
Consistent Query Answers in Inconsistent Databases

Marcel0 Arenas Leopold0 Bertossi
Pontificia Universidad Cat6lica de Chile Pontificia Universidad Cat6lica de Chile

Escuela de Ingenieria Escuela de Ingenieria
Departamento de Ciencia de Computaci6n Departamento de Ciencia de Computaci6n

Casilla 306, Santiago 22, Chile Casilla 306, Santiago 22, Chile
marenas@ ing.puc.cl bertossi@ing.puc.cl

Jan Chomicki
Monmouth University

Department of Computer Science
West Long Branch, NJ 07764

chomicki @ monmouth.edu

Abstract

In this paper we consider the problem of the logical char-
acterization of the notion of consistent answer in a relational
database that may violate given integrity constraints. This
notion is captured in terms of the possible repaired versions
of the database. A rnethod for computing consistent an-
swers is given and its soundness and completeness (for some
classes of constraints and queries) proved. The method is
based on an iterative procedure whose termination for sev-
eral classes of constraints is proved as well.

1 Introduction

Integrity constraints capture an important normative aspect
of every database application. However, it is often the case
that their satisfaction cannot be guaranteed, allowing for the
existence of inconsistent database instances. In that case,
it is important to know which query answers are consistent
with the integrity comtraints and which are not. In this pa-
per, we provide a logical characterization of consistent query
answers in relational databases that may be inconsistent with
the given integrity constraints. Intuitively, an answer to a
query posed to a database that violates the integrity con-
straints will be consistent in a precise sense: It should be the
same as the answer obtained from any minimally repaired
version of the original database. We also provide a method
for computing such answers and prove its properties. On the
basis of a query Q, the. method computes, using an iterative
procedure, a new query Tw(Q) whose evaluation in an arbi-
trary, consistent or inconsistent, database returns the set of

Permission to make digital or hard copies of all or part of this work 1‘01
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the fill1 citation on the iirst page. To copy
otherwise, to republish, to post on servers or to redistribute to lists.
rcquircs prior specific permission and/or a fee.

PODS ‘99 Philadelphia PA
Copyright ACM 1999 I-581 I:!-062-7/99/05...$5.00

consistent answers to the original query Q. We envision the
application of our results in a number of areas:

Data warehousing. A data warehouse contains data com-
ing from many different sources. Some of it typically does
not satisfy the given integrity constraints. The usual ap-
proach is thus to clean the data by removing inconsistencies
before the data is stored in the warehouse [6]. Our results
make it possible to determine which data is already clean
and proceed to safely remove unclean data. Moreover, a dif-
ferent scenario becomes possible, in which the inconsis,ten-
ties are not removed but rather query answers are marked as
“consistent” or “inconsistent”. In this way, information Iloss
due to data cleaning may be prevented.

Database integration. Often many different databases
are integrated together to provide a single unified view for
the users. Database integration is difficult since it requires
the resolution of many different kinds of discrepancies of
the integrated databases. One possible discrepancy is due
to different sets of integrity constraints. Moreover, even if
every integrated database locally satisfies the same integrity
constraint, the constraint may be globally violated. For ex-
ample, different databases may assign different addresses to
the same student. Such conflicts may fail to be resolved al: all
and inconsistent data cannot be “cleaned” because of the au-

tonomy of different databases. Therefore, it is important to
be able to find out, given a set of local integrity constraints,
which query answers returned from the integrated database
are consistent with the constraints and which are not.

Active and reactive d&abases. A violation of integrity
constraints may be acceptable under the provision that it will
be repaired in the near future. For example, the stock level in
a warehouse may be allowed to fall below the required min-
imum if the necessary replenishments have been ordered.
During this temporary inconsistency, however, query answers
should give an indication whether they are consistent with
the constraints or not. This problem is particularly acute in

68

active databases that allow such consistency lapses. The re-
sult of evaluating a trigger condition that is consistent with
the integrity constraints should be treated differently from
the one that isn’t.

The following example presents the basic intuitions be-
hind the notion of consistent query answer.

Example 1. Consider a database subject to the following ZC:

v4W 1 Q(x))

The instance

violates this constraint. Now if the query asks for all x such
that Q(X), only a is returned as an answer consistent with the
integrity constraint.

The plan of this paper is as follows. In section 2 we in-
troduce the basic notions of our approach, including those of
repair and consistent query answer. In section 3 we show a
method how to compute the query To(Q) for a given first-
order query Q. In subsequent sections, the properties of this
method are analyzed: soundness in section 4, completeness
in section 5, and termination in section 6. In section 7 we
discuss related work. In section 8 we conclude and outline
some of the prospects for future work in this area. The proofs
are given in the appendix.

2 Basic Notions

In this paper we assume we have a fixed database schema
and a fixed infinite database domain D. We also have a first
order language based on this schema with names for the ele-
ments of D. We assume that elements of the domain with dif-
ferent names are different. The instances of the schema are
finite structures for interpreting the first order language. As
such they all share the given domain D, nevertheless, since
relations are finite, every instance has a finite active domain
which is a subset of D. As usual, we allow built-in predi-
cates that have infinite extensions, identical for all database
instances. There is also a set of integrity constraints IC, ex-
pressed in that language, which the database instances are
expected to satisfy. We will assume that ZC is consistent in
the sense that there is a database instance that makes it true.

Definition 1. (Consistency) A database instance r is consis-
tent if r satisfies IC in the standard model-theoretic sense,
that is, r k ZC; r is inconsistent otherwise.

This paper addresses the issue of obtaining meaningful
and useful query answers in any, consistent or inconsistent,
database. It is well known how to obtain query answers in
consistent databases. Therefore, the challenging part is how
to deal with the inconsistent ones.

2.1 Repairs

Given a database instance r, we denote by Z(r) the set of
formulas {P(c)(r b P(a)}, where the Ps are relation names
and E is ground tuple.

Definition 2. (Distance) The distance A(r,r’) between data-
base instances r and r’ is the symmetric difference:

A(r, r’) = (X(r) - C(r’)) U (Z(r’) -E(r)).

Definition 3. For the instances r, r’, r”, r’ Lr r” if A(r, r’) c
A(r,r”), i.e., if the distance between r and r’ is less than or
equal to the distance between r and r”.

Notice that built-in predicates do not contribute to the
As because they have fixed extensions, identical in every
database instance.

Definition 4. (Repair) Given database instances r and r’, we
say that r’ is a repair of r if r’ k IC and r’ is <,-minimal in
the class of database instances that satisfy the ICs.

