
Leture Notes on CryptographyShafi Goldwasser1 Mihir Bellare2August 2001

1 MIT Laboratory of Computer Siene, 545 Tehnology Square, Cambridge, MA 02139, USA. E-mail: shafi�theory.ls.mit.edu ; Web page: http://theory.ls.mit.edu/ shafi2 Department of Computer Siene and Engineering, Mail Code 0114, University of Californiaat San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. E-mail: mihir�s.usd.edu ; Webpage: http://www-se.usd.edu/users/mihir

Foreword

This is a set of leture notes on ryptography ompiled for 6.87s, a one week long ourse on ryptographytaught at MIT by Sha� Goldwasser and Mihir Bellare in the summers of 1996{2001. The notes wereformed by merging notes written for Sha� Goldwasser's Cryptography and Cryptanalysis ourse at MIT withnotes written for Mihir Bellare's Cryptography and network seurity ourse at UCSD. In addition, RosarioGennaro (as Teahing Assistant for the ourse in 1996) ontributed Setion 9.6, Setion 11.4, Setion 11.5,and Appendix D to the notes, and also ompiled, from various soures, some of the problems in Appendix E.Cryptography is of ourse a vast subjet. The thread followed by these notes is to develop and explain thenotion of provable seurity and its usage for the design of seure protools.Muh of the material in Chapters 2, 3 and 7 is a result of sribe notes, originally taken by MIT graduatestudents who attended Professor Goldwasser's Cryptography and Cryptanalysis ourse over the years, andlater edited by Frank D'Ippolito who was a teahing assistant for the ourse in 1991. Frank also ontributedmuh of the advaned number theoreti material in the Appendix. Some of the material in Chapter 3 isfrom the hapter on Cryptography, by R. Rivest, in the Handbook of Theoretial Computer Siene.Chapters 4, 5, 6, 8 and 10, and Setions 9.5 and 7.4.6, were written by Professor Bellare for his Cryptographyand network seurity ourse at UCSD.All rights reserved.Sha� Goldwasser and Mihir Bellare Cambridge, Massahusetts, August 2001.

2

Table of Contents

1 Introdution to Modern Cryptography 111.1 Enryption: Historial Glane . 111.2 Modern Enryption: A Computational Complexity Based Theory 121.3 A Short List of Candidate One Way Funtions . 131.4 Seurity De�nitions . 141.5 The Model of Adversary . 151.6 Road map to Enryption . 152 One-way and trapdoor funtions 172.1 One-Way Funtions: Motivation . 172.2 One-Way Funtions: De�nitions . 182.2.1 (Strong) One Way Funtions . 182.2.2 Weak One-Way Funtions . 202.2.3 Non-Uniform One-Way Funtions . 212.2.4 Colletions Of One Way Funtions . 212.2.5 Trapdoor Funtions and Colletions . 222.3 In Searh of Examples . 232.3.1 The Disrete Logarithm Funtion . 252.3.2 The RSA funtion . 272.3.3 Connetion Between The Fatorization Problem And Inverting RSA 302.3.4 The Squaring Trapdoor Funtion Candidate by Rabin 302.3.5 A Squaring Permutation as Hard to Invert as Fatoring 342.4 Hard-ore Prediate of a One Way Funtion . 352.4.1 Hard Core Prediates for General One-Way Funtions 352.4.2 Bit Seurity Of The Disrete Logarithm Funtion . 362.4.3 Bit Seurity of RSA and SQUARING funtions . 382.5 One-Way and Trapdoor Prediates . 382.5.1 Examples of Sets of Trapdoor Prediates . 393 Pseudo-random bit generators 413.0.2 Generating Truly Random bit Sequenes . 413

