Clio Grows Up: From Research Prototype to Industrial Tool

Laura M. Haas
IBM Silicon Valley Labs
laura@almaden.ibm.com

Lucian Popa
IBM Almaden Research Center
lucian@almaden.ibm.com

ABSTRACT

Clio, the IBM Research system for expressing declarativesa
mappings, has progressed in the past few years from a reggarc
totype into a technology that is behind some of IBM’s mappgah-
nology. Clio provides a declarative way of specifying schemeap-
pings between either XML or relational schemas. Mappings ar
compiled into an abstract query graph representation thatuces
the transformation semantics of the mappings. The quemhgean
then be serialized into different query languages, dependn the
kind of schemas and systems involved in the mapping. Cliceotiy
produces XQuery, XSLT, SQL, and SQL/XML queries. In this pa-
per, we revisit the architecture and algorithms behind .Glie then
discuss some implementation issues, optimizations nefedextal-
ability, and general lessons learned in the road towardstiogean
industrial-strength tool.

1. INTRODUCTION

Mappings between different representations of data aidsfmen-
tal for applications that require data interoperabilibattis, integra-
tion and exchange of data residing at multiple sites, iredéft for-
mats (or schemas), and even under different data modelb ésic
relational or XML). To provide interoperability, informan integra-
tion systems must be able to understand and translate betivee
various ways in which data is structured. With the adventhef t
flexible XML format, the abundance of different schemas dbswy
similar or related data has proliferated even more.

We can distinguish between two main forms of data interdpkra
ity. Data exchangdor data translation is the task of restructur-
ing data from a source format (or schema) into a target foljorat
schema). This is not a new problem; the first systems sumgorti
the restructuring and translation of data were built sévéeaades
ago. An early such system was EXPRESS [9], which performed
data exchange between hierarchical schemas. Howeveredukfor
systems supporting data exchange has persisted and, jrgfaeet
larger over the years. Data exchange requirements appter Eir L
(extract-transform-load) workflows, used to populate aadaare-
house from a set of data sources, in XML messaging, in schema e
lution (when migrating data from an old version to a new \@riin
database restructuring, etc. A second form of data inteadyiéy is
data integration(or federatior), which means the ability to query a
set of heterogeneous data sources via a virtual unifiedttacgema.

Permission to make digital or hard copies of all or part of twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantagel, that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguires prior specific
permission and/or a fee.

SIGMOD 2005June 14-16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/5.00.

805

Mauricio A. Hernandez
IBM Almaden Research Center
mauricio@almaden.ibm.com

Howard Ho
IBM Almaden Research Center
ho@almaden.ibm.com

Mary Roth
IBM Silicon Valley Labs
torkroth@us.ibm.com

There is no need to materialize a target instance in this casead,
the emphasis is on query processing.

In both cases, of data exchange and data integration,aesfiips
or mappings must first be established between the sourcena¢tle
and the target schema. There are two complementary levelsich
mappings between schemas can be established, and bothhadse ¢
lenges. The first is mostly a syntactic one: by employsicgema
matchingtechniques, a set of uninterpretatrespondencesetween
elements (terms, field names, etc.) in two different schesanags-
tablished. A significant body of work on schema matching algo
rithms has been developed (see [8] for a survey). The secwetl |
at which mappings can be established is a more operatiopatiwat
can relaténstance®ver the source schema(s) witistance®ver the
target schema. Establishing an “operational” mapping éessary if
one needs to move actual data from a source to a target, oswean
queries. Such “operational” mappings can be seen as ietatjuons
(with runtime consequences) of the correspondences thait edter
schema matching. Itis this second view on schema mappiags/th
focus on here, and we will use the term schema mappings to mean
“operational” mappings rather than correspondences.

Schema mappings in various logical forms have been used for
query answering in data integration (see [4] for a surveyghetha
mappings expressed as constraints (source-to-targgttigds been
used to formalize data exchange between relational sch@&n&m-
ilar schema mappings appear as an important componentiitel
management framework of Bernstein et al [1, 5].

The system that we are about to descriBbo, is the first to ad-
dress the problem of semi-automatic generation of scherpaimgs
as well as the subsequent problem of using the schema mapping
for the actual runtime (e.g., how to generate an XQuery or .XSL
transformation from the schema mappings to implement ttee @a
change). Originally designed for the relational case [@ih Bas then
evolved into a full-fledged system [7] for generating magpiand
transformations between hierarchical XML schemas. In phiger,
we describe our further experience in building an induksteength
Clio; in particular, we focus on the practical challengesamtered
in: (1) the scalable semi-automatic generation of mappiegeeen
schemas with large degree of complexity, and (2) the sulesgaise
of these schema mappings to accomplish efficient and furaltatata
exchange, via query generation.

Clio system architecture. A pictorial view that shows how Clio is
structured into its main components is shown in Figure 1hAtdore
of the system are theapping generatiomomponent and thquery
generationcomponent. The mapping generation component takes as
input correspondences between the source and the targetaskand
generates a schema mapping consisting seteof logical mappings
that provide an interpretation of the given correspondgntée logi-
cal mappings are declarative assertions (expressed azsodtarget
constraints, to be described shortly). They can be viewebssac-
tions (or requirements) for the more complehiysicaltransforma-
tions (e.g., SQL, XQuery or XSLT scripts) that operate atdh&a

{"Schema |
i Matching i

Mapping
Generation

. _§c_h_em_al_ mapping

* XML Schem:

« XML Schem%'
« Relational

« Relational

Source

Target
schema S

schema T

Query
“conformg to” Generation “confofms to”
[sar [xqQuery || xsit i
A
>

Executable transformation
(SQL/XQuery/XSLT/...)

