gm
= Keep adjustment for complexity separate from :@%
the base estimate. 2<
<P
=
= Apply the complexity factor only to a known horizon. v
If it is possible that the team environment will change, =
don’t apply complexity factors past that horizon. &
E o
= Diminish the impact of the complexity factors as the team i% simple \| Complicated \ 0.
can be expected to master the technical and business domain. &2 :

From: Ken Schwaber: Scrum Methodology G5t Deployment Conar

Technology

|

stimating coarse-grained features

Adjusting Release Backlog Estimates (2/2)

= Drag on team productivity: when teams
haven’t worked together before, when they are
not familiar with the technology, and when they
aren’t familiar with the business domain.

= Adequacy of working environment: when the
team is not together in an open environment with
adequate work and conference rooms. Usually a
factor of 0.2

= Multiple teams: due to management and
communications overhead caused by multiple
teams. Usually an additional factor of 0.1

= Adjusted Estimate = Raw Effort * (1 +
complexity factor + drag + working
environment + multiple teams)

How (Scrum

Drag # of years Knowledge of Knowledge

together technology domain
0.8 < 3 months Low Low
0.75 <3 months |Low Medium
0.7 <3 months Low High
0.75 <3 months |Medium Low
0.5 <3 months |Medium Medium
0.5 < 3 months Medium High
0.75 <3 months High Low
0.5 <3 months High Medium
0.35 <3 months |High High
0.6 <1year Low Low
0.55 <1year Low Medium
0.5 <1year Low High
0.55 <1year Medium Low
0.3 <1year Medium Medium
0.25 <1year Medium High
0.5 <1year High Low
0.25 <1year High Medium
0.2 <1year High High
0.5 > 1 year Low Low
0.45 > 1 year Low Medium
0.4 >1 year Low High
0.45 >1 year Medium Low
0.35 > 1 year Medium Medium
0.2 >1year Medium High
0.4 >1year High Low
0.2 >1year High Medium
0 >1 year High High

From: Ken Schwaber: Scrum Methodolo

|

stimating fine-grained features How (XP)

User Stories (XP)

A user story describes functionality that will be valuable to either a user or purchaser of a
system or software. User stories are composed of three aspects.

— A written description of the story used for planning and as a reminder (“Card”)
— Conversations about the story that serve to flesh out the details of the story (“Conversation”)

— Tests that convey and document details and that can be used to determine when a story is
complete (“Confirmation”)

While the Card may contain the text of the story, the details are worked out in the
Conversation and recorded in the Confirmation.

User stories can be coded and tested between half a day and two weeks by one or a
pair of programmers.

Because user stories shift emphasis toward talking and away from writing, important
decisions are not captured in documents (that are unlikely to be read anyway). Instead,

important aspects about stories are captured in automated acceptance tests and run
frequently.

User stories encourage deferring detail — it allows us to not spend time thinking about a
new feature until we are sure that the feature is needed. Stories discourage us from
pretending we can know and write everything down in advance.

Try to implement at least half a dozen of stories in an iteration.

Mostly from: Mike Cohn: User Stories Applic
arence © 2005 IBM Corporatio

|

stimating fine-grained features How (XP)

Estimating User Stories

Size of story is given in “story points” (an abstract unit). The team defines how
a story point translates to effort (typically: 1 story point = 1 ideal day of work).
The number of story points that a team can deliver in an iteration is called
“team velocity”.

Estimate as a team
— A story comprises multiple tasks which will be done by different people.

— The estimate for the entire story is developed by the entire team, utilizing the
experience of all members, similarly to the “Wideband Delphi” approach.
— The estimates are verified with triangulation and with previous estimates.

Periodically re-estimate a story, which gives you a chance to incorporate
additional information.

At the end of an iteration, measure how much stuff got done. Add up the
ideal time in all the stories to determine the team’s velocity. Each developer
measures his velocity by tracking his accomplishments every iteration. He can
only sign up for the same number of day’s worth of tasks the next time (be
careful not to use that data against him).