4 Goldwasser and Bellare3.0.3 Generating Pseudo-Random Bit or Number Sequenes 423.0.4 Provably Seure Pseudo-Random Generators: Brief overview 433.1 De�nitions . 433.2 The Existene Of A Pseudo-Random Generator . 443.3 Next Bit Tests . 483.4 Examples of Pseudo-Random Generators . 493.4.1 Blum/Blum/Shub Pseudo-Random Generator . 494 Blok iphers and modes of operation 514.1 What is a blok ipher? . 514.2 Data Enryption Standard . 524.2.1 A brief history . 524.2.2 Constrution . 524.2.3 Speed . 534.3 Advaned Enryption Standard . 534.4 Some Modes of operation . 544.4.1 Eletroni odebook mode . 544.4.2 Cipher-blok haining mode . 544.4.3 Counter mode . 544.5 Key reovery attaks on blok iphers . 554.6 Limitations of key-reovery based seurity . 564.7 Exerises and Problems . 575 Pseudo-random funtions 585.1 Funtion families . 585.2 Random funtions and permutations . 595.3 Pseudorandom funtions . 615.4 Pseudorandom permutations . 635.4.1 PRP under CPA . 645.4.2 PRP under CCA . 655.4.3 Relations between the notions . 655.5 Sequenes of families of PRFs and PRPs . 665.6 Usage of PRFs and PRPs . 665.6.1 The shared random funtion model . 665.6.2 Modeling blok iphers . 675.7 Example Attaks . 685.8 Seurity against key-reovery . 705.9 The birthday attak . 755.10 PRFs versus PRPs . 765.11 Construtions of PRF families . 775.11.1 Extending the domain size . 785.12 Some appliations of PRFs . 795.12.1 Cryptographially Strong Hashing . 795.12.2 Predition . 795.12.3 Learning . 805.12.4 Identify Friend or Foe . 805.12.5 Private-Key Enryption . 80

Cryptography: Leture Notes 55.13 Historial Notes . 805.14 Exerises and Problems . 806 Private-key enryption 826.1 Symmetri enryption shemes . 826.2 Some enryption shemes . 836.3 Issues in seurity . 866.4 Information-theoreti seurity . 876.5 Indistinguishability under hosen-plaintext attak . 916.5.1 De�nition . 916.5.2 Alternative interpretation of advantage . 936.6 Example hosen-plaintext attaks . 956.6.1 Attak on ECB . 956.6.2 Deterministi, stateless shemes are inseure . 966.7 Seurity against plaintext reovery . 976.8 Seurity of CTR against hosen-plaintext attak . 1006.8.1 Proof of Theorem 6.17 . 1016.8.2 Proof of Theorem 6.18 . 1066.9 Seurity of CBC against hosen-plaintext attak . 1106.10 Indistinguishability under hosen-iphertext attak . 1116.11 Example hosen-iphertext attaks . 1126.11.1 Attak on CTR . 1126.11.2 Attak on CBC . 1146.12 Other methods for symmetri enryption . 1166.12.1 Generi enryption with pseudorandom funtions . 1166.12.2 Enryption with pseudorandom bit generators . 1166.12.3 Enryption with one-way funtions . 1176.13 Historial Notes . 1176.14 Exerises and Problems . 1177 Publi-key enryption 1207.1 De�nition of Publi-Key Enryption . 1207.2 Simple Examples of PKC: The Trapdoor Funtion Model . 1227.2.1 Problems with the Trapdoor Funtion Model . 1227.2.2 Problems with Deterministi Enryption in General 1237.2.3 The RSA Cryptosystem . 1237.2.4 Rabin's Publi key Cryptosystem . 1257.2.5 Knapsaks . 1267.3 De�ning Seurity . 1267.3.1 De�nition of Seurity: Polynomial Indistinguishability 1277.3.2 Another De�nition: Semanti Seurity . 1277.4 Probabilisti Publi Key Enryption . 1287.4.1 Enrypting Single Bits: Trapdoor Prediates . 1287.4.2 Enrypting Single Bits: Hard Core Prediates . 1297.4.3 General Probabilisti Enryption . 1307.4.4 EÆient Probabilisti Enryption . 1327.4.5 An implementation of EPE with ost equal to the ost of RSA 133

