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Abstract. The problem of answering queries using views is data independence [YL87,TSI96,PDSTO00], data integration
to find efficient methods of answering a query using a set ofLR0O96,DG97b,KW96,LKG99], and data warehouse and
previously materialized views over the database, rather thaweb-site design [HRU96,TS97]. Informally speaking, the
accessing the database relations. The problem has receiv@doblem is the following. Suppose we are given a qugoyer
significant attention because of its relevance to a wide varietya database schema, and a set of view definitidns. ., V,,
of data management problems, such as data integration, queoyer the same schema. Is it possible to answer the qery
optimization, and the maintenance of physical data indepenusing only the answers to the views,, ..., V,, and if so,
dence. To date, the performance of proposed algorithms hasow?
received very little attention, and in particular, their scale up  There are two main contexts in which the problem of an-
in the presence of a large number of views is unknown. Weswering queries using views has been considered. In the first
first analyze two previous algorithms, the bucket algorithmcontext, where the goal is query optimization or maintenance
and the inverse-rules algorithm, and show their deficienciesof physical data independence [YL87,TSI96,CKPS95], we
We then describe the MiniCon algorithm, a novel algorithm search for an expression that uses the views aadus/alent
for finding the maximally-contained rewriting of a conjunc- to the original query. Here it is usually assumed that the num-
tive query using a set of conjunctive views. We present the firsber of views is on the same order as the size of the schema. The
experimental study of algorithms for answering queries usingsecond context is that of data integration, where views describe
views. The study shows that the MiniCon algorithm scales upa set of autonomous heterogenous data sources. A user poses
well and significantly outperforms the previous algorithms. a query in terms of a mediated schema, and the data integra-
We describe an extension of the MiniCon algorithm to handletion system needs to reformulate the query to refer to the data
comparison predicates, and show its performance experimersources. In a subsequent phase, the queries over the sources
tally. Finally, we describe how the MiniCon algorithm can be are optimized and executed. The reformulation problem can
extended to the context of query optimization. be solved by algorithms for answering queries using views,
though in this context, we usually cannot find a rewriting that
Keywords: Materialized views — Data integration — Query is equivalentto the user query because of the data sources’lim-
optimization — Web and databases ited coverage. Instead, we search fanaximally-contained
rewriting, which provides the best answer possible, given the
available sources. When the query and views are conjunc-
tive (i.e., select-project-join) without comparison predicates,
the maximally-contained rewriting is a union of conjunctive
queries over the views. In some data integration applications,
the number of data sources may be quite large — for example,

The problem of answering queries using views (otherwisedata sources may be a set of web sites, a large set of suppliers

known as rewriting queries using views) has recently receivec?md consumers in an electronic marketplace, or a set of peers

significant attention because of its relevance to a wide varicontaining fragments of a larger data set in a peer-to-peer en-
ety of data management problems [Hal01]: query Optimiza_wronment. Hence, the challenge in this context is to develop

tion [CKPS95,LMSS95,ZC100], maintenance of physical an algonthm that scales up in the num.ber of VIEWS. .
We consider the problem of answering conjunctive queries

Thanks to Daniela Florescu, Marc Friedmargs®i Grahne, Zack Using a set of conjunctive views in the presence of a large
Ives, loana Manolescu, Dan Weld, and Steve Wolfman for their com-humber of views. In general, this problem is NP-complete
ments on earlier drafts of this paper. This research was funded bfpecause it involves searching through a possibly exponential
a Sloan Fellowship, NSF Grants #11S-9978567 and #11S-9985114, aaumber of rewritings [LMSS95]. Previous work has mainly
NSF Graduate Research Fellowship, a Lucent Technologies GRPWonsidered two algorithms for this purpose. The bucket algo-
Grant, and gifts from Microsoft Research, NTT, and NEC.
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rithm, developed as part of the Information Manifold Systemfocus is on obtaining a scalable algorithm for answering

[LRO96], controls its search by first considering each subgoabueries using views and the experimental evaluation of such

in the query in isolation, and creating a bucket that containsalgorithms. Hence, we begin with the class of select-project-

only the views that are relevant to that subgoal. The algoqjoin queries.

rithm then creates rewritings by combining one view from  The paper is organized as follows. Section 2 formally de-

every bucket. As we show, the combination step has severdines the problem, and Sect. 3 discusses the limitations of the

deficiencies, and does not scale up well. The inverse-rules aprevious algorithms. Section 4 describes the MiniCon algo-
gorithm, developed in [Qia96,DG974a], is primarily used in rithm, and Sect.5 presents the experimental evaluation. Sec-
the InfoMaster System [DG97a]. The inverse-rules algorithmtion 6 describes an extension of the MiniCon algorithm to
considers rewritings for each database relation independent @omparison predicates. Section 7 describes how to extend the

any particular query. Given a user query, these rewritings ardliniCon algorithm to context of query optimization. Section 8

combined appropriately. We show that the rewritings producedliscusses related work and Sect. 9 concludes. The proof of the

by the inverse-rules algorithm need to be further processed iMiniCon algorithm is described in Appendix A.

order to be appropriate for query evaluation. Unfortunately,

in this additional processing step the algorithm must dupli-

cate much of the work done in the second phase of the bucke Preliminaries

algorithm.

Based on the insights into the previous algorithms, weQueries and views:we consider the problem of answer-
introduce the MiniCon algorithm, which addresses their limi- ing queries using views fazonjunctive queriegi.e., select-
tations and scales up to a large number of views. The key ideproject-join queries). Aonjunctive querhas the form:
underlying the MiniCon algorithm is a change of perspec- , & . > %
tive: instead of building rewritings by combining rewritings ¢(X) = er(X),. en(Xn)
for each query subgoal or database relation, we consider howhere ¢ and ey, ...,e, are predicate names. The atoms
each of thevariablesin the query can interact with the avail- e1(X1), ..., en(X,) are thesubgoalsin the body of the
able views. The result is that the second phase of the MiniComuery, wheres,, .. ., e,, refer to database relations. The atom
algorithm needs to consider drastically fewer combinations ofy(X ) is called theheadof the query, and refers to the an-
views. Hence, as we show experimentally, the MiniCon algo-swer relation. The tupleX, X, ..., X,, contain either vari-
rithm scales up much better. The specific contributions of theables or constants. We require that the quergdfe i.e., that
paper are the following: X C X, U...UX, (that is, every variable that appears in
. . . . . the head must also appear in the body). The variables in
o We describe the M_|n|Con alg_orlthm and its properties. oo thedistinguishedvariables of the query, and all the oth-

* We present a detailed exper'lmental gvalua}tlon gnd analyérs areexistentialvariables. We denote individual variables by
sis of algorithms for answering queries using views. Thejowercase letters. We udéurs(Q) (Subgoals(Q)) to refer to
experimental results show: (1) the MiniCon algorithm Sig- o st of variables (subgoals)dn andQ (D) to refer to the
n_|f|can.tly outperforms_ the bucket and inverse-rules algo'result of evaluating the query over the databasb.
rithms; an.d (2) the MiniCon a}lgorlthm sqaleg up to hun- Note that unions can be expressed in this notation by allow-
dred; of VIEWS, the'reby.showmg for th? .f'rSt time that an'ing a set of conjunctive queries with the same head predicate.
SWering qUErIES using VIews can be e;fhuent on Iarge_sca}IeA viewis a named query. If the query results are stored, we
problgms. We belleve tha} our experlmental gvgluatlor) Nrefer to them as a materialized view, and we refer to the result
itself is a significant contribution that fills a void in previ- - go¢ o thextensiorof the view. In Sect. 6 we consider queries
ous work on this topic. . . that contain subgoals with comparison predicates:, #. In

¢ We describe an extension of the MiniCon algorithm 10 yis -ase we require that if a variableppears in a subgoal of

handle comparison predicates and experimental results o comparison predicate, themust also appear in an ordinary
its performance.

i i ini : l.
e We describe an extension of the MiniCon algorithm to theSUbgoa

context of cost-based query optimization, where the goaExample 1.Consider the following schema that we use
is to find the single cheapest plan for the query using thehroughout the paper. The relatioites(p1,p2) stores pairs of
views. In doing so we distinguish the role of two sets of publication identifiers wherpl citesp2. The relatiorsame-
views: those that are needed for the logical correctness ofopic stores pairs of papers that are on the same topic. The
the plan, and those that are only needed to reduce the coghary relationsnSIGMOD andinVLDB store ids of papers

of the plan. We show that different techniques are needegyyblished in SIGMOD and VLDB, respectively. The follow-

in order to identify each of these sets. ing query asks for pairs of papers on the same topic that also

This paper focuses on the problem of answering querie§ite each other. Note that join predicates in this notation are
using views for select-project-join queries under set seman€XpPressed by multiple occurrences of the same variables.

tics. While such queries are quite common in data integraQ(x,y):- sameTopic(x,y), cites(X,y), cites(y,x)

tion applications, many applications will need to deal with

queries involving grouping and aggregation, semi-structuredQuery containment and equivalencethe concepts of query
data, nested structures and integrity constraints. Indeed, theontainment and equivalence enable us to compare between
problem of answering queries using views has been considereglieries and rewritings. We say that a qu@ryis containedin

in these contexts as well [GHQ95,SDJL96,CNS99,GRT99the queryQ,, denoted by, C Q, if the answer ta; is a
PV99,CGLV99,DL97,Gry98]. In contrast to these works, our subset of the answer 1@, for anydatabase instance. We say
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that@Q, and@, areequivalenif Q; C Q5 andQ, C @Q1,i.e., we may have two data sourcex] andS2, containing pairs

they produce the same set of tuples for any given database. of SIGMOD (respectively, VLDB) papers that cite each other.
Containment mappingsovide a necessary and sufficient The sources can be described as follows:

condition for testing query containment. A mappmgrom S1(a,b):- cites(a,b), cites(b,a), inSIGMOD(a),