Mostly from: Mike Cohn: User Stories Appli
erence © 2005 IBM Corporatio

|

stimating fine-grained features How (XP)

Adapted Delphi Wideband Approach

1.

2.

24

Gather together the customer and the developers. Bring along the story cards.
Distribute a handful of blank cards to each participant.

The customer selects a story at random and reads it to the developers. The
developers ask as many questions as they need.

When there are no more questions, each developer writes an estimate on a
card, not yet showing the estimate to the others.

When everyone has finished, the estimators turn over their cards so everyone
can see them.

If estimates differ, the high and low estimators explain their estimates.

The group discusses it for up to a few minutes, the customer clarifies issues.
The developers estimate again write their estimates on cards. In many cases,
the estimates will already converge by the second round. But, if they have not,
repeat the process.

If the estimates differ slightly, reach group consensus on one value. Follow the
rule “Optimism wins” (team members whose optimism burned the team once
will learn to temper that optimism).

stimating fine-grained features How (XP)

Triangulation

After the first few estimates have been made, verify them by relating them to each other.
— A two-point story should be half the effort of a four-point story.
— A three-point story should be more roughly larger than a two-point story, but yet smaller than a

four-point story.

= Although not exact, triangulation is an effective means for a team to verify that they aren’t
gradually altering the meaning of a story point. It builds on intuitive decision making.

= Pin the story cards to the wall based on their size, compare newly-estimated stories to

others that may already have been implemented.

= Precision decreases as story size increases, therefore constrain estimates to pre-defined
values (e.g. 72, 1, 2, 3, 5, 8, 13, 20, 40, 80)
1

2 3 5 8 13
A user A user A user A user A user A user
can... can... can... can... can... can...
A user A user A user A user A user
can... can... can... can... can...
A user A user A user
can... can... can...
A user A user
can... can...

From: Mike Cohn: User Stories Applic
© 2005 IBM Corporatio

|

stimating fine-grained features How (XP)

Yesterday’'s weather

= Say you’ll do as much today (in the next iteration) as you actually got done
yesterday (in the last iteration).

= Emergent properties of this rule:

— We won’t habitually overestimate our abilities. We have to use actual
accomplishment. If we overestimate once, we won’t be able to the next time.

— If we are overcommitted, we will tend to try to finish some items in any given time
period instead of half finishing them all. It is so embarrassing to tell the customer
they can have zero features next time.

— On the other hand, if we have a disastrous period, we are guaranteed a little
breathing space to recover.

— Everyone learns to trust our numbers because they are so easy to explain.

— Our estimates automatically track all kinds of changes — changes to the team, new
technology, dramatic changes in product direction, etc.

= The first estimate (at the beginning of the project, when there is no yesterday) is
the hardest and least accurate. Fortunately you only have to do it once.

From: Kent Beck and Martin Fowler: Planning Extreme Programmi

|

Why

Lean Software Development with 7 Principles and 22 Tools

= Eliminate Waste
— Seeing Waste, Value Stream Mapping
= Amplify Learning
— Feedback, Iterations, Synchronization, Set-Based Development
= Decide as Late as Possible
— Options Thinking, The Last Responsible Moment, Making Decisions
= Deliver as Fast as Possible
— Pull Systems, Queuing Theory, Cost of Delay
= Empower the Team
— Self-Determination, Motivation, Leadership, Expertise
= Build Integrity In
— Perceived Integrity, Conceptual Integrity, Refactoring, Testing
= See the Whole

— Measurements, Contracts

From: Mary and Tom Poppendieck: Lean Software Developmel
actices in Proie imation Conference © 2005 IBM Corporatio

|

Principles of agile estimation (1/2)

Eliminate Waste
Don’t estimate waste, don‘t look too far into the future. Decide as Late as Possible

Estimate up to 2 iterations into the future (fine grain). Estimate up to 2 releases into the
future (coarse grain).

