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Data exchange is the problem of taking data structured under a source schema and creating an
instance of a target schema that reflects the source data as accurately as possible. Given a source
instance, there may be many solutions to the data exchange problem, that is, many target in-
stances that satisfy the constraints of the data exchange problem. In an earlier article, we iden-
tified a special class of solutions that we call universal. A universal solution has homomorphisms
into every possible solution, and hence is a “most general possible” solution. Nonetheless, given
a source instance, there may be many universal solutions. This naturally raises the question of
whether there is a “best” universal solution, and hence a best solution for data exchange. We an-
swer this question by considering the well-known notion of the core of a structure, a notion that
was first studied in graph theory, and has also played a role in conjunctive-query processing. The
core of a structure is the smallest substructure that is also a homomorphic image of the struc-
ture. All universal solutions have the same core (up to isomorphism); we show that this core is
also a universal solution, and hence the smallest universal solution. The uniqueness of the core
of a universal solution together with its minimality make the core an ideal solution for data ex-
change. We investigate the computational complexity of producing the core. Well-known results by
Chandra and Merlin imply that, unless P = NP, there is no polynomial-time algorithm that, given
a structure as input, returns the core of that structure as output. In contrast, in the context of
data exchange, we identify natural and fairly broad conditions under which there are polynomial-
time algorithms for computing the core of a universal solution. We also analyze the computational
complexity of the following decision problem that underlies the computation of cores: given two
graphs G and H, is H the core of G? Earlier results imply that this problem is both NP-hard
and coNP-hard. Here, we pinpoint its exact complexity by establishing that it is a DP-complete
problem. Finally, we show that the core is the best among all universal solutions for answering ex-
istential queries, and we propose an alternative semantics for answering queries in data exchange
settings.
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1. INTRODUCTION AND SUMMARY OF RESULTS

1.1 The Data Exchange Problem

Data exchange is the problem of materializing an instance that adheres to a
target schema, given an instance of a source schema and a specification of the
relationship between the source schema and the target schema. This problem
arises in many tasks requiring data to be transferred between independent ap-
plications that do not necessarily adhere to the same data format (or schema).
The importance of data exchange was recognized a long time ago; in fact, an
early data exchange system was EXPRESS [Shu et al. 1977] from the 1970s,
whose main functionality was to convert data between hierarchical schemas.
The need for data exchange has steadily increased over the years and, actually,
has become more pronounced in recent years, with the proliferation of Web data
in various formats and with the emergence of e-business applications that need
to communicate data yet remain autonomous. The data exchange problem is
related to the data integration problem in the sense that both problems are
concerned with management of data stored in heterogeneous formats. The two
problems, however, are different for the following reasons. In data exchange, the
main focus is on actually materializing a target instance that reflects the source
data as accurately as possible; this can be a serious challenge, due to the inher-
ent underspecification of the relationship between the source and the target.
In contrast, a target instance need not be materialized in data integration; the
main focus there is on answering queries posed over the target schema using
views that express the relationship between the target and source schemas.

In a previous paper [Fagin et al. 2003], we formalized the data exchange
problem and embarked on an in-depth investigation of the foundational and
algorithmic issues that surround it. Our work has been motivated by practi-
cal considerations arising in the development of Clio [Miller et al. 2000; Popa
et al. 2002] at the IBM Almaden Research Center. Clio is a prototype system for
schema mapping and data exchange between autonomous applications. A data
exchange setting is a quadruple (S, T, �st, �t), where S is the source schema, T
is the target schema, �st is a set of source-to-target dependencies that express
the relationship between S and T, and �t is a set of dependencies that express
constraints on T. Such a setting gives rise to the following data exchange prob-
lem: given an instance I over the source schema S, find an instance J over
the target schema T such that I together with J satisfy the source-to-target
dependencies �st, and J satisfies the target dependencies �t . Such an instance
J is called a solution for I in the data exchange setting. In general, many differ-
ent solutions for an instance I may exist. Thus, the question is: which solution
should one choose to materialize, so that it reflects the source data as accurately
as possible? Moreover, can such a solution be efficiently computed?

In Fagin et al. [2003], we investigated these issues for data exchange settings
in which S and T are relational schemas, �st is a set of tuple-generating depen-
dencies (tgds) between S and T, and �t is a set of tgds and equality-generating
dependencies (egds) on T. We isolated a class of solutions, called universal so-
lutions, possessing good properties that justify selecting them as the semantics

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.



176 • R. Fagin et al.

of the data exchange problem. Specifically, universal solutions have homomor-
phisms into every possible solution; in particular, they have homomorphisms
into each other, and thus are homomorphically equivalent. Universal solutions
are the most general among all solutions and, in a precise sense, they represent
the entire space of solutions. Moreover, as we shall explain shortly, universal
solutions can be used to compute the “certain answers” of queries q that are
unions of conjunctive queries over the target schema. The set certain(q, I ) of
certain answers of a query q over the target schema, with respect to a source
instance I , consists of all tuples that are in the intersection of all q(J )’s, as
J varies over all solutions for I (here, q(J ) denotes the result of evaluating q
on J ). The notion of the certain answers originated in the context of incomplete
databases (see van der Meyden [1998] for a survey). Moreover, the certain an-
swers have been used for query answering in data integration [Lenzerini 2002].
In the same data integration context, Abiteboul and Duschka [1998] studied
the complexity of computing the certain answers.

We showed [Fagin et al. 2003] that the certain answers of unions of con-
junctive queries can be obtained by simply evaluating these queries on some
arbitrarily chosen universal solution. We also showed that, under fairly gen-
eral, yet practical, conditions, a universal solution exists whenever a solution
exists. Furthermore, we showed that when these conditions are satisfied, there
is a polynomial-time algorithm for computing a canonical universal solution;
this algorithm is based on the classical chase procedure [Beeri and Vardi 1984;
Maier et al. 1979].

1.2 Data Exchange with Cores

Even though they are homomorphically equivalent to each other, universal solu-
tions need not be unique. In other words, in a data exchange setting, there may
be many universal solutions for a given source instance I . Thus, it is natural to
ask: what makes a universal solution “better” than another universal solution?
Is there a “best” universal solution and, of course, what does “best” really mean?
If there is a “best” universal solution, can it be efficiently computed?

The present article addresses these questions and offers answers that are
based on using minimality as a key criterion for what constitutes the “best”
universal solution. Although universal solutions come in different sizes, they
all share a unique (up to isomorphism) common “part,” which is nothing else
but the core of each of them, when they are viewed as relational structures.
By definition, the core of a structure is the smallest substructure that is also a
homomorphic image of the structure. The concept of the core originated in graph
theory, where a number of results about its properties have been established
(see, for instance, Hell and Nešetřil [1992]). Moreover, in the early days of
database theory, Chandra and Merlin [1977] realized that the core of a structure
is useful in conjunctive-query processing. Indeed, since evaluating joins is the
most expensive among the basic relational algebra operations, one of the most
fundamental problems in query processing is the join-minimization problem:
given a conjunctive query q, find an equivalent conjunctive query involving the
smallest possible number of joins. In turn, this problem amounts to computing
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the core of the relational instance Dq that is obtained from q by putting a fact
into Dq for each conjunct of q (see Abiteboul et al. [1995]; Chandra and Merlin
[1977]; Kanellakis [1990]).

Consider a data exchange setting (S, T, �st, �t) in which �st is a set of source-
to-target tgds and �t is a set of target tgds and target egds. Since all universal
solutions for a source instance I are homomorphically equivalent, it is easy to
see that their cores are isomorphic. Moreover, we show in this article that the
core of a universal solution for I is itself a solution for I . It follows that the
core of the universal solutions for I is the smallest universal solution for I , and
thus an ideal candidate for the “best” universal solution, at least in terms of
the space required to materialize it.

After this, we address the issue of how hard it is to compute the core of a
universal solution. Chandra and Merlin [1977] showed that join minimization
is an NP-hard problem by pointing out that a graph G is 3-colorable if and
only if the 3-element clique K3 is the core of the disjoint sum G ⊕ K3 of G with
K3. From this, it follows that, unless P = NP, there is no polynomial-time al-
gorithm that, given a structure as input, outputs its core. At first sight, this
result casts doubts on the tractability of computing the core of a universal solu-
tion. For data exchange, however, we give natural and fairly broad conditions
under which there are polynomial-time algorithms for computing the cores of
universal solutions. Specifically, we show that there are polynomial-time algo-
rithms for computing the core of universal solutions in data exchange settings
in which �st is a set of source-to-target tgds and �t is a set of target egds. It
remains an open problem to determine whether this result can be extended to
data exchange settings in which the target constraints �t consist of both egds
and tgds. We also analyze the computational complexity of the following deci-
sion problem, called CORE IDENTIFICATION, which underlies the computation of
cores: given two graphs G and H, is H the core of G? As seen above, the results
by Chandra and Merlin [1977] imply that this problem is NP-hard. Later on,
Hell and Nešetřil [1992] showed that deciding whether a graph G is its own
core is a coNP-complete problem; in turn, this implies that CORE IDENTIFICATION

is a coNP-hard problem. Here, we pinpoint the exact computational complexity
of CORE IDENTIFICATION by showing that it is a DP-complete problem, where DP
is the class of decision problems that can be written as the intersection of an
NP-problem and a coNP-problem.

In the last part of the article, we further justify the selection of the core
as the “best” universal solution by establishing its usefulness in answering
queries over the target schema T. An existential query q(x) is a formula of
the form ∃yφ(x, y), where φ(x, y) is a quantifier-free formula.1 Perhaps the
most important examples of existential queries are the conjunctive queries
with inequalities �=. Another useful example of existential queries is the set-
difference query, which asks whether there is a member of the set difference
A − B.

Let J0 be the core of all universal solutions for a source instance I . As dis-
cussed earlier, since J0 is itself a universal solution for I , the certain answers

1We shall also give a safety condition on φ.
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of conjunctive queries over T can be obtained by simply evaluating them on J0.
In Fagin et al. [2003], however, it was shown that there are simple conjunctive
queries with inequalities �= such that evaluating them on a universal solution
always produces a proper superset of the set of certain answers for I . Nonethe-
less, here we show that evaluating existential queries on the core J0 of the uni-
versal solutions yields the best approximation (that is, the smallest superset)
of the set of the certain answers, among all universal solutions. Analogous to
the definition of certain answers, let us define the certain answers on universal
solutions of a query q over the target schema, with respect to a source instance
I , to be the set of all tuples that are in the intersection of all q(J )’s, as J varies
over all universal solutions for I ; we write u-certain(q, I ) to denote the certain
answers of q on universal solutions for I . Since we consider universal solutions
to be the preferred solutions to the data exchange problem, this suggests the
naturalness of this notion of certain answers on universal solutions as an alter-
native semantics for query answering in data exchange settings. We show that
if q is an existential query and J0 is the core of the universal solutions for I ,
then the set of those tuples in q(J0) whose entries are elements from the source
instance I is equal to the set u-certain(q, I ) of the certain answers of q on uni-
versal solutions. We also show that in the LAV setting (an important scenario
in data integration) there is an interesting contrast between the complexity
of computing certain answers and of computing certain answers on universal
solutions. Specifically, Abiteboul and Duschka [1998] showed that there is a
data exchange setting with �t = ∅ and a conjunctive query with inequalities �=
such that computing the certain answers of this query is a coNP-complete prob-
lem. In contrast to this, we establish here that in an even more general data
exchange setting (S, T, �st, �t) in which �st is an arbitrary set of tgds and
�t is an arbitrary set of egds, for every existential query q (and in particular,
for every conjunctive query q with inequalities �=), there is a polynomial-time
algorithm for computing the set u-certain(q, I ) of the certain answers of q on
universal solutions.

2. PRELIMINARIES

This section contains the main definitions related to data exchange and a min-
imum amount of background material. The presentation follows closely our
earlier paper [Fagin et al. 2003].

2.1 The Data Exchange Problem

A schema is a finite sequence R = 〈R1, . . . , Rk〉 of relation symbols, each of a
fixed arity. An instance I (over the schema R) is a sequence 〈R I

1 , . . . , R I
k 〉 that

associates each relation symbol Ri with a relation R I
i of the same arity as Ri.