6 Goldwasser and Bellare7.4.6 Pratial RSA based enryption: OAEP . 1347.4.7 Enhanements . 1367.5 Exploring Ative Adversaries . 1368 Message authentiation 1388.1 Introdution . 1388.1.1 The problem . 1388.1.2 Enryption does not provide data integrity . 1398.2 Message authentiation shemes . 1408.3 A notion of seurity . 1418.3.1 Issues in seurity . 1428.3.2 A notion of seurity . 1438.3.3 Using the de�nition: Some examples . 1448.4 The XOR shemes . 1468.4.1 The shemes . 1468.4.2 Seurity onsiderations . 1478.4.3 Results on the seurity of the XOR shemes . 1488.5 Pseudorandom funtions make good MACs . 1498.6 The CBC MAC . 1518.6.1 Seurity of the CBC MAC . 1518.6.2 Birthday attak on the CBC MAC . 1518.6.3 Length Variability . 1548.7 Universal hash based MACs . 1548.7.1 Almost universal hash funtions . 1558.7.2 MACing using UH funtions . 1588.7.3 MACing using XUH funtions . 1588.8 MACing with ryptographi hash funtions . 1618.8.1 The HMAC onstrution . 1618.8.2 Seurity of HMAC . 1628.8.3 Resistane to known attaks . 1638.9 Minimizing assumptions for MACs . 1638.10 Problems and exerises . 1639 Digital signatures 1649.1 The Ingredients of Digital Signatures . 1649.2 Digital Signatures: the Trapdoor Funtion Model . 1659.3 De�ning and Proving Seurity for Signature Shemes . 1669.3.1 Attaks Against Digital Signatures . 1669.3.2 The RSA Digital Signature Sheme . 1679.3.3 El Gamal's Sheme . 1679.3.4 Rabin's Sheme . 1689.4 Probabilisti Signatures . 1699.4.1 Claw-free Trap-door Permutations . 1709.4.2 Example: Claw-free permutations exists if fatoring is hard 1709.4.3 How to sign one bit . 1719.4.4 How to sign a message . 1729.4.5 A seure signature sheme based on law free permutations 173

Cryptography: Leture Notes 79.4.6 A seure signature sheme based on trapdoor permutations 1779.5 Conrete seurity and Pratial RSA based signatures . 1789.5.1 Digital signature shemes . 1799.5.2 A notion of seurity . 1809.5.3 Key generation for RSA systems . 1819.5.4 Trapdoor signatures . 1819.5.5 The hash-then-invert paradigm . 1839.5.6 The PKCS #1 sheme . 1849.5.7 The FDH sheme . 1869.5.8 PSS0: A seurity improvement . 1919.5.9 The Probabilisti Signature Sheme { PSS . 1959.5.10 Signing with Message Reovery { PSS-R . 1969.5.11 How to implement the hash funtions . 1979.5.12 Comparison with other shemes . 1989.6 Threshold Signature Shemes . 1989.6.1 Key Generation for a Threshold Sheme . 1999.6.2 The Signature Protool . 19910 Key distribution 20010.1 DiÆe Hellman seret key exhange . 20010.1.1 The protool . 20010.1.2 Seurity against eavesdropping: The DH problem . 20110.1.3 The DH ryptosystem . 20110.1.4 Bit seurity of the DH key . 20210.1.5 The lak of authentiity . 20210.2 Session key distribution . 20310.2.1 Trust models and key distribution problems . 20310.2.2 History of session key distribution . 20410.2.3 An informal desription of the problem . 20510.2.4 Issues in seurity . 20510.2.5 Entity authentiation versus key distribution . 20610.3 Authentiated key exhanges . 20610.3.1 The symmetri ase . 20610.3.2 The asymmetri ase . 20710.4 Three party session key distribution . 20810.5 Forward serey . 20911 Protools 21111.1 Some two party protools . 21111.1.1 Oblivious transfer . 21111.1.2 Simultaneous ontrat signing . 21211.1.3 Bit Commitment . 21311.1.4 Coin ipping in a well . 21311.1.5 Oblivious iruit evaluation . 21311.1.6 Simultaneous Seret Exhange Protool . 21411.2 Zero-Knowledge Protools . 21511.2.1 Interative Proof-Systems(IP) . 215

