
Inverting Schema Mappings

Ronald Fagin
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

fagin@almaden.ibm.com

ABSTRACT
A schema mapping is a specification that describes how data
structured under one schema (the source schema) is to be
transformed into data structured under a different schema
(the target schema). Although the notion of an inverse of
a schema mapping is important, the exact definition of an
inverse mapping is somewhat elusive. This is because a
schema mapping may associate many target instances with
each source instance, and many source instances with each
target instance. Based on the notion that the composition
of a mapping and its inverse is the identity, we give a formal
definition for what it means for a schema mapping M′ to be
an inverse of a schema mapping M for a class S of source in-
stances. We call such an inverse an S-inverse. A particular
case of interest arises when S is the class of all instances, in
which case an S-inverse is a global inverse. We focus on the
important and practical case of schema mappings defined by
source-to-target tuple-generating dependencies, and uncover
a rich theory. When S is defined by a set of dependencies
with a finite chase, we show how to construct an S-inverse
when one exists. In particular, we show how to construct
a global inverse when one exists. Given M and M′, we
show how to define the largest class S such that M′ is an
S-inverse of M.

Categories and Subject Descriptors: H.2.5 [Heteroge-
neous Databases]: Data translation; H.2.4 [Systems]: Rela-
tional databases

General Terms: Algorithms, theory

Keywords: Data exchange, chase, computational complex-
ity, data integration, dependencies, inverse, metadata model
management, schema mapping, second-order logic

1. INTRODUCTION
Data exchange is the problem of materializing an instance

that adheres to a target schema, given an instance of a source
schema and a schema mapping that specifies the relation-
ship between the source and the target. This is a very old

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’06, June 26–28, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-318-2/06/0006 ...$5.00.

problem [13] that arises in many tasks where data must be
transferred between independent applications that do not
have the same data format.

Because of the extensive use of schema mappings, it has
become important to develop a framework for managing
schema mappings and other metadata, and operators for
manipulating them. Bernstein [2] has introduced such a
framework, called model management. Melnik et al. [12]
have developed a semantics for model-management opera-
tors that allows applying the operators to executable map-
pings. One important schema mapping operator, at least in
principle, is the inverse operator. What do we mean by an
inverse of a schema mapping? This is a delicate question,
since in spite of the traditional use of the name “mapping”,
a schema mapping is not simply a function that maps an
instance of the source schema to an instance of the target
schema. Instead, for each source instance, the schema map-
ping may associate many target instances. Furthermore,
for each target instance, there may be many corresponding
source instances.

As in [5, 6, 7], we study the relational case, where a schema
is a sequence of distinct relational symbols. A schema map-
ping is a triple M = (S,T, Σ), where S (the source schema)
and T (the target schema) are schemas with no relation sym-
bols in common and Σ is a set of formulas of some logical
formalism over 〈S,T〉. We say that Σ defines the schema
M. As in [5, 6, 7], our main focus is on the important and
practical case of schema mappings where Σ is a finite set
of source-to-target tuple-generating dependencies (which we
shall call s-t tgds or simply tgds). These are formulas of the
form ∀x(ϕ(x) → ∃yψ(x,y)), where ϕ(x) is a conjunction of
atomic formulas over S, and where ψ(x,y) is a conjunction
of atomic formulas over T.1 They have been used to for-
malize data exchange [5]. They have also been used in data
integration scenarios under the name of GLAV (global-and-
local-as-view) assertions [10].

There are other flavors of “schema mappings” that have
been studied in the literature, such as view definitions, where
there is a unique target instance associated with each source
instance. In such cases, a schema mapping is a function in
the classical sense, and so it is quite clear and unambigu-
ous as to what an inverse mapping is. An example of such
work is Hull’s seminal research on information capacity of
relational database schemas [9]. Although our schema map-
pings are not actually functions, they have the advantage

1There is also a safety condition, which says that every variable
in x appears in ϕ. However, not all of the variables in x need to
appear in ψ.

50

of being simpler and more flexible. In fact, LAV mappings,
which have been widely used in data integration, are spe-
cial cases of schema mappings defined by s-t tgds, where the
left-hand side of each tgd is a single atomic formula rather
than a conjunction of atomic formulas.

Let us now consider how to define the inverse in our con-
text, where schema mappings are not actually functions. Let
us associate with the schema mapping M12 = (S1,S2, Σ12)
the set S12 of ordered pairs 〈I, J〉 such that I is a source
instance, J is a target instance, and the pair 〈I, J〉 satisfy
Σ12 (written 〈I, J〉 |= Σ12). Perhaps the most natural def-
inition of the inverse of the schema mapping M12 would
be a schema mapping M21 that is associated with the set
S21 = {〈J, I〉 : 〈I, J〉 ∈ S12}. This reflects the standard
algebraic definition of an inverse, and is the definition that
Melnik [11] and Melnik et al. [12] give for the inverse. In
those papers, this definition was intended for a generic model
management context, where mappings can be defined in a
variety of ways, including as view definitions, relational al-
gebra expressions, etc. However, this definition does not
make sense in our context. This is because S12, by being
associated with a schema mapping defined by s-t tgds, is
automatically “closed down on the left and closed up on the
right”. This means that if 〈I, J〉 ∈ S12 and if I ′ ⊆ I (that
is, I ′ is a subinstance of I) and J ⊆ J ′, then 〈I ′, J ′〉 ∈ S12.

2

However, instead of being closed down on the left and closed
up on the right, S21 is closed up on the left and closed down
on the right. This is inconsistent with a schema mapping
that is defined by a set of s-t tgds.

Our notion of an inverse of a schema mapping is based on
another algebraic property of inverses, that the composition
of a function with its inverse is the identity mapping. In
our context, the identity mapping is defined by tgds that
“copy” the source instance to the target instance. Our def-
inition of inverse says that the schema mapping M21 is an
inverse of the schema mapping M12 for the class S of source
instances if the schema mapping defined by their composi-
tion is equivalent on S to the identity mapping. We refer
then to M21 as an S-inverse of M12 When S is the class
of all source instances, then M21 is said to be a global in-
verse of M12. When S is a singleton set containing only the
source instance I , then M21 is said to be a local inverse, or
simply an inverse, of M12 for I . Note that our definition of
what it means for M21 to be an inverse of M12 corresponds
exactly to what we would like an inverse mapping to do in
data exchange: if after applying M12, we then apply M21,
the resulting effect of M21 is to “undo” the effect of M12.
Fortunately, because of work by Fagin et al. [7], we now
understand very well the composition of schema mappings,
and so we are in a good position to study our notion of in-
verse. This paper is the first step in exploring the very rich
theory that arises.

If M12 = (S1,S2, Σ12) is a schema mapping, I is a source
instance, and J is a target instance, then J is a solution for
I if 〈I, J〉 |= Σ12. A simple necessary condition for M12 to
have a global inverse is the unique solutions property, which
says that no two distinct source instances have the same set
of solutions. For a fixed choice of M12, let f be the set-
valued function where f(I) is the set of solutions for the
source instance I . The unique solutions property is equiv-

2This is why a schema mapping may associate many target in-
stances with each source instance, and many source instances with
each target instance.

alent to the condition that f be one-to-one. The fact that
this condition is necessary for there to be a global inverse
is analogous to the standard algebraic condition that an in-
vertible function be one-to-one. We show that surprisingly
and pleasingly, in the important special case of LAV schema
mappings, the unique solutions property is not only neces-
sary for M12 to have a global inverse but also sufficient.

Assume that M is a schema mapping defined by a finite
set of s-t tgds, and I is a source instance. We derive a
canonical local inverse, which is a schema mapping defined
by a finite set of s-t tgds that is an inverse of M for I if there
is any such inverse. If S is a class of source instances defined
by a set of tgds and egds that always have a finite chase, then
we derive a canonical S-inverse, which is a schema mapping
defined by a finite set of s-t tgds that is an S-inverse of M
if there is any such S-inverse. When S is the class of all
source instances, we refer to the canonical S-inverse as the
canonical global inverse. On the face of it, the canonical
local inverse seems to be of theoretical interest only: after
all, we typically care only about an inverse that “works” for
a large class, not for a single instance. However, it turns out
that the canonical local inverse plays a key role in the proof
of correctness of the canonical S-inverse.