We shall often abuse the notation and use Ri to denote both the relation symbol
and the relation R I

i that interprets it. We may refer to R I
i as the Ri relation of

I . Given a tuple t occurring in a relation R, we denote by R(t) the association
between t and R, and call it a fact. An instance I can be identified with the set of
all facts arising from the relations R I

i of I . If R is a schema, then a dependency
over R is a sentence in some logical formalism over R.
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Let S = 〈S1, . . . , Sn〉 and T = 〈T1, . . . , Tm〉 be two schemas with no relation
symbols in common. We refer to S as the source schema and to the Si ’s as the
source relation symbols. We refer to T as the target schema and to the Tj ’s as the
target relation symbols. We denote by 〈S, T〉 the schema 〈S1, . . . , Sn, T1, . . . , Tm〉.
Instances over S will be called source instances, while instances over T will be
called target instances. If I is a source instance and J is a target instance, then
we write 〈I, J〉 for the instance K over the schema 〈S, T〉 such that SK

i = SI
i

and T K
j = T J

j , when 1 ≤ i ≤ n and 1 ≤ j ≤ m.
A source-to-target dependency is, in general, a dependency over 〈S, T〉 of the

form ∀x(φS(x) → χT(x)), where φS(x) is a formula, with free variables x, of
some logical formalism over S, and χT(x) is a formula, with free variables x, of
some logical formalism over T (these two logical formalisms may be different).
We use the notation x for a vector of variables x1, . . . , xk . We assume that all
the variables in x appear free in φS(x). A target dependency is, in general, a
dependency over the target schema T (the formalism used to express a target
dependency may be different from those used for the source-to-target depen-
dencies). The source schema may also have dependencies that we assume are
satisfied by every source instance. While the source dependencies may play
an important role in deriving source-to-target dependencies [Popa et al. 2002],
they do not play any direct role in data exchange, because we take the source
instance to be given.

Definition 2.1. A data exchange setting (S, T, �st, �t) consists of a source
schema S, a target schema T, a set �st of source-to-target dependencies, and
a set �t of target dependencies. The data exchange problem associated with
this setting is the following: given a finite source instance I , find a finite target
instance J such that 〈I, J〉 satisfies �st and J satisfies �t . Such a J is called a
solution for I or, simply, a solution if the source instance I is understood from
the context.

For most practical purposes, and for most of the results of this article (all
results except for Proposition 2.7), each source-to-target dependency in �st is a
tuple generating dependency (tgd) [Beeri and Vardi 1984] of the form

∀x(φS(x) → ∃yψT(x, y)),

where φS(x) is a conjunction of atomic formulas over S and ψT(x, y) is a conjunc-
tion of atomic formulas over T. We assume that all the variables in x appear in
φS(x). Moreover, each target dependency in �t is either a tgd, of the form

∀x(φT(x) → ∃yψT(x, y)),

or an equality-generating dependency (egd) [Beeri and Vardi 1984], of the form

∀x(φT(x) → (x1 = x2)).

In these dependencies, φT(x) and ψT(x, y) are conjunctions of atomic formulas
over T, where all the variables in x appear in φT(x), and x1, x2 are among
the variables in x. The tgds and egds together comprise Fagin’s (embedded)
implicational dependencies [Fagin 1982]. As in Fagin et al. [2003], we will drop
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the universal quantifiers in front of a dependency, and implicitly assume such
quantification. However, we will write down all the existential quantifiers.

Source-to-target tgds are a natural and powerful language for expressing the
relationship between a source schema and a target schema. Such dependencies
are automatically derived and used as representation of a schema mapping in
the Clio system [Popa et al. 2002]. Furthermore, data exchange settings with
tgds as source-to-target dependencies include as special cases both local-as-
view (LAV) and global-as-view (GAV) data integration systems in which the
views are sound and defined by conjunctive queries (see Lenzerini’s tutorial
[Lenzerini 2002] for a detailed discussion of LAV and GAV data integration
systems and sound views).

A LAV data integration system with sound views defined by conjunctive
queries is a special case of a data exchange setting (S, T, �st, �t), in which
S is the source schema (consisting of the views, in LAV terminology), T is the
target schema (or global schema, in LAV terminology), the set �t of target de-
pendencies is empty, and each source-to-target tgd in �st is of the form S(x) →
∃y ψT(x, y), where S is a single relation symbol of the source schema S (a view,
in LAV terminology) and ψT is a conjunction of atomic formulas over the target
schema T. A GAV setting is similar, but the tgds in �st are of the form φS(x) →
T (x), where T is a single relation symbol over the target schema T (a view, in
GAV terminology), and φS is a conjunction of atomic formulas over the source
schema S. Since, in general, a source-to-target tgd relates a conjunctive query
over the source schema to a conjunctive query over the target schema, a data
exchange setting is strictly more expressive than LAV or GAV, and in fact it can
be thought of as a GLAV (global-and-local-as-view) system [Friedman et al.
1999; Lenzerini 2002]. These similarities between data integration and data
exchange notwithstanding, the main difference between the two is that in data
exchange we have to actually materialize a finite target instance that best re-
flects the given source instance. In data integration no such exchange of data
is required; the target can remain virtual.

In general there may be multiple solutions for a given data exchange problem.
The following example illustrates this issue and raises the question of which
solution to choose to materialize.

Example 2.2. Consider a data exchange problem in which the source
schema consists of two binary relation symbols as follows: EmpCity, associating
employees with cities they work in, and LivesIn, associating employees with
cities they live in. Assume that the target schema consists of three binary re-
lation symbols as follows: Home, associating employees with their home cities,
EmpDept, associating employees with departments, and DeptCity, associating
departments with their cities. We assume that �t = ∅. The source-to-target
tgds and the source instance are as follows, where (d1), (d2), (d3), and (d4) are
labels for convenient reference later:

�st : (d1) EmpCity(e, c) → ∃HHome(e, H),
(d2) EmpCity(e, c) → ∃D(EmpDept(e, D) ∧ DeptCity(D, c)),
(d3) LivesIn(e, h) → Home(e, h),
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(d4) LivesIn(e, h) → ∃D∃C(EmpDept(e, D) ∧ DeptCity(D, C)),

I = {EmpCity(Alice, SJ), EmpCity(Bob, SD),
LivesIn(Alice, SF), LivesIn(Bob, LA)}.

We shall use this example as a running example throughout this article. Since
the tgds in �st do not completely specify the target instance, there are multiple
solutions that are consistent with the specification. One solution is

J0 = {Home(Alice, SF), Home(Bob, SD),
EmpDept(Alice, D1), EmpDept(Bob, D2),
DeptCity(D1, SJ), DeptCity(D2, SD)},

where D1 and D2 represent “unknown” values, that is, values that do not occur
in the source instance. Such values are called labeled nulls and are to be dis-
tinguished from the values occurring in the source instance, which are called
constants. Instances with constants and labeled nulls are not specific to data
exchange. They have long been considered, in various forms, in the context of
incomplete or indefinite databases (see van der Meyden [1998]) as well as in
the context of data integration (see Halevy [2001]; Lenzerini [2002]).

Intuitively, in the above instance, D1 and D2 are used to “give values” for
the existentially quantified variable D of (d2), in order to satisfy (d2) for the
two source tuples EmpCity(Alice, SJ) and EmpCity(Bob, SD). In contrast, two
constants (SF and SD) are used to “give values” for the existentially quantified
variable H of (d1), in order to satisfy (d1) for the same two source tuples.

The following instances are solutions as well:

J = {Home(Alice, SF), Home(Bob, SD),
Home(Alice, H1), Home(Bob, H2),
EmpDept(Alice, D1), EmpDept(Bob, D2),
DeptCity(D1, SJ), DeptCity(D2, SD)},

J ′
0 = {Home(Alice, SF), Home(Bob, SD),

EmpDept(Alice, D), EmpDept(Bob, D),
DeptCity(D, SJ), DeptCity(D, SD)}.

The instance J differs from J0 by having two extra Home tuples where the
home cities of Alice and Bob are two nulls, H1 and H2, respectively. The second
instance J ′

0 differs from J0 by using the same null (namely D) to denote the
“unknown” department of both Alice and Bob.

Next, we review the notion of universal solutions, proposed in Fagin et al.
[2003] as the most general solutions.

2.2 Universal Solutions

We denote by Const the set (possibly infinite) of all values that occur in source
instances, and as before we call them constants. We also assume an infinite
set Var of values, called labeled nulls, such that Var ∩ Const = ∅. We reserve
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the symbols I, I ′, I1, I2, . . . for instances over the source schema S and with
values in Const. We reserve the symbols J, J ′, J1, J2, . . . for instances over the
target schema T and with values in Const ∪ Var. Moreover, we require that
solutions of a data exchange problem have their values drawn from Const∪Var.
If R = 〈R1, . . . , Rk〉 is a schema and K is an instance over R with values in
Const∪Var, then Const(K ) denotes the set of all constants occurring in relations
in K , and Var(K ) denotes the set of labeled nulls occurring in relations in K .

Definition 2.3. Let K1 and K2 be two instances over R with values in
Const ∪ Var.

1. A homomorphism h: K1 → K2 is a mapping from Const(K1) ∪ Var(K1) to
Const(K2) ∪ Var(K2) such that (1) h(c) = c, for every c ∈ Const(K1); (2) for
every fact Ri(t) of K1, we have that Ri(h(t)) is a fact of K2 (where, if t =
(a1, . . . , as), then h(t) = (h(a1), . . ., h(as))).

2. K1 is homomorphically equivalent to K2 if there are homomorphisms h:
K1 → K2 and h′ : K2 → K1.

Definition 2.4 (Universal Solution). Consider a data exchange setting (S,
T, �st, �t). If I is a source instance, then a universal solution for I is a solution
J for I such that for every solution J ′ for I , there exists a homomorphism
h : J → J ′.

Example 2.5. The instance J ′
0 in Example 2.2 is not universal. In particu-

lar, there is no homomorphism from J ′
0 to J0. Hence, the solution J ′

0 contains
“extra” information that was not required by the specification; in particular, J ′

0
“assumes” that the departments of Alice and Bob are the same. In contrast, it
can easily be shown that J0 and J have homomorphisms to every solution (and
to each other). Thus, J0 and J are universal solutions.

Universal solutions possess good properties that justify selecting them (as
opposed to arbitrary solutions) for the semantics of the data exchange problem.
A universal solution is more general than an arbitrary solution because, by
definition, it can be homomorphically mapped into that solution. Universal
solutions have, also by their definition, homomorphisms to each other and,
thus, are homomorphically equivalent.

2.2.1 Computing Universal Solutions. In Fagin et al. [2003], we addressed
the question of how to check the existence of a universal solution and how
to compute one, if one exists. In particular, we identified fairly general, yet
practical, conditions that guarantee that universal solutions exist whenever
solutions exist. Moreover, we showed that there is a polynomial-time algorithm
for computing a canonical universal solution, if a solution exists; this algorithm
is based on the classical chase procedure. The following result summarizes these
findings.

THEOREM 2.6 [FAGIN ET AL. 2003]. Assume a data exchange setting where �st
is a set of tgds, and �t is the union of a weakly acyclic set of tgds with a set of egds.

(1) The existence of a solution can be checked in polynomial time.
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(2) A universal solution exists if and only if a solution exists.
(3) If a solution exists, then a universal solution can be produced in polynomial

time using the chase.

The notion of a weakly acyclic set of tgds first arose in a conversation between the
third author and A. Deutsch in 2001. It was then independently used in Deutsch
and Tannen [2003] and in Fagin et al. [2003] (in the former article, under the
term constraints with stratified-witness). This class guarantees the termina-
tion of the chase and is quite broad, as it includes both sets of full tgds [Beeri
and Vardi 1984] and sets of acyclic inclusion dependencies [Cosmadakis and
Kanellakis 1986]. We note that, when the set �t of target constraints is empty,
a universal solution always exists and a canonical one is constructible in poly-
nomial time by chasing 〈I, ∅〉 with �st. In the Example 2.2, the instance J is
such a canonical universal solution. If the set �t of target constraints contains
egds, then it is possible that no universal solution exists (and hence no solution
exists, either, by the above theorem). This occurs (see Fagin et al. [2003]) when
the chase fails by attempting to identify two constants while trying to apply
some egd of �t . If the chase does not fail, then the result of chasing 〈I, ∅〉 with
�st ∪ �t is a canonical universal solution.