8 Goldwasser and Bellare11.2.2 Examples . 21611.2.3 Zero-Knowledge . 21711.2.4 De�nitions . 21711.2.5 If there exists one way funtions, then NP is in KC[0℄ 21811.2.6 Appliations to User Identi�ation . 21911.3 Multi Party protools . 21911.3.1 Seret sharing . 21911.3.2 Veri�able Seret Sharing . 22011.3.3 Anonymous Transations . 22011.3.4 Multiparty Ping-Pong Protools . 22011.3.5 Multiparty Protools When Most Parties are Honest 22111.4 Eletroni Eletions . 22111.4.1 The Merritt Eletion Protool . 22211.4.2 A fault-tolerant Eletion Protool . 22211.4.3 The protool . 22311.4.4 Unoeribility . 22511.5 Digital Cash . 22611.5.1 Required properties for Digital Cash . 22611.5.2 A First-Try Protool . 22611.5.3 Blind signatures . 22711.5.4 RSA blind signatures . 22711.5.5 Fixing the dollar amount . 22811.5.6 On-line digital ash . 22811.5.7 O�-line digital ash . 229A Some probabilisti fats 242A.1 The birthday problem . 242B Some omplexity theory bakground 244B.1 Complexity Classes and Standard De�nitions . 244B.1.1 Complexity Class P . 244B.1.2 Complexity Class NP . 244B.1.3 Complexity Class BPP . 245B.2 Probabilisti Algorithms . 245B.2.1 Notation For Probabilisti Turing Mahines . 245B.2.2 Di�erent Types of Probabilisti Algorithms . 246B.2.3 Non-Uniform Polynomial Time . 246B.3 Adversaries . 247B.3.1 Assumptions To Be Made . 247B.4 Some Inequalities From Probability Theory . 247C Some number theory bakground 248C.1 Groups: Basis . 248C.2 Arithmati of numbers: +, *, GCD . 249C.3 Modular operations and groups . 249C.3.1 Simple operations . 249C.3.2 The main groups: Zn and Z�n . 250

Cryptography: Leture Notes 9C.3.3 Exponentiation . 250C.4 Chinese remainders . 251C.5 Primitive elements and Z�p . 253C.5.1 De�nitions . 253C.5.2 The group Z�p . 254C.5.3 Finding generators . 254C.6 Quadrati residues . 255C.7 Jaobi Symbol . 255C.8 RSA . 256C.9 Primality Testing . 256C.9.1 PRIMES 2 NP . 257C.9.2 Pratt's Primality Test . 257C.9.3 Probabilisti Primality Tests . 258C.9.4 Solovay-Strassen Primality Test . 258C.9.5 Miller-Rabin Primality Test . 259C.9.6 Polynomial Time Proofs Of Primality . 260C.9.7 An Algorithm Whih Works For Some Primes . 260C.9.8 Goldwasser-Kilian Primality Test . 261C.9.9 Corretness Of The Goldwasser-Kilian Algorithm . 261C.9.10 Expeted Running Time Of Goldwasser-Kilian . 262C.9.11 Expeted Running Time On Nearly All Primes . 263C.10 Fatoring Algorithms . 263C.11 Ellipti Curves . 264C.11.1 Ellipti Curves Over Zn . 265C.11.2 Fatoring Using Ellipti Curves . 266C.11.3 Corretness of Lenstra's Algorithm . 267C.11.4 Running Time Analysis . 267D About PGP 269D.1 Authentiation . 269D.2 Privay . 269D.3 Key Size . 270D.4 E-mail ompatibility . 270D.5 One-time IDEA keys generation . 270D.6 Publi-Key Management . 270E Problems 272E.1 Seret Key Enryption . 272E.1.1 DES . 272E.1.2 Error Corretion in DES iphertexts . 272E.1.3 Brute fore searh in CBC mode . 272E.1.4 E-mail . 273E.2 Passwords . 273E.3 Number Theory . 274E.3.1 Number Theory Fats . 274E.3.2 Relationship between problems . 274E.3.3 Probabilisti Primality Test . 274

10 Goldwasser and BellareE.4 Publi Key Enryption . 275E.4.1 Simple RSA question . 275E.4.2 Another simple RSA question . 275E.4.3 Protool Failure involving RSA . 275E.4.4 RSA for paranoids . 275E.4.5 Hardness of DiÆe-Hellman . 276E.4.6 Bit ommitment . 276E.4.7 Perfet Forward Serey . 276E.4.8 Plaintext-awareness and non-malleability . 277E.4.9 Probabilisti Enryption . 277E.5 Seret Key Systems . 277E.5.1 Simultaneous enryption and authentiation . 277E.6 Hash Funtions . 278E.6.1 Birthday Paradox . 278E.6.2 Hash funtions from DES . 278E.6.3 Hash funtions from RSA . 278E.7 Pseudo-randomness . 279E.7.1 Extending PRGs . 279E.7.2 From PRG to PRF . 279E.8 Digital Signatures . 279E.8.1 Table of Forgery . 279E.8.2 ElGamal . 279E.8.3 Suggested signature sheme . 280E.8.4 Ong-Shnorr-Shamir . 280E.9 Protools . 280E.9.1 Unonditionally Seure Seret Sharing . 280E.9.2 Seret Sharing with heaters . 281E.9.3 Zero{Knowledge proof for disrete logarithms . 281E.9.4 Oblivious Transfer . 281E.9.5 Eletroni Cash . 281E.9.6 Atomiity of withdrawal protool . 282E.9.7 Blinding with ElGamal/DSS . 283