Clearly, what constitutes a repair depends on the given
set of integrity constraints. In the following we assume that
this set is fixed.

Example 2. Let us consider a database schema with two
unary relations P and Q and domain D = {a, b,c}. Assume
that for an instance r, E(r) = {P(u),P(b),Q(u),Q(c)}, and
let IC = {VX(P(X) > Q(x))}. Clearly, r does not satisfy ZC
because r k P(b) A TQ(b).

In this case we have two possibles repairs for r. First,
we can falsify P(b), obtaining an instance r’ with C(r’) =

{f%),Q(a)>Q(c)). A s a second alternative, we can make
Q(b) true, obtaining an instance r” with C(r”) = {P(a), P(b),

Q(a),Q(b),Q(c)>.
The definition of a repair satisfies certain desirable and

expected properties. Firstly, a consistent database does not
need to be repaired, because if r satisfies IC, then, by the
minimality condition wrt the relation &, r is the only repair
of itself (since A(r,r) is empty). Secondly, any database r
can always be repaired because there is a database r’ that
satisfies 1C, and A(r, r’) is finite.

Example 3. (motivated by [191) Consider the IC saying that
C is the only supplier of items of class T4:

V(x,y,z)(Supply(x,y,z) A Class(z,T4) 3 x = C). (1)

The following database instance rl violates the IC:

SUPPlY Class

C Dl 11 11 T4

D D2 I2 12 T4

The only repairs of this database are

SUPPlY
C Q 11

Class

11 T4
12 T4

69

and

and

and

SWPlY
CD1

D D2 I2

Example 4. (motivated by [191) Consider the IC:

\J(~,Y)(S~PE;,~Y(X,Y,~l) 3 SuPPlY(GY:Iz)), (2)

saying that item Z2 is supplied whenever item 11 is supplied;
and the following inconsistent instance, r;?, of the database

SUPPlY
C DI 11
C D1 13

This instance has two repairs:

SUPPlY
C DI 11
C DI 12

c Dl 13

SUPPlY
C Dl 13

Example 5. Consider a student database. Student@, y,z)
means that x is the student number, y is the student’s name,
and z is the student’s address. The two following ICs state
that the first argument is a key of the relation

V(x, y, z, u, v) (Student(x, y, z) A Student(x, u, v) 3 y = u) ,

V(x, y, z, u, v) (Student(x, y, z) A Student(x, u, v) > z = v) .

The inconsistent database instance r3

Student Course

Sl Nl CT SI Cl G
Sl N2 J% Sl C2 G2

has two repairs:

Student Course

Sl NI &-- SI Cl Gl
Sl C2 G2

Student

Sl N2 0;

Course

Sl Cl GI

SI C2 G2

2.2 Consistent query answers

We assume all queries are in prefix disjunctive normal form.

Definition 5. A formula Q is a query if it has the following
syntactical form:

i=l j=l j=l

where 0 is a sequence of quantifiers and every vi contains
only built-in predicates. If 0 contains only universal quanti-
fiers, then we say that Q is a universal query. If 0 con.tains
existential (and possibly universal) quantifiers, we say that
Q is non-universal query.

Definition 6. (Query answer) A (ground) tuple i is an an-
swer to a query Q(-) x in a database instance r if r k Q(I~?. A
(ground) tuple F is an answer to a set of queries { Ql , . . . , Qnj
if r b Ql A . . . A Qn.

Definition 7. (Consistent answer) Given a set of integrity
constraints, we say that a (ground) tuple i is a consistem
answer to a query Q(Z) in a database instance r, and we.
write r kc Q(g (or r kc Q(Z)[t)), if for every repair ,r’ of
r, r’ != Q(tJ. If Q is a sentence, then true (false) is a consis-
tent answer to Q in r, and we write r +=c Q (r kc Q), if for
every repair r’ of r, r’ b Q (r’ F Q).

Example 6. (example 3 continued) The only consistent an-
swer to the query Class(z, T4), posed to the database instance
rl, is II because rl kc CZass(z, T4)[Zl].

Example 7. (example 4 continued) The only consistent an-
swer to the query Supply(C, D1, z), posed to the database in-
stance r2, is 13 because r:! /==c SuppZy(C, D1, z) [13].

Example 8. (example 5 continued) By considering all the: re-
pairs of the database instance r3, we obtain Cl and C2 as the
consistent answers to the query 3zCourse(Sl, y,z), posed to
r3. For the query 3(u, v)(Student(u, Nl , v) A Course(u,x,y)),
we obtain no (consistent) answers.

3 The General Approach

We present here a method to compute consistent answers to
queries. Given a query Q, the query T,(Q) is defined based
on the notion of residue developed in the context of sem,an-
tic query optimization (SQO) [5]. In the context of deductive
databases, SQO is used to optimize the process of answering
queries using the semantic knowledge about the domain that
is contained in the ICs. In this case, the basic assumption is
that the ICs are satisfied by the database. In our case, since
we allow inconsistent databases, we do not assume the sat-
isfaction of the KS while answering queries. A first attempt
to obtain consistent answers to a query Q(Z) may be to use
query modification, i.e., ask the query Q(2) A IC. However,

70

this does not work, as we obtain false as the answer if the
DB is inconsistent. Instead, we iteratively modify the query
Q using the residues. As a result, we obtain the query To(Q)
with the property that the set of all answers to To(Q) is the
same as as the set of consistent answers to Q. (As shown
later, the property holds only for restricted classes of queries
and constraints.)

3.1 Generating residues in relational DBs

We consider only universal constraints. We begin by trans-
forming every integrity constraint to the standard format (Ed-
pansion step).

Definition 8. An integrity constraint is in standardformat if
it has the form

v(~Pi(~i)Vil~Qi(Bi)VW),
i=l i=l

where V represents the universal closure of the formula, Zi,
yi are tuples of variables and w is a formula that mentions
only built-in predicates, in particular, equality.

Notice that in such an IC there are no constants in the
Pi, Qi; if they are needed they can be pushed into w.

Many usual ICs that appear in DBs can be transformed to
the standard format, e.g. functional dependencies, set inclu-
sion dependencies of the form ‘v’Z(P(Z) > Q(Z)), transitiv-
ity constraints of the formVx,y,z(P(n,y) ~P(y,z) > P(x,z)).
The usual ICs that appear in SQO in deductive databases
as rules [5] can be also accommodated in this format, in-
cluding rules with disjunction and logical negation in their
heads. An inclusion dependency of the form Vf(P(2) >
3y Q&y)) cannot be transformed to the standard format.