2.2.2 Certain Answers. In a data exchange setting, there may be many
different solutions for a given source instance. Hence, given a source instance,
the question arises as to what the result of answering queries over the target
schema is. Following earlier work on information integration, in Fagin et al.
[2003] we adopted the notion of the certain answers as the semantics of query
answering in data exchange settings. As stated in Section 1, the set certain(q, I )
of the certain answers of q with respect to a source instance I is the set of tuples
that appear in q(J ) for every solution J ; in symbols,

certain(q, I ) =
⋂

{q(J ) : J is a solution for I}.
Before stating the connection between the certain answers and universal

solutions, let us recall the definitions of conjunctive queries (with inequalities)
and unions of conjunctive queries (with inequalities). A conjunctive query q(x)
over a schema R is a formula of the form ∃yφ(x, y) where φ(x, y) is a conjunction
of atomic formulas over R. If, in addition to atomic formulas, the conjunction
φ(x, y) is allowed to contain inequalities of the form zi �= z j , where zi, z j are
variables among x and y, we call q(x) a conjunctive query with inequalities. We
also impose a safety condition, that every variable in x and y must appear in an
atomic formula, not just in an inequality. A union of conjunctive queries (with
inequalities) is a disjunction q(x) = q1(x) ∨ · · · ∨ qn(x) where q1(x), . . . , qn(x) are
conjunctive queries (with inequalities).

If J is an arbitrary solution, let us denote by q(J )↓ the set of all “null-free”
tuples in q(J ), that is the set of all tuples in q(J ) that are formed entirely of
constants. The next proposition from Fagin et al. [2003] asserts that null-free
evaluation of conjunctive queries on an arbitrarily chosen universal solution
gives precisely the set of certain answers. Moreover, universal solutions are the
only solutions that have this property.
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PROPOSITION 2.7 [FAGIN ET AL. 2003]. Consider a data exchange setting with
S as the source schema, T as the target schema, and such that the dependencies
in the sets �st and �t are arbitrary.

(1) Let q be a union of conjunctive queries over the target schema T. If I is a
source instance and J is a universal solution, then certain(q, I ) = q(J )↓.

(2) Let I be a source instance and J be a solution such that, for every conjunctive
query q over T, we have that certain(q, I ) = q(J )↓. Then J is a universal
solution.

3. DATA EXCHANGE WITH CORES

3.1 Multiple Universal Solutions

Even if we restrict attention to universal solutions instead of arbitrary solu-
tions, there may still exist multiple, nonisomorphic universal solutions for a
given instance of a data exchange problem. Moreover, although these universal
solutions are homomorphically equivalent to each other, they may have dif-
ferent sizes (where the size is the number of tuples). The following example
illustrates this state of affairs.

Example 3.1. We again revisit our running example from Example 2.2. As
we noted earlier, of the three target instances given there, two of them (namely,
J0 and J ) are universal solutions for I . These are nonisomorphic universal
solutions (since they have different sizes). We now give an infinite family of
nonisomorphic universal solutions, that we shall make use of later.

For every m ≥ 0, let Jm be the target instance

Jm = {Home(Alice, SF), Home(Bob, SD),
EmpDept(Alice, X 0), EmpDept(Bob, Y0),
DeptCity(X 0, SJ), DeptCity(Y0, SD),

. . .

EmpDept(Alice, X m), EmpDept(Bob, Ym),
DeptCity(X m, SJ), DeptCity(Ym, SD)},

where X 0, Y0, . . . , X m, Ym are distinct labeled nulls. (In the case of m = 0,
the resulting instance J0 is the same, modulo renaming of nulls, as the ear-
lier J0 from Example 2.2. We take the liberty of using the same name, since
the choice of nulls really does not matter.) It is easy to verify that each tar-
get instance Jm, for m ≥ 0, is a universal solution for I ; thus, there are in-
finitely many nonisomorphic universal solutions for I . It is also easy to see that
every universal solution must contain at least four tuples EmpDept(Alice, X ),
EmpDept(Bob, Y ), DeptCity(X , SJ), and DeptCity(Y , SD), for some labeled nulls
X and Y , as well as the tuples Home(Alice, SF) and Home(Bob, SD). Consequently,
the instance J0 has the smallest size among all universal solutions for I and
actually is the unique (up to isomorphism) universal solution of smallest size.
Thus, J0 is a rather special universal solution and, from a size point of view, a
preferred candidate to materialize in data exchange.
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Motivated by the preceding example, in the sequel we introduce and study the
concept of the core of a universal solution. We show that the core of a universal
solution is the unique (up to isomorphism) smallest universal solution. We then
address the problem of computing the core and also investigate the use of cores
in answering queries over the target schemas. The results that we will establish
make a compelling case that cores are the preferred solutions to materialize in
data exchange.

3.2 Cores and Universal Solutions

In addition to the notion of an instance over a schema (which we defined earlier),
we find it convenient to define the closely related notion of a structure over a
schema. The difference is that a structure is defined with a universe, whereas
the universe of an instance is implicitly taken to be the “active domain,” that is,
the set of elements that appear in tuples of the instance. Furthermore, unlike
target instances in data exchange settings, structures do not necessarily have
distinguished elements (“constants”) that have to be mapped onto themselves
by homomorphisms.

More formally, a structure A (over the schema R = 〈R1, . . . , Rk〉) is a sequence
〈A, RA

1 , . . . , RA
k 〉, where A is a nonempty set, called the universe, and each RA

i is
a relation on A of the same arity as the relation symbol Ri. As with instances, we
shall often abuse the notation and use Ri to denote both the relation symbol and
the relation RA

i that interprets it. We may refer to RA
i as the Ri relation of A. If A

is finite, then we say that the structure is finite. A structure B = (B, RB
1 , . . . , RB

k )
is a substructure of A if B ⊆ A and RB

i ⊆ RA
i , for 1 ≤ i ≤ k. We say that

B is a proper substructure of A if it is a substructure of A and at least one
of the containments RB

i ⊆ RA
i , for 1 ≤ i ≤ k, is a proper one. A structure

B = (B, RB
1 , . . . , RB

k ) is an induced substructure of A if B ⊆ A and, for every 1 ≤
i ≤ k, we have that RB

i = {(x1, . . . , xn) | RA
i (x1, . . . , xn) and x1, . . . , xn are in B}.

Definition 3.2. A substructure C of structure A is called a core of A if there
is a homomorphism from A to C, but there is no homomorphism from A to a
proper substructure of C. A structure C is called a core if it is a core of itself,
that is, if there is no homomorphism from C to a proper substructure of C.

Note that C is a core of A if and only if C is a core, C is a substructure of A,
and there is a homomorphism from A to C. The concept of the core of a graph
has been studied extensively in graph theory (see Hell and Nešetřil [1992]).
The next proposition summarizes some basic facts about cores; a proof can be
found in Hell and Nešetřil [1992].

PROPOSITION 3.3. The following statements hold:

—Every finite structure has a core; moreover, all cores of the same finite structure
are isomorphic.

—Every finite structure is homomorphically equivalent to its core. Consequently,
two finite structures are homomorphically equivalent if and only if their cores
are isomorphic.
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—If C is the core of a finite structure A, then there is a homomorphism h: A → C
such that h(v) = v for every member v of the universe of C.

—If C is the core of a finite structure A, then C is an induced substructure
of A.

In view of Proposition 3.3, if A is a finite structure, there is a unique (up to
isomorphism) core of A, which we denote by core(A).

We can similarly define the notions of a subinstance of an instance and of a
core of an instance. We identify the instance with the corresponding structure,
where the universe of the structure is taken to be the active domain of the
instance, and where we distinguish the constants. That is, we require that if
h is a homomorphism and c is a constant, then h(c) = c (as already defined in
Section 2.2). The results about cores of structures will then carry over to cores
of instances.

Universal solutions for I are unique up to homomorphic equivalence, but as
we saw in Example 3.1, they need not be unique up to isomorphism. Proposi-
tion 3.3, however, implies that their cores are isomorphic; in other words, all
universal solutions for I have the same core up to isomorphism. Moreover, if J
is a universal solution for I and core(J ) is a solution for I , then core(J ) is also
a universal solution for I , since J and core(J ) are homomorphically equiva-
lent. In general, if the dependencies �st and �t are arbitrary, then the core of
a solution to an instance of the data exchange problem need not be a solution.
The next result shows, however, that this cannot happen if �st is a set of tgds
and �t is a set of tgds and egds.

PROPOSITION 3.4. Let (S, T, �st, �t) be a data exchange setting in which �st
is a set of tgds and �t is a set of tgds and egds. If I is a source instance and J is
a solution for I , then core(J ) is a solution for I . Consequently, if J is a universal
solution for I , then also core(J ) is a universal solution for I .

PROOF. Let φS(x) → ∃yψT(x, y) be a tgd in �st and a = (a1, . . . , an) a tuple of
constants such that I |= φS(a). Since J is a solution for I , there is a tuple b =
(b1, . . . , bs) of elements of J such that 〈I, J〉 |= ψT(a, b). Let h be a homomor-
phism from J to core(J ). Then h(ai) = ai, since each ai is a constant, for 1 ≤
i ≤ n. Consequently, 〈I, core(J )〉 |= ψT(a, h(b)), where h(b) = (h(b1), . . . , h(bs)).
Thus, 〈I, core(J )〉 satisfies the tgd.

Next, let φT(x) → ∃yψT(x, y) be a tgd in �t and a = (a1, . . . , an) a tuple of
elements in core(J ) such that core(J ) |= φT(a). Since core(J ) is a subinstance
of J , it follows that J |= φT(a), and since J is a solution, it follows that there
is a tuple b = (b1, . . . , bs) of elements of J such that J |= ψT(a, b). According to
the last part of Proposition 3.3, there is a homomorphism h from J to core(J )
such that h(v) = v, for every v in core(J ). In particular, h(ai) = ai, for 1 ≤ i ≤ n.
It follows that core(J ) |= ψT(a, h(b)), where h(b) = (h(b1), . . . , h(bs)). Thus,
core(J ) satisfies the tgd.

Finally, let φT(x) → (x1 = x2) be an egd in �t . If a = (a1, . . . , as) is a tuple of
elements in core(J ) such that core(J ) |= φT(a), then J |= φT(a), because core(J )
is a subinstance of J . Since J is a solution, it follows that a1 = a2. Thus, core(J )
satisfies every egd in �t .
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COROLLARY 3.5. Let (S, T, �st, �t) be a data exchange setting in which �st is
a set of tgds and �t is a set of tgds and egds. If I is a source instance for which
a universal solution exists, then there is a unique (up to isomorphism) universal
solution J0 for I having the following properties:

— J0 is a core and is isomorphic to the core of every universal solution J for I .
—If J is a universal solution for I , there is a one-to-one homomorphism h from

J0 to J. Hence, |J0| ≤ |J |, where |J0| and |J | are the sizes of J0 and J.

We refer to J0 as the core of the universal solutions for I . As an illustration
of the concepts discussed in this subsection, recall the data exchange problem
of Example 3.1. Then J0 is indeed the core of the universal solutions for I .

The core of the universal solutions is the preferred universal solution to
materialize in data exchange, since it is the unique most compact universal
solution. In turn, this raises the question of how to compute cores of universal
solutions. As mentioned earlier, universal solutions can be canonically com-
puted by using the chase. However, the result of such a chase, while a universal
solution, need not be the core. In general, an algorithm other than the chase
is needed for computing cores of universal solutions. In the next two sections,
we study what it takes to compute cores. We begin by analyzing the complexity
of computing cores of arbitrary instances and then focus on the computation of
cores of universal solutions in data exchange.

4. COMPLEXITY OF CORE IDENTIFICATION

Chandra and Merlin [1977] were the first to realize that computing the core
of a relational structure is an important problem in conjunctive query pro-
cessing and optimization. Unfortunately, in its full generality this problem is
intractable. Note that computing the core is a function problem, not a decision
problem. One way to gauge the difficulty of a function problem is to analyze the
computational complexity of its underlying decision problem.

Definition 4.1. CORE IDENTIFICATION is the following decision problem: given
two structures A and B over some schema R such that B is a substructure of
A, is core(A) = B?