Our canonical inverses are each defined by finite sets of
full tgds (those with no existential quantifiers). This is not
an accident: we show that if M12 and M21 are schema
mappings that are each defined by a finite set of s-t tgds,
S is a class of source instances, and M21 is an S-inverse of
M12, then there is a schema mapping defined by a finite set
of full s-t tgds and that is an S-inverse of M12.

It is folk wisdom that an inverse can be obtained by simply
“reversing the arrows” in a tgd. We show that even a weak
form of this folk wisdom is false. Instead, our canonical
inverses are obtained by a slightly more complicated but
still very natural procedure.

Since a local inverse may be quite tailored to a particular
instance, it is natural to ask whether it is possible for a
schema mapping defined by a finite set of s-t tgds to have
an inverse for every source instance yet not have a global
inverse. We show that this can indeed happen.

Given schema mappings M12 and M21 that are each de-
fined by a finite set of s-t tgds, an analyst might want to in-
vestigate under what conditions M21 is an inverse of M12.
(We give an example later, where M12 does a projection
and M21 joins the projections.) If we hold M12 and M21

fixed, then we show that the problem of deciding whether
M21 is an inverse of M12 for I is in the complexity class
NP. It therefore follows from Fagin’s Theorem [3] that the
class S of source instances such that M21 is an inverse of
M12 for precisely the class S can be defined by a formula
Γ in existential second-order logic. Remarkably, we are able
to obtain such a formula Γ by a purely syntactical transfor-
mation of the formula that defines the composition of the
schema mappings. Furthermore, when M12 and M21 are
defined by full s-t tgds, this formula is first-order.

Finally, we obtain other complexity results about deciding
local or global invertibility.

Missing proofs are in the full version of the paper,
currently on the author’s website at:

http://www.almaden.ibm.com/cs/people/fagin/inverse.pdf

1.1 Applications of inverse mappings
There are potentially a number of applications for inverse

51

mappings, especially in schema evolution. For example, as-
sume that data has been migrated from one schema to an-
other with a schema mapping M. At some point, we might
decide to “roll back” to the original schema, and so we might
want to apply an inverse schema mapping M−1. In fact, if
we think this scenario is probable, we might deliberately
choose a schema mapping M that has an inverse M−1.

As a more intricate example, assume that there are two
different schema mappings from schema S1: the schema
mapping M1 from schema S1 to schema T1, and the schema
mapping M′

1 from S1 to S′
1. Assume that there is also a

schema mapping M2 from T1 to T′
1. If there is an “inverse

schema mapping” M′
1
−1

of M′
1, then these schema map-

pings can be composed to give a schema mapping directly
from S′

1 to T′
1, by taking the composition of the schema

mapping M′
1
−1

(from S′
1 to S1) with the schema mapping

M1 (from S1 to T1) and composing the result with the
schema mapping M2 (from T1 to T′

1).

2. BACKGROUND
We now review basic concepts from data exchange.
A schema is a finite sequence R = 〈R1, . . . , Rk〉 of distinct

relation symbols, each of a fixed arity. An instance I (over
the schema R) is a sequence 〈RI

1, . . . , R
I
k〉 such that each RI

i

is a finite relation of the same arity as Ri. We call RI
i the

Ri-relation of I . We shall often abuse the notation and use
Ri to denote both the relation symbol and the relation RI

i

that interprets it.
Let S = 〈S1, . . . , Sn〉 and T = 〈T1, . . . , Tm〉 be two schemas

with no relation symbols in common. We write 〈S,T〉 to
denote the schema that is the result of concatenating the
members of S with the members of T. If I is an instance
over S and J is an instance over T, then we write 〈I, J〉 for
the instance K over the schema 〈S,T〉 such that SK

i = SI
i

and TK
j = TJ

j , for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
If K is an instance and σ is a formula in some logical

formalism, then we write K |= σ to mean that K satisfies
σ. If Σ is a set of formulas, then we write K |= Σ to mean
that K |= σ for every formula σ ∈ Σ.

We will often drop the universal quantifiers in front of a
tgd, and implicitly assume such quantification. However, we
will write down all existential quantifiers.

Given a tuple (t1, . . . , tr) occurring in a relation R, we
denote by R(t1, . . . , tr) the association between (t1, . . . , tr)
and R, and call it a fact. We will identify an instance with
its set of facts. We call each ti in the tuple (t1, . . . , tr) a
value. We denote by Const the set of all values that appear
in source instances (instances of the schema S) and we call
them constants. In addition, we assume an infinite set Var
of values, which we call nulls, such that Var ∩ Const = ∅.

If K is an instance with values in Const∪Var, then Var(K)
denotes the set of nulls appearing in relations in K. Let
K1 and K2 be two instances over the same schema with
values in Const ∪ Var. A homomorphism h : K1 → K2 is
a mapping from Const ∪ Var(K1) to Const ∪ Var(K2) such
that: (1) h(c) = c, for every c ∈ Const; and (2) for every
fact R(t) of K1, we have that R(h(t)) is a fact of K2 (where,
if t = (t1, . . . , ts), then h(t) = (h(t1), . . . , h(ts))).

Consider a schema mapping (S,T,Σ), as defined in the
introduction. Recall that if I is a source instance, and J is
a target instance, then J is a solution for I if 〈I, J〉 |= Σ.
If I is a source instance, then a universal solution for I is a
solution J for I such that for every solution J ′ for I , there

exists a homomorphism h : J → J ′. When Σ is a finite set
of s-t tgds, and I is a source instance, then there is always
a universal solution for I [5].

Let M12 = (S1, S2, Σ12) and M23 = (S2, S3, Σ23) be
two schema mappings such that the schemas S1,S2,S3 have
no relation symbol in common pairwise. The composition
formula [7], denoted by Σ12 ◦ Σ23, has the semantics that
if I is an instance of S1 and J is an instance of S3, then
〈I, J〉 |= Σ12 ◦ Σ23 precisely if there is an instance J ′ of S2

such that 〈I, J ′〉 |= Σ12 and 〈J ′, J〉 |= Σ23. It is proven in [7]
that when Σ12 and Σ23 are finite sets of s-t tgds, then the
composition formula is given by a second-order tgd (SO tgd).
We give the definition of SO tgds later (Definition 10.1). We
now give an example (from [7]) of an SO tgd that defines
the composition formula.

Example 2.1. Consider the following three schemas S1,
S2 and S3. Schema S1 consists of a single unary relation
symbol Emp of employees. Schema S2 consists of a single
binary relation symbol Mgr1, that associates each employee
with a manager. Schema S3 consists of a similar binary
relation symbol Mgr, that is intended to provide a copy of
Mgr1, and an additional unary relation symbol SelfMgr, that
is intended to store employees who are their own manager.
Consider now the schema mappings M12 = (S1, S2,Σ12)
and M23 = (S2,S3,Σ23), where Σ12 consists of the tgd
∀e (Emp(e) → ∃mMgr1(e,m)), and Σ23 consists of the two
tgds ∀e∀m (Mgr1(e,m) → Mgr(e,m)) and ∀e(Mgr1(e, e) →
SelfMgr(e)). Then the composition formula Σ12 ◦ Σ23 is
defined by the following second-order tgd:

∃f(∀e(Emp(e) → Mgr(e, f(e))) ∧ (1)

∀e(Emp(e) ∧ (e = f(e)) → SelfMgr(e))).

