Masato Ishiguro National Astronomical Observatory of Japan Access Nova Forum, May 2, 2004

Enhanced ALMA

#### Ground based large telescopes in Japan

It takes 30 ~ 40 years to have a next generation telescope.



# **SUBARU and ALMA**

#### SUBARU (Optical/IR)



ALMA (mm- & submm )





00

0

**Invisible objects** 

proto galaxies?



Proto planetary disk

#### Site survey in Northern Chile by Japanese Team

- Started in 1992
- Visited 20 candidate sites
- Proposed Chilean site





#### Site testing since 1995

### Merge three projects into a single global project

#### Site selection was one of strong motivation of the merging



# **History of ALMA**



**ALMA Enhanced by Japanese Participation** 

#### Atacama Large Millimeter Array (ALMA)



**Japanese Participation** 

#### Atacama Large Millimeter/submillimeter Array (ALMA)

What's new?
Atacama Compact Array (ACA) System with 4 12meter diameter antennas and 12 7-m diameter antennas
3 new frequency bands

# **Major Milestones for ALMA**

 2002 Begin construction of the baseline part of ALMA by NA/EU
 2003 NA/EU Bilateral agreement signed Feb. 25

> Japanese ALMA budget has been approved in the FY2004 Budget as an 8-year project!

 2004 Trilateral agreement will be signed in June. Japan will join the construction officially
 2007 Start interim science operations
 2012 Full science operations

# Japanese Contribution Plan\_

### Atacama Compact Array (ACA) System

- Twelve 7-m antennas + four 12-m antennas
- Higher photometric accuracy by a combination of
  - u-v data with 64-element array
  - On-the-fly single dish mapping
  - short baseline u-v data with ACA
- ACA Correlator (higher sensitivity, simultaneous realization)
- New frequency bands
  - Add Band 10 , Band 8, and Band 4

Contribution to infrastructure & operation

# **Array Configuration of ALMA**



## **Spatial Frequency Coverage of ALMA**



## Why we need ACA ?



# ACA improves image fidelity



## **Operation of the ACA System**

## ACA operation

- Dynamic scheduling normally independent from the 64-element array
- Two configurations (source declination)
- Single-dish operation
  - Harmonized with ACA observation/calibration (same freq, same source)
  - There are exceptions

# **ALMA Frequency Bands**

- Initial Priority Bands in NA/EU Baseline Project
- 3 (84-116GHz) CO 1-0, high-z CO, SiO
- 6 (211-275GHz) CO 2-1, [CII] z=6-8, dust SED
- 7 (275-370GHz) CO 3-2, [CII] z=4-6, dust SED, Pol.
- 9 (602-720GHz) CO 6-5, [CII] z=1.0-1.4, dust SED
- Addition of New Bands by Japanese Participation
- 4 (125-163GHz) CO z~1, [CII] z=10-14, dust SED
- 8 (385-500 GHz) [CI] 492GHz, HDO 464GHz, CO 4-3, [CII] z=3-4
- 10 (767-950GHz) [CI] 810GHz, CO 7-6, dust SED, [CII] z~1

# **SUBARU and ALMA**

#### SUBARU (Optical/IR)



ALMA (mm- & submm )





00

0

**Invisible objects** 

proto galaxies?



Proto planetary disk

## **Extra-Solar Planetary System with ALMA**

 ALMA will observe the structure of Proto-Planetary Disks around young stellar objects with 0.01 arcsec resolution (10 times better resolution compared with current big optical telescopes)



## Circumstellar Disk around AB Aurigae



Coronagraphic Imager with Adaptive Optics at 1.6µm (Fukagawa, M et al., 2004)

## Spiral Structure in the Disk



FIG. 3.—Same as Fig. 1, but the image is deprojected with an assumed inclination of 30° to show the "face-on" view of the AB Aur disk. Some of the major features are identified.

### Question : ring or spiral?

## **Theoretical Simulations of Solar Nebula**



4: Representations of midplane density for simulations of four different solar nebula models.
(a) High-resolution locally isothermal simulation of the massive, cold star/disk system studied in Pickett *et al.* (2000a). (b) Surface mass density for the locally isothermal SPH simulation of a protostellar disk model from Nelson *et al.* (2000). (c) Equatorial mass density for the high-resolution solar nebula simulation with radiative physics in Boss (2002). The cross-hatched regions are areas of high overdensity (clumps). (d) Surface mass density of the locally isothermal SPH simulation in Mayer *et al.* (2002).