Estimate as a team (development + customer).

This reduces the “blame game”, you can no longer point accusing fingers at the person

who made the plan. Amplify Learning
Estimate your own work. Empower the Team

You feel committed as an individual for the development of the self-selected tasks.

You feel committed as a group for delivering the iteration goal.
Base estimates on facts, rather than on speculation. Use actual data. Use what

happened in the past. Feedback
Yesterday’s weather, team velocity, triangulation Measurements
Estimate early.

Start getting estimates as soon as you write stories.

Value-Stream Mapping
Amplify Learning
You will know what questions to ask if you can’t estimate a story.

Principles
TNl

|

Principles of agile estimation (2/2)

Amplify Learning
Estimate often. Learn from experience. Empower the Team
At the beginning of an iteration. Update the effort remaining daily / every other day.
Estimate small features.
Stories of several days up to 2 weeks

Keep it simple. Use simple rules. Making Decisions
Communicate the constraints / assumptions of your estimates rather than just

the numbers. Options Thinking
Estimate total effort for implementing a story (development, testing,
documentation etC.) Measurements

Don’t bring initial estimates (from release planning) into sessions for detailed
estimates (iteration planning). Otherwise, the estimators will be tempted to force
fit the task estimates to sum to the story estimate.

Track the effort spent and the effort still open until completion. Don’t ask for a
percentage. Only count a story as implemented if it has passed the acceptance
tests.

Deliver as Fast as Possible

Principles
TNl

|

Relationship to IBM Global Services Method

Cone of Uncertainty

There is a quite agile engagement model
,<Accelerated Development® (formerly
,Rapid Custom Development").

Every (?) engagement model contains at
the beginning of each phase the task
,Refine Project Estimates®, so iterative
estimation is not a new concept.

The main switch is from specialist
estimation to group estimation.

Emergence of estimates might be hard to
accept, but the quality of estimates will
always have to be commensurate with
the information available.

PMI has the notion of “rolling wave
planning” which is very similar to the
adaptive estimation approach.

Put just enough effort into estimation, and
be aware of the diminishing returns,
when additional effort doesn’t result into a
much more accurate estimate.

4.0x

\

2.0x

bad time for

estimation

0.5x

0.25x

iter 1

Accuracy

iter 2 iter 3 iter4 ...

S realistic
>< estimates

\\/ N/

better time for

— final
i actuals

Effort

|

Summary

= In a complex environment with frequent changes that cannot be anticipated,
estimation must be done in an incremental and adaptive way. It can no longer
be done in a sophisticated, big-upfront approach by highly skilled estimators at
the beginning of the project.

= Agile approaches to estimation look extremely simple, but they work (somehow
unexpectedly) quite well.

= Analogies to Lean Software Development (and Lean Manufacturing) explain
why these simple approaches work.

= If you want to apply different (traditional, more complex, more rigorous,...)
approaches in a complex environment, make sure that you understand the
principles of Lean Software Development to check whether the approach can
possibly work.

IDIVI Ol0Ddl OCIVICCS

Questions?

26 IBM Academv of Technoloav Best Practices in Proiect Estimation Conference © 2005 IBM Corporatiol

IBM Global Services

Backup Slides

IBM Academy of Technology Best Practices in Project Estimation Conference © 2005 IBM Corporation

|

Additional

Next to estimation

Estimating bugs

Iceberg list (Crystal)

Blitz planning (Crystal)

Planning Game (XP)

Sprint Planning Meeting (Scrum)
Burn-down Chart (Scrum)
Spatial Reasoning

Wideband Delphi

|

How (XP)

Estimating Bugs

First, determine if the bug is critical (= can’t wait until the next iteration).
— Only the customer can decide whether the bug is really critical.