Vars(Q2) to Vars(Q1) is a containment mapping if: (1) inSIGMOD(b)

maps every subgoal in the body@$ to a subgoal in the body S2(a,b):- cites(a,b), cites(b,a), inVLDB(a), inVLDB(b)

of @Q1; and (2)r maps the head dj- to the head of);. The Gi he d . . f q

query @, contains@); if and only if there is a containment iven a queryy, the data integration system first needs

mapping fromQ, to Q; [CM77]. to reformulateQ_to refer to the data sources, i.e., the views.
Given a partial mapping on the variables of a query, we | Nere are two differences bdet\;]veen this dappl(;c_atl?]n of answer]:

extend it in the obvious manner to apply to sets of variabled"d gueries using views and that considered in the context o

and to subgoals of the query (when ali the variables of thélUery optimization. First, the views here are not assumed to
subgoal are in the domain o} containall the tuples in their definition since the data sources

are managed autonomously. For example, the sddtamay
Answering queries using viewsgiven a queryy) and asetof  notcontain allthe pairs of SIGMOD papers that cite each other.

view definitionsy = Vi, ..., V,,, arewriting of the query us-  Second, we cannot always find an equivalent rewriting of the
ing the views is a query expressioh whose body predicates query using the views because there may be no data sources
are eithefVy, ..., V,, or comparison predicates. that contain all of the information the query needs. Instead,

We distinguish between two types of query rewritings: we consider the problem of finding a maximally-contained
equivalent rewritingsthat are used in the contexts of query rewriting, as illustrated below.
optimization and the maintenance of physical data indepen—E
dence, andnaximally-contained rewritingghat are used in
the context of data integration.

xample 3.Continuing with our example, assuming we have
the data sources described 8%, S2 andV2 and the same
queryQ, the best rewriting we can generate is:

Definition 1. (Equivalent rewriting) LetQ be a query, and  Q'(x,y):- S1(x,y), V2(X,y)

V =V,...,V, beasetofviews, both over the same database)'(x,y):- S2(x,y), V2(x,y)

schema. The quer§)’ is an equivalent rewriting of) us-
ing V if for any databaséD, the result of evaluating)’ over
Vi(D),...,V,(D) is the same a§ (D).

Note that this rewriting is a union of conjunctive queries,
describing multiple ways of obtaining answer to the query
from the available sources. The rewriting is not an equivalent

Example 2.Consider the query from Example 1 and the fol- FeWriting, since it misses any pair of papers that is not both in
lowing views. The view/1 stores pairs of papers that cite each SIGMOD or both in VLDB, but we do not have data sources
other, and/2 stores pairs of papers on the same topic and eack? Provide us such pairs. Furthermore, since the sources are

of which cites at least one other paper_ not guaranteed to haVe a” the tuples in the deﬁnition Of the

view, our rewritings need to consider different views that may
Q(x,y):- sameTopic(x,y), cites(x,y), cites(y,x) have similar definitions. For example, suppose we have the
V1(a,b):- cites(a,b), cites(b,a) following sourceS3:

V2(c,d) :- sameTopic(c,d), cites(c,cl), cites(d,d1) S3(a,b)- cites(a,b), cites(b,a), inSIGMOD(a)

The following is an equivalent rewriting @: inSIGMOD(b)

) . The definition ofS3 is identical to that ofS1, however,
Q)= V1), V2(xy) because of source incompleteness, it may contain different
To check tha@Q’is an equivalent rewriting, we unfold the view tuples tharS1. Hence, our rewriting will also have to include
definitions to obtairQ”, and show tha@ is equivalent taQ” the following in addition to the other two rewritings.
using a containment mapping (in this case it's the identity oMy (x,y):- S3(x.Y), V2(x.y)

x andy andx1 — vy, yl1 — X).
Maximally-contained rewritings are defined with respect

Q"(x,y):- cites(xy), cites(y,x), sameTopic(x,y), cites(x,x1)  to a particular query language in which we express rewritings.
cites(y,y1) Intuitively, the maximally-contained rewriting is one that pro-

. ) ) ) vides all the answers possible from a given set of sources.
Data integration: one of the main uses of algorithms for an- Formally, they are defined as follows.

swering queries using views is in the context of data integra-_ ) . . .
tion systems that provide their users with a uniform interfacePefinition 2. (Maximally-contained rewriting) The quety
to a multitude of data sources [LRO96, KW96, FW97,Ul197, 1S @ maximally-contained rewriting of a query using the

LKG99]. Users pose queries in terms ofrediated schema  VIeWwsV = Vi,..., Vi, w.rt. a query language if
which is a set of relations designed to capture the salient asd. forany databas®, and extensions, . .., v, ofthe views
pects of the application. The data, however, is stored in the such thaw; C V;(D),for1 < i < n,then@’(v1,...,v,)

sources. In order to be able to translate users’ queries into C Q(D) for all 7,

gueries on the data sources, the data integration system nee@s there is no other quer§; in the languageC, such that for

a description of the contents of the sources. One of the ap- every databas® and extensions, ..., v, as above (1)
proaches to specifying such descriptions is to describe a data Q’'(v1,...,v,) C Q1(v1,...,v,)and (2)Q1(v1,...,vy)
source as a view over the mediated schema, specifying which C Q(D), and there exists at least one database for which
tuples can be found in the source. For example, in our domain, (1) is a strict set inclusion.
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Note that in the above definitiof); and@’ needto be in  of comparison subgoals because comparison subgoals often
the language, but@ does not have to. enable the bucket algorithm to deem many views as being
Given a conjunctive quer§ and a set of conjunctive views irrelevant to a query.
V, the maximally-contained rewriting of a conjunctive query  We illustrate the bucket algorithm with the following query
may be a union of conjunctive queries (we refer to the indi-and views. Note thatthe query now only asks for a set of papers,
vidual conjunctive queries aonjunctive rewritings Hence, rather than pairs of papers.
considering Definition 2, if the languaggis less expressive o : :
than non-recursive datalog, there may not be a maximally\?j((;()) ((::ilttgss((;,gg,Cé?f;s(zlbxz)i,)sameToplc(x,y)
contained rewriting of thz ((qjuery. When the queries and tge\/S(c d.) . same:To’pic(c d)'
views are conjunctive and do not contain comparison predi [ o :
cates, it follows from [LMSS95] that we need only considerV6(f’h) - cites(f,g) cites(g,h).sameTopic(f,g)
conjunctive rewritings)’ that have at most the number of sub- In the first step, the bucket algorithm creates a bucket for each
goals in the querg). The ability to find a maximally-contained  subgoal inQ1. The bucket for a subgoglcontains the views
rewriting depends in subtle ways on other properties of thehat include subgoals to whighcan be mapped in a rewriting
problem. It follows from [AD98] that if: (1) the query contains Of the query. If a subgoa} unifies with more than one sub-
comparison subgoals; or (2) the views are assumed to be congoal in a viewV’, then the bucket of will contain multiple
plete, then there may not be a maximally-contained rewritingoccurrences of/. * The bucket algorithm would create the
if we considerc to be the language of unions of conjunctive following buckets:
queries or even if we consider datalog with recursion. cites(x,y) | cites(y,x) | sameTopic(x,y)

Remark 1. It is important to emphasize at this point that V4(X) ‘ V4(x) ‘ V5(x,y)
the definitions considered in this section only ensure that theV6(x,y) | V6(x.y) V6(x,y)

rewriting of the query obtains as many answers as possibl§|qte that it is possible to unify the subgagtes(x,y) in the

from a set of views, which is the main concern in the context : : : f :
’ uery with the subgoalites(b,a) in V4, with the mappin
of data integration. The bulk of this paper is not concernedq y g (b2) bping«

ith th | ffindina th itino that viel — b, y — a. However, the algorithm did not include the entry
with the problem of finding the rewriting that yields tlgeap-  \/4(yyin the bucket because it requires that every distinguished
estquery execution plan over the views, which would be the

. . o T variable in the query be mapped to a distinguished variable in
main concern if our goal was query optimization. In Sect. 7 Wethe view.
present an extension of the MiniCon algorithm to the context, yhe second step, the algorithm considers conjunctive
of.qyery optimization, anc_i show how the ideas underly|_n.g thequery rewritings, each consisting of one conjunct from every
MiniCon algorithm apply in that context as well. In addition, 1 c\iet Specifically, for each element of the Cartesian product
we do not consider here the issue of ordering the results fromy¢yhe pyckets, the algorithm constructs a conjunctive rewriting
the sources. and checks whether it is contained (or can be made to be
contained by adding join predicates) in the query. If so, the
rewriting is added to the answer. Hence, the result of the bucket
algorithm is a union of conjunctive rewritings.
The theoretical results on answering queries using view:%h In ﬁur example,éhfe .?Igonthm W'HI try tg Clomb'_lr‘f’ W't.h i
[LMSS95] showed that when there are no comparison predi- e other views and fail (as we explain below). Then it wi

catesinthe query, the search for a maximally-contained rewrit:ConSIder th.e rewritings involving6, and note that by. equat-
ng the variables in the head ¥®6 a contained rewriting is

ing can be confined to a finite space: an algorithm needsto corff9 ! . i .
sider every possible conjunction efor fewer view atoms, obtained. Finally, the algorithm will also note th& andV5

wheren is the number of subgoals in the query. Two pre- can be combined. Though not originally described as part of

vious algorithms, the bucket algorithm and the inverse-rule§he bucket algor!thm, It |s_pOSS|bIe to add an addmp_nal Sim-
algorithm, attempted to find more effective methods to pro_pIe check that will determine that the resulting rewriting will
duce rewritings that do not require such exhaustive search. | N r(_at(.junQatrr:t. (becaub? carr]\. bﬁ rlem(t)ved). Htetnct;e, the only
this section we briefly describe these algorithms and point oufelwr; Ing 'nt. IS _e>famp & (which also turns out to be an equiv-
their limitations. In Sect.5 we compare these algorithms todient rewrl ing) is:

our MiniCon algorithm and show that the MiniCon algorithm Q1'(X) :- V6(x,X)
significantly outperforms them. We describe the algorithms The main inefficiency of the bucket algorithm is that it

for queries and views without comparison subgoals. misses some important interactions between view subgoals by
considering each subgoal in isolation. As a result, the buckets
contain irrelevant views, and hence the second step of the
algorithm becomes very expensive. We illustrate this point on

The bucket algorithm was developed as part of the Informa2ur example. .
Consider the view4, and suppose that we decide to use

tion Manifold System [LRO96]. The key idea underlying the . . .
bucket algorithm is that the number of query rewritings that V4 in Such away that the subgaates(x.y) is mapped to the
need to be considered can be drastically reduced if we firsfUPg0acites(a,b) in the view, as shown below:

consider each subgoal in the query in isolation and deter- * |fwe have knowledge of functional dependencies in the schema,
mine which views may be relevant to a particular subgoal.then itis often possible to recover an attribute that has been projected
The bucket algorithm is even more effective in the presenceaway, but we do not consider this case here.