3. WHAT IS AN INVERSE MAPPING?
Assume that M12 = (S1,S2, Σ12) is a schema mapping.

For each relation symbol R of S1, let �R be a new relation
symbol (different from any relation symbol in S1 or S2) of

the same arity as R. Define �S1 to be
��R : R ∈ S1

�
. Thus,�S1 is a schema disjoint from S1 and S2 that can be thought

of as a copy of S1. If I is an instance of S1, define �I to be

the corresponding instance of �S1. Thus, �R�I = RI for every R

in S1.
Let M21 = (S2,�S1, Σ21) be a schema mapping, where the

source schema S2 is the target schema of M12, where the

target schema is �S1, and where Σ21 is a finite set of s-t tgds

(with source S2 and target �S1). The issue we are concerned
with is: what does it mean for M21 to be an inverse of M12,
and what can we say about such inverse mappings? We are
most interested in the case where Σ12 and Σ21 are finite sets
of s-t tgds. We now introduce an example that we shall use
as a running example to demonstrate some of the issues that
arise.

Example 3.1. Let S1 consist of the ternary relation sym-
bol EDL (“Employee-Department-Location”). Let S2 consist
of the binary relation symbol ED (“Employee-Department”)
and the binary relation symbol DL (“Department-Location”).
Let Σ12 consist of the s-t tgd EDL(x, y, z) → ED(x, y) ∧
DL(y, z), that corresponds to projecting EDL onto ED and
DL. Let Σ21 consist of the s-t tgd (ED(x, y) ∧ DL(y, z)) →

52

�EDL(x, y, z), where the source schema is S2 and the target

schema is �S1, that corresponds to taking the join of the

projections. Let M12 = (S1,S2, Σ12) and M21 = (S2,�S1,
Σ21).

Let Γ be the multivalued dependency3

EDL(x, y, z′) ∧ EDL(x′, y, z)) → EDL(x, y, z). (2)

It is known [4] that if we project the EDL relation onto ED

and DL and then join the resulting projections, we obtain
the original EDL relation precisely if the multivalued depen-
dency Γ holds. We want our definition of inverse to have
the property that the schema mapping M21 is an inverse
of M12 for precisely those source instances I that satisfy Γ.

Let us now define some preliminary notions that will al-
low us to define what it means for the mapping M21 =

(S2,�S1, Σ21) to be an S-inverse of the mapping M12 =
(S1,S2, Σ12). (In Example 3.1, the class S would consist of
those source instances that satisfy Γ.) Define ΣId (where Id
stands for “identity”) to consist of the tgds R(x1, . . . , xk) →�R(x1, . . . , xk), where x1, . . . , xk are distinct variables, when
R is a k-ary relation symbol of S1. Define the identity map-

ping to be MId = (S1,�S1, ΣId). Note that J is a solution

for I under the identity mapping if and only if �I ⊆ J . The

reason we have �I ⊆ J rather than simply �I = J is that ΣId

is a set of s-t tgds, and hence whenever J is a solution, then
so is every J ′ with J ⊆ J ′. Let us say that two schema
mappings with the same source schema and the same target
schema are equivalent on I if they have the same solutions
for I .

We are now ready to define the notion of inverse. Let

M12 = (S1,S2, Σ12) and M21 = (S2,�S1, Σ21) be schema
mappings. Let σ be the composition formula Σ12 ◦ Σ21 of

M12 and M21, and let M11 = (S1,�S1, σ). Let I be an
instance of S1. Let us say that M21 is an inverse of M12

for I if M11 and the identity mapping MId are equivalent
on I . Thus, M21 is an inverse of M12 for I precisely if for
every J ,

〈I, J〉 |= σ if and only if �I ⊆ J. (3)

If S is a class of source instances, then we say that M21 is
an S-inverse of M12 if M21 is an inverse of M12 for I , for
each I in S . A particularly important case arises when S is
the class of all source instances. In that case, we say that
M21 is a global inverse of M12.

Example 3.2. Let us return to Example 3.1. We said
there that we want our definition of inverse to have the prop-
erty that the schema mapping M21 is an inverse of M12 for
precisely those source instances I that satisfy Γ. We now
show that satisfying Γ is a sufficient condition for M21 to
be an inverse of M12. In Example 10.7, we shall show that
Γ is also a necessary condition.

If we apply the composition algorithm of [7], we find that
the composition formula Σ12 ◦ Σ21, which we denote by σ,
is

EDL(x, y, z′) ∧ EDL(x′, y, z)) →�EDL(x, y, z). (4)

Let I be a source instance of S1 satisfying Γ. We must
show that (3) holds. Assume first that 〈I, J〉 |= σ; we must
3Note that Γ is not an s-t tgd, since the left-hand side and right-
hand side use the same relation symbol EDL. Of course, Γ is a tgd
in the classical sense of [1].

show that �I ⊆ J . Now ΣId consists of the tgd EDL(x, y, z) →�EDL(x, y, z). It is clear that σ logically implies ΣId (we let
the roles of x′ and z′ be played by x and z, respectively).
Therefore, since 〈I, J〉 |= σ, it follows that 〈I, J〉 |= ΣId. So�I ⊆ J , as desired.

Assume now that �I ⊆ J ; we must show that 〈I, J〉 |= σ.
Thus, we must show that if EDL(x, y, z′) and EDL(x′, y, z)
hold in I , then �EDL(x, y, z) holds in J . So assume that
EDL(x, y, z′) and EDL(x′, y, z) hold in I . Since I |= Γ, it

follows that EDL(x, y, z) holds in I . Since �I ⊆ J , it follows

that �EDL(x, y, z) holds in J , as desired.
Note the unexpected similarity of the composition for-

mula (4) and Γ (the multivalued dependency (2)). We shall
explain this surprising connection between the composition
formula and Γ later (in Example 10.7).

The next example shows that there need not be a unique
inverse. Therefore, we refer to “an inverse mapping” rather
than “the inverse mapping”.

Example 3.3. Let M12 = (S1, S2, Σ12), where S1 con-
sists of the unary relation symbol R, where S2 consists of
the binary relation symbol S, and where Σ12 consists of the
tgd R(x) → S(x, x). Let Σ21 consist of the tgd S(x, y) →�R(x), and let Σ′

21 consist of the tgd S(x, y) → �R(y). Let

M21 = (S2,�S1, Σ21), and let M′
21 = (S2,�S1, Σ′

21). In both
cases (for M21 and for M′

21), the composition formula is
R(x) → �R(x), which defines the identity mapping. So both
M21 and M′

21 are global inverses of M12.

4. THE UNIQUE SOLUTIONS PROPERTY
Unlike the rest of this paper, in this section we do not re-

strict our attention to schema mappings (S,T,Σ) where Σ is
a finite set of s-t tgds. Instead, we allow Σ to be an arbitrary
constraint between source and target instances. Our only re-
quirement is that the satisfaction relation between formulas
and instances be preserved under isomorphism. This means
that if 〈I, J〉 |= Σ, and if 〈I ′, J ′〉 is isomorphic to 〈I, J〉,
then 〈I ′, J ′〉 |= Σ. This is a mild condition that is true
of all standard logical formalisms, such as first-order logic,
second-order logic, fixed-point logics, and infinitary logics.

Let M12 = (S1,S2, Σ12) be a schema mapping, and let I
be a source instance. Intuitively, as far as S2 is concerned,
the only information about I is the set of solutions for I ,
that is, the set of target instances J such that 〈I, J〉 |= Σ12.
Therefore, we would expect that if M21 is an inverse of M12

for two distinct source instances I1 and I2, then I1 and I2
would have different sets of solutions. Otherwise, intuitively,
there would not be enough information to allow M21 to
reconstruct I1 after applying M12. The next theorem says
that this intuition is correct.

Theorem 4.1. Let M12 and M21 be schema mappings.
Assume that M21 is an inverse of M12 for distinct instances
I1 and I2. Then the set of solutions for I1 under M12 is
different from the set of solutions for I2 under M12.