After the expansion of ZC, rules associated with the database
schema are generated. This could be seen as considering
an instance of the database as an extensional database ex-
panded with new rules, and so obtaining an associated de-
ductive database where semantical query optimization can
be used.

For each predicate, its negative and positive occurrences
in the ICs (in standard format) will be treated separately with
the purpose of generating corresponding residues and rules.
First, a motivating example.

Example 9. Consider the IC Vx (+(x) V Q(x)). If Q(x) is
false, then +(x) must be true. Then, when asking about
~Q(x), we make sure that +‘(x) .becomes true. That is,
we generate the query ~Q(x) A +(x) where +(x) is the
residue attached to the query.

For each IC in standard format

i=l i=l
(3)

and each positive occurrence of a predicate Pj(Tj) in it, the
following residue for +j(%j) is generated

j-l

Q(Vf?(%)V \j f?(G)VQTQi(Yi)VV); (4)
i=l i=j+ 1 i=l

where Q is a sequence of universal quantifiers over all the
variables in the formula not appearing in Xi.

IfR 1,. . . , R, are all the residues for -Pi, then the follow-
ing rule is generated:

-Pi(G) ++ lPj($){Rl(C),... ,R,(G)},

where tt, are new variables. If there are no residues for TPj,
then the rule 7Pj(W) H -IPC is generated.

For each negative occurrence of a predicate Qj(yi) in (3),
the following residue for Qj (yj) is generated

&(~fi(%)V’~-Qi(Y~)V T) TQi(jji)VW),
i=l i=l i=j+l

where 0 is a sequence of universal quantifiers over all the
variables in the formula not appearing in yj.

IfR’,,... , Ri are all the residues for Qj (yj), the following
rule is generated:

Qj(4 ++ Qj(n){R’l(E),... ,R:(fi)).

If there are no residues for Qj(yj), then the rule Qj(z2) H
Qj(E) is generated. Notice that there is exactly one new rule
for each positive predicate, and exactly one rule for each
negative predicate.

If there are more than one positive (negative) occurrences
of a predicate, say P, in an IC, then more then one residue
is computed for 1P. In some cases, e.g., for functional de-
pendencies, the subsequent residues will be redundant. In
other cases cases, e.g., for transitivity constraints, multiple
residues are not redundant.

Example 10. If we have the following ICs in standard for-
mat

IC = {WW v+‘(x) v ~Q(x)),V~;P(x),V~Q(x))),

the following rules are generated:

P(x) - P(x) {R(x) v lQ(4 >

Q(x) - Q(4{W v +‘(4,P(x))

R(x) - R(x)

+(4 - -P(x) {-Q(x) >

-Q(x) - -Q(x)
lR(x) w FR { -P(x) V -Q(x)}.

Notice that no rules are generated for built-in predicates,
but such predicates may appear in the residues. They have

71

fixed extensions and ,thus cannot contribute to the violation
of an IC or be modified to make an IC true. For example, if
we have the IC Vx,y,z(lP(x,y) V ~P(x,z) Vy = z), and the
database satisfies P(1,2),P(1,3), the IC cannot be made
true by making 2 = 3.

Once the rules have been generated, it is possible to sim-
plify the associated residues. In every new rule of the form
P(C) b--P P(fi){Rl(ii),. . . , R,(6)) the auxiliary quantifica-
tions introduced in the expansion step are eliminated (both
the quantifier and the associated variable in the formula)
from the residues by the process inverse to the one applied
in the expansion. The same is done with rules of the form
TP +--k ,P{. . .}.

3.2 Computing To(Q)

In order to determine consistent answers to queries in arbi-
trary databases, we will make use of a family of operators
consisting of T,, n 1 0, and T,.

Definition 9. The application of an operator T, to a query is
defined inductively by :means of the following rules

1. T,(O) := 0, T,(-10) := 10, for every IZ 2 0 (0 is the
empty clause).

2. To(q) := q.

3. For each predicate P(ii), if there is a rule P(ii) e
P(L){Ri(c), . . . ,t;r,(c)}, then

T,+l (P(il)) := P(G) A A Tn(Ri(c)).
i=l

IPf5y) does not have residues, then T,+t(P(fi)) :=
u

4. For each negated predicate -Q(c), if there is a rule
--JQ(~) c) lQ(+){Ri(P),. . ,Ri(G)}, then

T,+l(~Q(i;)) := ~Q(ts) A i\ T,(R:(~))
i=l

If -Q(c) does not have any residues, thenT,+t (-Q(E)) :=

-Q<4.
5. If cp is a formula in prenex disjunctive normal form,

that is,

i=l j=l j=l

where Q is a sequence of quantifiers and vi is a formula
that includes only built-in predicates, then for every
n 2 0:

TV := CS $(y(Tn(f’i,j(%,j)) A
is1 j:=l

I
h Tn(lQi,j(Qi,j)) AWi)

j=l

Definition 10. The application of operator Tw on a query is.
defined as T,(g) = U {T,(q)}.

n<w

Example 11. (example 10 continued) For the query TIP(X)
we have Tl (-JR(X)) = yR(x) A (+‘(x) V-Q(x)), T2(%(x))
= FR A ((-P(x) A -Q(X)) V-Q(x)) and finally Tj(lR(x))
= T2(lR(x)). W e h ave reached a fixed point and then

Tad+(x)) = {+(x),+(4 A (-(x) v-Q(x)>,
+(x1 A ((+(x) A ~Q(x)) vlQ(x,)}.

We show first that the operator T, conservatively extends
standard query evaluation on consistent databases.

Proposition 1. Given a database instance r and a set of in-
tegrity constraints IC, such that r t= IC, then for every query
Q(Z) and every natural number n: r != VX(Q(X) E Tn(Q(f))).

Corollary 1. Given a database instance r and a set of in-
tegrity constraints IC, such that r b ZC, then for every qulery
Q(T) and every tuple f: r l= Q(o if and only if r b T,(Q(i)).

4 Soundness

Now we will show the relationship between consistent an-
swers to a query Q in a database instance r (definition 7) and
answers to the query Tw(Q) (definition 6). We show that
Tw(Q) returns only consistent answers to Q.