3 Previous algorithms

3.1 The bucket algorithm
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Q1(x) :- cites(x,y), cites(y,x), sameTopic(x,y) up accessing views that are irrelevant to the query. Toillustrate
_ _ ? the first point, suppose we use the rewriting produced by the
V4(a) :- cites(a,b), cites(b,a) inverse-rules algorithm in the case where the Whas the
We can mayy to b and be able to satisfy botlites pred- ~ €xtension{ (p1, p1), (p2,p2) }. _
icates. However, sindedoes not appear in the head\ef, if First, we would apply the inverse rules to the extensions

we usev4, then we will not be able to apply the join predicate ©f the views. Applying R4 would yieldites(p1, f2(p1,p1)),
betweertites(x,y) andsameTopic(x,y) in the query. There-  Cit€s(p2,2(p2,p2)), and similarly applying RS and R6 would
fore, V4 is not usable for the query, but the bucket algorithm Yi€ld the following tuples:
would not discover this. ;
Furthermore, even if the query did not contaiame- g::gzgle(pflz(ppll)gg)
Topic(x,y), the bucket algorithm would not realize that if it cites(f2(p2:p2):p2):
used/4, then it has to use it fdyothof the query subgoals. Re- sameTopic(pl,pl)
alizing this would save the algorithm exploring useless Com'sameTopic(pZ’pZ)i
binations in the second phase. '

Aswe explain later, the MiniCon algorithm discoversthese  Applying the queryQ1 to the tuples computed above ob-
interactions in the first phase. In this example, MiniCon will tains the answerpl andp2. However, this computation is
determine tha¥4 isirrelevantto the query. Inthe case inwhich highly inefficient. Instead of directly using the tuples#s for
the query does not contain the subgsameTopic(x,y), the  the answer, the inverse-rules algorithm first computed tuples
MiniCon algorithm will discover that the twoite subgoals for the relatiorcites, and then had to recompute the self-join
need to be treated atomically. of cites that was already computed #@6. Furthermore, if the

extensions of the viewg4 andV5 are not empty, then apply-
ing the inverse rules would produce useless tuples as explained
3.2 The inverse-rules algorithm in Sect. 3.1.

] ] ] ) ] Hence, before we can fairly compare the inverse-rules al-
Like the bucket algorithm, the inverse-rules algorithm[Qia96, gorithm to the others, we need to further process the rules.
DG97a] was also developed in the context of a data integratiorgpeciﬁca"y, we need to expand the query with every possible
system. The key idea underlying the algorithm is to construckombination of inverse rules. However, expanding the query
a set of rules thainvert the view def|n|t|0n3, l.e., I’UleS that with the inverse rules turns out to repea‘[ much of the work
show how to compute tuples for the database relations frongone in the second phase of the bucket algorithm. In our ex-
tuples of the views. Given the views in the previous example gmple, since we have four rules foites and two rules for
the algorithm would construct the fO”OWing inverse rules: SameTopiC’ we may need to consider 32 such expansions in

R1:cites(a, f1(a)) :- V4(a) the worst case. o .
R2:cites(f1(a), a) :- V4(a) In the experiments described in Sect. 5 we consider an ex-
R3: sameTopic(c,d) :- V5(c,d) tended version of the inverse-rules algorithm that produces
R4: cites(f, f2(f,h)) :- V6(f,h) a union of conjunctive queries by expanding the definitions
R5: cites(f2(f,h), h) :- V6(f,h) of the inverse rules. We expanded the subgoals of the query
R6: sameTopic(f, f2(f,h)) :- V6(f,h) one at a time, so we could stop an expansion of the query

. o _ .. atthe moment when we detect that a unification for a subset
Consider the rules R1 and R2; intuitively, their meaning is of the subgoals will not yield a rewriting (thereby optimiz-
the following. A tuple of the forn{p1) in the extension of the g the performance of the inverse-rules algorithm). We show
viewV4 is a witness of two tuples in the relatioites. Itisa 51 the inverse-rules algorithm can perform much better than
witness in the sense that it tells that the relagdas contains  the pucket algorithm, but the MiniCon algorithm scales up

a tuple of the forn(_pl, Z), for some value of, and that the significantly better than either algorithm.
relation also contains a tuple of the fof& p1), for thesame

value ofZ. Remark 2.1t is important to clarify why our study considers

In order to express the information that the unknown valuethe extended version of the inverse-rules algorithm, rather than
of Z is the same in the two atoms, we refer to it using thethe original version. It is easy to come up with (real) exam-
functional Skolem ternfil(Z). Note that there may be several ples in which the execution of plan generated by the original
values ofZ in the database that cause the tujpl#) to be in  inverse-rules algorithm would be arbitrarily worse than that
the self-join ofcites, but all that we know is that there exists of the bucket algorithm or the MiniCon algorithm. Hence, we
at least one such value. face the usual tradeoff between spending significant time on

The rewriting of a query) using the set of view¥ is sim-  optimization, but with much more substantial savings at run-
ply the composition of) and the inverse rules far. Hence, time. An optimizer that would accept the result of the orig-
one of the important advantages of the algorithm is that thénal inverse-rules algorithm would definitely try to optimize
inverse rules can be constructed ahead of time in polynomiathe plan by trying to reduce the number of joins it needs to
time, independent of a particular query. perform. By using the extended version of the inverse-rules

The rewritings produced by the inverse-rules algorithm, asalgorithm we are putting all three algorithms on equal footing
originally described in [DG97a], are not appropriate for queryin the sense that one does not need more optimization than
evaluation for two reasons. First, applying the inverse ruleghe other. Optimizations will still be applied to them, but the
to the extension of the views may invert some of the usefulsame optimizations can be applied to the results of each of the
computation done to produce the view. Second, we may endlgorithms. O
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4 The MiniCon Algorithm subgoals of that we cover by the mapping.. Property 1
below specifies the exact conditions we need to consider when
The MiniCon algorithm begins like the bucket algorithm, con- we decide which subgoals to includedfy:. Note thatl (Y')
sidering which views contain subgoals that correspond to subis uniquely determined by the other elements of an MCD, but
goals in the query. However, once the algorithm finds a partials part of an MCD specification for clarity in our subsequent
mapping from a subgog) in the query to a subgoa}; in discussions. Furthermore, the algorithm will not consider alll
a view V, it changes perspective and looks at the variableghe possible MCDs, but only those in whiél: is the least
in the query. The algorithm considers the join predicates inrestrictive head homomorphism necessary in order to unify
the query (which are specified by multiple occurrences of thesubgoals of the query with subgoals in a view.
same variable) and finds the minimal additional set of subgoals The mappingpc of an MCD C' may map a set of vari-
that need to be mapped to subgoal¥ingiven thatg will be ables in@ to the same variable ih- (V). In our discussion,
mapped tay; . This set of subgoals and mapping information we sometimes need to refer to a representative variable of
is called aviiniCon Description(MCD), and can be viewed as such a set. For each such set of variableg)imnve choose
a generalization of buckets. In the second phase, the algorith@ representative variable arbitrarily, except that we choose a
combines the MCDs to produce the rewritings. It is importantdistinguished variable whenever possible. For a variatite
to note that because of the way we construct the MCDs, thé), EC,, (x) denotes the representative variable of the set to
MiniCon algorithm does not require containment checks inwhich = belongs.EC,, . (z) is defined to be the identity on
the second phase, giving it an additional speedup compared &ny variable that is not ig.
the bucket algorithm. Section 4.1 describes the construction of The construction of the MCDs is based on the following
MCDs, and Sect. 4.2 describes the combination step. For eas@servation on the properties of query rewritings. The proof
of exposition we describe the MiniCon algorithm for queries of this property is a corollary of the correctness proof of the
and views without constants. The proof of correctness of theMiniCon algorithm.