C h a p t e r 1Introdution to Modern Cryptography

Cryptography is about ommuniation in the presene of an adversary. It enompasses many problems(enryption, authentiation, key distribution to name a few). The �eld of modern ryptography provides atheoretial foundation based on whih we may understand what exatly these problems are, how to evaluateprotools that purport to solve them, and how to build protools in whose seurity we an have on�dene.We introdue the basi issues by disussing the problem of enryption.1.1 Enryption: Historial GlaneThe most anient and basi problem of ryptography is seure ommuniation over an inseure hannel.Party A wants to send to party B a seret message over a ommuniation line whih may be tapped by anadversary.The traditional solution to this problem is alled private key enryption. In private key enryption A and Bhold a meeting before the remote transmission takes plae and agree on a pair of enryption and deryptionalgorithms E and D, and an additional piee of information S to be kept seret. We shall refer to S as theommon seret key. The adversary may know the enryption and deryption algorithms E and D whih arebeing used, but does not know S.After the initial meeting when A wants to send B the leartext or plaintext message m over the inseureommuniation line, A enrypts m by omputing the iphertext = E(S;m) and sends to B. Upon reeipt,B derypts by omputing m = D(S;). The line-tapper (or adversary), who does not know S, should notbe able to ompute m from .Let us illustrate this general and informal setup with an example familiar to most of us from hildhood,the substitution ipher. In this method A and B meet and agree on some seret permutation f : � ! �(where � is the alphabet of the messages to be sent). To enrypt message m = m1 : : :mn where mi 2 �,A omputes E(f;m) = f(m1) : : : f(mn). To derypt = 1 : : : n where i 2 �, B omputes D(f;) =f�1(1) : : : f�1(n) = m1 : : :mn = m. In this example the ommon seret key is the permutation f . Theenryption and deryption algorithms E and D are as spei�ed, and are known to the adversary. We notethat the substitution ipher is easy to break by an adversary who sees a moderate (as a funtion of the sizeof the alphabet �) number of iphertexts.A rigorous theory of perfet serey based on information theory was developed by Shannon [186℄ in 1943.1. In this theory, the adversary is assumed to have unlimited omputational resoures. Shannon showed1Shannon's famous work on information theory was an outgrowth of his work on seurity ([187℄).11