Figure 1: Clio architecture

transformation runtime. Such abstractions are easier derstand
and to reason about, and are independent of any physicafdrare-
tion language. Nonetheless, they capture most of the irgtiom that

is needed to generate the physical artifacts automaticHtlg query
generation component has then the role to convert a set walog
mappings into an executable transformation script. Quengeation
consists of a generic module, independent of a particulacwgion
language, and of a number of pluggable components that aciisp
to each execution language: SQL, SQL/XML, XQuery and XSLT.
At any time during the design, a user can interact with théesys
through aGUI component The user can view, add and remove cor-
respondences between the schemas, can attach transéorruedtc-
tions to such correspondences, can inspect and edit (inteotted
way) the generated logical mappings, and can inspect (utithdit-
ing) the generated transformation script. Finally, cqoeslences
can also be generated via an optiosehema matchingomponent.
Clio can interact with any schema matcher and also has itsoilta

in schema matching algorithm. However, in this paper, wéfadus

on the rest of the components, which are specific to Clio.

2. MAPPING AND QUERY GENERATION

Figure 2 illustrates an actual Clio screenshot showingiquustof
two gene expression schemas and correspondences betvesen th
schemas. We will use this as a running example to illustria¢e t
concepts, the algorithms, as well as the challenges thatoezifin
designing the mapping and query generation components.

The left-hand (source) schema, GENEX, is a relational seifem
gene expression (microarray) data stored in the GeneX alsdabt
is a schema of medium complexity; it consists of 63 tablet dha
inter-related via key and foreign key constraints (theee4at foreign
key constraints that encode the relationships betweeedpblThe
right-hand (target) schema is an XML schema (GeneXML, falyne
GEML) intended for the exchange (with other databases) akge
expression data. In addition to a structural change to altdkical
format, this schema also presents changes in the concesteeels
and attributes (some of the source GENEX elements do notdwave
respondences in GeneXML and vice-versa). The XML schema is
24KB in size, including 286 elements and attributes. The lmam
of foreign keys (keyref) is much reduced compared to thdicgial
GENEX schema, since many of the original foreign keys are now
replaced by hierarchical parent-child relationships.

For illustration purposes, in this section we only desctiitegprocess
of mapping data about experiment sets and about the factats a
treatments that were applied to each experiment set. Traugnere
a large portion of the two schemas and focus only on the reteva
tables and XML structures (shown in Figure 2). To generatema-c
plete transformation, the remainders of the schemas (amples,
array measurements, citations, software, etc.) will almeehto be

http://sourceforge.net/projects/genex
806

Source schemas |
[+ [E] GEMEX
[EF AM_FACTORMALUE [1.%] fmk
[EF ARRAYMEASUREMENT [1,%] 4t
[EF CHROMOSOME [1,.%] 4w
[Ef CONTACT [1,%] 4w}
E," EXPERIMENTFACTCOR [1,%] fm}

Target schemna

- [g GEML

[Ef header [0.*] fm}

- [exp_set [0.*] 4}
- [exp_set_header {m}
[EE binlogy_desc (string)
[EE analysis_desc (string)

L [E} EF_PK (string) [E] exp_factars_list {u}
| [EL ES_FK (string) E- [B exp_factor [1,%] fmd

|— [Ek FACTOR_MAME (sting) —~——___|
|— [Bk FACTOR_UNITS (string)
|— Bk MAJOR_CATEGORY (string)
L [Bk MINOR_CATEGORY (string)
F1- [EF EXPERIMEMTSET [1,%] 4mih
[EE ES_PK (atring)
I Bk MAME (string)

— [Ek id (string)
— @ factor name/sting)
| @ factor wumits (sting)

— @ major category (sting)

i

— @ minor category (sting)

[E treatment_list fet

B [E treatment [o,%] fd

[E] treat_array_lisk f=

— [€] treat Factor_lisk fef

B [EF treat_factor [0,%] fw}
[EE Factor_id (ztring)

I?—

|— [BE AMALYSIS_DESC fstring)
|— Bk LOCAL_ACCESSION (atrin

—

L [EL PROVIDER_CON_FK fstrin L= @ valus(Eing
- [EF SPECIES [1.%] b gl @ et valuaieing
H- [EF TL_FACTORYALUE [1%] mi} "L [EL rati_am_id (sting)

| [EL EF_FK (atring)
[EE TL_FK (string)
|— Bk YALUE fstring)
L Bk REF_WALLE istring)

— @ g

/_,__;_ @ treatment name(sting)
- [E array [1,4] m

— [Ek owner_contact_id (string)

PR

=+ [EF TREATMEMTLEVEL [1%] fwi =t — @ id (string)
[EE TL_PK (ztring) = — @ mame (sting)
[Ek ES_FK (atring) [~=|— @ local accession(iting
I [Ek RATIO_AM_FK (int) =@ relesse date(ring
— [k MAME (sttina) — @7 date lstingl

Figure 2: Schemas and correspondences in Clio.

matched; additional mappings will then be generated anditiaé
result will be materialized into a complete transformatsanipt. In
Section 3 we give further details on the complexity and emagles of
generating a large-scale transformation.