Theorem 1. (Soundness) Let I be a database instance, ZC a
set of integrity constraints and Q(X) a query (see definition 5)
such that r b To(Q(Z))[q. If Q is universal or non-universal
and domain independent[20], then i is a consistent answer to
Q in r (in the sense of definition 7), that is, r kc Q(q .

The second condition in the theorem excludes non-univlzrsal,
but domain dependent queries like Elx~P(x).

Example 12. (example 6 continued) The IC (1) transformed
into the standard format becomes

v’(x, Y, z,w) (+PP~Y (X> Y, 4 v

Xlass(z, w) V w # T? V x = C).

The following rule is generated:

Class(z, w) H CZass(z, w)

Given the database instance rt that violates the IC as before,
if we pose the query Class(z,Td), asking for the items of
class T4, directly to t-1, we obtain Ii and Z2. Nevertheless, if
we pose the query T, (CZass(z, T4)), that is

CZass(z, T4) AV(x,y)(+uppZy(x,y,z) Vx = C))

72

we obtain only II, eliminating 12. Ii is the only consistent
answer.

Example 13. (example 8 continued) In the standard format,
the ICs take the form

V(x, y, z, u, v) (-Q4dent(x,y, z) v

1Student(x, u, v) v y = u))

V(~,y,z,~,v)(~Student(x,y,z)V

Y%dent(x, u, v) V z = v).

The following rule is generated

Student(x, y,z) I--+ Student(x, y, z)

{V(~,~)(~Student(x,u,v) Vy = u),

V(u,v)(~Student(x,u,v) Vz = v)}.

Given the inconsistent database instance Q, if we pose the
query ZlzCourse(S1, y, z), asking for the names of the courses
of the student with number Sr, we obtain Cl and C2. If we
pose the query

T&JzCourse(Sl ,y,z)) = {flzCourse(Sl ,y,z)}

we obviously obtain the same answers which, in this case,
are the consistent answers. Intuitively, in this case the Tw
operator helps us to establish that even when the name of the
student with number St is undetermined, it is still possible
to obtain the list of courses in which he/she is registered. On
the other hand, if we pose the query

about the courses and grades for a student with name Nr , to
r-3, we obtain (Cl, Gl) and (Cz, G2). Nevertheless, if we ask

To(3(u,v)(Student(u, Nl ,v) A Course(u,n,y)))

we obtain, in conjunction with the original query, the for-
mula:

V(y’,z’)(-Student(u,y’,z’) Vy’ = N1) A

V(y’,z’)(Gtudent(u,y’,z’) Vz’ = v) A Course(u,x,y)),

from this we obtain the empty set of tuples. This answer
is intuitively consistent, because the number of the student
with name Nr is uncertain, and in consequence it is not pos-
sible to find out in which courses he/she is registered. The
set of answers obtained with the Tw operator coincides with
the set of consistent answers which is empty.

5 Completeness

5.1 Binary ICs

Definition 11. A binary integrity constraint (BIC) is a sen-
tence of the form

\J(h (Xl) v Z2@2) v w(4),

where 11 and 12 are literals, and w is a formula that only
contains built-in predicates.

Examples of BICs include: functional dependencies, sym-
metry constraints, set inclusions dependencies of the form
‘v’~(P(~) > Q(2)).

Definition 12. Given a set of sentences C in the language
of the database schema DB, and a sentence rp, we denote by
Z I=DB cp the fact that, for every instance r of the database, if
r != C, then r k cp.

Theorem 2. (Completeness for BZCs) Given a set IC of bi-
nary integrity constraints, if for every literal l’(G), ICP~DB
l’(n), then the operator T, is complete, that is, for every
ground literal Z(q, if r kc l(Q then r b T,(l(q).

The theorem says that every consistent answer to a query
of the form L(1) is captured by the Tw operator. Actually,
proposition 2 in the appendix and the completeness theorem
can be easily extended to the case of queries that are con-
junctions of literals. Notice that the finiteness Tw(Z(X)) is
not a part of the hypothesis in this theorem. The hypoth-
esis of the theorem requires that the ICs are not enough to
answer a literal query by themselves; they do not contain
definite knowledge about the literals.

Example 14. We can see in the example 12 where BICs and
queries which are conjunctions of literals appear, that the
operator Tw gave us ail the consistent answers, as implied
by the theorem.

Corollary 2. If ZC is a set of functional dependencies (FDs)

IC= {v’(-~l(~l,yl)~~~l(~l,zl)vYl =z1), (5)

. ..)

W+n(%,Yn) v+n(%,zn) VYn = zn)),

then the operator To is complete for consistent answers to
queries that are conjunctions of literals.

Example 15. In example 13 we had FDs that are also BICs.
Thus the operator Tw found all the consistent answers, even
for some queries that are not conjunctions of literals, show-
ing that this is not a necessary condition.

Example 16. Here we will show that in general complete-
ness is not obtained for queries that are not conjunctions of
literals. Consider the IC: Vx,y,z(P(x,y) AP(x,z) > y = z)
and the inconsistent instance r with Z(r) = {P(a, b), P(a, c)}.
This database has two repairs: r’ with C(r/) = {P(a,b)}; and
r” with C(r”) = {P(a,c)}. We have that r kc 3xP(u,x), be-
cause the query is true in the two repairs.

Now, it is easy to see that To(3uP(u, u)) is logically equiv-
alent to 3u(P(u,u) AVz(~P(a,z) Vz = u)). So, we have r k
T,(33cP(u,n)). Th us, the consistent answer true is not cap-
tured by the operator Tw.

73

5.2 Other Constraints

The following the0re.m applies to arbitrary ICs and general-
izes Theorem 2.

6.1 Syntactical finiteness

The notion of syntactical finiteness is important because then
for some n and all m > n, Tm(Q(Z)) will be exactly the same.
In consequence, T,(Q) will be a finite set of formulas. In
addition, a point of finiteness n can be detected (if it exists)
by syntactically comparing every two consecutive steps in
the iteration. No simplification rules need to be considered,
because the iterative procedure is fully deterministic.

Here we introduce a necessary and sufficient condition
for syntactical finiteness.

Definition 14. A set of integrity constraints IC is a&& if
there exists a function f from predicate names plus negations
of predicate names in the database to the natural numbers,
that is, f : {PI,. . ,pn,lpl,. . ,lp,} -+ N, such thal: for
every integrity constraint V(VfZ1 Zi(Zi) VW(T)) E ZC as in (3),
and every i and j (1 2 i, j < k), if i # j, then f(-li) > f(li).
(Here Tli is the literal complementary to li.)