As a corollary of Theorem 4.1, we obtain a necessary con-
dition for M12 to have an inverse for a fixed source instance.
(The proof depends on our assumption of preservation under
isomorphism.)

Corollary 4.2. Let M12 and M21 be schema mappings,
and let I1 and I2 be distinct but isomorphic source instances.

53

Assume that there is an inverse of M12 for I1. Then the set
of solutions for I1 under M12 is different from the set of
solutions for I2 under M12.

The next corollary, which we shall find quite useful later,
applies to schema mappings defined by tgds, and makes use
of the fundamental notion of the chase. Let M12 = (S1,S2,
Σ12), where Σ12 is a finite set of s-t tgds. Assume that I
is an instance of S1. If the result of chasing 〈I, ∅〉 with Σ12

is 〈I, J〉, then we define chase12(I) to be J .4 We may say
loosely that J is the result of chasing I with Σ12.

Corollary 4.3. Let M12 = (S1,S2, Σ12) be a schema
mapping, where Σ12 is a finite set of s-t tgds. If M12 has
an inverse for I (not necessarily defined by s-t tgds), then
every value that appears in a tuple of I appears in a tuple of
chase12(I).

The next proposition is an interesting application of The-
orem 4.1.

Proposition 4.4. There is a schema mapping defined by
a finite set of full s-t tgds that has an inverse for every source
instance with a schema mapping defined by a finite set of s-t
tgds, but has no global inverse.

Proof. Let S1 consist of the unary relation symbols P

and Q, and let S2 consist of the binary relation symbol R
and the unary relation symbol S. Let Σ12 = {P(x)∧ Q(y) →
R(x, y), P(x) → S(x), Q(x) → S(x)}. Let M12 = (S1,S2,
Σ12).

We now show that for every source instance I , the schema
mapping M12 has an inverse that is defined by a finite set
of s-t tgds. There are three cases:

• PI is empty. Then an inverse is S(x) → �Q(x)
• QI is empty. Then an inverse is S(x) → �P(x).
• Neither PI nor QI is empty. Then an inverse is R(x, y) →�P(x) ∧ �Q(y).
Now we will show that M12 does not have a global inverse.

Let I1 = {P (0)}, and let I2 = {Q(0)}. Then the set of
solutions for I1 under M12 equals the set of solutions for
I2 under M12 (both equal the set of target instances J that
contain {S(0)}). It then follows from Theorem 4.1 that M12

does not have a global inverse.

We now give a simple example of the use of Corollary 4.2.

Example 4.5. Let S1 consist of the unary relation sym-
bols R and R′, let S2 consist of the unary relation symbol S,
and let Σ12 = {R(x) → S(x),R′(x) → S(x)}. Assume that
the facts of I1 are precisely R(0) and R′(1); we now show
that M12 does not have an inverse for I1. Let I2 be the
source instance whose facts are precisely R(1) and R′(0). Let
J be the target instance whose facts are precisely S(0) and
S(1). Then the solutions under Σ12 for I1 are exactly those
J ′ where J ⊆ J ′. But these are also exactly the solutions for
I2. Since I1 and I2 are distinct isomorphic source instances
with the same set of solutions, it follows from Corollary 4.2
that M12 does not have an inverse for I1.

Let us say that M12 = (S1,S2, Σ12) has the unique so-
lutions property if whenever I1 and I2 are distinct source

4For definiteness, we use the version of the chase as defined in
[7], although it does not really matter.

instances, then the set of solutions for I1 is distinct from the
set of solutions for I2. In the case where Σ12 is a finite set
of s-t tgds, it follows from results of [5] that I1 and I2 have
the same set of solutions if and only if they share a univer-
sal solution. Therefore, when Σ12 is a finite set of tgds, the
unique solutions property is equivalent to the unique uni-
versal solutions property, which says that whenever I1 and
I2 are distinct source instances, then no universal solution
for I1 is a universal solution for I2.

Theorem 4.1 implies that the unique solutions property is
a necessary condition for global invertibility. Recall that a
LAV (local-as-view) schema mapping is a schema mapping
M12 = (S1,S2, Σ12) where Σ12 is a finite set of s-t tgds all
with a singleton left-hand side. The next theorem says that
for LAV schema mappings, the unique solutions property is
not only necessary for global invertibility but also sufficient.
This shows robustness of our notion of inverse, since (at
least in the case of LAV mappings), our notion of global
invertibility is equivalent to the unique solutions property,
which is another natural notion.

Theorem 4.6. A LAV schema mapping has a global in-
verse if and only if it has the unique solutions property.

The schema mapping that is a global inverse in our proof
of Theorem 4.6 is rather complex (it is not defined in terms
of tgds). For the rest of this paper, we shall consider only
“practical” schema mappings—specifically, schema mappings
M12 and M21 that are each defined by a finite set of s-t tgds.

5. CHARACTERIZING INVERTIBILITY
In this section, we give useful characterizations, in terms

of the chase, of invertibility.
For the next theorem, we define chase21 based on M21 =

(S2,�S1, Σ21) just as we defined chase12 based on M12 =
(S1,S2, Σ12).

Theorem 5.1. Assume that M12 = (S1,S2, Σ12) and

M21 = (S2,�S1, Σ21) are schema mappings where Σ12 and
Σ21 are finite sets of s-t tgds. Then M21 is an inverse

of M12 for I if and only if 〈I, �I〉 |= Σ12 ◦ Σ21 and �I ⊆
chase21(chase12(I)).

As a corollary, we obtain a particularly simple character-
ization when Σ12 and Σ21 consist of full tgds.

Corollary 5.2. Assume that M12 = (S1,S2, Σ12) and

M21 = (S2,�S1, Σ21) are schema mappings where Σ12 and
Σ21 are finite sets of full s-t tgds. Then M21 is an inverse

of M12 for I if and only if �I = chase21(chase12(I)).

The next result5 gives a version of Corollary 5.2 that holds
even when the tgds are not full. Two instances I1 and I2
are homomorphically equivalent if there is a homomorphism
from I1 into I2 and a homomorphism from I2 into I1.

Corollary 5.3. Assume that M12 = (S1,S2, Σ12) and

M21 = (S2,�S1, Σ21) are schema mappings where Σ12 and
Σ21 are finite sets of s-t tgds. If M21 is an inverse of M12

for I, then �I and chase21(chase12(I)) are homomorphically
equivalent.

5This result is due to Lucian Popa.

54

The next theorem implies the falsity of the converse of

Corollary 5.3, that if �I and chase21(chase12(I)) are homo-
morphically equivalent, then M21 is an inverse of M12 for I .
In fact, the negative result we prove is even stronger: it says

that even if �I and chase21(chase12(I)) are homomorphically
equivalent for every I , there can be an I such that M21 is
not inverse of M12 for I .

Theorem 5.4. There are schema mappings M12 = (S1,

S2, Σ12) and M21 = (S2,�S1, Σ21), where Σ12 and Σ21 are

finite sets of s-t tgds, such that �I and chase21(chase12(I))
are homomorphically equivalent for every instance I of S1,
but M21 is not an inverse of M12 for some instance I of S1.

6. THE CANONICAL LOCAL INVERSE
Let M be a schema mapping defined by a finite set of s-t

tgds, and let I be a source instance. In this section, we give
a schema mapping that is guaranteed to be an inverse of M
for I if there is any inverse at all that is defined by a finite
set of s-t tgds.

We begin with a definition. Assume that I and J are
instances (of different schemas) where every value that ap-
pears in a tuple of I also appears in a tuple of J . Define
βJ,I to be the full tgd where the left-hand side is the con-
junction of the facts of J , and the right-hand side is the
conjunction of the facts of I (we are treating the values in
J as universally quantified variables in the tgd).