— Make the tradeoff “bug vs. function” explicit, since a fixed bug might push a story
into the next release (see the “Iceberg list”).

If it's not critical, then log it on a card. Get development to look at it and
estimate the effort. You can mark the effort as unknown. If it's less than an ideal
day, mark it as small.
If the estimate is more than a day’s worth of effort, treat the defect as a story.
The customer can then say which iteration should address the defect, just as
with any other story. Usually it's worth lumping several bugs together to get a
week’s worth.
Just before the next iteration planning meeting, the customer should take the
small and unknown bugs and prioritize them. The customer should indicate how
much ideal time the developers should spend dealing with them.
Encourage everyone to deal with bugs in a rational way, to make sensible
tradeoffs between fixing defects and adding features.

From: Kent Beck and Martin Fowler: Planning Extreme Programmi

|

Additional

Iceberg List (Crystal, Scrum)

= The “above water” part lists all the items that
can be delivered in the current delivery cycle.
The “below water” part lists every item that will
be delivered in later cycles.

= When you add a new item to the above water
part, it pushes everything else down, and
something that was above water falls below
water.

= The iceberg list is useful in hostile
environments, where sponsors change the
requirements and priorities on a daily basis.

Sprint Backlog

= Product Backlog (Release Backlog):
—List of functionality, technology, issues
(placeholders that are later defined as work)

—Emergent, prioritized, estimated with more detail
on higher priority backlog

—Product Owner responsible for priority, anyone can
contribute

—Maintained and posted visibly
= Sprint Backlog (lteration Backlog):
—Product Backlog selected for Sprint by team, team

selects tasks to turn product backlog into working
product functionality.

—Cannot be added to or changed during Sprint from
the outside, only team member can add, delete or
change the Sprint Backlog.

Product Backlog

From: Alistair Cockburn: Crystal Cle
© 2005 IBM Corporatio

|

Blitz Planning (Crystal)

1.

2.
3.

il

~N o

© o

Gather the attendees (representatives
from each stakeholder category)
Brainstorm the tasks (5-15 minutes)
Lay out the tasks on a big table in
dependency order (top to bottom),
parallel tasks next to each other, remove
duplicates

Review the tasks, add tasks as needed
Estimate effort and tag the tasks with
names of specific people required.
|dentify over-loaded people.

Sort the tasks (parallel / sequential)
Mark the walking skeleton, the earliest
release and the earliest revenue
|dentify other releases

Optimize the plan to fit the project
priorities, re-prioritize, re-sort, delay
tasks

10. Capture the output and display publicly

Additional
John
Walking skeleton Collect rq'ts
2 wks 1 wk
John Sally
Define 1st

Make test DB

1 wk

Initial functions

2 wks

acceptance test

4 days

First function ready

for view
2 wks A

A

Initial deployment

4 days

From: Alistair Cockburn: Crystal Cle

© 2005 IBM Corporatio

|

Additional

Planning Game (XP)

= People place index cards on the table, one user story per card.

= The group pretends there are no dependencies between cards, and simply lines
them up in the preferred sequence of development

= The developers write on each card an estimate of how long it will take to
produce the function.

= The sponsor or expert user puts them into development priority sequence,
taking into account the development time and business value of each function.

= The cards are clustered into (fixed-length) iterations, and those iterations are
clustered into releases, usually not longer than a few months each.

From: Kent Beck and Martin Fowler: Planning Extreme Programmi

|

How (Scrum

Sprint Planning Meeting (Scrum)

= 4 hours (max) for team to select Product Backlog and set Sprint Goal with
Product Owner

— Attended by Product Owner, Scrum team, customers, management in order to
define what to build in the next Sprint

— Team selects as much Product Backlog as it believes it can develop during the next
Sprint.

— Product Owner and customer devise Sprint Goal (which is the business value that
the product increment must deliver regardless of functionality implemented).
= 4 hours (max) for team to define Sprint Backlog

— Attended by Product Owner, Scrum team, development management in order to
define how to build the product functionality into a product increment in the next
Sprint.