MiniCon algorithm can be found in Appendix 9.
Property 1. LetC be an MCD for@ overV. ThenC' can only

be used in a non-redundant rewriting @fif the following
4.1 Forming the MCDs conditions hold:

C1. For each head variahteof @ which is in the domain of

We begin by introducing a few terms that are used inthe de- -, o (z) is a head variable iho (V).

scription of the algorithm. Given a mappimgrom Vars(Q) ~ C2. If pc(z) is an existential variable i (V), then for

to Vars(V), we say that a view subgogl coversa query everyg, subgoal of), thatincludes:: (1) all the variables

subgoal if 7(g) = g1. in g are in the domain op¢; and (2)¢c(g) € he (V)

An MCD is a mapping from a subset of the variables in the

query to variables in one of the views. Intuitively, anMCDrep-  Clause C1 is the same as in the bucket algorithm. Clause

resents a fragment of a containment mapping from the query t€2 captures the intuition we illustrated in our example, where

the rewriting of the query. The way in which we construct the if a variablez is part of a join predicate which is not enforced

MCDs guarantees that these fragments can later be combindty the view, therr must be in the head of the view so the join

seamlessly. predicate can be applied by another subgoal in the rewriting.
As seen in our example, we need to consider mapping$n our example, clause C2 would rule out the us&/éffor

from the query to specializations of the views, where somequeryQ1 because the variabkeis not in the head d¥4, but

of the head variables may have been equated (&Ggx,x) the join predicate witsameTopic(x,y) has not been applied

instead ofV6(x,y) in our example). Hence, every MCD has inV4.

an associatetiead homomorphism head homomorphism The algorithm for creating the MCDs is shown in Fig. 1.

h on a viewV is a mapping: from Vars(V) to Vars(V)  Consider the application of the algorithm to our example with

that is the identity on the existential variables, but may equatéhe queryQ1 and the view§/4, V5, andV6. The MCDs that

distinguished variables, i.e., for every distinguished variablewill be created are shown in Fig. 2.

x, h(z) is distinguished, an#l(z) = h(h(z)). We first consider the subgoaites(x,y) in the query. As
Formally, we define MCDs as follows. discussed above, the algorithm does not create an MCD for
L o o V4 because clause C2 of Property 1 would be violated (the

Definition 3. (MiniCon descriptions) An MCIZ' foraquery  property would require that4 also cover the subgoahme-

Q over a viewl’ is a tuple of the form Topic(x,y) sinceb is existential inv4 ). For the same reason,
(he, V(Y)e, pco, Ge) where: no MCD will be created foi4 even when we consider the
e he is a head homomorphism d#, i i other subgoals in the query. . .
o V(Y)cistheresultof applyingc toV, i.e.,¥ = he(A), In a sense, the MiniCon algorithm shifts some of the work
whereA are the head variables df, done by the combination step of the bucket algorithm to the

N is a partial mapping from/ ars(O) t0 he (Vars(V phase of cregting the MCDs. The bucket algorithm v_viII dis-
o gi is agubset of ?ﬁe gubgoals@l(vf/?gich a?e( coveged))by cover thawv4 is not usable for the query when combmlng the.
some subgoal ih¢ (V) using the mapping (note: not buckets. However, the bucket algorithm needs to discover this
all such subgoals are necessarily includedip). many times (each time it con&dé&/ﬂ in conjunction W|.th
another view), and every time it does so, it uses a containment
In words, ¢¢ is a mapping fromQ) to the specialization check, which is much more expensive. Hence, as we show
of V obtained by the head homomorphigm. G¢ isasetof  in the next section, with a little more effort spent in the first
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procedurdormMCDs (Q, V) 4.2 Combining the MCDs

I+ @ andV are conjunctive queries/
c=0. Our method for constructing MCDs pays off in the second
For each subgogl € Q phase of the algorithm, where we combine MCDs to build

For viewV € V and every subgoal € V
Let i be the least restrictive head homomorphisnion
such that there exists a mappipgs.t.o(g) = h(v).
If h andy exist, then add t€ any new MCDC'
that can be constructed where:
(a) pc (respectivelyhc) is an extension ap (respectivelyh),
(b) G¢ is the minimal subset of subgoals@fsuch
thatGc, ¢c andhce satisfy Property 1, and

the conjunctive rewritings. In this phase we consider combi-
nations of MCDs, and for each valid combination we create
a conjunctive rewriting of the query. The final rewriting is a
union of conjunctive queries.

The following property states that the MiniCon algorithm
need only consider combinations of MCDs that cover pairwise
disjoint subsets of subgoals of the query. The proof of the

(c) Itis not possible to extend andh to ¢ andh’- property follows from the correctness proof of the MiniCon
s.t. (b) is satisfied an@’, as defined in (b), is algorithm.
a subset of7¢.

Property 2. Given a queryy, a set of views/, and the set of
MCDsC for @ over the views iri, the only combinations of

MCDs that can result in non-redundant rewritingsbére of
Fig. 1. First phase of the MiniCon algorithm: forming MCDs. Note  the form(Cy, ..., C;, where

that condition (b) minimize€7. givena choice ofhc andpc, and

ReturnC

is therefore not redundant with condition (c) D1. G¢, U...UGg, = Subgoals(Q), and

D2. foreveryi # j, Go, N G, = 0.
V() |h | ¢ | G The fact that we only need to consider sets of MCDs that
vs(ed) | c—cd—d | x—cy—d ‘ 3 provide partitions of the subgoals in the query drastically re-
VeI [f=fh—1 | x—=fy—f | 123 duces the search space of the algorithm. Furthermore, even

Fig. 2.MCDs formed as part of our example of the MiniCon algorithm though we do not discuss it here, the algorithm can also be ex-
tended to output the rewriting in a compact encoding that iden-

tifies the common subexpressions of the conjunctive rewrit-

phase, the overall performance of the MiniCon algorithm out-iNgs, and therefore leads to more efficient query evaluation.
performs the bucket algorithm and the inverse-rules algorithmYVe note that had we chosen the alternate strategy in Remark 3,
Another interesting observation is the difference in per-clause D2 would not hold. o
formance in the presence of repeated occurrences of the same Given a combination of MCDs that satisfies Property 2,
predicate in the views or the query. For the bucket algorithmthe actual rewriting is constructed as shown in Fig.3.
repeated occurrences lead to larger buckets, and hence more In the final step of the algorithm we tighten up the rewrit-
combinations to check in the second phase. For the inversd0ds by removing redundant subgoals as follows. Suppose a
rules algorithm, repeated occurrences mean there are more ef@Writing Q" includes two atomsl; and A, of the same view
pansions to check in the second phase. In contrast, the Mini¥', whose MCDs wer&’; andC, and the following condi-
Con algorithm can more often rule out the consideration oftions are satisfied: (1) whenever (respectively,A,) has a

certain occurrences of a predicate due to violations of Propvariable from@ in positioni, thenA; (respectivelyA, ) either
erty 1. has the same variable or a variable that does not app&anin

that position; and (2) the rangesgf, andyc, do not over-
Remark 3(covered subgoals) : When we construct an MCD lap on existential variables &f. In this case we can remove
C, we must determine the set of subgoals of the quéry  one of the two atoms by applying 1@’ the homomorphism
that are covered by the MCD. The algorithm include&in 7 that is: (1) the identity on the variables @f and (2) is the
only theminimalset of subgoals that are necessary in order tomost general unifier ofi; and As. The underlying justifica-
satisfy Property 1. To see why this is not an obvious choicetion for this optimization is discussed in [LMSS95], and it can

suppose we have the following query and views: also be applied to the bucket algorithm and the inverse-rules
) ) . algorithm.
Q1'(x) :- cites(x,y),Cites(z,x), InSIGMOD(x) We note that even after this step, the rewritings may
V7(a) :- cites(a,b), inSIGMOD(a) still contain redundant subgoals. However, removing them in-
V8(c) :- cites(d,c), inSIGMOD(c) volves several tests for query containment; both inverse-rules
algorithm and the bucket algorithm require these removal steps

as well.

In our example, the algorithm will consider using to
cover subgoaB, but when it realizes that there are no MCDs
that cover either subgoalor 2 without covering subgod, it
will discardV5. Thus, the only rewriting that will be consid-
eredis

One can also consider including the subga#bliG-
MOD(x) in the set of covered subgoals for the MCD for both
V7 andV8, becausex is in the domain of their respective
variable mappings anyway. However, our algorithm will not
includeinSIGMOD(x), and will instead create a special MCD
for it.

The reason for our choice is that it enables us to focus in th€1’(x) :- V6(x,X).
second phase only on rewritings where the MCDs cover
tually exclusivesets of subgoals in the query, rather than over-Constants in the query and viewshen the query or the view
lapping subsets. This yields a more efficient second phase. include constants, we make the following modifications to the
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procedurecombineMCDY(C)
/% C are MCDs formed by the first step of the algorith#h.
/x Each MCD has the fornhe, V(Y), oo, Go, ECc). */
Given a set of MCDs(4, . . ., C\,, we define the function
EC onVars(Q) as follows:
If for i # j, ECy, (x) # EC,, (), defineECc () to be
one of them arbitrarily but consistently acrossall
for which EC,, (y) = ECy, (x)
Let Answer = 0
For every subset’, . .., C, of C such that
Gc, U Ge, U... UG, = subgoals(Q) and for every
i;ﬁj,GClﬂGCj:@ ~
Define a mapping; on theY;’s as follows:
If there exists a variable € @ such thatp;(z) =y
Vi(y) ==
Else
¥; is a fresh copy of)
Create the conjunctive rewriting
Q' (EC(X)) = Ve, (EC(#1(Ye,))), -,
Ve, (EC(¥n(Ye,)))
Add Q' to Answer.
ReturnAnswer.

Fig. 3. Phase 2: combining the MCDs

Theorem 1. Given a conjunctive query) and conjunctive
views), both without comparison predicates or constants, the
MiniCon algorithm produces the union of conjunctive queries
that is a maximally-contained rewriting 6 usingV. O

It should be noted that the worst-case asymptotic running
time of the MiniCon algorithm is the same as that of the bucket
algorithm and of the inverse-rules algorithm after the modifi-
cation described in Sect. 3.2. In all cases, the running time is
O(nm M)™, wheren is the number of subgoals in the query,
m is the maximal number of subgoals in a view, ddds the
number of views.

The next section describes experimental results showing
the differences between the three algorithms in practice.

5 Experimental results

The goal of our experiments was twofold. First, we wanted to
compare the performance of the bucket algorithm, the inverse-
rules algorithm, and the MiniCon algorithm in different cir-
cumstances. Second, we wanted to validate that MiniCon can
scale up to large number of views and large queries. Our ex-

periments considered three classes of queries and views: (1)
chain queries; (2) star queries; and (3) complete queries, all of
algorithm. First, the domain and rangeof inthe MCDsmay ~ Which are well known in the literature [MGA97].
also include constants. Second, an MCD also records a (pos- 10 facilitate the experiments, we implemented a random
sibly empty) set of mappingsc from variables iV ars(Q) query generator which enables us to control the following pa-
to constants. rameters: (1) the number of subgoals in the queries and views;
When the query includes constants, we add the following(2) the number of variables per subgoal; (3) the number of
condition to Property 1: distinguished variables; and (4) the degree to which predicate
names are duplicated in the queries and views. The results
C3. Ifais a constant irf) it must be the case that either: (1) are averaged over multiple runs generated with the same pa-
o (a) is adistinguished variable - (V); or (2) o (a) rameters (at least 40, and usually more than 100). All graphs
is the constan. either contain 95% confidence intervals or the intervals were
] ) less than twice as thick as the line in the graph and were thus
When the views have constants, we modify Property 1 agycluded. An important variable to keep in mind throughout
follows: the experiments is the number of rewritings that can actually
d be obtained.