It is easy to see that CORE IDENTIFICATION is an NP-hard problem. Indeed,
consider the following polynomial-time reduction from 3-COLORABILITY: a graph
G is 3-colorable if and only if core(G ⊕ K3) = K3, where K3 is the complete
graph with 3 nodes and ⊕ is the disjoint sum operation on graphs. This re-
duction was already given by Chandra and Merlin [1977]. Later on, Hell and
Nešetřil [1992] studied the complexity of recognizing whether a graph is a core.
In precise terms, CORE RECOGNITION is the following decision problem: given a
structure A over some schema R, is A a core? Clearly, this problem is in coNP.
Hell and Nešetřil’s [1992] main result is that CORE RECOGNITION is a coNP-
complete problem, even if the inputs are undirected graphs. This is established
by exhibiting a rather sophisticated polynomial-time reduction from NON-3-
COLORABILITY on graphs of girth at least 7; the “gadgets” used in this reduction
are pairwise incomparable cores with certain additional properties. It follows
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that CORE IDENTIFICATION is a coNP-hard problem. Nonetheless, it appears that
the exact complexity of CORE IDENTIFICATION has not been pinpointed in the lit-
erature until now. In the sequel, we will establish that CORE IDENTIFICATION is
a DP-complete problem. We present first some background material about the
complexity class DP.

The class DP consists of all decision problems that can be written as the in-
tersection of an NP-problem and a coNP-problem; equivalently, DP consists of
all decision problems that can be written as the difference of two NP-problems.
This class was introduced by Papadimitriou and Yannakakis [1982], who dis-
covered several DP-complete problems. The prototypical DP-complete problem
is SAT/UNSAT: given two Boolean formulas φ and ψ , is φ satisfiable and ψ

unsatisfiable? Several problems that express some “critical” property turn out
to be DP-complete (see Papadimitriou [1994]). For instance, CRITICAL SAT is
DP-complete, where an instance of this problem is a CNF-formula φ and the
question is to determine whether φ is unsatisfiable, but if any one of its clauses
is removed, then the resulting formula is satisfiable. Moreover, Cosmadakis
[1983] showed that certain problems related to database query evaluation are
DP-complete. Note that DP contains both NP and coNP as subclasses; further-
more, each DP-complete problem is both NP-hard and coNP-hard. The pre-
vailing belief in computational complexity is that the above containments are
proper, but proving this remains an outstanding open problem. In any case,
establishing that a certain problem is DP-complete is interpreted as signify-
ing that this problem is intractable and, in fact, “more intractable” than an
NP-complete problem.

Here, we establish that CORE IDENTIFICATION is a DP-complete problem by
exhibiting a reduction from 3-COLORABILITY/NON-3-COLORABILITY on graphs of
girth at least 7. This reduction is directly inspired by the reduction of NON-3-
COLORABILITY on graphs of girth at least 7 to CORE RECOGNITION, given in Hell
and Nešetřil [1992].

THEOREM 4.2. CORE IDENTIFICATION is DP-complete, even if the inputs are
undirected graphs.

In proving the above theorem, we make essential use of the following result,
which is a special case of Theorem 6 in [Hell and Nešetřil 1992]. Recall that the
girth of a graph is the length of the shortest cycle in the graph.

THEOREM 4.3 (HELL AND NEŠETŘIL 1992). For each positive integer N, there
is a sequence A1, . . . AN of connected graphs such that

(1) each Ai is 3-colorable, has girth 5, and each edge of Ai is on a 5-cycle;
(2) each Ai is a core; moreover, for every i, j with i ≤ n, j ≤ n and i �= j , there

is no homomorphism from Ai to A j ;
(3) each Ai has at most 15(N + 4) nodes; and
(4) there is a polynomial-time algorithm that, given N, constructs the sequence

A1, . . . AN .

We now have the machinery needed to prove Theorem 4.2.
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PROOF OF THEOREM 4.2. CORE IDENTIFICATION is in DP, because, given two
structures A and B over some schema R such that B is a substructure of A,
to determine whether core(A) = B one has to check whether there is a homo-
morphism from A to B (which is in NP) and whether B is a core (which is in
coNP).

We will show that CORE IDENTIFICATION is DP-hard, even if the inputs
are undirected graphs, via a polynomial-time reduction from 3-COLORABILITY/
NON-3-COLORABILITY. As a stepping stone in this reduction, we will define CORE

HOMOMORPHISM, which is the following variant of CORE IDENTIFICATION: given two
structures A and B, is there a homomorphism from A to B, and is B a core?
There is a simple polynomial-time reduction of CORE HOMOMORPHISM to CORE

IDENTIFICATION, where the instance (A, B) is mapped onto (A ⊕ B, B). This is a
reduction, since there is a homomorphism from A to B with B as a core if and
only if core(A⊕B) = B. Thus, it remains to show that there is a polynomial-time
reduction of 3-COLORABILITY/NON-3-COLORABILITY to CORE HOMOMORPHISM.

Hell and Nešetřil [1992] showed that 3-COLORABILITY is NP-complete even if
the input graphs have girth at least 7 (this follows from Theorem 7 in Hell
and Nešetřil [1992] by taking A to be a self-loop and B to be K3). Hence, 3-
COLORABILITY/NON-3-COLORABILITY is DP-complete, even if the input graphs G
and H have girth at least 7. So, assume that we are given two graphs G and
H each having girth at least 7. Let v1, . . . , vm be an enumeration of the nodes
of G, let w1, . . . , wn be an enumeration of the nodes of H, and let N = m +
n. Let A1, . . . , AN be a sequence of connected graphs having the properties
listed in Theorem 4.3. This sequence can be constructed in time polynomial in
N ; moreover, we can assume that these graphs have pairwise disjoint sets of
nodes. Let G∗ be the graph obtained by identifying each node vi of G with some
arbitrarily chosen node of Ai, for 1 ≤ i ≤ m (and keeping the edges between
nodes of G intact). Thus, the nodes of G∗ are the nodes that appear in the Ai ’s,
and the edges are the edges in the Ai ’s, along with the edges of G under our
identification. Similarly, let H∗ be the graph obtained by identifying each node
wj of H with some arbitrarily chosen node of A j , for m + 1 ≤ j ≤ N = m + n
(and keeping the edges between nodes of H intact). We now claim that G is 3-
colorable and H is not 3-colorable if and only if there is a homomorphism from
G∗ ⊕K3 to H∗ ⊕K3, and H∗ ⊕K3 is a core. Hell and Nešetřil [1992] showed that
CORE RECOGNITION is coNP-complete by showing that a graph H of girth at least
7 is not 3-colorable if and only if the graph H∗ ⊕ K3 is a core. We will use this
property in order to establish the above claim.

Assume first that G is 3-colorable and H is not 3-colorable. Since each Ai is
a 3-colorable graph, G∗ ⊕ K3 is 3-colorable and so there a homomorphism from
G∗ ⊕ K3 to H∗ ⊕ K3 (in fact, to K3). Moreover, as shown in Hell and Nešetřil
[1992], H∗ ⊕ K3 is a core, since H is not 3-colorable. For the other direction,
assume that there is a homomorphism from G∗ ⊕K3 to H∗ ⊕K3, and H∗ ⊕K3 is
a core. Using again the results in Hell and Nešetřil [1992], we infer that H is not
3-colorable. It remains to prove that G is 3-colorable. Let h be a homomorphism
from G∗ ⊕ K3 to H∗ ⊕ K3. We claim that h actually maps G∗ to K3; hence, G is
3-colorable. Let us consider the image of each graph Ai, with 1 ≤ i ≤ m, under
the homomorphism h. Observe that Ai cannot be mapped to some A j , when
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m + 1 ≤ j ≤ N = m + n, since, for every i and j such that 1 ≤ i ≤ m and
m + 1 ≤ j ≤ N = m + n, there is no homomorphism from Ai to A j . Observe
also that the image of a cycle C under a homomorphism is a cycle C′ of length
less than or equal the length of C. Since H has girth at least 7 and since each
edge of Ai is on a 5-cycle, the image of Ai under h cannot be contained in H.
For the same reason, the image of Ai under h cannot contain nodes from H and
some A j , for m + 1 ≤ j ≤ N = m + n; moreover, it cannot contain nodes from
two different A j ’s, for m + 1 ≤ j ≤ N = m + n (here, we also use the fact that
each A j has girth 5). Consequently, the homomorphism h must map each Ai,
1 ≤ i ≤ m, to K3. Hence, h maps G∗ to K3, and so G is 3-colorable.

It should be noted that problems equivalent to CORE RECOGNITION and CORE

IDENTIFICATION have been investigated in logic programming and artificial intel-
ligence. Specifically, Gottlob and Fermüller [1993] studied the problem of re-
moving redundant literals from a clause, and analyzed the computational com-
plexity of two related decision problems: the problem of determining whether
a given clause is condensed and the problem of determining whether, given
two clauses, one is a condensation of the other. Gottlob and Fermüller showed
that the first problem is coNP-complete and the second is DP-complete. As it
turns out, determining whether a given clause is condensed is equivalent to
CORE RECOGNITION, while determining whether a clause is a condensation of an-
other clause is equivalent to CORE IDENTIFICATION. Thus, the complexity of CORE

RECOGNITION and CORE IDENTIFICATION for relational structures (but not for undi-
rected graphs) can also be derived from the results in Gottlob and Fermüller
[1993]. As a matter of fact, the reductions in Gottlob and Fermüller [1993] give
easier proofs for the coNP-hardness and DP-hardness of CORE RECOGNITION and
CORE IDENTIFICATION, respectively, for undirected graphs with constants, that
is, undirected graphs in which certain nodes are distinguished so that every
homomorphism maps each such constant to itself (alternatively, graphs with
constants can be viewed as relational structures with a binary relation for the
edges and unary relations each of which consists of one of the constants). For in-
stance, the coNP-hardness of CORE IDENTIFICATION for graphs with constants can
be established via the following reduction from the CLIQUE problem. Given an
undirected graph G and a positive integer k, consider the disjoint sum G ⊕ Kk ,
where Kk is the complete graph with k elements. If every node in G is viewed
as a constant, then G ⊕ Kk is a core if and only if G does not contain a clique
with k elements.

We now consider the implications of the intractability of CORE RECOGNITION for
the problem of computing the core of a structure. As stated earlier, Chandra and
Merlin [1977] observed that a graph G is 3-colorable if and only if core(G⊕K3) =
K3. It follows that, unless P = NP, there is no polynomial-time algorithm for
computing the core of a given structure. Indeed, if such an algorithm existed,
then we could determine in polynomial time whether a graph is 3-colorable by
first running the algorithm to compute the core of G ⊕ K3 and then checking if
the answer is equal to K3.

Note, however, that in data exchange we are interested in computing the
core of a universal solution, rather than the core of an arbitrary instance.
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Consequently, we cannot assume a priori that the above intractability car-
ries over to the data exchange setting, since polynomial-time algorithms for
computing the core of universal solutions may exist. We address this next.

5. COMPUTING THE CORE IN DATA EXCHANGE

In contrast with the case of computing the core of an arbitrary instance, comput-
ing the core of a universal solution in data exchange does have polynomial-time
algorithms, in certain natural data exchange settings. Specifically, in this sec-
tion we show that the core of a universal solution can be computed in polynomial
time in data exchange settings in which �st is an arbitrary set of tgds and �t
is a set of egds.

We give two rather different polynomial-time algorithms for the task of com-
puting the core in data exchange settings in which �st is an arbitrary set of
tgds and �t is a set of egds: a greedy algorithm and an algorithm we call the
blocks algorithm. Section 5.1 is devoted to the greedy algorithm. In Section 5.2
we present the blocks algorithm for data exchange settings with no target con-
straints (i.e., �t = ∅). We then show in Section 5.3 that essentially the same
blocks algorithm works if we remove the emptiness condition on �t and al-
low it to contain egds. Although the blocks algorithm is more complicated than
the greedy algorithm (and its proof of correctness much more involved), it has
certain advantages for data exchange that we will describe later on.

In what follows, we assume that (S, T, �st, �t) is a data exchange setting
such that �st is a set of tgds and �t is a set of egds. Given a source instance
I , we let J be the target instance obtained by chasing 〈I, ∅〉 with �st. We call
J a canonical preuniversal instance for I . Note that J is a canonical universal
solution for I with respect to the data exchange setting (S, T, �st, ∅) (that is, no
target constraints).

5.1 Greedy Algorithm

Intuitively, given a source instance I , the greedy algorithm first determines
whether solutions for I exist, and then, if solutions exist, computes the core of
the universal solutions for I by successively removing tuples from a canonical
universal solution for I , as long as I and the instance resulting in each step
satisfy the tgds in �st. Recall that a fact is an expression of the form R(t) indi-
cating that the tuple t belongs to the relation R; moreover, every instance can
be identified with the set of all facts arising from the relations of that instance.

Algorithm 5.1 (Greedy Algorithm).
Input: source instance I .
Output: the core of the universal solutions for I , if solutions exist; “failure,” otherwise.