Schemas in ClioThe first step in Clio is loading and transforming the
schemas into an internal representation. The model thatioet or
this purpose is a nested relational model, that is suitaislddscrib-
ing relational tables as well as the XML hierarchy. In itsibderm,
the nested relational model consists of several fundarmégnes:
set, record and choice types, together with atomic (priittypes.
For exampleGEM. in Figure 2 is represented as a record type and its
repeatable elememtxp_set is represented via a set type. In addi-
tion to this basic nested relational model, Clio’s implemtaion of a
schema loader includes a series of add-on features to eapiiin-
tricacies of XML Schema: data fields to remember whether arcec
component corresponds to an element or an attribute anchemhet
the component is optional or nillable, various encodingdeal with
mixed content elements, derived types, type variablesd(uaepar-
ticular, to encode recursive types), etc.

2.1 Mapping Generation

The main idea of the algorithm [7] is to put correspondences i
groups (not necessarily disjoint) based on how their eridtp¢source,
respectively, target) relate to each other in the schentass, Tor any
two relatedelements in the source schema, for which there exist cor-
respondences into twelated elements in the target schema, there
will be a group (and, subsequently, a mapping) that inclutlese
correspondences (and possibly more). As an exarRpleT OR_NAMVE
andBl OLOGY_DESC are related in the source because there is a for-
eign key that links th&XPERI MENTFACTORtable to theEXPERI M
ENTSET table); furthermorebi ol ogy_desc andf act or _nane
are related in the target because the latter is a child ofdhedr.
Hence, there will be a mapping that maps related instand®s@fO-
GY_DESC and FACTOR_.NAME (and possibly more) into related in-
stances obi ol ogy_desc andf act or _nane (and possibly more).
Generation of tableauxThe first step of the algorithm is to generate
all the basic ways in which elements relate to each otherinvihe
schema, based on the schema structure and constraintgenam-
tion step (described in [7] in detail) considers each spétylement
in a nested schema as a direct generalization of the contepable
in a relational schema; it then joins to each such set-typ@eht all

S, = ExpSet

S, = ExpFactor pdg g s px EXpSet

S; = TreatmentLevel bag ¢ _ s px EXpSet

S, = TL_FactorValue by g _q p Treatmentlevel bdg g _ g5 pc ExpSet
e p = r_px EXPFACIOT bgs ¢ _ s p EXPSEL

T, = GEML/exp_set
T, = GEML/exp_set/.../exp_factor
T, = GEML/exp_set/.../treatment

T, = GEML/exp_set/ { .../treatment/.../treat_factor >, q_iq ---/€Xp_factor }

Figure 3: Source and target tableaux (informal notation).

the other set-type elements that can be reached by follofeieign
key (keyref) constraints (a process called thasg. The result is a
set oftableaux, one set in each schema.

In Figure 3 we show several of the source and target tableat
that are generated for our example. (For brevity, we sonetinse
ExpSet instead oEXPERI MENTSET; similar abbreviations are also
used for the other tables.) For the source schdirpSet forms a
tableau by itself, becaudexpSet is a top-level table (there are no
outgoing foreign keys). In contrasExpFact or does not form a
tableau by itself but need&pSet into which it has a foreign key. A
more complicated tableaud thatis constructed foFL_Fact or Va-
| ue. Each factor value is associated to one treatment leved (tha
foreign key intoTr eat ment Level) and each treatment level cor-
responds to one experiment set (thus, the foreign keyHrfSet).
However, a factor value is also an experiment factor (tthesfdreign
key into ExpFact or), and each experiment factor is associated tc
an experiment set (hence, the second occurrenEz pSet).

The above tablea8, illustrates the complexity that can arise even
when a relatively small number of tables is involved. An &ddal
constraint (which is true for the actual data) could be useihfier
that the two occurrences &xpSet correspond to the same exper-
iment set instance. Clio’s chasing engine includes sucinfenence
mechanism. However, such a constraint is hard to extragtictice
(it is not a key, but a complicated dependency). The priceatofpr
not having such a constraint will be further ambiguity tlehains to
be solved during mapping generation (to be described ghortl

For the target schema, the tableaux are more complex, dgsto n
ing and also to the fact that predicates (such as join camdi}ican
have a context. While tableau) , 7> and T3 are straight paths to
set-type elements (e.gexp_f act or), the tableauls, intended to
denote the collection of treatment factbrseat _f act or , also con-
tains a join withexp_f act or . Moreover, the join is relative to a
given instance oéxp_set . The reason for this is the existence of
a keyref constraint that associates eveneat f act or element
with anexp_f act or element, within thesameexp_set instance.
Such keyref constraints, part of the XML Schema specificatian
be easily specified by putting the constraint on the corrdecbent in
the hierarchyéxp_set instead of the root, for this example).

To represent tableaux suchBsand.S, unambiguously, Clio uses
an internal notation based on: (1) generators, which are teskind
variables to individual elements in sets, and (2) condgidpath ex-
pressions, which can be absolute or relative to the bouridhlas,
can appear in both the generators and the conditions. Asaanpg,
the internal form off’s is shown below.

Generators:

to € GEML/expset,t; € to/exp.setheader/treatmerist/treatment,

to € ti/treatfactor list/treatfactor,

ts € to/lexp.setheader/exdactor list/exp.factor ;

Conditions:
toffactorid = ¢s/id

The use of collection-bound variables (rather than thatrbf-a
trarily bound variables) has the advantage that the reguttotation

2also calledlogical relationsin [7]. However, the termtableaux
used in classical papers on the chase, was the one widelylused
the development of Clio. Hence, we stand by it here.