In most experiments we considered queries and views that
d the same query shape and size. Our experiments were all
run on a dual Pentium Il 450 MHz running Windows NT 4.0
with 512 MB RAM. All of the algorithms were implemented
in Java and compiled to an executable.

e We relax clause C1: a variablethat appears in the hea
of the query must either be mapped to a head variable irha
the view (as before) or be mapped to a constarh the
latter case, the mapping— « is added ta)¢.

e If oo (x) is a constant, then we add the mapping— a
to ¥ ¢. (Note that condition C2 only applies to existential
variables, and thereforedf- () is a constant that appears
in the body ofV but not in the head, an MCD is still

created). 5.1 Chain queries

Next, we combine MCDs with some extra care. Two In the context of chain queries we consider several cases. In
MCDs, C; and (s, both of which haver in their domain, thefirstcase, showninFig. 4, only the firstand last variables of
can be combined only if they: (1) either both mago the  the query and the view are distinguished. Therefore, in order
same constant; or (2) one (e.¢;y) mapsx to a constantand  to be usable, a view has to be identical to the query, and as a
the other (e.g.(C;) mapsz to distinguished variable in the resultthere are very few rewritings. The bucket algorithm per-
view. Note that ifC; mapsz to an existential variable in the forms the worst, because of the number and cost of the query
view, then the MiniCon algorithm would never consider com- containment checks it needs to perform (it took on the order
bining C; andCs in the first place, because they would have of 20 s for five views of size 10 subgoals, and hence we do not
overlappingG¢ sets. even show it on the graph). The inverse-rules algorithm and

Finally, we modify the definition of2C', such that when- the MiniCon algorithm scale linearly in the number of views,
ever possible, it chooses a constant rather than a variagble. but the MiniCon algorithm outperforms the inverse-rules al-

The following theorem summarizes the properties of thegorithm by a factor of about 2 (and this factor is independent
MiniCon algorithm. Its full proof is given in the appendix. of query and view size). In fact, the MiniCon algorithm can
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Chain queries with 10 subgoals and two Chain queries with 8 subgoals and all
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Fig. 4. This graph considers chain queries with two distinguished':ig- 6. Chain queries where all variables in the views are distin-

variables in the views, and shows that the MiniCon algorithm and9uished. Note that the containment check required by the bucket
the inverse-rules algorithms both scale up to hundreds of views. Thélgorithm causes it to be roughly twice as slow as either the MiniCon
MiniCon algorithm outperforms the inverse-rules algorithm by a fac- algorithm or inverse-rules algorithm

tor of 2

goals depends heavily on the specific views available and is,

Chain queries; 2 variables distinguished, in general, very hard to find. Hence, it would be hard to extend
Query of length 12 Views of lengths 2, 3, and 4 the inverse-rules algorithm such that its second phase would
compare in performance to that of the MiniCon algorithm.
1.6 T e MiniCon Algorithm In the second case we consider, shown in Fig. 5, the views
§ 1‘2‘ ] InverseRules — are shorter than the query (of lengths 2, 3 and 4, while the
S 1 query has 12 subgoals).
& os Finally, as shown in Fig. 6, we also considered another case
£ o6 in which all the variables in the views are distinguished. In this
2 04 PE—— case, there are many rewritings (often more than 1,000), and
g 02 hence the performance of the algorithms is limited because of
0 0 100 200 200 400 the sheer number of rewritings. Since virtually all combina-
tions produce contained rewritings, any complete algorithm is
Number of Views forced to form a possibly exponential number of rewritings;

for queries and views with eight subgoals, the algorithms take
Fig. 5. This graph shows chain queries where the views are of length®n the order of 100 s for five views. The graph in Fig. 6 shows
2, 3, and 4, and the query has 12 subgoals that on average the MiniCon algorithm performs better than
the inverse-rules algorithm by anywhere between 10% and
25%. However, in this case the variance in the results is very
handle more than 350 views with ten subgoals each in leskigh, and hence it is hard to draw any general conclusions.
thanls. (The confidence intervals cannot be shown in the graph with-
The difference in the performance between the inverseout cluttering it.) The reason for the large variance is that some
rules algorithm and the MiniCon algorithm in this context and of the queries in the workload have a huge number of rewrit-
in others is due to the second phases of the algorithms. In thi;gs (and hence take much more time), while others have a
phase, the inverse-rules algorithm is searching for a unificavery small number of rewritings. Other experiments showed
tion of the subgoals of the query with heads of inverse rulesthat the savings for the MiniCon algorithm over the inverse-
The MiniCon algorithm is searching for sets of MCDs that rules algorithm, as expected, grew with the number of views
cover all the subgoals in the query, but cover pairwise disjointand the number of subgoals in the query; this is because the
subsets. Hence, the MiniCon algorithm is searching a muctumber of combinations that was considered was much higher
smaller space, because the number of subgoals is smaller thand thus the smaller search space that the MiniCon algorithm
the number of variables in the query. Moreover the MiniCon considered was much more evident.
algorithm is performing better because in the first phase of the
algorithm it already removed from consideration views that
may not be usable due to violations of Property 1. In contrastb.2 Star and complete queries
the inverse-rules algorithm must try unifications that include
such views and then backtrack. The amount of work that thdn star queries, there exists a unique subgoal in the query that
inverse-rules algorithm will waste depends on the order inis joined with every other subgoal, and there are no joins be-
which it considers the subgoals in the query when it unifiestween the other subgoals. In the cases of two distinguished
them with the corresponding inverse rules. If a failure appearvariables in the views or all view variables being distinguished,
late in the ordering, more work is wasted. The important pointthe performance of the algorithms mirrors the corresponding
to note is that the optimal order in which to consider the sub-cases of chain queries. Hence, we omit the details of these
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Fig. 7. This figure shows the running times for star queries, whereFig. 8. This figure shows running times for complete queries where
the distinguished variables in the views are those not participatinghree variables are distinguished. As in Fig. 7, the MiniCon algorithm
in the joins. The MiniCon algorithm significantly outperforms the significantly outperforms the inverse-rules algorithm

inverse-rules algorithm

Query type Distinguished  # of subgoals  # of views

experiments. Figure 7 shows the running times of the inverse-Chafn Al 3 45

rules algorithm and the MiniCon algorithm in the case whereChain Al 12 3
the distinguished variables in the views are the ones that d&hain Two 5 9225
not participate in the joins. In this case, there are relativelyChain Two 99 115
few rewritings. We see that the MiniCon algorithm scales upStar Non Joined 5 12235
much better than the inverse-rules algorithm. For 20 viewsgig, Non Joined 99 35
with ten subgogls each, the Mmpon algorithm runs 15 timesg;,, Joined 10 4520
faster than the inverse-rules algorithm. Here the explanation I3 .

tar Joined 99 75

that the first phase of the MiniCon algorithm is able to prune
many of the irrelevant views, whereas the inverse-rules a|goTabIe 1.The number of views that the MiniCon algorithm can process
rithm discovers that the views are irrelevant only in the secondn under 10 s in various situations
phase, and often it must be discovered multiple times.
An experiment with similar settings but for complete
gueries is shown in Fig. 8. In complete queries every subgoa#lgorithm can handle thousands of views, which is amagnitude
is joined with every other subgoal in the query. As the figurethat was clearly out of reach of previous algorithms.
shows, the MiniCon algorithm outperforms the inverse-rules  Second, the experiments showed that the bucket algorithm
algorithm by a factor of 2.3 for 20 views, and by a factor of performed much worse than the other two algorithms in all
3 for 50 views, which is less of a speedup than with of starcases. More interesting was the comparison between the Mini-
gueries. The explanation for this is that there are more joins irfCon algorithm and the inverse-rules algorithm. In all cases the
the query, and thus the inverse-rules algorithm is able to detedvliniCon algorithm outperformed the inverse-rules algorithm,
useless views earlier in its search because failures to unify odhough by differing factors. In particular, the performance of
cur more frequently. Finally, we also ran some experiments orihe inverse-rules algorithm was very unpredictable. The prob-
gueries and views that were generated randomly with no spdem with the inverse-rules algorithm is that it discovers many
cific pattern. The results showed that the MiniCon algorithmof the interactions between the views in its second phase, and
still scales up gracefully, but the behavior of the inverse-ruleghe performance in that phase is heavily dependent on the or-
algorithm was too unpredictable (though always worse tharder in which it considers the query subgoals. However, since
the MiniCon algorithm), due to the nature of when the al- the optimal order depends heavily on the interaction with the
gorithms discover that a rule cannot be unified. Additional views, a general method for ordering the subgoals in the query
experiments are needed in order to draw any conclusion as tis hard to find. Finally, all three algorithms are limited in cases
how the algorithms perform for completely random queries. where the number of resulting rewritings is especially large
since a complete algorithm must produce a possibly exponen-
tial number of rewritings.