12 Goldwasser and Bellarethat seure (properly de�ned) enryption system an exist only if the size of the seret information S thatA and B agree on prior to remote transmission is as large as the number of seret bits to be ever exhangedremotely using the enryption system.An example of a private key enryption method whih is seure even in presene of a omputationallyunbounded adversary is the one time pad. A and B agree on a seret bit string pad = b1b2 : : : bn, wherebi 2R f0; 1g (i.e pad is hosen in f0; 1gn with uniform probability). This is the ommon seret key. Toenrypt a message m = m1m2 : : :mn where mi 2 f0; 1g, A omputes E(pad;m) = m�pad (bitwise exlusiveor). To derypt iphertext 2 f0; 1gn, B omputes D(pad;) = pad � = pad � (m � pad) = m. It iseasy to verify that 8m; the Ppad [E(pad;m) = ℄ = 12n . From this, it an be argued that seeing gives\no information" about what has been sent. (In the sense that the adversary's a posteriori probability ofprediting m given is no better than her a priori probability of prediting m without being given .)Now, suppose A wants to send B an additional messagem0. If A were to simply send = E(pad;m0), then thesum of the lengths of messages m and m0 will exeed the length of the seret key pad, and thus by Shannon'stheory the system annot be seure. Indeed, the adversary an ompute E(pad;m) � E(pad;m0) = m �m0whih gives information about m and m0 (e.g. an tell whih bits of m and m` are equal and whih aredi�erent). To �x this, the length of the pad agreed upon a-priori should be the sum total of the length of allmessages ever to be exhanged over the inseure ommuniation line.1.2 Modern Enryption: A Computational Complexity Based The-oryModern ryptography abandons the assumption that the Adversary has available in�nite omputing re-soures, and assumes instead that the adversary's omputation is resoure bounded in some reasonable way.In partiular, in these notes we will assume that the adversary is a probabilisti algorithm who runs inpolynomial time. Similarly, the enryption and deryption algorithms designed are probabilisti and run inpolynomial time.The running time of the enryption, deryption, and the adversary algorithms are all measured as a fun-tion of a seurity parameter k whih is a parameter whih is �xed at the time the ryptosystem is setup.Thus, when we say that the adversary algorithm runs in polynomial time, we mean time bounded by somepolynomial funtion in k.Aordingly, in modern ryptography, we speak of the infeasibility of breaking the enryption system andomputing information about exhanged messages where as historially one spoke of the impossibility ofbreaking the enryption system and �nding information about exhanged messages. We note that theenryption systems whih we will desribe and laim \seure" with respet to the new adversary are not\seure" with respet to a omputationally unbounded adversary in the way that the one-time pad systemwas seure against an unbounded adversary. But, on the other hand, it is no longer neessarily true thatthe size of the seret key that A and B meet and agree on before remote transmission must be as long asthe total number of seret bits ever to be exhanged seurely remotely. In fat, at the time of the initialmeeting, A and B do not need to know in advane how many seret bits they intend to send in the future.We will show how to onstrut suh enryption systems, for whih the number of messages to be exhangedseurely an be a polynomial in the length of the ommon seret key. How we onstrut them brings us toanther fundamental issue, namely that of ryptographi, or omplexity, assumptions.As modern ryptography is based on a gap between eÆient algorithms for enryption for the legitimateusers versus the omputational infeasibility of deryption for the adversary, it requires that one have availableprimitives with ertain speial kinds of omputational hardness properties. Of these, perhaps the most basiis a one-way funtion. Informally, a funtion is one-way if it is easy to ompute but hard to invert. Otherprimitives inlude pseudo-random number generators, and pseudorandom funtion families, whih we willde�ne and disuss later. From suh primitives, it is possible to build seure enryption shemes.Thus, a entral issue is where these primitives ome from. Although one-way funtions are widely believed to

Cryptography: Leture Notes 13exist, and there are several onjetured andidate one-way funtions whih are widely used, we urrently donot know how to mathematially prove that they atually exist. We shall thus design ryptographi shemesassuming we are given a one-way funtion. We will use the onjetured andidate one-way funtions for ourworking examples, throughout our notes. We will be expliit about what exatly an and annot be provedand is thus assumed, attempting to keep the latter to a bare minimum.We shall elaborate on various onstrutions of private-key enryption algorithms later in the ourse.The development of publi key ryptography in the seventies enables one to drop the requirement that Aand B must share a key in order to enrypt. The reeiver B an publish authentiated2 information (alledthe publi-key) for anyone inluding the adversary, the sender A, and any other sender to read at theironveniene (e.g in a phone book). We will show enryption algorithms in whih whoever an read thepubli key an send enrypted messages to B without ever having met B in person. The enryption systemis no longer intended to be used by a pair of prespei�ed users, but by many senders wishing to send seretmessages to a single reipient. The reeiver keeps seret (to himself alone!) information (alled the reeiver'sprivate key) about the publi-key, whih enables him to derypt the yphertexts he reeives. We all suhan enryption method publi key enryption.We will show that seure publi key enryption is possible given a trapdoor funtion. Informally, a trapdoorfuntion is a one-way funtion for whih there exists some trapdoor information known to the reeiver alone,with whih the reeiver an invert the funtion. The idea of publi-key ryptosystems and trapdoor funtionswas introdued in the seminal work of DiÆe and Hellman in 1976 [67, 68℄. Soon after the �rst implementationsof their idea were proposed in [170℄, [164℄, [137℄.A simple onstrution of publi key enryption from trapdoor funtions goes as follows. Reipient B anhoose at random a trapdoor funtion f and its assoiated trapdoor information t, and set its publi keyto be a desription of f and its private key to be t. If A wants to send message m to B, A omputesE(f;m) = f(m). To derypt = f(m), B omputes f�1() = f�1(f(m)) = m. We will show that thisonstrution is not seure enough in general, but onstrut probabilisti variants of it whih are seure.1.3 A Short List of Candidate One Way FuntionsAs we said above, the most basi primitive for ryptographi appliations is a one-way funtion whih is\easy" to ompute but \hard" to invert. (For publi key enryption, it must also have a trapdoor.) By\easy", we mean that the funtion an be omputed by a probabilisti polynomial time algorithm, and by\hard" that any probabilisti polynomial time (PPT) algorithm attempting to invert it will sueed with\small" probability (where the probability ranges over the elements in the domain of the funtion.) Thus,to qualify as a potential andidate for a one-way funtion, the hardness of inverting the funtion should nothold only on rare inputs to the funtion but with high probability over the inputs.Several andidates whih seem to posses the above properties have been proposed.1. Fatoring. The funtion f : (x; y) 7! xy is onjetured to be a one way funtion. The asymptotiallyproven fastest fatoring algorithms to date are variations on Dixon's random squares algorithm [126℄.It is a randomized algorithm with running time L(n)p2 where L(n) = eplogn log logn. The number �eldsieve by Lenstra, Lenstra, Manasee, and Pollard with modi�ations by Adlemann and Pomerane is afatoring algorithm proved under a ertain set of assumptions to fator integers in expeted timee((+o(1))(logn) 13 (log logn) 23)[128, 3℄.2. The disrete log problem. Let p be a prime. The multipliative groupZ�p = (fx < pj(x; p) = 1g; � mod p)is yli, so that Z�p = fgi mod pj1 � i � p�1g for some generator g 2 Z�p . The funtion f : (p; g; x) 7!2Saying that the information is \authentiated" means that the sender is given a guarantee that the information waspublished by the legal reeiver. How this an be done is disussed in a later hapter.