807

. m,. O 0O/ExpFactors, O/ExpSet _wheresy/es_fk =s,/es_pk

Oty O /GEML/exp_sett; O ty/exp_set_header/exp_factor_list/exp_factor

such thas,/LOCAL_ACCESSION =, /@local_accessioll
s/NAME = tf/@name s/ES_PK =t/@id O
s/RELEASE_DATE =ty/@release_daté]
s,/ANALYSIS_DESC =ty/exp_set_header/analysis_desc

o,k WD

.m,. 05 0/TL_FactorValues, O /TreatmentLevels, O /ExpSet,
s; U /ExpFactors, O /ExpSet,
_whereytl_fk = s/tl_pk O sy/es_fk =s,/es_pkO
s/ef_fk =sylef_pk O syes_fk =sy/es_pk
Oto O /GEML/exp_sett; O to/exp_set_header/treatment_list/treatment,
t, O ty/treat_factor_list/treat_factot; [to/exp_set_header/exp_factor_list/exp_fa
_wheré,/factor_id =ta/id
such that ...

©ONOGO AWM

Figure 4: Two logical mappings.

maps easily tcefficientiteration patterns (e.g., the from clause of
SQL, or the for loops of XQuery/XSLT).

Generation of logical mappingsThe second step of the mapping
generation algorithm is the generation of logical mapping@ecall
that a schema mapping is a set of logical mappings.) The bigie
rithm in [7] pairs all the existing tableaux in the sourcevatl the
existing tableaux in the target, and then finds the corredgroces
that are covered by each pair. If there are such correspoadgtien
the given pair of tableaux is a candidate of a logical mappifig
Section 3 we describe an additional filtering that takeseplaafore
such a candidate is actually output to a user.)

In Figure 4 we show two of the resulting logical mappings,dor
example. The mapping: is obtained from the pairSsz, 72), which
is covered by 10 correspondences. The source tableau ideth@o
theV clause (with its associated wheskause that stores the condi-
tions). A similar encoding happens for the target tableacept that
and clause is used instead ¢f Finally, the_such thatlause encodes
all the correspondences between the source and the taegedrth
covered. (Only five of them are shown in the figure.)

A more complex mapping isns that is obtained from the pair
(S4,T4), which is covered by all the correspondences shown in Fig-
ure 2. An additional complication in generating this mapgpanises
from the fact that the correspondences that f/BXPERI MENTSET
columns toexp_set elements/attributes have multiple interpreta-
tions, because each correspondence can match either thoctios-
rence or the second occurrencefpSet in Ss. This ambiguity
is resolved by generating all possible interpretationg. (@ll these
correspondences match the first occurrendexgfSet , or all match
the second occurrence, or some match the first occurrenceoamel
match the second occurrence). A user would then have to goghr
all these choices and select the desired semantics. Thatdefaice
that we provide is the one in which all the ambiguous correspo
dences match the first choice (e.g., the first occurrenépfet).
For this example, all the different interpretations aredntfequiv-
alent, since the two occurrencesBfpSet represent the same in-
stance, due to the constraint discussed earlier.

In Clio, the tableaux that are constructed based on chasimgy f
only the basic (default) way of constructing mappings. Ydave
the option of creating additional mappings through the nrappdi-
tor. In each schema, a new tableau can be specified by sel¢iatin
needed collections and then creating predicates on thdleetoans.
Each such tableau can then participate in the algorithm &gpimg
generation. In other words, each tableau will be paired witithe
tableaux in the opposite schema to reach all possible mgpgiased
on covered correspondences.

Mapping languageTo the language that we have just described, we
must add an additional constru@kolem functionsThese functions
can explicitly represent target elements for which no sewadue is
given. For example, the mapping; of Figure 4 will not specify

a value for the@ d attribute undeexp_f act or (because there is
no correspondence to map in@ d). To create a unique value for
this attribute, which is required by the target schema, de®kdunc-

1. for $x0 in $docO/GENEX/EXPERIMENTFACTOR,

2. $x1in $docO/GENEX/EXPERIMENTSET

3. where

4. $x1/ES_PK/text() = $x0/ES_FKi/text()

5. return

6. <exp_set>

7. {attribute id { $x1/ES_PK }}

8. {attribute name { $x1/NAME } }

. {attribute local_accession { $x1/LOCAL_ACCESSION }

10. {attribute release_date { $x1/RELEASE_DATE } }

11. <exp_set_header>

12. <biology_desc> { $x1/BIOLOGY_DESCi/text() } </biglp desc>
13. <analysis_desc> { $x1/ANALYSIS_DESC/text() } <dbysis_desc>
14. <exp_factors_list> {

15 for $x0L1 IN $docO/GENEX/EXPERIMENTFACTOR,

©

16. $x1L1 IN $docO/GENEX/EXPERIMENTSET

17. where

18. $x1LI/ES_PK/text() = $xOL1L/ES_FK/text() and

19. $x1/BIOLOGY_DESC/text() = $x1L1/BIOLOGY_DESC/@xnd

20. $x1/ANALYSIS_DESC/text() = $x1L1/ANALYSIS_DES€Xt() and

21. $x1/NAME/text() = $x1L1/NAME/text() and

22. $x1/LOCAL_ACCESSION/text() = $x1L1/LOCAL_ACCHSSI/text() and

23. $x1/RELEASE_DATE/text() = $x1L1/RELEASE_DATE/(@xt

24, return

25. <exp_factor>

26. { attribute factor_name { $x0L1/FACTOR_NAMIE

27. { attribute factor_units { $xOL1/FACTOR_UNST} }

28. { attribute major_category { $xOL1/MAJOR_CAGERY }}

29. { attribute minor_category { $xOL1/MINOR_CAGBERY } }

30. <id>
{"SK6(",$x1L1/BIOLOGY_DESC/text(),$x1L1/ANALYSIS_DESC/text(),. /id>

31. </exp_factor>

32. } </exp_factors_list>
33. </exp_set_header>
34. </exp_set>

Figure 5: XQuery fragment for one of the logical mappings.