Assume that M12 = (S1,S2, Σ12) is a schema mapping
where Σ12 is a finite set of s-t tgds. Assume that there is

a schema mapping M21 = (S2,�S1,Σ21) that is an inverse
of M12 for I , where Σ21 is a finite set of s-t tgds. Let
J∗ = chase12(I). It follows from Corollary 4.3 that every

value that appears in a tuple of I (and hence in a tuple of �I)
appears in a tuple of J∗, and so βJ∗,�I is a full tgd. Define the

canonical local inverse of M12 for I to be (S2,�S1,
�
βJ∗,�I

�
)

(we shall show that it is actually a local inverse). We call
M21 the most general s-t inverse of M12 for I if Σ′

21 log-

ically implies Σ21 for every inverse M′
21 = (S2,�S1,Σ′

21) of
M12 for I where Σ′

21 is a finite set of s-t tgds.

Theorem 6.1. Let M be a schema mapping defined by a
finite set of s-t tgds, and let I be a source instance. Assume
that M has an inverse for I that is defined by a finite set
of s-t tgds. Then the canonical local inverse of M for I is
indeed an inverse of M for I, and in fact the most general
s-t inverse of M for I.

Of course, we are much more interested in an S-inverse for
a large class S , rather than an inverse for a single instance I .
However, the canonical local inverse is important as a tool
in proving correctness of the canonical S-inverse (including
the canonical global inverse) in the next section. In fact,
even the fact that the canonical local inverse is most general
is needed for the proof.

7. THE CANONICAL S-INVERSE
Let M12 = (S1,S2, Σ12) be a schema mapping, where Σ12

is a finite set of s-t tgds. In this section, we shall consider
certain classes S of source instances, and show how to define
a canonical S-inverse of M12, which is a schema mapping
defined by a finite set of s-t tgds that is an S-inverse of M12

if there is any such S-inverse. We shall consider certain sets
Γ of constraints on source instances, and let S be the class
of source instances that satisfy Γ. When Γ is the empty
set, then S is the class of all source instances, and so an
S-inverse is a global inverse. In this case, we shall refer to
the canonical S-inverse as the canonical global inverse.

Let us say that a set Γ of tgds and egds (all on the source
schema) is finitely chasable if for every (finite) source in-
stance I , some result of chasing I with Γ is a (finite) instance,
or else some chase of I with Γ fails (by trying to equate two
distinct values in I). It is not hard to see that Γ is finitely
chasable if and only if for every (finite) source instance I ,
some result of chasing I with Γ is a (finite) instance, where
we allow values in I to be equated in the chase. It follows
from results in [5] that when Γ is the disjoint union of a set
of egds with a weakly acyclic set of tgds (as defined in [5]),
then Γ is finitely chasable. We now give a simple example
where the converse fails.

Example 7.1. Let Γ′ consist of the single tgd R(x, y) →
∃zR(y, z). It is easy to see that Γ′ is not weakly acyclic, and
in fact not finitely chasable. Let Γ′′ consist of the single
egd R(x, y) → (x = y). Now let Γ be Γ′ ∪ Γ′′. Then Γ is
finitely chasable (since in this case, we need only chase with
Γ′′ alone). However, Γ is not weakly acyclic, since Γ′ is not
weakly acyclic.

Let Γ be a finitely chasable set of tgds and egds, and let
S be the class of all source instances that satisfy Γ. Assume

that M21 = (S2,�S1,Σ21) is an S-inverse of M12, and Σ21

is a finite set of s-t tgds. For each relational symbol R of
S1, let IR be a one-tuple instance that contains only the fact
R(x), where the variables in x are distinct. Let IΓ

R be a finite
instance that is a result of chasing IR with Γ, where it is all
right to allow distinct variables in x to be equated by the
chase. In our case of greatest interest, where Γ is the empty
set, we have IΓ

R = IR. Let JΓ
R be chase12(I

Γ
R), a result of

chasing IΓ
R with Σ12.

6

Since M21 is an S-inverse of M12, in particular M21 is a
local inverse of M12 for IΓ

R (this is because IΓ
R is a member

of S). It follows from Corollary 4.3 that every value that

appears in a tuple of IΓ
R (and hence in a tuple of �IΓ

R) appears
in a tuple of JΓ

R . Therefore, βJ,�I is a full tgd, where I is IΓ
R ,

and J is JΓ
R , with β·,· as defined in Section 6. Let us denote

this full tgd by δΓR , and let ΣS
12 consist of all of the tgds δΓR ,

one for every relation symbol R of S1. Define the canonical

S-inverse of M12 to be MS
12 = (S2,�S1, ΣS

12) (we shall show
that it is actually an S-inverse). In the case where S is the
class of all source instances, we may write Σ−1

12 for ΣS
12, and

M−1
12 for MS

12, to honor the fact that we are then dealing
with a schema mapping that is a global inverse). We call
M21 the most general s-t S-inverse of M12 if Σ′

21 logically

implies Σ21 for every S-inverse M′
21 = (S2,�S1,Σ′

21) of M12

where Σ′
21 is a finite set of s-t tgds.

Example 7.2. Let M12 = (S1, S2, Σ12). Assume that
S1 consists of the binary relation symbol R and the unary
relation symbol S, and that S2 consists of the binary re-
lation symbols T and U. Let Σ12 consist of the s-t tgds
R(x1, x2) → ∃y(T(x1, y) ∧ U(y, x2)), R(x, x) → U(x, x), and
S(x) → ∃yU(x, y). Let Γ consist of the egd R(x1, x2) →
(x1 = x2).
6Even though JΓ

R depends not just on R and Γ, but also on Σ12,
for simplicity we do not reflect the dependency on Σ12 in the
notation JΓ

R .

55

Now IR consists of the fact R(x1, x2), and so IΓ
R consists

of the fact R(x1, x1). Then JΓ
R consists of the facts T(x1, y),

U(y, x1), and U(x1, x1). So δΓR is the tgd

(T(x1, y) ∧ U(y, x1) ∧ U(x1, x1)) → �R(x1, x1).

Also, IS and IΓ
S each consist of the fact S(x1), and JΓ

S

consists of the fact U(x1, y). So δΓS is the tgd U(x1, y) →�S(x1). Finally, MS
12 = (S2,�S1, ΣS

12), where ΣS
12 consists of

the tgds δΓR and δΓS .

Theorem 7.3. Let M be a schema mapping defined by
a finite set of s-t tgds. Let Γ be a finitely chasable set of
tgds and egds, and let S be the class of source instances that
satisfy Γ. Assume that M has an S-inverse that is defined
by a finite set of s-t tgds. Then the canonical S-inverse of
M is indeed an S-inverse of M, and in fact the most general
s-t S-inverse of M.

8. FULL TGDS SUFFICE FOR AN INVERSE
The canonical local inverse and the canonical S-inverse are

each defined by a finite set of full tgds. In this section, we
show that this is no accident: if M12 and M21 are schema
mappings that are each defined by a finite set of s-t tgds, S is
a class of source instances, and M21 is an S-inverse of M12,
then there is a schema mapping Mf

21 defined by a finite set
of full s-t tgds and that is an S-inverse of M12. While the
canonical local inverse is tailored to a particular instance I ,
the mapping Mf

21 is, as we shall see, constructed only from
M21. From a technical point of view, this contrasts also
with the canonical global inverse, which is constructed only
from M12.

We begin with some definitions. Let γ be an s-t tgd.
Assume that γ is ∀x(ϕS(x) → ∃yψT(x,y)), where ϕS(x) is
a conjunction of atomic formulas over S and ψT(x,y) is a

conjunction of atomic formulas over T. Let ψf
T(x) be the

conjunction of all atomic formulas in ψT(x,y) that do not
contain any variables in y (the f stands for “full”). Define

γf (the full part of γ) to be the full tgd ∀x(ϕS(x) → ψf
T(x)).

If ψf
T(x) is an empty conjunction, then γf is a dummy tgd

where the right-hand side is “Truth” (and so the dummy
tgd itself is “Truth”).