5.3 Summary

In summary, our experiments showed the following points.6 Comparison predicates

First, the MiniCon algorithm scales up to large numbers of

views and significantly outperforms the other two algorithms. The effect of comparison predicates on the problem of answer-
This point is emphasized by Table 1, where we tried to pushing queries using views is quite subtle. If the views contain
the MiniCon algorithm to its limits. The table considers the comparison predicates but the query does not, then the Mini-
number of subgoals and number of views that the MiniConCon algorithm without any changes still yields the maximally-
algorithm is able to process given 10 s. In some cases, theontained query rewriting. On the other hand, if the query con-
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tains comparison predicates, then it follows from [AD98] that V9(a,s1) :- inSIGMOD(a), cites(a,b), year(a,sl),

there can be no algorithm that returns a maximally-contained year(b,s2), s2 < 1983
rewriting, even if we consider rewritings that are recursiveV10(a,sl) :- inSIGMOD(a), cites(a,b), year(a,sl),
datalog programs (let alone unions of conjunctive queries). year(b,s2), s2 < 1987

In this section we present an extension to the MiniCon al- ] . ] ) .
gorithm that would: (1) always find only correctrewritings; (2) ~ Our algorithm would first consid&9 with the mapping x
find the maximally-contained rewriting in many of the com- —> & Y — b, rl —s1,r2 — s2}. Inthis case, the subga@ <
mon cases in which comparison predicates are used; and (3285 is satisfied by the view, bul > 1990 is not. However,
is guaranteed to produce the maximally-contained rewritingsincesl is a distinguished variable M9, the algorithm can
when the query contains onsemi-intervalconstraints, i.e., create the rewriting:
when all the comparisonlpredica_ltes inthe query are ofthe fome’(x) - VO(x,r1), r1 > 1990
x < corx < ¢, wherex is a variable and is a constant (or
they are all of the formx: > ¢ orx > ¢). We refer to this algo- When the algorithm considers a similar variable mapping
rithm as MiniCon IP. We show experiments demonstrating theto V10, it will notice that the constraint or? is not satisfied,
scale up of the extended algorithm. Finally, we show an ex-and since it is mapped to an existential variabl&/i0, no
ample that provides an intuition for which cases the algorithmMCD is created.
will not capture.

In our discussion, we refer to the set of comparison subExample 5.The following example provides an intuition for
goals in a query) asI(Q). Given a set of variableX , we wh|ch rewritings our extended algprlthm will not discover.
denote byl (Q) the subset of the subgoals 14Q) that in-  Consider the following query and view:
cludes: (1) only variables iX or constants; and (2) contains at .
least one existential variable @f. Intuitively, I ¢ (Q) denotes 813{?;) __eé?évl))’) ue%bva)
the set of comparison subgoals in the query thastbe sat- ' R
isfied by the view ifX is the domain of an MCD. We assume The algorithm will not create any MCD because the sub-
without loss of generality thak(Q) is logically closed, i.e., goalu < v in the query is not implied by the view. However,
thatif I(Q) = g, theng € I(Q). We can always compute the the following is a contained rewriting @3.
logical closure off (@) in time that is quadratic in the size of ,

We make three changes to the MiniCon algorithm to handlgp, general, in order to find a containment mapping in the pres-
comparison predicates. First, we only consider MCD#1at  ence of comparison predicates, [KIug8] shows that we must
satisfy the following conditions: find a mapping for every ordering of the variables. For exam-
ple, we must consider two different containment mappings,
depending on whether < b or a > b. In each of these

. . mappings, the subgoalu,v) may be mapped to a different
2. :?L;‘?tig?r:g tsrgi g?@?ilgbqiigin the domain of the mapping subgoalf. Ohur algor@thn}will onll))/ findl (ewrr]itings in \.Nhiﬁh the
JthenI (ho (V) = vo(Is)- target of the mapping for a subgoal in the query is the same
ve c X for any possible order on the variables.

1. Ifz € Vars(Q), pc(x) isan existential variable i (1)
andy appears in the same comparison atom: aheny

The first condition is an extension of Property 1, and the Fi 9 and 10 sh | . ts that
second condition guarantees the comparison subgoals in the \gures 9 an SNow Sample experiments that we ran
view logically entail the relevant comparison subgoals in the " the exjended algorithm n the case of _chaln queries. In
query. Note that because of the second condition, the onl e experiments, we took the identical queries and views and
subgoals i 5 (@) that may not be satisfied By mustinclude dded a number of comparison subgoals of the torme or
only variables thap: maps to distinguished variables Bt x > cto the queries under consideration by MiniCon IP.

Asaresult, such asubgoal can simply be added tothe rewriting tz*:)?ne);pr?;ggenrt: dsi(r:]:t\gsth;t tg‘:‘fﬁgﬁ tg'asn\c/jvsel\fvel r?avz:r\:\gtrg
after the MCDs are combined. P P PP .Ing :

the addition of comparison predicates reduces the number of

The second change is that we disallow all MCDs that con- ewritings because more views can be deemed irrelevant. This
strain variables to be incompatible with the variables they maﬂ 9 X

: . Is illustrated in Fig. 10 where all of the variables in the views
g]ntjhgnq&ec% rli\c;rpixtzrge/l%v&fv?a\rcilgglg h;ns dg iug?gi t1h7e are distinguished and therefore without comparison predicates

view, then we can ignore the MCD. there would be many more rewritings. However, since the com-

The third change we make to the MiniCon algorithm is the parison predicates reduce the number of relevant views, the
following: after forming a rewriting)’ by combining a set of algorithm with comparison predicates scales up to a larger

ber of views. In Fig. 9, the number of rewritings is very
MCDs, we add the subgo@C(g) for any subgoal of (Q) num L . ;
that is not satisfied bg’. small, but the addition of the overhead to deal with comparison

predicates does not appreciably slow the MiniCon algorithm.
Example 4.Consider a variation on our running example,

where the predicatgear denotes the year of publication of a

paper. 7 Cost-based query rewriting

Q2(x) :- INSIGMOD(x), cites(x,y), year(x,rl), year(y,r2), The previous sections considered the problem of answering
rl > 1990, r2 < 1985 queries using views for the context of data integration, where
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Ifthe join ofel ande3is very selective, the cheapest rewriting
of the query may be the following (assuming the subgoals are
joined from left to right):

QA (xy) - V14(x), V12(x,y,z), V13(y,z,X)

Chain queries with two distinguished
variables, 10 subgoals, and 5 variables
constrained

0.4 == MiniCon
2 03 Algorithm / Here, the view/14 does not contribute to tHegical correct-
g = MiniCon IP ness of the query, but only to reducing the cost of the query
& 02 Algorithm / plan. Note that the MiniCon algorithm would not consider
% 01 — V14(x) because it would not create an MCD #t4, since
E . j“/ - Property 1 would not be satisfied.

o
=
o
o

200 300 400 In general, the problem of answering queries using views
in the context of query optimization requires that we consider
views for two different roles: the logical correctness of the

query, and the reduction in the cost of the rewriting. In fact, it

Fig. 9. Experiments with the MiniCon algorithm and comparison . : :
predicates. The query and view shapes are the same as in Fig. 4. T‘%Shown in [CHOO] thatthe optimal query execution plan may

. : . .. Include an exponential (in the size of the query and schema)
graph shows that adding comparison predicates does not apprecwlbr}/umber of views in the second role. while it follows from
slow the MiniCon algorithm, and the additional views that can be ’

pruned cause the algorithm to speed up overall [LMSS95] that the number qf views in the firstrole is bounded
by the number of subgoals in the query.

We proceed in two steps. In Sect. 7.1 we show how the
information captured in MCDs can be used to improve the
bottom-up dynamic-programming algorithm used in [TSI96]
for query optimization using materialized views. However,
the algorithm we describe in Sect.7.1 only considers views

Number of Views

Chain queries with all variables distinguished,
5 subgoals, and 15 variables constrained

140

120 L] MiniCon Alcorith T that contribute to the logical correctness of the rewriting, and
2 100 | mion Agorthm / therefore may not produce the optimal rewriting. In Sect. 7.2
S sl | MiniCon IP Algorithr / we show how we can augment the resulting rewriting with
& 60— A cost-reducing views. Note that the approach we describe in
£ 1 L Sect. 7.2 is inherently heuristic, and its goal is to avoid the ex-
£ 2 41 S haustive enumeration whose cost (according to [CHOQ]) would
. od— _‘_‘ﬁL—é"{I‘ ‘ be prohibitive.

Number of Views 7.1 Modifying GMAP to consider MCDs

Fig. 10. Running times for the MiniCon algorithm and comparison

In the context of query optimization, we may have access to
predicates when all of the variables in the views are distinguished query op Y

the database relations in addition to the views. In order to
uniformly treat database relations and views, we assume that
for every database relatioll we define a view of the form

the incompleteness of the data sources required that we cons,(X) :- E(X), whereX is a tuple of distinct variables. In
sider the union of all possible rewritings of the query. In this our running example we will assume that we do not have access
section we show how the principles underlying the MiniCon to the database relations.

algorithm can also be used for answering queries using views W first briefly recall the principles underlying the GMAP

in the context of query optimization (as in [TSI96,CKPS95]), algorithm [TSI96], and then describe how we modify it to
and in the process, shed some light on the problem of quergxploit MCDs. The GMAP algorithm is a modification of
optimization with views. The fundamental difference in this System-R style bottom-up dynamic programming, except that
context is that we want theheapestewriting of the query us-  the optimizer builds query execution plans by accessing a set
ing the views. Since the views are assumed to be complete (i.eof views, rather than a set of database relations. Hence, in ad-
include all the tuples satisfying their definition) and since wedition to the meta-data that the query optimizer has about the
are looking for an equivalent rewriting, we can limit ourselves materialized views (e.g., statistics, indexes) the optimizer is

to a single rewriting. o also given as input the query expressions defining the views.
The following example shows how considering costaffects ~ The GMAP algorithm begins by considering only views
the result of a rewriting algorithm. that can be used in a rewriting of the query (e.g., pruning views

that refer to relations not mentioned in the query or do not ap-
Example 6.Suppose we have the following query and views: ply necessary join predicates). The algorithm distinguishes
betweerpartial query execution plansf the query andom-

Q4(x,y) - el(x,y), e2(y,z), e3(z,X) plete execution planshat provide an equivalent rewriting of
V12(a,b,c) :- el(a,b), e2(b,c) the query using the views. The enumeration of the possible
V13(d,e,f) :- e2(d,e), e3(e,f) join trees terminates when there are no more unexplored par-

V14(g) - el(g,h), e3(i, 9) tial plans.
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The GMAP algorithm grows the plans by combining a
partial plan (using all join methods) with an additional view.
A partial planP is pruned from further consideration if there is
another plarP’ such that: (1P’ is cheaper tha®; and (2)P’
contributes the same or more to the query tRatnformally,

a planP’ contributes more to the query than the plrif it
covers more of the relations in the query and selects more of
the attributes that are needed further up the query tree.