tion can be generated (and the siblings and ancest@@sdfsuch as
f act or _nane andbi ol ogy_desc, which contain a source value,
will appear as arguments of the function). In general, theege
ation of Skolem functions could be postponed until queryegen
tion (see Section 2.2) and the schema mapping languagecitsed
avoid Skolem functions. However, to be able to express nmgspi
that arise fronmapping compositiofe.g., a mapping that is equiva-
lent to the sequence of two consecutive schema mappings}jdas

as 1-4 except for the variable renaming), and, 2) since ieafgp
nested withinexp_set , that such tuples join with the current tuple
from the outer part of the query to create the proper grouflings
19-23 - requiring that the values fexp_set in the inner tuple be
the same as in the outer tuple). The grouping condition &slit9—-23
does not appear anywhere in logical mapping This is computed
in the query graph when the shape of the target schema is itatcen
consideration. Finally, lines 25-31 produce an actxgb_f act or
element. Of particular interest, line 30 creates a valu¢her d el-
ement. No correspondence exists for ittteelement and, thus, there
is no value for it inm4. However, since d is arequiredtarget ele-
ment, the query generator produces a Skolem valueddrased on
the dependency information stored in the query graph.

3. PRACTICAL CHALLENGES

In this section, we present several of the implementatiahan
timization techniques that we developed in order to addsesse of
the many challenging issues in mapping and query generation

3.1 Scalable Incremental Mapping Generation

One of the features of the basic mapping generation algorith
is that it enumerates a priori all possible “skeletons” ofppiags,
that is, pairs of source and target tableaux. In a secondepfias
sertion/deletion of correspondences), mappings are getkhased
on the precomputed tableaux, as correspondences are adaded i
removed. This second phase mustiberementalin that, after the
insertion of a correspondence (or of a batch of corresparedgror
after the removal of a correspondence, a new mapping statebau
efficiently computed based on the previous mapping statis.iglan
important requirement since one of the main uses of Clioterat-
tive mapping generation and editing. To achieve this, thenrdata
structure in Clio (the mapping state) is tlist of skeletonswhere
a skeleton is a pair of tableaux (source and target) togettikrall
the inserted correspondences that match the given paiblefatax.
When correspondences are inserted or deleted, the relkelatons
are updated. Furthermore, at any given state, only a sulbsdt o
the skeletons is used to generate mappings. The otherahelate

mustbe part of the language [2]. Clio has been recently extended geemedredundant(although they could become non-redundant as

to support mapping composition, an important feature ofacheta
management. Hence, the schema mapping language used in-Clio
cludes Skolem functions; the resulting language is a nestational
variation of the language of second-order tgds of Fagin g]al

2.2 Query Generation

Our basic query generation operates as follows. Each logiap-
ping is compiled into a query graph that encodes how eaclettarg
element/attribute is populated from the source-side dita. each
logical mapping, query generators walk the relevant patietarget
schema and create the necessary join and grouping corglifidre
query graph also includes information on what source dataeg
each target element/attribute depends on. This is usednierafe
unique values for required target elements as well as fanming.

In Figure 5, we show the XQuery fragment that produces ttgetar
<exp_set > elements as prescribed by logical mapping®. The
query graph encodes that aexp_set > element will be generated
for every tuple produced by the join of the source taBEXBERI MENT-
FACTORandEXPERI MENTSET (see lines 1-2 im1). Lines 1-4 in
Figure 5 implement this join. Lines 7—10 output the attrédsutvithin
exp-set and implement lines 3-5 ofi;. Then, we need to pro-
duce the repeatabkexp_f act or elements. The query graph pre-
scribes two things abowxp_f act or : 1) that it will be generated
for every tuple that results from the join &XPERI MENTFACTOR
andEXPERI MENTSET (lines 15-18 in the query — they are the same

3The complete XQuery is the concatenation of all the fragséat
correspond to all the logical mappings.

808

more correspondences are adfjedrhis redundancy check, which
we describe next, can significantly reduce the amount ofevvaat
mappings that a user has to go through.

Redundancy checkA tableauT; is a sub-tableauof a tableauls

if there is a one-to-one mapping of the variablegofinto the vari-
ables of T3, so that all the generators and all the conditiong of
become respective subsets of the generators and condifidias A
pair (S;, T;) of source and target tableaux isab-skeletof a sim-

ilar pair (S;, T;) if S; is a sub-tableau of; andT} is a sub-tableau
of T;. The sub-tableaux relationships in each of the two schemas
as well as the resulting sub-skeleton relationship are @lsoom-
puted in the first phase, to speed up the subsequent progehain
occurs in the second phase. When correspondences are a&uded,
the second phase, {5;,7}) is a sub-skeleton ofS;, 7}) and the
setC' of correspondences covered {¥;, T;) is thesameas the set

of correspondences covered {fy;, 7};), then the mapping based on
(S;,T;) andC'is redundant. Intuitively, we do not want to use large
tableaux unless more correspondences will be covered. Xeon-e
ple, suppose that we have inserted only two correspondefroes

Bl OLOGY_DESC and ANALYSI S_DESC of EXPERI MENTSET to

bi ol ogy_desc andanal ysi s_.desc underexp_set. These
two correspondences match on the skeldin 7%) where S, and

T» are the tableaux in Figure 3 involving experiment sets and ex
periment factors. However, this skeleton and the resuhiagping
are redundant, because there is a sub-skelgionl;) that covers

“And vice-versa, non-redundant skeletons can become raduad
correspondences are removed.

the same correspondences, wh&reandT; are the tableaux in Fig-
ure 3 involving experiment sets. Until a correspondence rieps
EXPERI MENTFACTORis added, there is no need to generate a logi-
cal mapping that involveEXPERI MENTFACTCR.