(1) Chase I with �st to produce a canonical pre-universal instance J .
(2) Chase J with �t ; if the chase fails, then stop and return “failure”; otherwise, let J ′

be the canonical universal solution for I produced by the chase.
(3) Initialize J∗ to be J ′.
(4) While there is a fact R(t) in J∗ such that 〈I, J∗ − {R(t)}〉 satisfies �st, set J∗ to be

J∗ − {R(t)}.
(5) Return J∗
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THEOREM 5.2. Assume that (S, T, �st, �t) is a data exchange setting such
that �st is a set of tgds and �t is a set of egds. Then Algorithm 5.1 is a correct,
polynomial-time algorithm for computing the core of universal solutions.

PROOF. As shown in Fagin et al. [2003] (see also Theorem 2.6), the chase is
a correct, polynomial-time algorithm for determining whether, given a source
instance I , a solution exists and, if so, producing the canonical universal
solution J ′.

Assume that for a given source instance I , a canonical universal solution J ′

for I has been produced in Step (2) of the greedy algorithm. We claim that each
target instance J∗ produced during the iterations of the while loop in Step (4)
is a universal solution for I . To begin with, 〈I, J∗〉 satisfies the tgds in �st by
construction. Furthermore, J∗ satisfies the egds in �t , because J∗ is a subin-
stance of J ′, and J ′ satisfies the egds in �t . Consequently, J∗ is a solution for
I ; moreover, it is a universal solution, since it is a subinstance of the canonical
universal solution J for I and thus it can be mapped homomorphically into
every solution for I .

Let C be the target instance returned by the algorithm. Then C is a universal
solution for I and hence it contains an isomorphic copy J0 of the core of the
universal solutions as a subinstance. We claim that C = J0. Indeed, if there is
a fact R(t) in C − J0, then C − {R(t)} satisfies the tgds in �st, since J0 satisfies
the tgds in �st and J0 is a subinstance of C − {R(t)}; thus, the algorithm could
not have returned C as output.

In order to analyze the running time of the algorithm, we consider the
following parameters: m is the size of the source instance I (number of tuples
in I ); a is the maximum number of universally quantified variables over all
tgds in �st; b is the maximum number of existentially quantified variables over
all tgds in �st; finally, a′ is the maximum number of universally quantified
variables over all egds in �t . Since the data exchange setting is fixed, the
quantities a, b, and a′ are constants.

Given a source instance I of size m, the size of the canonical preuniversal
instance J is O(ma) and the time needed to produce it is O(ma+ab). Indeed,
the canonical preuniversal instance is constructed by considering each tgd
(∀x)(ϕS(x) → (∃y)ψT(x, y)) in �st, instantiating the universally quantified
variables x with elements from I in every possible way, and, for each such
instantiation, checking whether the existentially quantified variables y can
be instantiated by existing elements so that the formula ψT(x, y) is satisfied,
and, if not, adding null values and facts to satisfy it. Since �st is fixed, at
most a constant number of facts are added at each step, which accounts for
the O(ma) bound in the size of the canonical preuniversal instance. There
are O(ma) possible instantiations of the universally quantified variables, and
for each such instantiation O((ma)b) steps are needed to check whether the
existentially quantified variables can be instantiated by existing elements,
hence the total time required to construct the canonical preuniversal instance
is O(ma+ab).

The size of the canonical universal solution J ′ is also O(ma) (since it is at
most the size of J ) and the time needed to produce J ′ from J is O(maa′+2a).

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.



Data Exchange: Getting to the Core • 193

Indeed, chasing with the egds in �t requires at most O((ma)2) = O(m2a) chase
steps, since in the worst case every two values will be set equal to each other.
Moreover, each chase step takes time O((ma)a′

), since at each step we need to
instantiate the universally quantified variables in the egds in every possible
way.

The while loop in Step (4) requires at most O(ma) iterations each of which
takes O(ma+ab) steps to verify that �st is satisfied by 〈I, J∗ − {R(t)}〉. Thus,
Step (4) takes time O(m2a+ab). It follows that the running time of the greedy
algorithm is O(m2a+ab + m2a+aa′

).

Several remarks are in order now. First, it should be noted that the cor-
rectness of the greedy algorithm depends crucially on the assumption that �t
consists of egds only. The crucial property that holds for egds, but fails for tgds,
is that if an instance satisfies an egd, then every subinstance of it also satisfies
that egd. Thus, if the greedy algorithm is applied to data exchange settings in
which �t contains at least one tgd, then the output of the algorithm may fail to
be a solution for the input instance. One can consider a variant of the greedy
algorithm in which the test in the while loop is that 〈I, J∗ − {R(t)}〉 satisfies
both �st and �t . This modified greedy algorithm outputs a universal solution
for I , but it is not too hard to construct examples in which the output is not the
core of the universal solutions for I .

Note that Step (4) of the greedy algorithm can also be construed as a
polynomial-time algorithm for producing the core of the universal solutions,
given a source instance I and some arbitrary universal solution J ′ for I . The
first two steps of the greedy algorithm produce a universal solution for I in time
polynomial in the size of the source instance I or determine that no solution
for I exists, so that the entire greedy algorithm runs in time polynomial in the
size of I .

Although the greedy algorithm is conceptually simple and its proof of correct-
ness transparent, it requires that the source instance I be available throughout
the execution of the algorithm. There are situations, however, in which the orig-
inal source I becomes unavailable, after a canonical universal solution J ′ for
I has been produced. In particular, the Clio system [Popa et al. 2002] uses a
specialized engine to produce a canonical universal solution, when there are no
target constraints, or a canonical preuniversal instance, when there are target
constraints. Any further processing, such as chasing with target egds or pro-
ducing the core, will have to be done by another engine or application that may
not have access to the original source instance.

This state of affairs raises the question of whether the core of the universal
solutions can be produced in polynomial time using only a canonical univer-
sal solution or only a canonical pre-universal instance. In what follows, we
describe such an algorithm, called the blocks algorithm, which has the fea-
ture that it can start from either a canonical universal solution or a canonical
pre-universal instance, and has no further need for the source instance. We
present the blocks algorithms in two stages: first, for the case in which there
are no target constraints (�t = ∅), and then for the case in which �t is a set of
egds.
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5.2 Blocks Algorithm: No Target Constrains

We first define some notions that are needed in order to state the algorithm as
well as to prove its correctness and polynomial-time bound. For the next two
definitions, we assume K to be an arbitrary instance whose elements consists
of constants from Const and nulls from Var. We say that two elements of K are
adjacent if there exists some tuple in some relation of K in which both elements
occur.

Definition 5.3. The Gaifman graph of the nulls of K is an undirected graph
in which (1) the nodes are all the nulls of K , and (2) there exists an edge between
two nulls whenever the nulls are adjacent in K . A block of nulls is the set of
nulls in a connected component of the Gaifman graph of the nulls.

If y is a null of K , then we may refer to the block of nulls that contains y as
the block of y . Note that, by the definition of blocks, the set Var(K ) of all nulls
of K is partitioned into disjoint blocks. Let K and K ′ be two instances with
elements in Const ∪ Var. Recall that K ′ is a subinstance of K if every tuple of a
relation of K ′ is a tuple of the corresponding relation of K .

Definition 5.4. Let h be a homomorphism of K . Denote the result of ap-
plying h to K by h(K ). If h(K ) is a subinstance of K , then we call h an endo-
morphism of K . An endomorphism h of K is useful if h(K ) �= K (i.e., h(K ) is a
proper subinstance of K ).

The following lemma is a simple characterization of useful endomorphisms
that we will make use of in proving the main results of this subsection and of
Section 5.3.

LEMMA 5.5. Let K be an instance, and let h be an endomorphism of K . Then
h is useful if and only if h is not one-to-one.

PROOF. Assume that h is not one-to-one. Then there is some x that is in the
domain of h but not in the range of h (here we use the fact that the instance is
finite.) So no tuple containing x is in h(K ). Therefore, h(K ) �= K , and so h is
useful.

Now assume that h is one-to-one. So h is simply a renaming of the members
of K , and so an isomorphism of K . Thus, h(K ) has the same number of tuples
as K . Since h(K ) is a subinstance of K , it follows that h(K ) = K (here again
we use the fact that the instance K is finite). So h is not useful.

For the rest of this subsection, we assume that we are given a data exchange
setting (S, T, �st, ∅) and a source instance I . Moreover, we assume that J is a
canonical universal solution for this data exchange problem. That is, J is such
that 〈I, J〉 is the result of chasing 〈I, ∅〉 with �st. Our goal is to compute core(J ),
that is, a subinstance C of J such that (1) C = h(J ) for some endomorphism
h of J , and (2) there is no proper subinstance of C with the same property
(condition (2) is equivalent to there being no endomorphism of C onto a proper
subinstance of C). The central idea of the algorithm, as we shall see, is to show
that the above mentioned endomorphism h of J can be found as the composition

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.



Data Exchange: Getting to the Core • 195

of a polynomial-length sequence of “local” (or “small”) endomorphisms, each of
which can be found in polynomial time. We next define what “local” means.

Definition 5.6. Let K and K ′ be two instances such that the nulls of K ′

form a subset of the nulls of K , that is, Var(K ′) ⊆ Var(K ). Let h be some endo-
morphism of K ′, and let B be a block of nulls of K . We say that h is K -local for
B if h(x) = x whenever x �∈ B. (Since all the nulls of K ′ are among the nulls
of K , it makes sense to consider whether or not a null x of K ′ belongs to the
block B of K .) We say that h is K -local if it is K -local for B, for some block
B of K .

The next lemma is crucial for the existence of the polynomial-time algorithm
for computing the core of a universal solution.

LEMMA 5.7. Assume a data exchange setting where �st is a set of tgds and
�t = ∅. Let J ′ be a subinstance of the canonical universal solution J. If there
exists a useful endomorphism of J ′, then there exists a useful J-local endomor-
phism of J ′.

PROOF. Let h be a useful endomorphism of J ′. By Lemma 5.5, we know that
h is not one-to-one. So there is a null y that appears in J ′ but does not appear
in h(J ′). Let B be the block of y (in J ). Define h′ on J ′ by letting h′(x) = h(x) if
x ∈ B, and h′(x) = x otherwise.

We show that h′ is an endomorphism of J ′. Let (u1, . . . , us) be a tuple of
the R relation of J ′; we must show that (h′(u1), . . . , h′(us)) is a tuple of the R
relation of J ′. Since J ′ is a subinstance of J , the tuple (u1, . . . , us) is also a tuple
of the R relation of J . Hence, by definition of a block of J , all the nulls among
u1, . . . , us are in the same block B′. There are two cases, depending on whether
or not B′ = B. Assume first that B′ = B. Then, by definition of h′, for every ui
among u1, . . . , us, we have that h′(ui) = h(ui) if ui is a null, and h′(ui) = ui =
h(ui) if ui is a constant. Hence (h′(u1), . . . , h′(us)) = (h(u1), . . . , h(us)). Since h
is an endomorphism of J ′, we know that (h(u1), . . ., h(us)) is a tuple of the R
relation of J ′. Thus, (h′(u1), . . . , h′(us)) is a tuple of the R relation of J ′. Now
assume that B′ �= B. So for every ui among u1, . . . , us, we have that h′(ui) = ui.
Hence (h′(u1), . . . , h′(us)) = (u1, . . . , us). Therefore, once again, (h′(u1), . . . , h′(us))
is a tuple of the R relation of J ′, as desired. Hence, h′ is an endomorphism
of J ′.

We now present the blocks algorithm for computing the core of the universal
solutions, when �t = ∅.

Algorithm 5.8 (Blocks Algorithm: No Target Constraints).
Input: source instance I .
Output: the core of the universal solutions for I .

(1) Compute J , the canonical universal solution, from 〈I, ∅〉 by chasing with �st.
(2) Compute the blocks of J , and initialize J ′ to be J .
(3) Check whether there exists a useful J -local endomorphism h of J ′. If not, then stop

with result J ′.
(4) Update J ′ to be h(J ′), and return to Step (3).
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THEOREM 5.9. Assume that (S, T, �st, �t) is a data exchange setting such
that �st is a set of tgds and �t = ∅. Then Algorithm 5.8 is a correct, polynomial-
time algorithm for computing the core of the universal solutions.