Our algorithm precedes the join enumeration phase by the
creation of MCDs, but it considers only a subset of the views
that were considered in the data integration context.

In our discussion, we use the following notation to make
use of the variable mappings used in procedummbineM-

CDs (Fig. 3). Given a set of MCDg] = (4, ..., C;, we de-
note byVtoQc, the set of atomd/c, (EC(¥1(Yc,))), - - -

Ve, (EC(¥(Ye,))), as defined in procedummbineMCDs

Note thatl’toQ) effectively creates a set of atoms of the heads
of the views inC, such that the atoms use the variables of
@ whenever possible. HencEtoQ: makes explicit exactly
which join predicates need to be applied between view atoms
in the rewriting. Thus, in our example,df denotes the set of
MCDs created for the views in the rewritig#', thenV to(Q)¢,
isV12(x,y,2), V13(y,z,X), V14(X).

Given a quenyy and a set of views/, . .
rithm proceeds as follows:

., Vy, our algo-

1. We prune from further consideration any vieWor which
there does not exist a variable mappindrom the vari-
ables ofi” to the variables of), such that for every subgoal
g € V,4(g) is asubgoal in). (Note that this condition is
similar to that of a containment mapping [CM77], except
that we do not require that map the head o¥’ to the
head of().) Views that do not satisfy this condition cannot
be part of an equivalent rewriting ¢f using the views. In
our example, if we also had a view defined as:

V15(m,n) :- el(m,n), e4(m)

then we would prun&15 because it cannot be part of
an equivalent rewriting o€ (the subgoak4 cannot be
mapped td).

2. With the views selected in the first step, we construct the
MCDs as described in Sect. 4.1. In our example we would
create MCDs folV12 andV13, but we do not create an
MCD for V14 because it does not satisfy Property 1.

3. We now begin the bottom-up constructionaaindidate
solutions A candidate solution is a query execution plan
over the views, which may either be a partial or complete
plan for the query.

(a) For the base case, we start with plans that access a
single view. Specifically, for every MCD', we create

the atoml’toQ) (¢} - We then select the best access path
to (the single atom iny'toQ . In our example, we
create the atomg12(x,y,z) andV13(y,z,X).

With every candidate solutioR, we associate a sub-
set of the subgoals of the query, denotedtay Intu-
itively, this set specifies which subgoals in the query
are covered by the solutiaR, and this information is

(b)

2 We describe the algorithm for the case where we construct only
left-linear trees, but the generalization to arbitrary bushy trees is
straightforward.
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gleaned from the MCDs. In the base case, theset
associated with the candidate solution constructed for
the view in MCDC'is G¢.

We combine a candidate solutidghwith a candidate
solution (of size 1)P’ only if the union of P and P/,
contains strictly more subgoals than eittiey or P..
Note that using the information iR andPf, enables

us to significantly prune the number of candidate solu-
tions we consider compared to the GMAP algorithm.
For example, suppose our example also included the
view:

V16(k,l) - el(k,)

and we had a partial solutiof®, that included the sin-
gle atomV12(x,y,z). Then, we would not combing
with V16(x,y) sinceV16 does not cover any more sub-
goals tharv12. On the other hand, we would consider
addingV13(y,z,x) to P sinceV13 coverse3, which

is not covered byP, and P coversel which is not
covered by13.

Given the views inP (whose corresponding MCDs
are(C) and the viewl/ in P’, whose MCD isCy,, we
computeVtoQ cuqc, 13- This tells us exactly which
join predicates need to be applied betwdeand P’
(specifically, wheneveP and P’ share a variable, a
join predicate needs to be applied). We will try com-
bining P and P’ using every possible join method for
every join predicate that needs to be applied.

As in the GMAP algorithm, we distinguish complete
solutions, which correspond to equivalent rewritings of
the query using the views, and partial solutions which
can possibly be extended to complete solutions. Fur-
thermore, as in GMAP, we compare every pair of can-
didate solutions”? and P’. If P is both cheaper than
P’ and contributes as much or more to the query, then
we pruneP”’.

For example, if we had two candidate solutiaR$,
which consists o¥/12(x,y,z) and the candidate solu-
tion P2 which consists o¥/16(x,y), if P1 is cheaper
than P2 we would pruneP1 becauseP1 is both
cheaper thai’2 and contributes more thanl. How-
ever, if P2 is cheaper tha#1, we would prune neither
candidate solution becaugd contributes more than
P2.

We terminate when there are no new combinations of
partial solutions to be explored.

(©)

(d)

7.2 Adding cost-reducing views

As stated earlier, the algorithm in the previous section may
not produce the cheapest plan because it only considers
views that are needed for the logical correctness of the
plan, and not cost-reducing views. (Note, however, that the
algorithm will always find a plan if one exists even when
we do not have access to the database relations.) In this
section we describe a heuristic approach to augmenting the
plan produced in the previous section with cost-reducing
views. Informally, we consider each cost-reducing view in
turn, and try to place it in the places in the plan where it
may have an effect. For example, consider the Wiéw(x)

in our example. This view can only be useful if it is placed
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before the atorv12(x,y,z) (in order to reduce the number 8 Related work
of values ofx) or after the atonV12(x,y,z) (to reduce
the size of the join with/13(y,z,x). However,V14(x) is Algorithms for rewriting queries using views are surveyed in
useless if placed aft&13(y,z,x). [Hal01]. Most of the previous work on the problem focused on
We denote the plan produced by the algorithm in the pre-developing algorithms for the problem, rather that on study-
vious section byP,,,. Recall that we are considering left- ing their performance. In addition to the algorithms men-
linear plans in our description. We createst-reducing tioned previously, algorithms have been developed for con-
view atomsas follows: junctive queries with comparison predicates [YL87], queries
(a) As in the previous section, we consider only views and views with grouping and aggregation [GHQ95,SDJL96,
that can be part of an equivalent rewriting of the query CNS99, GRT99], queries over semi-structured data [PV99,
using the views. CGLV99], and OQL queries [FRV96]. The problem of an-
(b) We create MCDs for these views, except that we doswering queries using views has been considered for schemas
not require the MCDs to satisfy Property 1. Denote with functional and inclusion dependencies [DL97,Gry9§],
the resulting MCDs byC, ..., Ck. In our example languages that query both data and schema [Mil98], and dis-
we would create MCDs fo¥12(x,y,z), V13(y,z,X), junctive views [AGK99]. Clearly, each of the above extensions
V14(x). to the basic problem represents an opportunity for a possi-
(c) Letthe set of MCDs corresponding to the views in the ble extension of the MiniCon algorithm. Two works [AD98,
plan P, beC,,,. For every MCDCj, 1 < j < k, GGM©99] examine the complexity of finding all the possible
we computeV'toQc,,.u{c;}},» and we denote by; answers from a set of view extensions. They show that if the
the atom corresponding @; in VtoQqc,, u(c;y; (re- views are assumed to be complete, then finding the maximal
callthatVtoQc,,,u1c; 3y cOmputes an atom for every - set of answers is NP-hard in the size of the data. Hence, find-
MCD). We will now try to insert the atom&y, . .., Uy ing a maximally-contained rewriting may not be possible if
in the planpP,,,. we consider query languages with polynomial data complex-
(d) Note that with every join operation if,,, we can ity. Mitra [Mit99] developed a rewriting algorithm that also
associate a set of variables, specifically, the variablegaptures the intuition of Property 1, and thus would likely
that occur in the subtree of the join operator. The po-lead to better performance than the bucket algorithm and the
sitions inP,,, that arerelevantto the atoml/; are the  inverse-rules algorithm. He also considered an optimization
join operators beginning with the first operator whose similar to our method for removing redundant view subgoals.

variable set includes any of the variableslip, and Several works discussed extensions to query optimizers
ending with the first join operator that includes all the that try to make use of materialized views in query process-
variables inU;. ing [TSI96,CKPS95,ALU01,BDD98,PDST00,ZCL00].