14 Goldwasser and Bellare(gx mod p; p; g) where p is a prime and g is a generator for Z�p is onjetured to be a one-way funtion.Computing f(p; g; x) an be done in polynomial time using repeated squaring. However, The fastestknown proved solution for its inverse, alled the disrete log problem is the index-alulus algorithm,with expeted running time L(p)p2 (see [126℄). An interesting problem is to �nd an algorithm whihwill generate a prime p and a generator g for Z�p . It is not known how to �nd generators in polynomialtime. However, in [8℄, E. Bah shows how to generate random fatored integers (in a given rangeN2 : : : N). Coupled with a fast primality tester (as found in [126℄, for example), this an be used toeÆiently generate random tuples (p� 1; q1; : : : ; qk) with p prime. Then piking g 2 Z�p at random, itan be heked if (g; p�1) = 1, 8qi, g p�1qi mod p 6= 1, and gp�1 mod p = 1, in whih ase order(g) = p�1(order(g) = jfgi mod pj1 � i � p � 1gj). It an be shown that the density of Z�p generators is highso that few guesses are required. The problem of eÆiently �nding a generator for a spei� Z�p is anintriguing open researh problem.3. Subset sum. Let ai 2 f0; 1gn;~a = (a1; : : : ; an); si 2 f0; 1g; ~s = (s1; : : : ; sn), and let f : (~a;~s) 7!(~a;Pni=1 siai). An inverse of (~a;Pni=1 siai) under f is any (~a;~s0i) so that Pni=1 siai =Pni=1 s0iai. Thisfuntion f is a andidate for a one way funtion. The assoiated deision problem (given (~a; y), doesthere exists ~s so thatPni=1 siai = y?) is NP-omplete. Of ourse, the fat that the subset-sum problemis NP-omplete annot serve as evidene to the one-wayness of fss. On the other hand, the fat thatthe subset-sum problem is easy for speial ases (suh as \hidden struture" and low density) an notserve as evidene for the weakness of this proposal. The onjeture that f is one-way is based on thefailure of known algorithm to handle random high density instanes. Yet, one has to admit that theevidene in favor of this andidate is muh weaker than the evidene in favor of the two previous ones.4. DES with �xed message. Fix a 64 bit message M and de�ne the funtion f(K) = DESK(M) whihtakes a 56 bit key K to a 64 bit output f(K). This appears to be a one-way funtion. Indeed, thisonstrution an even be proven to be one-way assuming DES is a family of pseudorandom funtions,as shown by Luby and Rako� [134℄.5. RSA. This is a andidate one-way trapdoor funtion. Let N = pq be a produt of two primes. Itis believed that suh an N is hard to fator. The funtion is f(x) = xe mod N where e is relativelyprime to (p � 1)(q � 1). The trapdoor is the primes p; q, knowledge of whih allows one to invert feÆiently. The funtion f seems to be one-way. To date the best attak is to try to fator N , whihseems omputationally infeasible.In Chapter 2 we disuss formal de�nitions of one-way funtions and are more preise about the aboveonstrutions.1.4 Seurity De�nitionsSo far we have used the terms \seure" and \break the system" quite loosely. What do we really mean?It is lear that a minimal requirement of seurity would be that: any adversary who an see the iphertextand knows whih enryption and deryption algorithms are being used, an not reover the entire leartext.But, many more properties may be desirable. To name a few:1. It should be hard to reover the messages from the iphertext when the messages are drawn fromarbitrary probability distributions de�ned on the set of all strings (i.e arbitrary message spaes). Afew examples of message spaes are: the English language, the set f0; 1g). We must assume that themessage spae is known to the adversary.2. It should be hard to ompute partial information about messages from the iphertext.3. It should be hard to detet simple but useful fats about traÆ of messages, suh as when the samemessage is sent twie.