The hybrid algorithm The separation of mapping generation into
the two phases (precomputation of tableaux and then ingeaficor-
respondences) has one major advantage: when correspesdanec
added, no time is spent on finding associations between eheegits
being mapped. All the basic associations are already cadmand
encoded in the tableaux; the correspondences are just edatzh
the relevant skeletons, thus speeding up the user additioorre-
spondences in the GUI. There is also a downside: when schemmas
large, the number of tableaux can also become large. Theewohb
skeletons (which is the product of the numbers of sourcerasgec-
tively, target tableaux) is even larger. A significant antooitime

is then spent in the preprocessing phase to compute thatatdad
skeletons as well as the sub-tableaux and sub-skeletdionships.

A large amount of memory may be needed to hold all the data-stru
tures. Moreover, some of the skeletons may not be needetlléash
not until some correspondence is added that matches them).

A more scalable solution, which significantly speeds up tiitéai
process of loading schemas and precomputing tableawqutitig-
nificantly slowing down the interactive process of addind eemov-
ing correspondences, is thgbrid algorithm The main idea behind
this algorithm is to precompute only a bounded number of cour
tableaux and target tableaux (up to a certain thresholdy ascl00
tableaux in each schema). We give priority to the top tabidae.,
tableaux that include top-level set-type elements withioaiuding
the more deeply nested set-type element). When a userdtgevih
the Clio GUI, she would usually start by browsing the schefras
the top and, hence, by adding top-level correspondencas witi
match the precomputed skeletons.

However, correspondences between elements that are dieédper
schema trees may fail to match on any of the precomputedteksle
We then generate, on the fly, the needed tableaux based ondhe e
points of such a correspondence. Essentially, we genersderae
tableau that includes all the set-type elements that aestors of the
source element in the correspondence (and similarly fotatget).
The tableaux are then closed under the chase, thus inclatlitige
other schema elements that are associated via foreign Keys, the
data structures holding the sub-tableaux and the subteketela-
tionships are updated, incrementally, now that the tablead a new
skeleton have been added. The new correspondence will taehm
the newly generated skeleton, and a new mapping can be ¢ethera
Overall, the performance of adding a correspondence takistaut
the amount of tableaux computation is limited locally (surrding
the end-points) and is usually quite acceptable. As a drekylihe
algorithm may lose itsompletenessin that there may be certain
associations between schema elements that will no longesrsd-
ered (they would appear if we were to compute all the tablealin
the basic algorithm). Still, this is a small price to pay, @ared to
the ability to load and map (at least partially) two complekesmas.
Performance evaluation: mapping MAGE-ML We now give an
idea of the effectiveness of the hybrid generation algoribly illus-
trating it on a mapping scenario that is close to worst capedcatice.
We load the same complex XML schema on both sides and experi-
ment with the creation of the identity mapping. The schenaa e
consider is the MAGE-ML schenta intended to provide a standard
for the representation of microarray expression data tbatavacil-
itate the exchange of microarray information between dffié data
systems. MAGE-ML is a complex XML schema: it features many
recursive types, contains 422 complex type definitions &idb Ele-
ments and attributes, and is 172KB in size.

We perform two experiments. In the first one, we control the
nesting level of the precomputed tableaux (maximum 6 ndsted

Shttp://www.mged.org/Workgroups/MAGE/mage.html|
809

els of sets), but we set no limit on the total number of preaatexgh
tableaux, when loading a schema. This experiment gives owex |
bound estimation on the amount of time and memory that thig bas
algorithm (that precomputes all the tableaux) requireshérsecond
experiment, we control the nesting level of the precomptabtbaux
(also, maximum 6)xnd the total number of precomputed tableaux
(maximum 110 per schema). This experiment shows the actual i
provement that the hybrid algorithm achieves.

For the first experiment, we looked at the time to load the MAGE
ML schema on one side only (as source). This includes preabmp
ing the tableaux as well as the sub-tableaux relationsfiipe (ime
to compile, in its entirety, the types of MAGE-ML, into thested re-
lational model poses no problem; it is less than 1 second.wérfe
able to precompute all (1030) the tableaux that obey thenelsivel
limit, in about 2.6 seconds. However, computing the sulketalx re-
lationship (checking all pairs of the 1030 tableaux for thle-fableau
relationship) takes 74 seconds. The total amount of menwonpid
the necessary data structures is 335MB. Finally, loadiegMAGE-
ML schema on the target side causes the system to run out obrgem
(512MB were allocated).