Let ψn
T(x) be the conjunction of all atomic formulas in

ψT(x,y) that contain some variable in y (the n stands for
“non-full”). Define γn (the non-full part of γ) to be the tgd
∀x(ϕS(x) → ∃yψn

T(x,y)). As before, if ψn
T(x) is an empty

conjunction, then γn is a dummy tgd where the right-hand
side is “Truth”(and so the dummy tgd itself is “Truth”). If
Σ is a set of tgds, let Σf be the set of γf where γ ∈ Σ and
where γf is not a dummy tgd. Similarly, let Σn be the set
of γn where γ ∈ Σ and where γn is not a dummy tgd. It is
easy to see that Σ is logically equivalent to Σf ∪ Σn. The
next theorem tells us that only full tgds play a role in the
inverse.

Theorem 8.1. Assume that M12 = (S1,S2, Σ12) and

M21 = (S2,�S1, Σ21) are schema mappings where Σ12 and

Σ21 are finite sets of s-t tgds. Let Mf
21 = (S2,�S1, Σf

21). If

M21 is an S-inverse of M12, then so is Mf
21.

The following corollary is immediate (by letting Σ′
21 in

the corollary be Σf
21).

Corollary 8.2. Assume that M12 = (S1,S2, Σ12) and

M21 = (S2,�S1, Σ21) are schema mappings where Σ12 and
Σ21 are finite sets of s-t tgds. Assume that M21 is an S-
inverse of M12. Then there is a finite set Σ′

21 of full tgds

such that M′
21 = (S2,�S1, Σ′

21) is an S-inverse of M12.

9. REVERSING THE ARROWS (NOT!)
It is folk wisdom that simply “reversing the arrows” gives

an inverse. What does this mean in our context?
Let us call a full tgd reversible if the same variables ap-

pear in the left-hand side as the right-hand side. If γ is a
reversible tgd ϕ → ψ, define rev(γ) to be the full tgd ψ → �ϕ,
where �ϕ is the result of replacing every relational symbol R
by �R. Since γ is reversible, rev(γ) is indeed a full tgd. We
think of rev(γ) as the result of “reversing the arrow” of γ.

Example 9.1. We now give a simple example that shows

that (S2,�S1, {rev(γ) : γ ∈ Σ12}) is not necessarily a global
inverse of M12 = (S1,S2, Σ12), even when Σ12 consists of
a finite set of reversible tgds and M12 has a global inverse
that is defined by a finite set of s-t tgds. Let S1 consist of
the unary relation symbols R1 and R2. Let S2 consist of the
unary relation symbols S1, S2, and S3. Let Σ12 = {R1(x) →
S1(x), R2(x) → S2(x), R1(x) → S3(x), R2(x) → S3(x)}. Let
M12 = (S1,S2, Σ12). Let Σ21 = {S1(x) → �R1(x), S2(x) →�R2(x)}. Let M21 = (S2,�S1, Σ21). It is easy to see that M21

is a global inverse of M12.
Now let Σ′

21 = {rev(γ) : γ ∈ Σ12}. Thus Σ′
21 = {S1(x) →�R1(x), S2(x) → �R2(x), S3(x) → �R1(x), S3(x) → �R2(x)}. Let

M′
21 = (S2,�S1, Σ′

21). It is easy to verify that M′
21 is not

a global inverse of M12. So simply “reversing the arrows”
does not necessarily give a global inverse, even when there
is a global inverse.

Note that although {rev(γ) : γ ∈ Σ12} in Example 9.1 does
not define a global inverse, some subset of it (namely, Σ21)
does. The next theorem says that there is an example where
there is no subset of {rev(γ) : γ ∈ Σ12} that defines a global
inverse.

Theorem 9.2. There is a schema mapping M12 = (S1,S2,
Σ12) where each member of Σ12 is a reversible tgd with a sin-
gleton right-hand side, that has a global inverse defined by
a finite set of s-t tgds, but where there is no subset X of

Σ12 such that (S2,�S1, {rev(γ) : γ ∈ X}) is a global inverse
of M12.

10. CHARACTERIZING THE CLASS S
Given schema mappings M12 = (S1,S2, Σ12) and M21 =

(S2,�S1, Σ21), we would like to know the class S of source
instances I such that M21 is an inverse of M12 for I . It
is easy to see that this class is precisely the largest class S
such that M21 is an S-inverse of M12. Let M11 be the
schema mapping (S1,�S1, σ), where σ is the composition
formula Σ12 ◦Σ21. So the class S we are seeking is the class
of all instances I such that M11 and the identity mapping
are equivalent on I . Therefore, the class S is determined
completely by the composition formula σ. We shall show
that remarkably, there is a syntactic transformation of σ
that produces a formula Γ that actually defines S ! We now
begin our development.

Given a collection x of variables and a collection f of func-
tion symbols, a term (based on x and f) is defined recursively

56

as follows: (1) Every variable in x is a term, and (2) if f is
a k-ary function symbol in f and t1, . . . , tk are terms, then
f(t1, . . . , tk) is a term. We now define a second-order tgd
[7].

Definition 10.1. Let S be a source schema and T a
target schema. A second-order tuple-generating dependency
(SO tgd) is a formula of the form:

∃f((∀x1(ϕ1 → ψ1)) ∧ · · · ∧ (∀xn(ϕn → ψn))),

where (1) each member of f is a function symbol; (2) each ϕi

is a conjunction of (a) atomic formulas S(y1, . . . , yk), where
S is a k-ary relation symbol of schema S, and y1, . . . , yk

are variables in xi, not necessarily distinct, and (b) equal-
ities of the form t = t′ where t and t′ are terms based on
xi and f ; (3) each ψi is a conjunction of atomic formulas
T (t1, . . . , tl), where T is an l-ary relation symbol of schema
T and t1, . . . , tl are terms based on xi and f ; and (4) each
variable in xi appears in some atomic formula of ϕi.

As noted in [7], every finite set of s-t tgds is logically equiv-
alent to an SO tgd (but not conversely).

If γ is an SO tgd, or a set of (first-order) tgds, from S to�S, define γ� to be the source constraint that is the result of
replacing each relational symbol �R in γ by R. For example,
if γ is the s-t tgd (4), then γ� is (2). The next proposition

follows easily from the definitions of �I and of γ�.

Proposition 10.2. Let γ be an SO tgd, or a set of s-t

tgds with source S and target �S, and let I be an instance of

S. Then I |= γ� if and only if 〈I, �I〉 |= γ.

We now need some more definitions. Let γ be an SO
tgd. The equality-free reduction7 γ∗ of γ is obtained in
multiple steps. First, we recursively replace each equality
f(t1, . . . , tk) = f(t′1, . . . , t

′
k) by (t1 = t′1) ∧ · · · ∧ (tk = t′k).

We replace each equality f(t) = g(t′) where f and g are
different function symbols by “False”. Similarly, we replace
each equality f(t) = x, where x is a variable, by “False”.
Intuitively, only those equalities that are “forced” remain.
We then “clean up” by deleting each “tgd” that appears as
a conjunct of γ and that contains “False”. The remaining
equalities are all of the form x = y, where x and y are vari-
ables. Within each “tgd”, we form equivalence classes of
variables based on these equalities (where two variables are
in the same equivalence class if they are forced to be equal
by these equalities), replace each occurrence of each variable
by a fixed representative of its equivalence class, and delete
the equalities. The final result γ∗ is an SO tgd that contains
no equalities.

For example, the equality-free reduction of the SO tgd (1)
is ∃f(∀e(Emp(e) → Mgr(e, f(e))), the result of dropping the
second clause of (1). As another example, consider the fol-
lowing SO tgd:

∃f(∀x∀y(R(x, y)∧(f(x) = f(y)) → S(x, f(x))∧T(x, y))) (5)

Its quantifier-free reduction is ∃f(∀x(R(x,x) → S(x, f(x)) ∧
T(x, x))), which is obtained by replacing f(x) = f(y) by
x = y and simplifying.