— Team defines Sprint Backlog, consisting of all tasks that need to be completed
during Sprint.

— Team members sign up for work and estimate their tasks.

— Tasks are 1-16 hours long (XP suggests 1-3 days); if longer, break them down into
more granularity.

From: Mike Beedle and Ken Schwaber: Agile Software Development with Scru

|

How (Scrum
Burn-down Chart (Scrum)

= Burn-down Chart shows the estimated
number of hours required to complete the Likely Backlog Trend
tasks of the Sprint.

= |t shows both the status and rate of
progress (“velocity”) in a way that is both
clear and easy to discuss.

= Posted visibly. I

B

= Similar to earned-value chart if you count
the delivered functionality (instead of
development effort) over time.

L L]

L B B S B p B E LU R B B S B B B S e S B B S R S B S e
1 20 4 & ¢ 7 B @ KON EENISEITEEFMNSHDWLHN DD NSNBENR

Thimes

From: Mike Beedle and Ken Schwaber: Agile Software Development with Scru

|

Spatial Reasoning

Create a game table with enough slots
for the stories of an iteration.

Create physical cards for the stories
where the size of the card matches the
story points.

Validate whether the size of the cards
feel right.

Decide how to organize the story cards
on the game board.

By sizing the pieces so that all math can
be done quickly using visual inspection,
the planning meeting remains focused on
the competing business issues.

available slots actual stories
Bug
1 pt.
Big user
story
Typical
user
story
3 pts.
2 pts.

From: Mike Cohn: User Stories Applic
© 2005 IBM Corporatio

|

Wideband Delphi

1.

2.

Kickoff Meeting: At least three people discuss the source documents and
project, as well as the units of estimation.
Estimation: Each person creates three estimates (using his/her preferred
method): most likely, optimistic, pessimistic case.
Meeting: Each estimator gives his/her estimates to the facilitator who displays
them with averages (owners of the estimates may not be revealed if it's
desired to reduce the influence of personality or seniority). Each estimator
discusses the insights, problems and assumptions.
Repeat steps 2 and 3 at least once to get iterative estimation refinement: let
the feedback drive adaptation and improvement
Calculate the final numbers using the averages from the final cycle.

Estimate = (Optimistic + Pessimistic + 4 * Most likely) / 6

Likely Deviation = (Pessimistic — Optimistic) / 6

Wideband Delphi sits on top of any other estimation method, improving it through
multiple participants, feedback, and iterative refinement

|

References

= Kent Beck and Martin Fowler: Planning Extreme Programming, Addison-Wesley, 2001.

= Mike Beedle and Ken Schwaber: Agile Software Development with Scrum, Prentice Hall,
2001.

= Alistair Cockburn: Crystal Clear, Addison-Wesley, 2005.

= Mike Cohn: User Stories Applied, Addison-Wesley, 2004.

= Mike Cohn: Agile Estimation and Planning, to be published, work in progress is available
online at http://www.mountaingoatsoftware.com/agileplanning/

= George D. Githens: Rolling Wave Project Planning,
http://www.catalystpm.com/NP02.PDF

= Craig Larman: Agile & Iterative Development, Addison-Wesley, 2004.

= Todd Little: Agility, Uncertainty, and Software Project Estimation
http://www.macs.ece.mcgill.ca/~radu/304428W03/AgilityUncertaintyAndEstimation.pdf

= Ogunnaike and Ray: Process Dynamics, Modeling, and Control, Oxford University Press,
1992.

= Mary and Tom Poppendieck: Lean Software Development, Addison-Wesley, 2003.

= Ken Schwaber: Agile Project Management with Scrum, Microsoft Press, 2004.

= Ken Schwaber: Scrum Methodology Revision 0.9, Advanced Development Methods Inc.,
2003.