For the second experiment, we also start by loading the MAGE-
ML schema on the source side. The precomputation of theaakle
(116 now) takes 0.5 seconds. Computing the sub-tableaatiae!
ship (checking all pairs of the 116 tableaux to record if acna sub-
tableau of another) takes 0.7 seconds. The total amount of-me
ory to hold the necessary data structures is 163MB. We wene th
able to load the MAGE-ML schema on the target side in time ighat
similar to that of loading the schema on the source side. The s
sequent computation of the sub-skeleton relationshipcichg all
pairs of the 13456 = 116 x 116 skeletons to record whetheroge i
sub-skeleton of another) takes 35 seconds. The amount obrgem
needed to hold everything at this point is 251MB. We then mesbs
the performance of adding correspondences. Adding a qgumes
dence for which there are precomputed matching skeletofs2is
seconds. (This includes the time to match and the time tampate
the affected logical mappings.) Removing a correspondegmgres
less time. Adding a correspondence for which no precomskele-
ton matches and for which new tableaux and a new skeletonlyeust
computed on the fly takes about 1.3 seconds. (This also iesltid
time to incrementally recompute the sub-tableaux and kaketon
relationships.) Overall, we found the performance of thiridyal-
gorithm to be quite acceptable and we were able to easilyrgene
30 of the (many!) logical mappings. Generating the exedetsdript
(query) that implements the logical mappings takes, aafutily, a
few seconds. To give a feel of the complexity of the MAGE-ML
transformation, the executable script correspondinge@thlogical
mappings is 25KB (in XQuery) and 131KB (in XSLT).

The Clio implementation is in Java and the experiments wane r
on a 1600MHz Pentium processor with 1GB main memory.

3.2 Query Generation: Deep Union

There are two major drawbacks that the query generation algo
rithm described in Section 2.2 suffers from: there is no idapé
removal within and among query fragments, and there is noggro
ing of data among query fragments. For instance, supposerave a
trying to create a list of orders with a list of items nesteside. As-
sume the input data comes from a simple relational t@blder s
(Order I DI t em D). If the input data looks likg(o1,i1), (01,i2)},
our nested query solution produces the following outpudg:, (i1,
i2)), (01,(1,i2))}. The grouping of items within each order is what
the user expected, but users may reasonably expect thabioalin-
stance ofo; appears in the result. Even if we eliminate duplicates
from the result of one query fragment, our mapping could lteésu
multiple query fragments, each producing duplicates oraeixifor-
mation that needs to be merged with the result of anothenfead
For example, assume that a second query fragment produopkea t

WITH
ExpSetFlaAS -- Q1: Thejoin and union of the relational data for ExpSet
(SELECT DISTINCT
x1.BIOLOGY_DESC AS exp_set_exp_set_header_biology_desc,
x1.ANALYSIS_DESC AS exp_set_exp_set_header_analysis_desc,
x0.ES_FK AS exp_set_id,

VARCHAR('Sk_GEML_2(|| x1.BIOLOGY_DESC || x1L.ANALYSIS DESC]| ...

VARCHAR('Sk_GEML_3(' || x1.BIOLOGY_DESC || x1LANALYSIS DESC]|...
FROM GENEX.EXPERIMENTFACTOR x0, GENEX.EXPERIMENTSET x1
WHERE x0.ES FK = x1LES PK

UNION

SELECT DISTINCT

x1.BIOLOGY_DESC AS exp_set_exp_set_header_biology_desc,

X1.ANALYSIS DESC ASexp_set_exp_set_header_analysis desc,

X0.ES_FK ASexp_set_id,

I'Y) AS ClioSeto,
Iy) AS ClioSet1

VARCHAR('Sk_GEML_2(|| x1.BIOLOGY_DESC || x1L.ANALYSIS DESC]| ...
VARCHAR('Sk_GEML_3(' || x1.BIOLOGY_DESC || x1L.ANALYSIS DESC]| ...
FROM GENEX.TREATMENTLEVEL x0, GENEX.EXPERIMENTSET x1
WHERE x0.ES_FK = xLES _PK),
ExpFactorFlat AS -- Q2: Thejoin of relational data for ExpFactor
(SELECT DISTINCT
VARCHAR('SK29(' || X0.FACTOR_NAME || ... ||')") ASexp_factor_id,
x0.FACTOR_NAME AS exp_factor_factor_name,

1Y) AS ClioSeto,
Iy) AS ClioSet1

VARCHAR('Sk_GEML_2(' || x1.BIOLOGY_DESC || x1.ANALYSIS DESC| ...
FROM GENEX.EXPERIMENTFACTOR x0, GENEX.EXPERIMENTSET x1
WHERE x0.ES FK = x1L.ES PK),

TreatmentLevelFlat AS -- Q3: Thejoin of relational datafor TreatmentLevel
(SELECT DISTINCT

VARCHAR('SK109(' | XO.NAME |I'," .. [|')) AStreatment_id,

X0.NAME AS treatment_treatment_name,

VARCHAR('Sk_GEML_4 (' ||'SK110(' || x0O.NAME || xL.RELEASE_DATE|| .

VARCHAR('Sk_GEML_3(|| x1.BIOLOGY_DESC || x1L.ANALYSIS DESC ||
FROM GENEX.TREATMENTLEVEL x0, GENEX.EXPERIMENTSET x1
WHERE x0.ES FK = x1ES PK),

1)) AS Inset

. |I")) AS ClioSeto,
. I')) ASInSet

Figure 6: SQL/XML script, relational part.

{(01,(i3))}. We would expect this tuple to be merged with the previ-
ous result and produce only one tuple fgrwith three items nested
inside. We call this special union operatideep-union

We illustrate the algorithm by showing the generated queithé
case of SQL/XML, arecent industrial standard that exterggls Bith
XML construction capabilities. For the example, we assuinag we
are only interested in generating the transformation far of our
logical mappings:m1 (mapping experiment sets with their associ-
ated experiment factors) and, (which is similar tom; and maps
experiment sets with their associated treatment levels).