PROOF. We first show that Algorithm 5.8 is correct, that is, that the final
instance C at the conclusion of the algorithm is the core of the given universal
solution. Every time we apply Step (4) of the algorithm, we are replacing the
instance by a homomorphic image. Therefore, the final instance C is the result
of applying a composition of homomorphisms to the input instance, and hence
is a homomorphic image of the canonical universal solution J . Also, since each
of the homomorphisms found in Step (3) is an endomorphism, we have that C
is a subinstance of J . Assume now that C is not the core; we shall derive a
contradiction. Since C is not the core, there is an endomorphism h such that
when h is applied to C, the resulting instance is a proper subinstance of C.
Hence, h is a useful endomorphism of C. Therefore, by Lemma 5.7, there must
exist a useful J -local endomorphism of C. But then Algorithm 5.8 should not
have stopped in Step 3 with C. This is the desired contradiction. Hence, C is
the core of J .

We now show that Algorithm 5.8 runs in polynomial time. To do so, we need
to consider certain parameters. As in the analysis of greedy algorithm, the first
parameter, denoted by b, is the maximum number of existentially quantified
variables over all tgds in �st. Since we are taking �st to be fixed, the quantity b
is a constant. It follows easily from the construction of the canonical universal
solution J (by chasing with �st) that b is an upper bound on the size of a block
in J . The second parameter, denoted by n, is the size of the canonical univer-
sal solution J (number of tuples in J ); as seen in the analysis of the greedy
algorithm, n is O(ma), where a is the maximum number of the universally quan-
tified variables over all tgds in �st and m is the size of I . Let J ′ be the instance
in some execution of Step (3). For each block B, to check if there is a useful
endomorphism of J ′ that is J -local for B, we can exhaustively check each of
the possible functions h on the domain of J ′ such that h(x) = x whenever x �∈ B:
there are at most nb such functions. To check that such a function is actually
a useful endomorphism requires time O(n). Since there are at most n blocks,
the time to determine if there is a block with a useful J -local endomorphism is
O(nb+2). The updating time in Step (4) is O(n).

By Lemma 5.5, after Step (4) is executed, there is at least one less null in J ′

than there was before. Since there are initially at most n nulls in the instance,
it follows that the number of loops that Algorithm 5.8 performs is at most n.
Therefore, the running time of the algorithm (except for Step (1) and Step (2),
which are executed only once) is at most n (the number of loops) times O(nb+2),
that is, O(nb+3). Since Step (1) and Step (2) take polynomial time as well, it
follows that the entire algorithm executes in polynomial time.

The crucial observation behind the polynomial-time bound is that the total
number of endomorphisms that the algorithm explores in Step (3) is at most
nb for each block of J . This is in strong contrast with the case of minimizing
arbitrary instances with constants and nulls for which we may need to explore
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a much larger number of endomorphisms (up to nn, in general) in one mini-
mization step.

5.3 Blocks Algorithm: Target Egds

In this subsection, we extend Theorem 5.9 by showing that there is a
polynomial-time algorithm for finding the core even when �t is a set of egds.

Thus, we assume next that we are given a data exchange setting (S, T, �st, �t)
where �t is a set of egds. We are also given a source instance I . As with the
greedy algorithm, let J be a canonical preuniversal instance, that is, J is the
result of chasing I with �st. Let J ′ be the canonical universal solution obtained
by chasing J with �t . Our goal is to compute core(J ′), that is, a subinstance
C of J ′ such that C = h(J ′) for some endomorphism h of J ′, and such that
there is no proper subinstance of C with the same property. As in the case when
�t = ∅, the central idea of the algorithm is to show that the above mentioned
endomorphism h of J ′ can be found as the composition of a polynomial-length
sequence of “small” endomorphisms, each findable in polynomial time. As in the
case when �t = ∅, “small” will mean J -local. We make this precise in the next
lemma. This lemma, crucial for the existence of the polynomial-time algorithm
for computing core(J ′), is a nontrivial generalization of Lemma 5.7.

LEMMA 5.10. Assume a data exchange setting where �st is a set of tgds and
�t is a set of egds. Let J be the canonical preuniversal instance, and let J ′′ be an
endomorphic image of the canonical universal solution J ′. If there exists a useful
endomorphism of J ′′, then there exists a useful J-local endomorphism of J ′′.

The proof of Lemma 5.10 requires additional definitions as well as two addi-
tional lemmas. We start with the required definitions.

Let J be the canonical preuniversal instance, and let J ′ be the canonical
universal solution produced from J by chasing with the set �t of egds. We
define a directed graph, whose nodes are the members of J , both nulls and
constants. If during the chase process, a null u gets replaced by v (either a null
or a constant), then there is an edge from u to v in the graph. Let ≤ be the
reflexive, transitive closure of this graph. It is easy to see that ≤ is a reflexive
partial order. For each node u, define [u] to be the maximal (under ≤) node v such
that u ≤ v. Intuitively, u eventually gets replaced by [u] as a result of the chase.
It is clear that every member of J ′ is of the form [u]. It is also clear that if u is a
constant, then u = [u]. Let us write u ∼ v if [u] = [v]. Intuitively, u ∼ v means
that u and v eventually collapse to the same element as a result of the chase.

Definition 5.11. Let K be an instance whose elements are constants and
nulls. Let y be some element of K . We say that y is rigid if h( y) = y for every
homomorphism h of K . (In particular, all constants occurring in K are rigid.)

A key step in the proof of Lemma 5.10 is the following surprising result,
which says that if two nulls in different blocks of J both collapse onto the same
element z of J ′ as a result of the chase, then z is rigid, that is, h(z) = z for
every endomorphism h of J ′.
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LEMMA 5.12 (RIGIDITY LEMMA). Assume a data exchange setting where �st is
a set of tgds and �t is a set of egds. Let J be the canonical preuniversal instance,
and let J ′ be the result of chasing J with the set �t of egds. Let x and y be nulls
of J such that x ∼ y, and such that [x] is a nonrigid null of J ′. Then x and y
are in the same block of J.

PROOF. Assume that x and y are nulls in different blocks of J with x ∼ y .
We must show that [x] is rigid in J ′. Let φ be the diagram of the instance J , that
is, the conjunction of all expressions S(u1, . . . , us) where (u1, . . . , us) is a tuple
of the S relation of J . (We are treating members of J , both constants and nulls,
as variables.) Let τ be the egd φ → (x = y). Since x ∼ y , it follows that �t |= τ .
This is because the chase sets variables equal only when it is logically forced
to (the result appears in papers that characterize the implication problem for
dependencies; see, for instance, Beeri and Vardi [1984]; Maier et al. [1979]).
Since J ′ satisfies �t , it follows that J ′ satisfies τ .

We wish to show that [x] is rigid in J ′. Let h be a homomorphism of J ′;
we must show that h([x]) = [x]. Let B be the block of x in J . Let V be the
assignment to the variables of τ obtained by letting V (u) = h([u]) if u ∈ B, and
V (u) = [u] otherwise. We now show that V is a valid assignment for φ in J ′,
that is, that for each conjunct S(u1, . . . , us) of φ, necessarily (V (u1), . . . , V (us))
is a tuple of the S relation of J ′. Let S(u1, . . . , us) be a conjunct of φ. By the
construction of the chase, we know that ([u1], . . . , [us]) is a tuple of the S relation
of J ′, since (u1, . . . , us) is a tuple of the S relation of J . There are two cases,
depending on whether or not some ui (with 1 ≤ i ≤ s) is in B. If no ui is in
B, then V (ui) = [ui] for each i, and so (V (u1), . . . , V (us)) is a tuple of the S
relation of J ′, as desired. If some ui is in B, then every ui is either a null in
B or a constant (this is because (u1, . . . , us) is a tuple of the S relation of J ).
If ui is a null in B, then V (ui) = h([ui]). If ui is a constant, then ui = [ui],
and so V (ui) = [ui] = ui = h(ui) = h([ui]), where the third equality holds
since h is a homomorphism and ui is a constant. Thus, in both cases, we have
V (ui) = h([ui]). Since ([u1], . . . , [us]) is a tuple of the S relation of J ′ and h is a
homomorphism of J ′, we know that (h[u1], . . . , h[us]) is a tuple of the S relation
of J ′. So again, (V (u1), . . . , V (us)) is a tuple of the S relation of J ′, as desired.

Hence, V is a valid assignment for φ in J ′. Therefore, since J ′ satisfies τ ,
it follows that in J ′, we have V (x) = V ( y). Now V (x) = h([x]), since x ∈ B.
Further, V ( y) = [ y], since y �∈ B (because y is in a different block than x). So
h([x]) = [ y]. Since x ∼ y , that is, [x] = [ y], we have h([x]) = [ y] = [x], which
shows that h([x]) = [x], as desired.

The contrapositive of Lemma 5.12 says that if x and y are nulls in different
blocks of J that are set equal (perhaps transitively) during the chase, then [x]
is rigid in J ′.

LEMMA 5.13. Let h be an endomorphism of J ′. Then every rigid element of
J ′ is a rigid element of h(J ′).

PROOF. Let u be a rigid element of J ′. Then h(u) is an element of h(J ′), and
so u is an element of h(J ′), since h(u) = u by rigidity. Let ĥ be a homomorphism
of h(J ′); we must show that ĥ(u) = u. But ĥ(u) = ĥh(u), since h(u) = u. Now
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ĥh is also a homomorphism of J ′, since the composition of homomorphisms is
a homomorphism. By rigidity of u in J ′, it follows that ĥh(u) = u. So ĥ(u) =
ĥh(u) = u, as desired.

We are now ready to give the proof of Lemma 5.10, after which we will present
the blocks algorithm for the case of target egds.

PROOF OF LEMMA 5.10. Let h be an endomorphism of J ′ such that J ′′ = h(J ′),
and let h′ be a useful endomorphism of h(J ′). By Lemma 5.5, there is a null
y that appears in h(J ′) but does not appear in h′h(J ′). Let B be the block in
J that contains y . Define h′′ on h(J ′) by letting h′′(x) = h′(x) if x ∈ B, and
h′′(x) = x otherwise. We shall show that h′′ is a useful J -local endomorphism
of h(J ′).

We now show that h′′ is an endomorphism of h(J ′). Let (u1, . . . , us) be a tuple
of the R relation of h(J ′); we must show that (h′′(u1), . . ., h′′(us)) is a tuple of
the R relation of h(J ′).

We first show that every nonrigid null among u1, . . . , us is in the same block
of J . Let up and uq be nonrigid nulls among u1, . . . , us; we show that up and
uq are in the same block of J . Since (u1, . . . , us) is a tuple of the R relation of
h(J ′), and h(J ′) is a subinstance of J ′, we know that (u1, . . . , us) is a tuple of
the R relation of J ′. By construction of J ′ from J using the chase, we know
that there is u′

i where ui ∼ u′
i for 1 ≤ i ≤ s, such that (u′

1, . . . , u′
s) is a tuple of

the R relation of J . Since up and uq are nonrigid nulls of h(J ′), it follows from
Lemma 5.13 that up and uq are nonrigid nulls of J ′. Now u′

p is not a constant,
since u′

p ∼ up and up is a nonrigid null. Similarly, u′
q is not a constant. So u′

p
and u′

q are in the same block B′ of J . Now [up] = up, since up is in J ′. Since
u′

p ∼ up and [up] = up is nonrigid, it follows from Lemma 5.12 that u′
p and up

are in the same block of J , and so up ∈ B′. Similarly, uq ∈ B′. So up and uq are
in the same block B′ of J , as desired.

There are now two cases, depending on whether or not B′ = B. Assume
first that B′ = B. For those ui ’s that are nonrigid, we showed that ui ∈ B′ =
B, and so h′′(ui) = h′(ui). For those u j ’s that are rigid (including nulls and
constants), we have h′′(u j ) = u j = h′(u j ). So for every ui among u1, . . . , us, we
have h′′(u j ) = h′(u j ). Since h′ is a homomorphism of h(J ′), and since (u1, . . . , us)
is a tuple of the R relation of h(J ′), we know that (h′(u1), . . . , h′(us)) is a tuple
of the R relation of h(J ′). Hence (h′′(u1), . . . , h′′(us)) is a tuple of the R relation
of h(J ′), as desired. Now assume that B′ �= B. For those ui ’s that are nonrigid,
we showed that ui ∈ B′, and so ui �∈ B. Hence, for those ui ’s that are nonrigid,
we have h′′(u j ) = u j . But also h′′(ui) = ui for the rigid ui ’s. Thus, (h′′(u1), . . . ,
h′′(us)) = (u1, . . . , us). Hence, once again, (h′′(u1), . . . , h′′(us)) is a tuple of the R
relation of h(J ′), as desired.