Theorem 3. (Completeness) Let IC be a set of integrity con-
straints, l(1) a literal, and T,(Z(X)) of the form

l(F) A ~V(.fi,~i)(Ci(i,Ti) Vvi(.F,ri)).
i=l

If for every n > 0, the,re is S E { 1, . . . , m} such that

1. for every j E S and every tuple a: IC ~DB Cj (ii), and

2. {V(~i,yi)(Ci(I,~i)V~i(X,~i))li E S} implies

{V(-fii,yi)(Ci(-f,Xi) VWi(.f,jji))ll 5 i _< m}

then r kc l(F) implies r i= T,(l(F)).
This theorem can be extended to conjunctions of literals.

Notice that the theoretn requires a condition for every n E N.
Its application is obv:iously simplified if we know that the
iteration terminates. This is an issue to be analyzed in the
next section.

6 Termination

Termination means that the operator To returns a finite set
of formulas. It is clearly important because then the set of
consistent answers can be computed by evaluating a single,
finite query. We distinguish between three different notions
of termination.

Definition 13. Given a set of ICs and a query Q(Z), we say
that Tw (Q(Z)) is

1. syntucticallyjinite if there is an an n such that T, (Q(b))
and Tn+l (Q(Z)) are syntactically the same.

2. semantically$nite if there is an n such that for all m 2
n, V.?(Tn(Q(Z) 3 Tm(Q(Z)) is valid.

3. semanticallyfinite in an instance r, if there is an n such
that for all m 2 It: r b V.? (T,(Q(Z) E T,(Q($).

The number n in ca,ses 2 and 3 is called a point offinite-
ness. It is clear that 1 implies 2 and 2 implies 3. In the full
version we will show tlhat all these implications are proper.
In all these cases, evaluating Tw(Q(Z) gives the same result
as evaluating T, (Q(Z) f or some n (in the instance r in case
3). IfTw(Q(-) x 1s semantically finite, sound and complete,
then the set of consistent answers to Q is jrst-order dejin-
able.

Example 17. The set of ICs

IC = {Vx(+(x) v -Q(x) v S(n)),

%Y)(-e(x) v+(y) v %Y))l.

is acyclic, because the function f defined by
f(P) =2 f(Q) =2 f(+) =0 f(TQ) =0
f(S) = 1 f(T) =o f(Ts) = 1 f(lT) =2, sat-

isfies the condition of definition 14.

Example 18. The set of ICs

ZC = {Vx(+(x) v -Q(x) v S(x)),

%Y)(Q(x) VTS(Y) V %,Y))).

is not acyclic, because for any function f that we may at-
tempt to use to satisfy the condition in definition 14, from
the first integrity constraint we obtain f (Q) > f(S), and from
the second, we would obtain f(S) > f(Q); a contradiction.

Theorem 4. A set of integrity constraints ZC is acyclic iff
for every literal name I in the database schema, T,(Z(Z)Il is
syntactically finite.

The theorem can be extended to any class of pueries sat-
isfying Definition 5.

Example 19. The set of integrity constraints in example 18
is not acyclic. In that case To(Q(x)) is infinite.

Example 20. The ICs in example 17 are acyclic. There we

74

have

Wf’(u)) =

{P(U)>

P(u) A (~Q(u) V S(u)),

P(u) A (lQ(u) v S(u) A WlQ(v) V T(v>u)))l

To(Q(u)) =
{Q(u),

Q(u) A (d’(u) V S(u)) A Vv(-S(v) V T(u, v));

Q(u) A (+(u) V S(u) A b(lQ(w) V T(w ~1)) A

W+(v) A (+‘(v) v lQ(v)) V T(u> ~1) 1

T&S(u)) = {S(u),S(u) A V'(lQ(v) V T("> u))}

Tco(T(u,v)) = {T(v))

L(+(u)) = t+(u))

TdlQ(u)) = bQ(4)

T,(G(u)) = {+(u),+(u) A (+(u) v-Q(u))}

Tw(+-(u, v)) =
{~T(u> v),
lT(u, v) A (lQ(u) V +(v)),
lT(u,v) A (-Q(u) V+(v) A (+(v) ‘.‘lQ(v))))

Corollary 3. For functional dependencies and a query Q(z),
T,(Q(z)) is always syntactically finite.

6.2 Semantical finiteness

Definition 15. A constraint C in clausal form is uniform if
for every literal Z(2) in it, the set of variables in Z(X) is the
same as the set of variables in C - Z(2). A set of constraints
is uniform if all the constraints in it are uniform.

Examples of uniform constraints include set inclusion
dependencies of the form VT(P(X) > Q(2)), e.g., Example
4.

Theorem 5. If a set of integrity constraints IC is uniform,
then for every literal name 1 in the database schema, T,(Z(z))
is semantically finite. Furthermore, a point of finiteness n
can be bounded from above by a function of the number of
variables in the query, and the number of predicates (and
their arities) in the query and ZC.

Theorem 6. Let I be a literal name. If for some n,

W&(f)) 3 G+l(Z(f)))

is valid, then for all m 2 n,

Vi(T,(Z(f)) - T,(Z(x)))

is valid.
According to Theorem 6, we can detect a point of finite-

ness by comparing every two consecutive steps wrt logical
implication. Although this is undecidable in general, we
might try to apply semidecision procedures, for example,
automated theorem proving. We have successfully made use
of OTTER [171 in some cases that involve sets of constraints
that are neither acyclic nor uniform. Examples include mul-
tivalued dependencies, and functional dependencies together
with set inclusion dependencies. For multivalued dependen-
cies, Theorem 6 together with Theorem 3 gives complete-
ness of T,(Z(,i!)) where Z(X) is a negative literal. The cri-
terion from Theorem 6 is also applicable to uniform con-
straints by providing potentially faster termination detection
than the proof of Theorem 5.

6.3 Instance based semantical finiteness

Theorem 7. If Q(2) is a domain independent query, then
for every database instance r there is an n, such that for all
m L n, r b VT(Tn(Q(Z)) - L(Q(X))).

Notice that this theorem does not include the case of neg-
ative literals, as in the case of theorem 5.

7 Related work

Bry [4] was, to our knowledge, the first author to consider
the notion of consistent query answer in inconsistent data-
bases. He defined consistent query answers based on prov-
ability in minimal logic, without giving, however, a proof
procedure or any other computational mechanism for obtain-
ing such answers. He didn’t address the issues of of seman-
tics, soundness or completeness.