The generated SQL/XML script can be separated in two pahs. T
first part (shown in Figure 6) generates a flat representafitive out-
put in which a collection of tuples is represented by a sysiemner-
ated ID, and each tuple contains the ID of the collectionstigposed
to belong to. The purpose of the second part (Figure 7) isdorre
struct the hierarchical structure of the target by joininglés based
on their IDs (i.e., joining parent collections with the @sponding
children elements based on IDs). The final result is free pfidates
and merged according to the deep union semantics.

Briefly, Q1 joinsEXPERI MENTFACTORwith EXPERI MENTSET
and will be used to populate the atomic components a¢¥mset
level in the target (thus, not including the atomic data tfwes under
exp-fact or andt reat nent). Two set-IDs are generated in Q1
(under the column€l i oSet 0 andCl i oSet 1), for each different
set of values that populate the atomic components agxeset
level. The firstoneCl i oSet 0, will be used to grougxp_f act or
elements undeexp_set , while d i oSet 1 will be used to group
t r eat nent elements. The values for the set-IDs are generated as
strings, by using two distinct Skolem functions that dependll the
atomic data at thexp_set level. The atomic data faxp_f act or
andt r eat nent are created by Q2 and Q3, respectively. In both
cases, a set-ID (namdchSet) is created to capture what experi-
ment set the data belongs to. The main idea here is that, gsabon
the values that go into the atomic components aethp_set level
are the same, the InSet set-ID will match the set-ID storegdkun
Cl i 0Set 0 (in the case of Q2) o€l i 0Set 1 (in the case of Q3).
On a different note, we remark that all queries that appetrarfirst
half of the script (e.g., Q1, Q2, and Q3) use BIeSTI NCT clause

810

ExpFactorXML AS -- Q4: Add XML tagsto the data from Q2.
(SELECT
X0.InSet AS InSet,
xmi2clob(
xmlelement(name "exp_factor",
xmlattribute(name "factor_name", x0.exp_factor_factor_name),
xmlelement(name "id", x0.exp_factor_id),

)) ASXML
FROM ExpFactorHat x0),

TreatmentLevel XML AS -- Q5: Add XML tagsto the data from Q3.
(SELECT
X0.InSet AS InSet,
xml2clob(
xmlelement(name "treatment”,
xmlattribute(name "id", x0.treatment_id),
xmlattribute(name "treatment_name", x0.treatment_treatment_name)
)) ASXML
FROM TreatmentLevel Flat x0),

-- Q6: Combines the results of Q1, Q4, and Q5 into one XML do¢umen
SELECT xml2clob(xmlelement (name "exp_set",
xmlattribute (name "id", x0.exp_set_id),

xmlelement (name "exp_set_header”,
xmlelement (name "biology_desc”, x0.exp_set_exp_set_header_biology_desc),
xmlelement (name "analysis_desc", x0.exp_set_exp_set_header_analysis desc),
xmlelement (name "exp_factors list",
(SELECT xmlagg (x1.XML)
FROM ExpFactorXML x1
WHERE x1.InSet = x0.ClioSet0)),
xmlelement (name "treatment_ligt",
(SELECT xmlagg (x1.XML)
FROM TreatmentLevel XML x1
WHERE x1.InSet = x0.ClioSet1)))
)) ASXML
FROM ExpSetFat x0

Figure 7: SQL/XML script continued, XML construction part.

to remove duplicate values.

In the second half of the script, the query fragments Q4 and Q5
perform the appropriate XML tagging of the results of Q2 ar@l Q
Finally, Q6 tags theexp_set result of Q1 and, additionally, joins
with Q4 and Q5 using the created set-IDs, in order to nesthall t
correspondingxp_f act or andt r eat nent elements.

4. REMAINING CHALLENGES

There remain a number of open issues regarding scalabilily a
expressiveness of mappings. Complex mappings sometinegsane
more expressive correspondence selection mechanismithisup-
ported by Clio. For instance, deciding which group of cqumes
dences to use in a logical mapping may be based on a set of pred-
icates. We are also exploring the need for logical mappihgs t
nest other logical mappings inside. Finally, we are stuglyirapping
adaptation issues that arise when source and target sclobarage.

5. REFERENCES

[1] P.Bernstein. Applying Model Management to Classicata/ata
Problems. IrCIDR, 2003.

R. Fagin, P. Kolaitis, L. Popa, and W.-C. Tan. Composithena
Mappings: Second-Order Dependencies to the ResclirODS 2004.
R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. DatacEange:
Semantics and Query Answering.llBDT, 2003.

M. Lenzerini. Data Integration: A Theoretical Perspeztin PODS
2002.

S. Melnik, P. A. Bernstein, A. Halevy, and E. Rahm. Suipgr
Executable Mappings in Model ManagementSiiGMOD, 2005.

R. J. Miller, L. M. Haas, and M. A. Hernandez. Schema Mappas
Query Discovery. I'WVLDB, 2000.

L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez,ciR. Fagin.
Translating Web Data. INLDB, 2002.

E. Rahm and P. A. Bernstein. A Survey of Approaches to Autic
Schema MatchingThe VLDB Journal10(4):334-350, 2001.

N. C. Shu, B. C. Housel, R. W. Taylor, S. P. Ghosh, and V. iri.
EXPRESS: A Data EXtraction, Processing, and REStructusiystem.
TODS 2(2):134-174, 1977.

(2]
(3]
(4
(5]
(6]
(7]
(8]
El