So h′′ is an endomorphism of h(J ′). By definition, h′′ is J -local. We now show
that h′′ is useful. Since y appears in h(J ′), Lemma 5.5 tells us that we need only
show that the range of h′′ does not contain y . If x ∈ B, then h′′(x) = h′(x) �= y ,
since the range of h′ does not include y . If x �∈ B, then h′′(x) = x �= y , since
y ∈ B. So the range of h′′ does not contain y , and hence h′′ is useful. Therefore,
h′′ is a useful J -local endomorphism of h(J ′).
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We now present the blocks algorithm for computing the core when �t is a
set of egds. (As mentioned earlier, when the target constraints include egds, it
may be possible that there are no solutions and hence no universal solutions.
This case is detected by our algorithm, and “failure” is returned.)

Algorithm 5.14 (Blocks Algorithm: Target egds).
Input: source instance I .
Output: the core of the universal solutions for I , if solutions exist, and “failure”, other-
wise.

(1) Compute J , the canonical preuniversal instance, from 〈I, ∅〉 by chasing with �st.
(2) Compute the blocks of J , and then chase J with �t to produce the canonical universal

solution J ′. If the chase fails, then stop with “failure.” Otherwise, initialize J ′′ to
be J ′.

(3) Check whether there exists a useful J -local endomorphism h of J ′′. If not, then stop
with result J ′′.

(4) Update J ′′ to be h(J ′′), and return to Step (3).

THEOREM 5.15. Assume that (S, T, �st, �t) is a data exchange setting such
that �st is a set of tgds and �t is a set of egds. Then Algorithm 5.14 is a correct,
polynomial-time algorithm for computing the core of the universal solutions.

PROOF. The proof is essentially the same as that of Theorem 5.9, except
that we make use of Lemma 5.10 instead of Lemma 5.7. For the correctness of
the algorithm, we use the fact that each h(J ′′) is both a homomorphic image
and a subinstance of the canonical universal solution J ′; hence it satisfies both
the tgds in �st and the egds in �t . For the running time of the algorithm, we
also use the fact that chasing with egds (used in Step (2)) is a polynomial-time
procedure.

We note that it is essential for the polynomial-time upper bound that the
endomorphisms explored by Algorithm 5.14 are J -local and not merely J ′-local.
While, as argued earlier in the case �t = ∅, the blocks of J are bounded in size
by the constant b (the maximal number of existentially quantified variables
over all tgds in �st), the same is not true, in general, for the blocks of J ′. The
chase with egds, used to obtain J ′, may generate blocks of unbounded size.
Intuitively, if an egd equates the nulls x and y that are in different blocks
of J , then this creates a new, larger, block out of the union of the blocks of x
and y .

5.4 Can We Obtain the Core Via the Chase?

A universal solution can be obtained via the chase [Fagin et al. 2003]. What
about the core? In this section, we show by example that the core may not be
obtainable via the chase. We begin with a preliminary example.

Example 5.16. We again consider our running example from Example 2.2.
If we chase the source instance I of Example 2.2 by first chasing with the
dependencies (d2) and (d3), and then by the dependencies (d1) and (d4), neither
of which add any tuples, then the result is the core J0, as given in Example 2.2.
If, however, we chase first with the dependency (d1), then with the dependencies
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(d2) and (d3), and finally with the dependency (d4), which does not add any
tuples, then the result is the target instance J , as given in Example 2.2, rather
than the core J0.

In Example 5.16 , the result of the chase may or may not be the core, depend-
ing on the order of the chase steps. We now give an example where there is no
chase (that is, no order of doing the chase steps) that produces the core.

Example 5.17. Assume that the source schema consists of one 4-ary rela-
tion symbol R and the target schema consists of one 5-ary relation symbol S.
There are two source-to-target tgds d1 and d2, where d1 is

R(a, b, c, d ) → ∃x1∃x2∃x3∃x4∃x5 (S(x5, b, x1, x2, a)
∧S(x5, c, x3, x4, a)
∧S(d , c, x3, x4, b))

and where d2 is

R(a, b, c, d ) → ∃x1∃x2∃x3∃x4∃x5 (S(d , a, a, x1, b)
∧S(x5, a, a, x1, a)
∧S(x5, c, x2, x3, x4)).

The source instance I is {R(1, 1, 2, 3)}.
The result of chasing I with d1 only is

{S(N5, 1, N1, N2, 1),
S(N5, 2, N3, N4, 1),
S(3, 2, N3, N4, 1)}, (1)

where N1, N2, N3, N4, N5 are nulls.
The result of chasing I with d2 only is

{S(3, 1, 1, N ′
1, 1),

S(N ′
5, 1, 1, N ′

1, 1),
S(N ′

5, 2, N ′
2, N ′

3, N ′
4)}, (2)

where N ′
1, N ′

2, N ′
3, N ′

4, N ′
5 are nulls.

Let J be the universal solution that is the union of (1) and (2). We now show
that the core of J is given by the following instance J0, which consists of the
third tuple of (1) and the first tuple of (2):

{S(3, 2, N3, N4, 1),
S(3, 1, 1, N ′

1, 1)}.
First, it is straightforward to verify that J0 is the image of the universal so-

lution J under the following endomorphism h: h(N1) = 1; h(N2) = N ′
1; h(N3) =

N3; h(N4) = N4; h(N5) = 3; h(N ′
1) = N ′

1; h(N ′
2) = N3; h(N ′

3) = N4; h(N ′
4) = 1;

and h(N ′
5) = 3. Second, it is easy to see that there is no endomorphism of J0

into a proper substructure of J0. From these two facts, it follows immediately
that J0 is the core.
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Since the result of chasing first with d1 has three tuples, and since the core
has only two tuples, it follows that the result of chasing first with d1 and then
d2 does not give the core. Similarly, the result of chasing first with d2 and
then d1 does not give the core. Thus, no chase gives the core, which was to be
shown.

This example has several other features built into it. First, it is not possible
to remove a conjunct from the right-hand side of d1 and still maintain a depen-
dency equivalent to d1. A similar comment applies to d2. Therefore, the fact that
no chase gives the core is not caused by the right-hand side of a source-to-target
tgd having a redundant conjunct.

Second, the Gaifman graph of the nulls as determined by (1) is connected. In-
tuitively, this tells us that the tgd d1 cannot be “decomposed” into multiple tgds
with the same left-hand side. A similar comment applies to d2. Therefore, the
fact that no chase gives the core is not caused by the tgds being “decomposable.”

Third, not only does the set (1) of tuples not appear in the core, but even the
core of (1), which consists of the first and third tuples of (1), does not appear in
the core. A similar comment applies to (2), whose core consists of the first and
third tuples of (2). So even if we were to modify the chase by inserting, at each
chase step, only the core of the set of tuples generated by applying a given tgd,
we still would not obtain the core as the result of a chase.

6. QUERY ANSWERING WITH CORES

Up to this point, we have shown that there are two reasons for using cores
in data exchange: first, they are the smallest universal solutions, and second,
they are polynomial-time computable in many natural data exchange settings.
In this section, we provide further justification for using cores in data exchange
by establishing that they have clear advantages over other universal solutions
in answering target queries.

Assume that (S, T, �st, �t) is a data exchange setting, I is a source instance,
and J0 is the core of the universal solutions for I . If q is a union of conjunctive
queries over the target schema T, then, by Proposition 2.7, for every universal
solution J for I , we have that certain(q, I ) = q(J )↓. In particular, certain(q, I ) =
q(J0)↓, since J0 is a universal solution. Suppose now that q is a conjunctive
query with inequalities �= over the target schema. In general, if J is a universal
solution, then q(J )↓ may properly contain certain(q, I ). We illustrate this point
with the following example.

Example 6.1. Let us revisit our running example from Example 2.2. We
saw earlier in Example 3.1 that, for every m ≥ 0, the target instance

Jm = {Home(Alice, SF), Home(Bob, SD),
EmpDept(Alice, X 0), EmpDept(Bob, Y0),
DeptCity(X 0, SJ), DeptCity(Y0, SD),

. . .

EmpDept(Alice, X m), EmpDept(Bob, Ym),
DeptCity(X m, SJ), DeptCity(Ym, SD)}
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is a universal solution for I ; moreover, J0 is the core of the universal solutions
for I . Consider now the following conjunctive query q with one inequality:

∃D1∃D2 (EmpDept(e, D1) ∧ EmpDept(e, D2) ∧ (D1 �= D2)).

Clearly, q(J0) = ∅, while if m ≥ 1, then q(Jm) = {Alice, Bob}. This implies
that certain(q, I ) = ∅, and thus evaluating the above query q on the universal
solution Jm, for arbitrary m ≥ 1, produces a strict superset of the set of the
certain answers. In contrast, evaluating q on the core J0 coincides with the set
of the certain answers, since q(J0) = ∅ = certain(q, I ).

This example can also be used to illustrate another difference between con-
junctive queries and conjunctive queries with inequalities. Specifically, if J
and J ′ are universal solutions for I , and q∗ is a conjunctive query over the
target schema, then q∗(J )↓ = q∗(J ′)↓. In contrast, this does not hold for
the above conjunctive query q with one inequality. Indeed, q(J0) = ∅ while
q(Jm) = {Alice, Bob}, for every m ≥ 1.

In the preceding example, the certain answers of a particular conjunctive
query with inequalities could be obtained by evaluating the query on the core
of the universal solutions. As shown in the next example, however, this does
not hold true for arbitrary conjunctive queries with inequalities.

Example 6.2. Referring to our running example, consider again the univer-
sal solutions Jm, for m ≥ 0, from Example 6.1. In particular, recall the instance
J0, which is the core of the universal solutions for I , and which has two distinct
labeled nulls X 0 and Y0, denoting unknown departments. Besides their role
as placeholders for department values, the role of such nulls is also to “link”
employees to the cities they work in, as specified by the tgd (d2) in �st. For
data exchange, it is important that such nulls be different from constants and
different from each other. Universal solutions such as J0 naturally satisfy this
requirement. In contrast, the target instance

J ′
0 = {Home(Alice, SF), Home(Bob, SD),

EmpDept(Alice, X 0), EmpDept(Bob, X 0),
DeptCity(X 0, SJ), DeptCity(X 0, SD)}

is a solution2 for I , but not a universal solution for I , because it uses the same
null for both source tuples (Alice, SJ) and, (Bob, SD) and, hence, there is no
homomorphism from J ′

0 to J0. In this solution, the association between Alice
and SJ as well as the association between Bob and SD have been lost.

Let q be the following conjunctive query with one inequality:

∃D∃D′ (EmpDept(e, D) ∧ DeptCity(D′, c) ∧ (D �= D′)).

It is easy to see that q(J0) = {(Alice, SD), (Bob, SJ)}. In contrast, q(J ′
0) = ∅,

since in J ′
0 both Alice and Bob are linked with both SJ and SD. Consequently,

certain(q, I ) = ∅, and thus certain(q, I ) is properly contained in q(J0)↓.

2This is the same instance, modulo renaming of nulls, as the earlier instance J ′
0 of Example 2.2.
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Let J be a universal solution for I . Since J0 is (up to a renaming of the nulls)
the core of J , it follows that

q(J0) ⊆ q(J )↓.

(We are using the fact that q(J0) = q(J0)↓ here.) Since also we have the strict
inclusion certain(q, I ) ⊂ q(J0), we have that certain(q, I ) ⊂ q(J )↓, for every
universal solution J . This also means that there is no universal solution J for
I such that certain(q, I ) = q(J )↓.

Finally, consider the target instance:

J ′ = {Home(Alice, SF), Home(Bob, SD),
EmpDept(Alice, X 0), EmpDept(Bob, Y0),
DeptCity(X 0, SJ), DeptCity(Y0, SD),
DeptCity(X ′, SJ)}.

It is easy to verify that J ′ is a universal solution and that q(J ′) = {(Alice, SJ),
(Alice, SD), (Bob, SJ) }. Thus, the following strict inclusions hold: certain(q, I ) ⊂
q(J0)↓ ⊂ q(J ′)↓. This shows that a strict inclusion hierarchy can exist among
the set of the certain answers, the result of the null-free query evaluation on the
core and the result of the null-free query evaluation on some other universal
solution.

We will argue in the next section that instead of computing certain(q, I ) a
better answer to the query may be given by taking q(J0)↓ itself!