We now define fulltgd(γ), which is a set of full tgds that we
associate with the SO tgd γ. To obtain fulltgd(γ), we first
find the equality-free reduction γ∗ of γ. We then rewrite

7A similar notion appears in [14] under the name “mapping re-
duction”.

γ∗ so that each right-hand side is a singleton. Thus, we
replace ϕ → (ψ1 ∧ · · · ∧ ψr), where ψ1, . . . , ψr are atomic
formulas, by (ϕ → ψ1) ∧ · · · ∧ (ϕ → ψr). We then delete
each “tgd” ϕ → ψ where the right-hand side ψ contains a
function symbol. Then fulltgd(γ) is the set of s-t tgds that
remain. These are real tgds, since there are no function
symbols present. By construction, fulltgd(γ) is a set of full
tgds with singleton right-hand sides.

As an example, when γ is the SO tgd (1), then fulltgd(γ)
is the empty set. As another example, when γ is the SO
tgd (5), then fulltgd(γ) contains the single tgd R(x, x) →
T(x, x).

For each SO tgd γ where the source is S and the tar-

get is �S, we now define γ†. As we shall see, if σ is the
composition formula, then σ† plays a complementary role
to σ�. For each k and each k-ary relational symbol R of S,
take x1, . . . , xk to be k distinct variables that do not ap-
pear in fulltgd(γ). Let AR be the set of all tgds of fulltgd(γ)
where the relational symbol in the right-hand side is �R. For
each α ∈ AR, assume that α is ν(y) → �R(y1, . . . , yk), where
y1, . . . , yk are not necessarily distinct (since α is full, every
yi appears in y). Define μα to be the first-order formula
∃y(ν(y) ∧ (x1 = y1) ∧ · · · ∧ (xk = yk)). Define ψR to be
R(x1 . . . , xk) → ∨{μα : α ∈ AR}. Since the empty disjunc-
tion represents “False”, it follows that if AR = ∅, then ψR is
equivalent to ¬R(x1 . . . , xk). Now define γ† to be the con-
junction of the formulas ψR (over all relational symbols R of
S). Note that γ† is a first-order formula.

Example 10.3. Assume that there are two source rela-
tion symbols R and S, and assume that fulltgd(γ) consists of
the following tgds, which we denote by α1, α2:

(α1) : R(y2, y1, y3) ∧ S(y2, y3, y3) → �R(y1, y1, y2)
(α2) : S(y1, y2, y2) → �R(y1, y2, y1)

So μα1 , μα2 are as follows:

(μα1) : ∃y1∃y2∃y3 (R(y2, y1, y3) ∧ S(y2, y3, y3) ∧
(x1 = y1) ∧ (x2 = y1) ∧ (x3 = y2))

(μα2) : ∃y1∃y2∃y3 (S(y1, y2, y2) ∧
(x1 = y1) ∧ (x2 = y2) ∧ (x3 = y1))

Then ψR is R(x1, x2, x3) → (μα1 ∨ μα2). Further, ψS is
¬S(x1, x2, x3), since AS = ∅. Finally, γ† is (R(x1, x2, x3) →
(μα1 ∨ μα2)) ∧ ¬S(x1, x2, x3). (Of course, this formula is
universally quantified with ∀x1∀x2∀x3, but we suppress this
as usual.)

We now have the following proposition.

Proposition 10.4. Let γ be an SO tgd with source S and

target �S, and let I be an instance of S. Then I |= γ† if and

only if for every J such that 〈I, J〉 |= γ, necessarily �I ⊆ J.

The next theorem gives a formula that defines the largest
class S of source instances where M21 is an S-inverse of
M12.

Theorem 10.5. Assume that M12 = (S1,S2, Σ12) and

M21 = (S2,�S1, Σ21) are schema mappings where Σ12 and
Σ21 are finite sets of s-t tgds. Let σ be Σ12 ◦Σ21. Then M21

is an inverse of M12 for I if and only if I |= σ� ∧ σ†.

57

Held fixed Complexity
M12 and M21 NP; may be NP-complete
Full M12 and M21 polytime
M12 ΣP

2 ; may be coNP-hard
Full M12 coNP; may be coNP-complete

Figure 1: Local invertibility: input is source in-
stance I

From our earlier Theorem 5.1, we can prove that if M12

and M21 are each defined by a finite set of s-t tgds and
held fixed, then the problem of deciding, given I , whether
M21 is an inverse of M12 for I is in NP. (Complexity results
appear in Section 11.) So by Fagin’s Theorem [3], the class
S of source instances I such that M21 is an inverse of M12

for I can be defined by a formula Γ in existential second-
order logic. What is remarkable is that, as Theorem 10.5
says, there is such a formula Γ, namely σ� ∧ σ†, that can
be obtained from the composition formula σ by a purely
syntactical transformation.

The following corollary gives an important case where S
is first-order definable.

Corollary 10.6. Assume that M12 and M21 are schema
mappings that are each defined by a finite set of full s-t tgds.
There is a first-order formula ϕ such that M21 is an inverse
of M12 for I if and only if I |= ϕ.

Example 10.7. We continue with our running example
(from Examples 3.1 and 3.2). We shall fulfill our promise to
show that the schema mapping M21 is an inverse of M12

for precisely those source instances I that satisfy Γ. We
noted that Γ (as given by (2)) looks mysteriously similar to
the composition formula (as given by (4)). We shall explain
this mystery.

We observed in Example 3.2 that σ logically implies ΣId.
We now show that this implies that σ† is valid. Let I be
an arbitrary instance of S1; we must show that I |= σ†. By
Proposition 10.4, we need only show that for every J such

that 〈I, J〉 |= σ, necessarily �I ⊆ J . Let J be arbitrary such
that 〈I, J〉 |= σ. Since σ |= ΣId, it follows that 〈I, J〉 |= ΣId.

Therefore, �I ⊆ J , as desired. So indeed, σ† is valid.
Therefore, by Theorem 10.5, we know that M21 is an in-

verse of M12 for I if and only if I |= σ�. But σ� is exactly
Γ. This not only proves our claim that the schema mapping
M21 is an inverse of M12 for precisely those source instances
I that satisfy Γ, but also explains the mystery of the resem-
blance of σ and Γ. In fact, this mysterious resemblance in
this example is what inspired us to search for and discover
Theorem 10.5.

11. COMPLEXITY RESULTS
We have investigated complexity issues, dealing with both

local and global invertibility. In this paper, we do not con-
sider complexity issues for S-invertibility except when S is
a singleton (local invertibility) and when S is the class of all
source instances.(global invertibility). It might be interest-
ing to consider complexity issues for other choices of S . Our
results are summarized in the tables of Figures 1 and 2. In
both tables, we consider separately the cases where the tgds
that define M12 and M21 are full.

Input Complexity
M12 and M21 DP-hard
Full M12 and M21 DP-complete
M12 coNP-hard
Full M12 coNP-complete

Figure 2: Global invertibility

In the table of Figure 1, the input is a source instance I .
The first line of the table says that if M12 and M21 are fixed
schema mappings each defined by a finite set of s-t tgds, then
the problem of deciding if M21 is an inverse of M12 for I
is in NP, and there is a choice of M12 and M21 where the
problem is NP-complete.8 In the second line we consider the
same problem as the first line, but M12 and M21 are each
defined by a finite set of full tgds. Then the complexity
drops to polynomial time (in fact, by Corollary 10.6, the
problem is even definable in first-order logic, which makes
it logspace computable). The third line considers whether
M12 has an inverse for I defined by a finite set of s-t tgds.
Since we have shown how to obtain a canonical local inverse
that is an inverse for I if there is any inverse for I defined
by a finite set of tgds, the reader may be puzzled as to why
this problem does not reduce to the problem in the first line,
where M12 and M21 are given. The reason is that the size
of Σ21 that defines the canonical local inverse grows with I ,
unlike the situation in the first line where Σ21 is given and
so of fixed size. There is a complexity gap in the third line,
where we have an upper bound of ΣP

2 in the polynomial-
time hierarchy, and a lower bound of coNP-hardness. In the
fourth line we consider the same problem as the third line,
but M12 is defined by a finite set of full tgds. The problem
is then in coNP, and there is a choice of M12 where the
problem is coNP-complete.