It has been widely recognized that in database integra-
tion the integrated data may be inconsistent with the integrity
constraints. A typical (theoretical) solution is to augment the
data model to represent disjunctive information. The follow-
ing example explains the need for a solution of this kind.

Example 21. Consider the functional dependency

V’(X,Y,Z)@‘(X,Y) APbiz) 3 Y = z.

If the integrated database contains both P(a, b) and P(a, c),
then the functional dependency is violated. Each of P(a, b)
and P(a,c) may be coming from a different database that
satisfies the dependency. Thus, both facts are replaced by
their disjunction P(a, b) V P(a, c) in the integrated database.
Now the functional dependency is no longer violated.

75

To solve this kind of problems [l] introduced the notion
of flexible relation, a non-1NF relation that contains tuples
with sets of non-key values (with such a set standing for one
of its elements). This approach is limited to primary key
functional dependencies and was subsequently generalized
to other key functional1 dependencies [9]. In the same con-
text, [3, 121 proposed to use disjunctive Datalog and [16]
tables with OR-objectis. [l] introduced flexible relational al-
gebra to query flexible relations, and [9] - flexible relational
calculus (whose subset can be translated to flexible relational
algebra). The remain:ing papers did not discuss query lan-
guage issues, relying on the existing approaches to query
disjunctive Datalog or tables with OR-objects. There are
several important differences between the above approaches
and ours. First, they rely on the construction of a single (dis-
junctive) instance and the deletion of conflicting tuples. In
our approach, the underlying databases are incorporated into
the integrated one in toto, without any changes. There is no
need for introducing disjunctive information. It would be
interesting to compare: the scope and the computational re-
quirements of both approaches. For instance, one should
note that the single-instance approach is not incremental:
Any changes in the underlying databases require the recom-
putation of the entire instance. Second, our approach seems
to be unique, in the context of database integration, in con-
sidering tuple insertions as possible repairs for integrity vi-
olations. Therefore, in some cases consistent query answers
may be different from query answers obtained from the cor-
responding single instance.

Example 22. Consider the integrity constraint p > q and a
fact p. The instance consisting of p alone does not satisfy
the integrity constraint. The common solution for remov-
ing this violation is to delete p. However, in our approach
inserting q is also a possible repair. This has consequences
for the inferences about up and Tq. Our approach returns
false in both cases, as ,I) (resp. q) is true in a possible repair.
Other approaches return true (under CWA) or undefined (un-
der OWA).

Our work has connections with research done on belief
revision [lo]. In our case, we have an implicit notion of re-
vision that is determined by the set of repairs of the database,
and corresponds to revising the database (or a suitable cat-
egorical theory describing it) by the set of integrity con-
straints. Thus, querying the inconsistent database expect-
ing only correct answers corresponds to querying the revised
theory without restrictions.

It is easy to see that our notion of repair of a relational
database is a particular case of the local semantics intro-
duced in [S], restricted to revision performed starting from
a single model (the database). From this we obtain that our
revision operator satisfies the postulates (Rl) - (R5),(R7),
(R8) in [13]. For each given database r, the relation Lr in-
troduced in definition 3 provides the partial order between
models that determines the (models of the) revised database
as described in [131. [8] concentrates on the computation

of the models of the revised theory, i.e. the repairs in our
case, whereas we do not compute the repairs, but keep query-
ing the original, non-revised database and pose a modified
query. Therefore, we can view our methodology as a way
of representing and querying simultaneously all the repairs
of the database by means of a new query. Nevertheless, our
motivation and starting point is quite different from belief
revision. We attempt to take direct advantage of the semlan-
tic information contained in the integrity constraints in order
to answer queries, rather than revising the database. Revis-
ing the database means repairing all the inconsistencies in it,
instead we are interested in the information related to par-
ticular queries. For instance, a query referring only to the
consistent portion of the database can be answered withLout
repairing the database.

Reasoning in the presence of inconsistency has been an
important research problem in the area of knowledge repre-
sentation. The goal is to design logical formalisms that limit
what can be inferred from an inconsistent set of formulas.
One does not want to infer all formulas (as required by the
classical two-valued logic). Also, one prefers not to infer a
formula together with its negation. The formalisms satisfy-
ing the above properties, e.g., [15], are usually propositio:nal.
Moreover, they do not distinguish between integrity con-
straints and database facts. Thus, if the data in the database
violates an integrity constraint, the constraint itself can no
longer be inferred (which is not acceptable in the database
context).

Example 23. Assume the integrity constraint is ~(p A q)
and the database contains the facts p and q. In the approach
of [151, p V q can be inferred (minimal change is captured
correctly) but p, q and ~(p A q) can no longer be inferred
(they are all involved in an inconsistency).
Because of the above-mentioned limitations, such methods
are not directly applicable to the problem of computing con-
sistent query answers.

Deontic logic [18, 141, a modal logic with operators cap-
turing permission and obligation, has been used for the spec-
ification of integrity constraints. [141 used the obligation lop-
erator 0 to distinguish integrity constraints that have to hold
always from database facts that just happen to hold. [181
used deontic operators to describe policies whose violations
can then be caught and handled. The issues of possible re-
pairs of constraint violations, their minimality and consis’tent
query answers are not addressed.

Gertz [1 l] described techniques and algorithms for com-
puting repairs of constraint violations. The issue of query
answering in the presence of an inconsistency is not addressed
in his work.

8 Conclusions and Further Work

This paper represents a first step in the development of a
new research area dealing with the theory and applications

76

of consistent query answers in arbitrary, consistent or incon-
sistent, databases.

The theoretical results presented here are preliminary. We
have proved a general soundness result but the results about
completeness and termination are still partial. Also, one
needs to look beyond purely universal constraints to include
general inclusion dependencies. In a forthcoming paper we
will also describe our methodology for using automated the-
orem proving, in particular, OTTER, for proving termina-
tion.

It appears that in order to obtain completeness for dis-
junctive and existentially quantified queries one needs to move
beyond the To operator on queries. Also, the upper bounds
on the size of Tw and the lower bounds on the complexity of
computing consistent answers for different classes of queries
and constraints need to be studied. In [2] it is shown that in
the propositional case, SAT is reducible in polynomial time
to the problem of deciding if an arbitrary formula evaluated
in the propositional database does not give true as a correct
answer, that is it becomes false in some repair. From this it
follows that this problem is NP-complete.