6.1 Certain Answers on Universal Solutions

Although the certain answers of conjunctive queries with inequalities cannot
always be obtained by evaluating these queries on the core of the universal so-
lutions, it turns out that this evaluation produces a “best approximation” to the
certain answers among all evaluations on universal solutions. Moreover, as we
shall show, this property characterizes the core, and also extends to existential
queries.

We now define existential queries, including a safety condition. An existential
query q(x) is a formula of the form ∃yφ(x, y), where φ(x, y) is a quantifier-free
formula in disjunctive normal form. Let φ be ∨i ∧ j γij, where each γij is an atomic
formula, the negation of an atomic formula, an equality, or the negation of an
equality. As a safety condition, we assume that for each conjunction ∧ j γij and
each variable z (in x or y) that appears in this conjunction, one of the conjuncts
γij is an atomic formula that contains z. The safety condition guarantees that
φ is domain independent [Fagin 1982] (so that its truth does not depend on any
underlying domain, but only on the “active domain” of elements that appear in
tuples in the instance).

We now introduce the following concept, which we shall argue is
fundamental.

Definition 6.3. Let (S, T, �st, �t) be a data exchange setting and let I be
a source instance. For every query q over the target schema T, the set of the
certain answers of q on universal solutions with respect to the source instance I ,
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denoted by u-certain(q, I ), is the set of all tuples that appear in q(J ) for every
universal solution J for I ; in symbols,

u-certain(q, I ) =
⋂

{q(J ) : J is a universal solution for I}.
Clearly, certain(q, I ) ⊆ u-certain(q, I ). Moreover, if q is a union of conjunc-

tive queries, then Proposition 2.7 implies that certain(q, I ) = u-certain(q, I ).
In contrast, if q is a conjunctive query with inequalities, it is possible that
certain(q, I ) is properly contained in u-certain(q, I ). Concretely, this holds true
for the query q and the source instance I in Example 6.2, since certain(q, I ) = ∅,
while u-certain(q, I ) = {(Alice, SD), (Bob, SJ)}. In such cases, there is no uni-
versal solution J for I such that certain(q, I ) = q(J )↓. Nonetheless, the next
result asserts that if J0 is the core of the universal solutions for I , then
u-certain(q, I ) = q(J0)↓. Therefore, q(J0)↓ is the best approximation (that is,
the least superset) of the certain answers for I among all choices of q(J )↓ where
J is a universal solution for I .

Before we prove the next result, we need to recall some definitions from
Fagin et al. [2003]. Let q be a Boolean (that is, 0-ary) query over the target
schema T and I a source instance. If we let true denote the set with one 0-ary
tuple and false denote the empty set, then each of the statements q(J ) = true
and q(J ) = false has its usual meaning for Boolean queries q. It follows from
the definitions that certain(q, I ) = true means that for every solution J of this
instance of the data exchange problem, we have that q(J ) = true; moreover,
certain(q, I ) = false means that there is a solution J such that q(J ) = false.

PROPOSITION 6.4. Let (S, T, �st, �t) be a data exchange setting in which �st is
a set of tgds and �t is a set of tgds and egds. Let I be a source instance such that
a universal solution for I exists, and let J0 be the core of the universal solutions
for I .

(1) If q is an existential query over the target schema T, then

u-certain(q, I ) = q(J0)↓.

(2) If J∗ is a universal solution for I such that for every existential query q over
the target schema T we have that

u-certain(q, I ) = q(J∗)↓,

then J∗ is isomorphic to the core J0 of the universal solutions for I . In fact,
it is enough for the above property to hold for every conjunctive query q with
inequalities �=.

PROOF. Let J be a universal solution, and let J0 be the core of J . By
Proposition 3.3, we know that J0 is an induced substructure of J . Let q be an ex-
istential query over the target schema T. Since q is an existential query and J0
is an induced substructure of J , it is straightforward to verify that q(J0) ⊆ q(J )
(this is a well-known preservation property of existential first-order formulas).
Since J0 is the core of every universal solution for I up to a renaming of the
nulls, it follows that q(J0)↓ ⊆ ⋂{q(J ) : J universal for I}. We now show the re-
verse inclusion. Define J ′

0 by renaming each null of J0 in such a way that J0 and
J ′

0 have no nulls in common. Then
⋂{q(J ) : J universal for I} ⊆ q(J0) ∩ q(J ′

0).
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But it is easy to see that q(J0)∩q(J ′
0) = q(J0)↓. This proves the reverse inclusion

and so

u-certain(q, I ) =
⋂

{q(J ) : J universal for I} = q(J0)↓.

For the second part, assume that J∗ is a universal solution for I such that
for every conjunctive query q with inequalities �= over the target schema,

q(J∗)↓ =
⋂

{q(J ) : J is a universal solution for I}. (3)

Let q∗ be the canonical conjunctive query with inequalities associated with J∗,
that is, q∗ is a Boolean conjunctive query with inequalities that asserts that
there exist at least n∗ distinct elements, where n∗ is the number of elements of
J∗, and describes which tuples from J∗ occur in which relations in the target
schema T. It is clear that q∗(J∗) = true. Since q∗ is a Boolean query, we have
q(J∗)↓ = q(J∗). So from (3), where q∗ plays the role of q, we have

q∗(J∗) =
⋂

{q∗(J ) : J is a universal solution for I}. (4)

Since q∗(J∗) = true, it follows from (4) that q∗(J0) = true. In turn, q∗(J0) = true
implies that there is a one-to-one homomorphism h∗ from J∗ to J0. At the same
time, there is a one-to-one homomorphism from J0 to J∗, by Corollary 3.5.
Consequently, J∗ is isomorphic to J0.

Let us take a closer look at the concept of the certain answers of a query q on
universal solutions. In Fagin et al. [2003], we made a case that the universal
solutions are the preferred solutions to the data exchange problem, since in a
precise sense they are the most general possible solutions and, thus, they rep-
resent the space of all solutions. This suggests that, in the context of data
exchange, the notion of the certain answers on universal solutions may be
more fundamental and more meaningful than that of the certain answers. In
other words, we propose here that u-certain(q, I ) should be used as the se-
mantics of query answering in data exchange settings, instead of certain(q, I ),
because we believe that this notion should be viewed as the “right” semantics
for query answering in data exchange. As pointed out earlier, certain(q, I ) and
u-certain(q, I ) coincide when q is a union of conjunctive queries, but they may
very well be different when q is a conjunctive query with inequalities. The pre-
ceding Example 6.2 illustrates this difference between the two semantics, since
certain(q, I ) = ∅ and u-certain(q, I ) = {(Alice, SD), (Bob, SJ)}, where q is the
query

∃D∃D′ (EmpDept(e, D) ∧ DeptCity(D′, c) ∧ (D �= D′)).

We argue that a user should not expect the empty set ∅ as the answer to
the query q, after the data exchange between the source of the target (un-
less, of course, further constraints are added to specify that the nulls must be
equal). Thus, u-certain(q, I ) = {(Alice, SD), (Bob, SJ)} is a more intuitive an-
swer to q than certain(q, I ) = ∅. Furthermore, this answer can be computed as
q(J0)↓.
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We now show that for conjunctive queries with inequalities, it may be
easier to compute the certain answers on universal solutions than to com-
pute the certain answers. Abiteboul and Duschka [1998] proved the following
result.

THEOREM 6.5 [ABITEBOUL AND DUSCHKA 1998]. There is a LAV setting and a
Boolean conjunctive query q with inequalities �= such that computing the set
certain(q, I ) of the certain answers of q is a coNP-complete problem.

By contrast, we prove the following result, which covers not only LAV settings
but even broader settings.

THEOREM 6.5. Let (S, T, �st, �t) be a data exchange setting in which �st is a
set of tgds and �t is a set of egds. For every existential query q over the target
schema T, there is a polynomial-time algorithm for computing, given a source
instance I, the set u-certain(q, I ) of the certain answers of q on the universal
solutions for I .

PROOF. Let q be an existential query, and let J0 be the core of the universal
solutions. We see from Proposition 6.4 that u-certain(q, I ) = q(J0)↓. By Theo-
rem 5.2 or Theorem 5.15, there is a polynomial-time algorithm for computing
J0, and hence for computing q(J0)↓.

Theorems 6.5 and 6.5 show a computational advantage for certain answers
on universal solutions over simply certain answers. Note that the core is used
in the proof of Theorem 6.5 but does not appear in the statement of the theorem
and does not enter into the definitions of the concepts used in the theorem. It
is not at all clear how one would prove this theorem directly, without making
use of our results about the core.

We close this section by pointing out that Proposition 6.4 is very dependent
on the assumption that q is an existential query. A universal query is taken to
be the negation of an existential query. It is a query of the form ∀xφ(x), where
φ(x) is a quantifier-free formula, with a safety condition that is inherited from
existential queries. Note that each egd and full tgd is a universal query (and in
particular, satisfies the safety condition). For example, the egd ∀x(A1 ∧ A2 →
(x1 = x2)) satisfies the safety condition, since its negation is ∃x(A1 ∧ A2 ∧
(x1 �= x2)), which satisfies the safety condition for existential queries since
every variable in x appears in one of the atomic formulas A1 or A2.

We now give a data exchange setting and a universal query q such that
u-certain(q, I ) cannot be obtained by evaluating q on the core of the universal
solutions for I .

Example 6.6. Referring to our running example, consider again the univer-
sal solutions Jm, for m ≥ 0, from Example 6.1. Among those universal solutions,
the instance J0 is the core of the universal solutions for I .

Let q be the following Boolean universal query (a functional dependency):

∀e∀d1∀d2(EmpDept(e, d1) ∧ EmpDept(e, d2) → (d1 = d2)).
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It is easy to see that q(J0) = true and q(Jm) = false, for all m ≥ 1. Consequently,

certain(q, I ) = false = u-certain(q, I ) �= q(J0).

7. CONCLUDING REMARKS

In a previous article [Fagin et al. 2003], we argued that universal solutions are
the best solutions in a data exchange setting, in that they are the “most general
possible” solutions. Unfortunately, there may be many universal solutions. In
this article, we identified a particular universal solution, namely, the core of an
arbitrary universal solution, and argued that it is the best universal solution
(and hence the best of the best). The core is unique up to isomorphism, and is the
universal solution of the smallest size, that is, with the fewest tuples. The core
gives the best answer, among all universal solutions, for existential queries. By
“best answer,” we mean that the core provides the best approximation (among
all universal solutions) to the set of the certain answers. In fact, we proposed
an alternative semantics where the set of “certain answers” are redefined to be
those that occur in every universal solution. Under this alternative semantics,
the core gives the exact answer for existential queries.

We considered the question of the complexity of computing the core. To this
effect, we showed that the complexity of deciding if a graph H is the core of
a graph G is DP-complete. Thus, unless P = NP, there is no polynomial-time
algorithm for producing the core of a given arbitrary structure. On the other
hand, in our case of interest, namely, data exchange, we gave natural conditions
where there are polynomial-time algorithms for computing the core of universal
solutions. Specifically, we showed that the core of the universal solutions is
polynomial-time computable in data exchange settings in which �st is a set of
source-to-target tgds and �t is a set of egds.

These results raise a number of questions. First, there are questions about
the complexity of constructing the core. Even in the case where we prove that
there is a polynomial-time algorithm for computing the core, the exponent may
be somewhat large. Is there a more efficient algorithm for computing the core
in this case and, if so, what is the most efficient such algorithm? There is also
the question of extending the polynomial-time result to broader classes of tar-
get dependencies. To this effect, Gottlob [2005] recently showed that computing
the core may be NP-hard in the case in which �t consists of a single full tgd,
provided a NULL “built-in” target predicate is available to tell labeled nulls
from constants in target instances; note that, since NULL is a “built-in” predi-
cate, it need not be preserved under homomorphisms. Since our formalization
of data exchange does not allow for such a NULL predicate, it remains an open
problem to determine the complexity of computing the core in data exchange
settings in which the target constraints are egds and tgds.

On a slightly different note, and given the similarities between the two prob-
lems, it would be interesting to see if our techniques for minimizing univer-
sal solutions can be applied to the problem of minimizing the chase-generated
universal plans that arise in the comprehensive query optimization method
introduced in [Deutsch et al. 1999].
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Finally, the work reported here addresses data exchange only between rela-
tional schemas. In the future we hope to investigate to what extent the results
presented in this article and in Fagin et al. [2003] can be extended to the more
general case of XML/nested data exchange.
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