For everyj, 1 < j < k, we proceed as follows. We In some cases, they modified the System-R style join enumer-
consider the cheapest pldti,,, that results from in-  ation component [TSI96,CKPS95], and in others they incor-
sertingU; in one of the positions relevant {@;. If a porated view rewritings into the rewrite phase of the optimizer
variable inU; appears in the left-most leaf of the join [ZCL*00,PDST00]. These works showed that considering the
tree, then we also consider the plan in whichisthe  presence of materialized views did not negatively impact the
left child of the first join operator in the plan. i,  is performance of the optimizer. However, in these works the
cheaper tha®,,,,, we replace?,,, by the planpjng_3 number of views tended to be relatively small. In [ALUO1]
(e) We continue iterating through the cost-reducing viewthe authors consider the problem of finding the most efficient
atoms until no change is made to the resulting plan. rewriting of the query using a set of views, in the context of
query optimization. The paper considers three specific cost
In our example, we would consider placing the atom models, and for each describes an algorithm that produces the
V14(x) as the first or second left-most leaf of the tree (i.e.,cheapest plan. The algorithm we describe in Sect.7 is inde-
either befora/12(x,y,z) or immediately after it). pendent of a_partl_cular cost model, .a.nd can incorporate the
It is important to note that our algorithm may still not ob- Models described in [ALUO1]. In addition, our algorithm can
tain the cheapest plan. The main reason is that we are beginnir@so handle cost models that consider relation sizes, special
from the planP,,,, and only modifying it locally, while the ~orders and specific join implementations, as done in tradi-
cheapest plan may actually be an augmentation of a plan thaonal query optimizers. In [PDSTO0], the authors consider
was found to be more expensive thBp, in the cost-based & more general setting where they use a constraint language
join enumeration. Itis possible to consider applying our algo-t0 describe views, physical structures and standard types of
rithm to several plans from the cost-based join enumeration¢onstraints. ) ) ) )
rather than only to the cheapest one. However, in general, A commercialimplementation of answering queries using
obtaining the cheapest plan may involve a prohibitively ex-Vviewsis described for Oracle 8iin [BDE®8]. Their algorithm
pensive search. works in two phases. In the first phase, the algorithm applies
a set of rewrite rules that attempt to replace parts of the query
3 For ease of exposition, we chose to describe a relatively conservalVith references to existing materialized views. The result of
tive condition on the positions in which we can insert a cost-reducingth€ rewrite phase is a query that refers to the views. In the
view atom. Several further optimizations are possible the most obvisecond phase, the algorithm compares the estimated cost of
ous of which is that we would not insert a cost-reducing view atomtwo plans: the cost of the result of the first phase, and the cost of
in a planafter all the joins performed in the view have already been the best plan found by the optimizer that doesconsider the
performed in the plan. use of materialized views. The optimizer chooses to execute
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the cheaper of these two plans. The main advantage of thidisjoint from those in the query. Furthermore, we assume that
approach is its ease of implementation, since the capability ofhe heads of the views and the query do not contain multiple
using views is added to the optimizer without changing theoccurrences of any variable. We apply variable mappings to
join enumeration module. On the other hand, the algorithmtuples and to atoms with the obvious meaning, i#X) =
considers the cost of only one possible rewriting of the query(p(z1), p(x2), . .., ¢(x,)) whereX = (z1,...,zp).
using the views, and hence may miss the cheapest use of the Recall that a maximally-contained rewriting is, in general,
materialized views. a union of conjunctive rewritings. A conjunctive rewriting has
the form

Q/(Y) - Vl(Yl), V2(Y2)7 - ,V}C(Yk)

Note that for any # j it is possible thal; = V;.

This paper makes two important contributions. First, we  Given a conjunctive rewriting?’, the expansionof ',
present a new algorithm for answering queries using viewsdenoted byQ” is the query in which the view atoms are re-
and second, we present the first experimental evaluation glaced by their definitions (i.e., they are unfolded). Note that
such algorithms. We began by analyzing the two existing algowhen expanding the view definitions we need to create fresh
rithms, the bucket algorithm and the inverse-rules algorithmyariables for the existential variables in the views. We assume
and found that they have significant limitations. We devel-we have a functiorf?(z) that returns the ith fresh copy of a
oped the MiniCon algorithm, a novel algorithm for answer- variablez. For a given subgoaj; € @', we denote byap(i)
ing queries using views, and showed that it scales gracefullyhe set of subgoals i’ obtained by expanding the definition
and outperforms both existing algorithms. As a result of ourof V.
work, we have established that answering queries using views ~ Given two head homomorphisms andh, over the vari-
can be done efficiently for large-scale problems. Finally, weables of a viewl’, we say that, is more restrictive than,
described an extension of our algorithm to handle comparif wheneverh, (z) = hi(y), thenhy(z) = ha(y).
ison predicates, and showed that the techniques underlying Recall that the MiniCon algorithm produces conjunctive
the MiniCon algorithm are also useful for the context of cost- rewritings of the form
based query optimization using views.

We close by briefly discussing anotherimportant extension Q'(EC (X)) :- Ve, (EC(¥1(Ye,))), - - -
of the MiniCon algorithm. In data integration applications, Ve, (EC (@, (Y, )
where views represent data sources, we often have limited

access patterns to the data. For example, if Amazon.com has \here for a variable in 9, EC(x) denotes the represen-
a relationBook(title, price), we cannot ask for all tuples in tative variable of the set to whichbelongs.EC is defined to
the relation. Instead, we need to provide a value for the title inpe the identity on any variable that is notGh
order to get a price. The problem of answering queries usin% i ) )
views in this context has been considered in [RSU95, KWw9eRemark 4.The following property will be used in the sound-
DL97,LKG99]. In [RSU95] it is shown that when we consider N€ss proof. Suppose that a subggak Q@ is in G, i.e.,
equivalent rewritings, the rewriting may benger than the ~ #i(g) € hi(V:). The expansio)” will contain an atonr(g),
query. In [DL97] it is shown that if we are looking for the Where, for a variable:
maximally-contained rewriting, it may have to be a recursive 7(z) = EC(z) if pi(z) is a head variable ih;(V;), and
datalog program over the views. o 7(z) = fi(z) otherwise.

The MiniCon algorithm can be adapted in a straightfor-
ward fashion to the presence of binding patterns. Specifically,
we can follow the same strategy of [DL97], where inverse o o proof of soundness
rules were augmented llomain rulesIn our case we pro-

duce the rewriting by the MiniCon algorithm by first ignoring We need to show that every conjunctive rewritiggthat is

the binding pattern Iim!tations. Then we a.dd domain rU|eS'obtained by the MiniCon algorithm is contained;inTo show
and augment the rewriting by adding domain subgoals Wher%oundness, we show that there is a containment magfing

necessary. from Q to Q"'
We define an intermediaié fori = 0, . . ., k by induction
as follows. The containment mappiffgwill be defined to be

9 Conclusions

Appendix T..

Proof of correctness of the MiniCon algorithm Ul For allz wherez € Vars(Q) andEC(z) € Vars(Q"),
Yo(z) = EC(x).

A.1 Preliminaries U2 7; is an extension of’;_1, defined as follows: for alt in

the Domain(p;), if © ¢ Domain(T;_1) thenT;(z) =
We consider conjunctive queries and views without built-in FUEC(pi(x))).
predicates or constants. We assume the query has the form

Q) —er(Xy), - en(Xa) e Mapping of the head: we need to show thatX) =
Without loss of generality we assume that no variable appears EC(X). Because of U1, it suffices to show that for every
in more than one view, and the variables used in the views are variable inz € X, EC(x) appears iQ”. By Property 1,

Now we show that” is a containment mapping.
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clause C1, we know whenevets in the domain ofp and

is a head variable iQ), ¢ mapsx to a head variable in
h(V). By Property 2, clause D1, we know that given an
MCD set, all the head variables p are in the domain of
someMCD in the set. From the definition @f;, we know
that X is a subset of the union of the ranges of #s,
and henceEC(z) is in Q" for everyz € X.

e Mapping of a subgoaj. We need to show th&" includes
7(g). By Remark 9 we know tha®)” includest(g). It
suffices to show thél'(g) = 7(g), which follows imme-
diately from the definition of".

A.3 Completeness

Let P be a maximally-contained rewriting ¢f usingV, and

let R be the rewriting produced by the MiniCon algorithm.
The MiniCon algorithm is complete iR J P. Since bothR
and P are unions of conjunctive queries, it suffices to show
that if p’ is a conjunctive rewriting inP, then there exists a
conjunctive rewriting”’ in R, such that’ J p’ [SY81].

Sincep’ is part of a maximally-contained rewriting ¢f,
there exists a containment mappthfyjom @ to the expansion
p" of p’ [CM77]. We will usef to show that there exists a
set of MCDs that are created by the MiniCon algorithm such
that when the MCDs are combined, we obtain a conjunctive
rewriting r’ that containg’.

We proceed as follows:

e For each subgoa); € p’, we defineG; to be the set of
subgoalg € @, suchthabt(g) € exp(i) (i.e.,G; includes
the set of subgoals i that are mapped to the expansion
of g; in p’’). Note that fori # j, the sets7; andG; are
disjoint.

e We denote by, the restriction of the containment mapping
0 to the variables appearing ;.

e The mapping#,; is a mapping fromVars(G;) to
Vars(exp(g;)). However, it can be written as a com-
position of two mappings, one fronVars(G;) to
hi(Vars(V;)) (where h; is a head homomorphism on
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C1. For any head variableof @), 7;(x) is a head variable

of h;(V;), becausd;, (z) is a head variable qf”.

It follows from the fact that); is a restriction of a

containment mapping from to p”, that if 7;(z) is an

existential variable irh;(V;), then for every subgoal
g1 € Q that includese: (1) all the variables iry; are

in the domain ofr;; and (2)7;(g1) € hi(V;).

In addition, note thaf’,, . . . , C}, satisfy Property 2, which
is the condition that the MiniCon algorithm checks before
it combines a set of MCDs:
D1. G U... UG = Subgoals(Q) becausd is a con-
tainment mapping fron® to p”, and
D2. for everyi # j, G; N G; = () because of the way we
constructed thé;;’s.

e The only difference between the MCO; and an MCD
created by the MiniCon algorithm is thgtmay not be the
minimal mapping necessary to satisfy Property 1. How-
ever, this is easy to fix by simply decomposing the MCD
C; into a set of MCDs that satisfy Property 1 exactly and
contain only minimal mappings far, and minimal sets of
subgoals in their fourth component. Note that even after
decomposing the MCDs, th&;'s are still disjoint subsets
of subgoals inQ, and hence Property 2 is still satisfied.

e At this point we have shown that we have a set of MCDs
C1,...,C, that satisfy Properties 1 and 2. Furthermore,
each of the mappings; in the MCDs is less restrictive
than @ in the following sense: for any variablesy, if
7:(x) = 7;(y) thenb(x) = 0(y).

As a result, when procedummbineMCDs creates the
function EC, it will have the property that?C(z) =
EC(y)onlyifé(z) = 0(y). Consequently, the conjunctive
rewriting v’ that is produced when’, ..., C; are com-
bined will have the same property: whenever the same
variable appears in two argument positionsrinthose
two argument positions will have the same variablg’in
Hence, there is a containment mapping freno p’, and
thereforep’ C 1.
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