There is an interesting connection to modal logic. Con-
sider the definition 7. We could write r b q Q(q, meaning
that Q(?) is true in all repairs of r, the database instances
that are “accessible” from r. This is even more evident from
example 16, where, in essence, it is shown that Cl&Q(Z) is
not logically equivalent to Z~XOQ(Z), which is what usually
happens in modal logic.

Acknowledgments

This research has been partially supported by FONDECYT
Grants (1971304 & 1980945) and NSF Grant (IRI-9632870).
Part of this research was done when the second author was
on sabbatical at the Technical University of Berlin (CIS Group)
with the financial support from DAAD and DIPUC.

References

[l] S. Agarwal, A.M. Keller, G. Wiederhold, and
K. Saraswat. Flexible Relation: An Approach for
Integrating Data from Multiple, Possibly Inconsistent
Databases. In IEEE International Conference on Data
Engineering, 1995.

[2] M. Arenas, L. Bertossi, and M. Kifer. APC and Query-
ing Inconsistent Databases. In preparation.

[3] C. Baral, S. Kraus, J. Minker, and VS. Subrahma-
nian. Combining Knowledge Bases Consisting of First-
Order Theories. Computational Intelligence, 8:45-71,’
1992.

[4] F. Bry. Query Answering in Information Systems with
Integrity Constraints. In IFIP WG 11.5 Working Con-
ference on Integrity and Control in Information Sys-
tems. Chapman &Hall, 1997.

[5] U.S. Chakravarthy, J. Grant, and J. Minker. Logic-
Based Approach to Semantic Query Optimization.
ACM Transactions on Database Systems, 15(2):162-
207,199O.

[6] S. Chaudhuri and U. Dayal. An Overview of
Data Warehousing and OLAP Technology. SIGMOD
Record, 26, March 1997.

[7] J. Chomicki and G. Saake, editors. Logics for
Databases and Information Systems. Kluwer Aca-
demic Publishers, Boston, 1998.

[8] T. Chou and M. Winslett. A Model-Based Belief Re-
vision System. J. Automated Reasoning, 12: 157-208,
1994.

[9] Phan Minh Dung. Integrating Data from Possibly In-
consistent Databases. In International Conference on
Cooperative Information Systems, Brussels, Belgium,
1996.

[lo] P. Gaerdenfors and H. Rott. Belief Revision. In D. M.
Gabbay, J. Hogger, C, and J. A. Robinson, editors,
Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 4, pages 35-132. Oxford Uni-
versity Press, 1995.

[1 l] M. Gertz. Diagnosis and Repair of Constraint via-
lations in Database Systems. PhD thesis, Universitlt
Hannover, 1996.

[12] P. Godfrey, J. Grant, J. Gryz, and J. Minker. Integrity
Constraints: Semantics and Applications. In Chomicki
and Saake [7], chapter 9.

[13] H. Katsuno and A. Mendelzon. Propositional Knowl-
edge Base Revision and Minimal Change. Artificial
Intelligence, 52:263-294,199l.

[14] K.L. Kwast. A Deontic Approach to Database In-
tegrity. Annals of Mathematics and ArtiJicial Intelli-
gence, 9:205-238,1993.

[151 J. Lin. A Semantics for Reasoning Consistently in the
Presence of Inconsistency. Art$cial Intelligence, 86(l-
2):75-95,1996.

[16] J. Lin and A. 0. Mendelzon. Merging Databases un-
der Constraints. International Journal of C&operative
Information Systems, 7(1):55-76,1996.

[17] ‘W.W. McCune. OTTER 3.0 Reference Manual and
Guide. Argonne National Laboratory, Technical Re-
port ANL-9416, 1994.

[181 J.-J. Meyer, R. Wieringa, and F. Dignum. The Role
of Deontic Logic in the Specification of Information
Systems. In Chomicki and Saake [7], chapter 4.

77

[19] Jean-Marie Nicolas. Logic for Improving Integrity
Checking in Relational Data Bases. Actu Informutica,
18:227-253,1982.

[20] J. Ullman. Principles of Database and Knowledge-
Base Systems, Vol. I. Computer Science Press, 1988.

Appendix: Proofs of Results

Some technical lemmas are stated without proof. Full proofs
can be found in the file proof spods99. ps in
http://dcc.ing.puc.cl/Nbertossi/.

Lemma 1. If r k T,,(Z(h)), where Z(E) is a ground literal,
then for every repair r’ of r, it holds r’ b Z(c).

Lemma 2. If r b Tcj)($, Zi(&)), where Zi(di) is a ground
literal, then for every repair f of r, it holds r’ k A;=, Zi(Ei).

Lemma 3. If r b T,(Vy=‘=, Ci(Hi)), with Ci(ni) a conjunction
of literals, then for every repair f of r, f k Vzl Ci(Ei).

Lemma 4. Let Q(X) a universal query. If r C= To@(?)), for
a ground tuple i, then for every repair f of r, f I= Q(?).

Lemma 5. Let Q(i!) a domain independent query. If r k
To(Q(o), for a ground tuple i, then for every repair f of r,

f b Q(t3.

Proof of Theorem I.: Lemmas 4 and 5.

Proposition 2. Given a set ZC of integrity constraints, a
ground clause Vzr Zi (5)) if ZC Y~B Vzt Zi(t;:) and, for every
repair r’ of r, f I= VE1 Zi(t;:), then r k V$Zi(t;:).

Proof of Propositioln 2: Assume that r k -Vzl Zi(&). By
hypothesis ZC Y~DB \,/zr Zi($), thus there exists an instance
of the database r’ su.ch that f l= ZCU (7 VEl Z;(fi)}. Let us
consider the set of d,atabase instances

R = {r*jr* b ZC and A(r,r*) 5 A(r,r’)}.

We know that A(r, r”) is finite, therefore there exists ro E R
such that A(r, rg) is minimal. Then, rg is a repair of r.

For every 1 < i 5:’ m, if Zi(t;:) is p(F) or -p(o, then p(q $
A(r,f). Using this fact we conclude that p(F) $ A(r,rO),
Therefore, r b VEr Zi(t;:) if and only if rg l= VLt Zi(t;:). But
we assumed that r 1~ ~Vzr Zi(&), then rg I= 7VzI Zi(t;:); a
contradiction.

Proof of Theorem 2: From theorem 3.

Proof of Corollary 2: In this case it holds:

1. For every tuple 5, ZC F~DB Pi(E), because the empty
database instance (which has only empty base rela-
tions) satisfies ZC, but not P(a).