# **SUBARU and ALMA**

#### SUBARU (Optical/IR)



ALMA (mm- & submm )





00

0

**Invisible objects** 

proto galaxies?



Proto planetary disk

### From COBE (1992) to WMAP (2003)



( http://map.gsfc.nasa.gov/

#### **Creation of Stars and Galaxies from Primordial fluctuations**



380 Kyr

200 Myr

13.7 Gyr

http://map.gsfc.nasa.gov/ より

## **Radio Interferometer System**



# Key Components in ALMA System

- High precision antennas
- Low noise receivers
- Phase stabilized LO (local oscillators) system including long distance (~20km) transmission lines
- Wide band correlator system
- Calibration system
- Control & Imaging software system

## Japanese 12-m Prototype Antenna



### **Performance testing**

- Photogrametry
- Holography
- Optical pointing
- Radiometric tests

Achievements: Surface accuracy ~15-20µm Pointing accuracy ~ 1"

## **ALMA Front End System**





Cryogenic system (~1m diameter)Up to 10 cartridges

# Engineering Models for ALMA FE Cartridges



- Engineering models of frontend cartridges
  - Band 8 &10 EM being tested on ASTE

# **ALMA Frequency Bands**

| Band | Min. Freq.<br>(GHz) | Max. Freq.<br>(GHz) | Manuf. |          |
|------|---------------------|---------------------|--------|----------|
| 1    | 31.3                | 45                  | _      |          |
| 2    | 67                  | 90                  |        | 3        |
| 3    | 89                  | 116                 | NA     | mm wave  |
| 4    | 125                 | 163                 | JP     | Ma       |
| 5    | 163                 | 211                 | _      | ] e      |
| 6    | 211                 | 275                 | NA     |          |
| 7    | 275                 | 370                 | EU     | <u>s</u> |
| 8    | 385                 | 500                 | JP     | ļ        |
| 9    | 602                 | 720                 | EU     | sub-mm   |
| 10   | 787                 | 950                 | JP     | ] 3      |

# **Development for SIS junctions for submm**

### New clean room at NAOJ Mitaka



## **Radio Interferometer System**



## **Advantages of Photonic LO**

- No Mechanical Tuning
- Simple
- Reliable
- Cryogenic Opertaion?
- λ 1.55µm Wavelengths
- Commercially Available Parts
- Low Transmission Loss
  - Suitable for transmitting coherent LO signal over a long distance in a large interferometer array
    - Suitable for a space mission

# W-Band Low Noise Photonic LO

- 100 GHz WG-type
   Photomixer using UTC-PD
   developed by NTT
- Wide band design for full WG band (75-120GHz)
- High output power ~ 2mW with low excess noise over Gunn LO





Frequency [GHz]



12 element interferometry + 4 total power

### 16 element interferometry

 Visibility data rate average 0.12 M visibility/sec peak 1.20 M visibility/sec (6 % of the 64-element array)





## <u>2GHz Spectrum of Orion-KL with the</u> <u>Pre-prototype\_FX\_Correlator</u>

- Ori-KL@86GHz NMA with 131000 ch over 2GHz bandwidths
- The performance demonstrated with detecting 20 line features by 1.5-hour integration !



# ALMA Regional Centers (ARCs)



- Proposal & observation
- Preparation user support
- Data quality assurance
- Data analysis user support
- ALMA archive node
- Astronomer-on-Duty shifts in Chile
- Technical Support Services
  - Remote repair facilities (?)
- Development Support Services
  - Computing system
  - maintenance & development



## **Collaborations with Univ. Chile and NTT**

- Site survey in Northern Chile (Univ. Chile)
- Site testing at Pampa la Bola and Rio Frio (Univ. Chile)
- Access Nova Forum (Univ. Chile, NTT)
- Remote control of ASTE Telescope (Univ. Chile, NTT)
- Joint developments for photonic local oscillators (NTT)

## **Collaborations are expected to be expanded!**

The End



T