In the first line of the table of Figure 2, the input consists
of schema mappings M12 and M21 that are each defined by
a finite set of s-t tgds, and the problem is deciding whether
M21 is a global inverse of M12. In the second line we con-
sider the same problem as the first line, but M12 and M21

are each defined by a finite set of full tgds, and the prob-
lem is DP-complete.9 The third line considers whether M12

has a global inverse defined by a finite set of s-t tgds. In
the fourth line we consider the same problem as the third
line, but M12 is defined by a finite set of full tgds, and the
problem is coNP-complete. In fact, this problem is coNP-
complete even when the tgds that define M12 all have a
singleton left-hand side. The first and third lines inherit
their lower bounds from the full cases (the second and fourth
lines, respectively).

There is a large complexity gap in the first and third lines,
since it is open as to whether these problems are even decid-
able. When the tgds that define M12 and M21 are full, the
reason the problem is decidable (and in fact, DP-complete
or coNP-complete) is a small model theorem that guaran-
tees that if M21 is not a global inverse, then there is a small
(polynomial-size) counterexample I . We close this section
with a discussion of small model theorems, including a rea-
son for the difficulty in proving a small model theorem when
the tgds that define M12 and M21 are not necessarily full.

8The NP-hardness result was obtained by Phokion Kolaitis.
9The class DP consists of all decision problems that can be writ-
ten as the intersection of an NP problem and a coNP problem.

58

11.1 Small model theorems
We begin with a small submodel theorem for the case of

schema mappings that are each defined by a finite set of full
tgds.

Theorem 11.1. Let M12 = (S1,S2, Σ12) and M21 =

(S2,�S1, Σ21) be schema mappings where Σ12 and Σ21 are
finite sets of full s-t tgds. Let I be an instance of S1. Assume
that M21 is not an inverse of M12 for I. Then there is a
subinstance I ′ of I, with size polynomial in the size of Σ12

and Σ21, such that M21 is not an inverse of M12 for I ′.

As an immediate corollary of the small submodel theorem,
we obtain the following small model theorem.

Theorem 11.2. Let M12 = (S1,S2, Σ12) and M21 =

(S2,�S1, Σ21) be schema mappings where Σ12 and Σ21 are
finite sets of full s-t tgds. Assume that M21 is not a global
inverse of M12. Then there is an instance I, with size poly-
nomial in the size of Σ12 and Σ21, such that M21 is not an
inverse of M12 for I.

The next theorem implies that the small submodel the-
orem fails dramatically when the tgds are not necessarily
full.

Theorem 11.3. There are schema mappings M12 = (S1,

S2, Σ12) and M21 = (S2,�S1, Σ21), where Σ12 and Σ21 are
finite sets of s-t tgds, and where for arbitrarily large n, there
is an instance I of S1 consisting of n facts, such that M21

is not an inverse of M12 for I, but M21 is an inverse of
M12 for every proper subinstance I ′ of I.

Although the small submodel theorem fails when the tgds
are not necessarily full, it is open as to whether the small
model theorem holds in this case. If the small model theorem
were to hold, then our problems in the first and third lines
of the table of Figure 2 would be decidable (and as we can
show, even in ΠP

2 in the polynomial-time hierarchy).

12. SUMMARY AND OPEN PROBLEMS
We have given a formal definition for one schema mapping

to be an inverse of another schema mapping for a class S
of source instances. We have obtained a number of results
about our notion of inverse, and some of these results are
surprising.

There are many open problems, as we would expect from
a “first step” paper like this. Section 11 gives us several
open problems, including closing the complexity gaps and
resolving whether the small model theorem holds when the
tgds are not necessarily full. We now mention some other
open problems.

• We have focused most of our attention on schema map-
pings defined by a finite set of s-t tgds. What about
more general schema mappings? What if we allow tar-
get dependencies, such as functional dependencies?

• We have focused on right inverses, where we are given
M12 and want to find a right inverse M21. It might be
interesting to study the left inverse, where we are given
M21 and we wish to find M12.

• Our next open problem is somewhat imprecise, but is
important in practice. Assume that we are given M12.

How do we find a large class S and a schema mapping
M21 such that M21 is an S-inverse of M12? In fact,
there might be several such large classes S and corre-
sponding inverse mappings. How do we find them? This
problem is imprecise, because it is not clear what we
mean by a “large class” S . We should not necessarily
restrict our attention to classes S defined by a finitely
chasable set Γ of tgds and egds.

• It might be interesting to explore more fully the unique
solutions property, which is an interesting notion in its
own right.

• We might explore the notion of �I and chase21(chase12(I))
being homomorphically equivalent. By Theorem 5.4, this
notion is strictly weaker than M21 being an inverse of
M12 for I .

This paper is, we think, simply the first step in a fasci-
nating journey!

Acknowledgments
The author is grateful to Phokion Kolaitis, Lucian Popa,
and Wang-Chiew Tan for numerous invaluable discussions
and suggestions.

13. REFERENCES
[1] C. Beeri and M. Y. Vardi. A Proof Procedure for Data

Dependencies. Journal of the Association for Computing
Machinery (JACM), 31(4):718–741, 1984.

[2] P. A. Bernstein. Applying Model Management to Classical
Meta-Data Problems. In Conference on Innovative Data
Systems Research (CIDR), pages 209–220, 2003.

[3] R. Fagin. Generalized First-Order Spectra and
Polynomial-Time Recognizable Sets. In R. M. Karp, editor,
Complexity of Computation, SIAM-AMS Proceedings, Vol. 7,
pages 43–73, 1974.

[4] R. Fagin. Multivalued dependencies and a new normal form for
relational databases. ACM Transactions on Database Systems
(TODS), 2(3):262–278, Sept. 1977.

[5] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
Exchange: Semantics and Query Answering. Theoretical
Computer Science, pages 89–124, 2005.

[6] R. Fagin, P. G. Kolaitis, and L. Popa. Data Exchange: Getting
to the Core. ACM Transactions on Database Systems
(TODS), 30(1):174–210, 2005.

[7] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan. Composing
Schema Mappings: Second-Order Dependencies to the Rescue.
In ACM Symposium on Principles of Database Systems
(PODS), pages 83–94, 2004.

[8] P. Hell and J. Nešeťril. The Core of a Graph. Discrete
Mathematics, 109:117–126, 1992.

[9] R. Hull. Relative Information Capacity of Simple Relational
Database Schemata. SIAM J. on Computing, 15:856–886,
1986.

[10] M. Lenzerini. Data Integration: A Theoretical Perspective. In
ACM Symposium on Principles of Database Systems
(PODS), pages 233–246, 2002.

[11] S. Melnik. Generic Model Management: Concepts and
Algorithms. Springer, 2004.

[12] S. Melnik, P. Bernstein, A. Halevy, and E. Rahm. Supporting
Executable Mappings in Model Management. In ACM
SIGMOD International Conference on Management of Data
(SIGMOD), pages 167–178, 2005.

[13] N. C. Shu, B. C. Housel, R. W. Taylor, S. P. Ghosh, and V. Y.
Lum. EXPRESS: A Data EXtraction, Processing, amd
REStructuring System. ACM Transactions on Database
Systems (TODS), 2(2):134–174, 1977.

[14] C. Yu and L. Popa. Semantic Adaptation of Schema Mappings
when Schemas Evolve. In International Conference on Very
Large Data Bases (VLDB), pages 1006–1017, 2005.

59

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