78

2. For every tuple a, ZC~L~DB -#i(G), since the database
instance r& where the relation Pi contains only the tu-
ple d and the other relations are empty, satisfies ZC, but
not TPi(E).

Proof of Theorem 3: Suppose that r t=, Z(g. Let r’ a repa:r
of r, we have that f b Z(Z). By proposition 1 we have that
r’ k m(Z(F)), that is

f b Z(f) A i;\V(q Zi,j(i,fi,j) VWi(T,xi)), (a
i=l j=l

We want to prove that for every i and for every sequence
of ground tuples ai, ai,r, . . . , ai,mi :

r k 3 Zi,j(i,sii,j) VWi(t,ni),
j=l

(3

To do this, first we are going to prove that for every i E S
and for every sequence of ground tuples ai, ai,t , . . . , ai,,,:

r k 3 Zi,j(i,Bi,j) VlJli(i,di),
j=l

This is immediately obtained when r k vi(F,ci). As-
sume that r k lWi(i,di). We know that vi only mentions
built-in predicates, thus for every repair f of r we have that
r’ b TWi (t, di) . Therefore, by (6) we conclude that for every
repair r’ of r:

nti

r’ k V Zi,j(i,di,j) VJli(i,hi),
j=l

By proposition 2 we conclude (8). Thus we have that

r~Z(1)A/\V(i;Zi,i(T,x,,i)VWi(i,~i)),
iES j=l

but by the second condition in the hypothesis of the theorem
we conclude that:

r k Z(o A i;,,(;j; Zi,j(f,&,j) VWi(i,fi)).
i=l j=l

Proof of Theorem 4: (&) Suppose that ZC is acyclic:, then
there exists f as in the definition 14. We are going to prove
by induction on k that for every literal name I, if f(Z:) = k,
then G+I Q(Z)) = Tk+dW)
(I) If k = 0. We know that that for every literal na;me I’,
f(Z’) > 0. Therefore, every integrity constraint containing -11
is of the form V(-1(X!) V v(y)), where II, only mentions built-
in predicates. This is because if there were any other literal
I’ in the integrity constraint, we would have f(Z’) < f(Z) = 0.
Then fi (Z(z)) = Tz(Z(z)).

(II) Suppose that the property is true for every m < k. We
know that Tk+z (Z (X)) is of the form:

I(n) A i &i(v Tk+l(h,j(%,j)) VVi(%)),
i=l j=l

where &i is a sequence of quantifiers over all the variables
Si,r , . . . , zi,.,nli, Xi not appearing in 2, and Tk+i (Z(2)) is of the
form:

l(z) A i f2i(7 Tk(h,j(fi,j)) vVi(fi)).

i=l j=l

By definition of f, we know that for every literal name Zi,j
in the previous formulas, f(Zi,j) < k. Then by induction
hypothesis Tk(Z(-fi,j)) = z+l(Zi,j(Xi,j)) (since if Tm(Z’(R)) =
Tm+l(Z’(R)), then for every n 2 m, T,(Z’(X)) = T,+l(Z’(f))).
(+) Suppose that for every literal name 1, T,(Z(z)) is fi-
nite. The for every literal name 1 there exists a first natu-
ral number k such that Tk(Z(P)) = Tk+t(Z(E)). Let us de-
fine a function f, from the literal names into the natural
number, by f(Z) = k (k as before). We can show that this
is a well defined function that behaves as in definition 14:
since if V(VEt Zi(?i) VW(?)) E ZC, then for every 1 5 s 5 m,
Tf(+) (7Zs(&)) is of the form

S-l

c Tf(-ls)-l(zi(~ii))VW(~))Ae(~~), (9)
i=s+l

where Q is a sequence of quantifiers over all the variables
21, &, 7, not appearing in zss, and Tf(+)+t (7Zs(2$)) is
of the form

S-l

i=l

Q Tf(+)(zi(%)) VV(Y)) A@(-%). (10)
i=s+l

By definition off, T’(+) (4%)) = T~(~z~)+I(~~(%)). Then,
by the form of (9) and (lo), we conclude that for every i # s,
Tf(+)-l (Zi(zi)) = T,~(Q (Zi(fi)), and then, again by defini-
tion Off, f(Zi) < f(lZ,).

Proof of Corollary 3: The following stratification function
from literals to N can be defined: f(TPi) = 0 and f(Pj) = 1,
where Pi, Pj are relation names.

Lemma 6. If T, (Z(2)) is of the form:

z(z) A ~v(-fi,Y,)(G(f,-G) VWi(%jji)),
i=l

then T,+t (Z(2)) is of the form:

I(~V(~i.yi)(Tl(Ci(l,xi)) Vvi(Z,yi)),
i=l

Lemma7. If for a ground tupleH, T,(Z(c)) kV(V$=t Zi(n,zj)),

then T,+i(Z(d)) b V(V&t Tt(Z>(a,Zj))).

Proof of Theorem 6: Suppose that for a natural number IZ,
W’L(@)) 3 Tn+l (z(X))) is a valid sentence. We are going
to prove that for every m 2 n, V,$Tm(Z(2)) > Tm+t (Z(X))) is
a valid sentence, by induction on m.
(I) If m = n, by hypothesis.
(II) Suppose that V$T,(Z(i)) > T,+t (Z(X))) is a valid sen-
tence. For every clause VT=, Zj(.?,?j) Vy@Z) in T,+t (Z(2))
and for every ground tuple h we have that

By lemma 7 and considering that w only mentions built-in
predicates we have that Tm+i (Z(6)) k V(i& Tt (Zi(G,zj)) V
~(a,.?)), and from this and lemma 6 we can conclude that
V2(Tm+l(Z(2)) > Tm+2(Z(2))) is a valid sentence.

Proof of Theorem 7: Let Q(2) be a domain independent
query and r a database instance. Define A, = {i (r I= T,(Q(i))}.
We know that for every n: A,+1 c A,,, therefore A = {Ai 1 i <
o} is a family of subsets of Ao. But A0 is finite because Q(2)
is a domain independent query. Thus, there exists a minimal
element A,,, in A. For this element, it holds that for every
k 2 m: A, = Ak, since Ak c A,.

Proof of Theorem 5: For uniform constraints the residues
do not contain quantifiers. Therefore T,(Z(i)) for every n 2
0 is quantifier-free and contains only the variables that occur
in i. There are only finitely many inequivalent formulas with
this property, and thus T,(Z(.?)) is finite.

79