Cryptography: Leture Notes 154. The above properties should hold with high probability.In short, it would be desirable for the enryption sheme to be the mathematial analogy of opaque envelopesontaining a piee of paper on whih the message is written. The envelopes should be suh that all legalsenders an �ll it, but only the legal reipient an open it.We must answer a few questions:� How an \opaque envelopes" be aptured in a preise mathematial de�nition? Muh of Chapters 6and 7 is dediated to disussing the preise de�nition of seurity in presene of a omputationallybounded adversary.� Are \opaque envelopes" ahievable mathematially? The answer is positive . We will desribe the theproposals of private (and publi) enryption shemes whih we prove seure under various assumptions.We note that the simple example of a publi-key enryptions system based on trapdoor funtion, desribedin the previous setion, does not satisfy the above properties. We will show later, however, probabilistivariants of the simple system whih do satisfy the new seurity requirements under the assumption thattrapdoor funtions exist. More spei�ally, we will show probabilisti variants of RSA whih satisfy the newseurity requirement under, the assumption that the original RSA funtion is a trapdoor funtion, and aresimilar in eÆieny to the original RSA publi-key enryption proposal.1.5 The Model of AdversaryThe entire disussion so far has essentially assumed that the adversary an listen to yphertexts beingexhanged over the inseure hannel, read the publi-�le (in the ase of publi-key ryptography), generateenryptions of any message on his own (for the ase of publi-key enryption), and perform probabilistipolynomial time omputation. This is alled a passive adversary.One may imagine a more powerful adversary who an interept messages being transmitted from senderto reeiver and either stop their delivery all together or alter them in some way. Even worse, suppose theadversary an request a polynomial number of yphertexts to be derypted for him. We an still ask whetherthere exists enryption shemes (publi or seret) whih are seure against suh more powerful adversaries.Indeed, suh adversaries have been onsidered and enryption shemes whih are seure against them de-signed. The de�nition of seurity against suh adversaries is more elaborate than for passive adversaries.In Chapters 6 and 7 we onsider a passive adversary who knows the probability distribution over the messagespae. We will also disuss more powerful adversaries and appropriate de�nitions of seurity.1.6 Road map to EnryptionTo summarize the introdution, our hallenge is to design both seure private-key and publi-key enryptionsystems whih provably meet our de�nition of seurity and in whih the operations of enryption andderyption are as fast as possible for the sender and reeiver.Chapters 6 and 7 embark on an in depth investigation of the topi of enryption, onsisting of the followingparts. For both private-key and publi-key enryption, we will:� Disuss formally how to de�ne seurity in presene of a bounded adversary.� Disuss urrent proposals of enryption systems and evaluate them respet to the seurity de�nitionhosen.� Desribe how to design enryption systems whih we an prove seure under expliit assumptions suhas the existene of one-way funtions, trapdoor funtions, or pseudo random funtions.

16 Goldwasser and Bellare� Disuss eÆieny aspets of enryption proposals, pointing out to possible ways to improve eÆienyby performing some omputations o�-line, in bath mode, or in a inremental fashion.We will also overview some advaned topis onneted to enryption suh hosen-iphertext seurity, non-malleability, key-esrow proposals, and the idea of shared deryption among many users of a network.

C h a p t e r 2One-way and trapdoor funtions

One Way funtions, namely funtions that are \easy" to ompute and \hard" to invert, are an extremelyimportant ryptographi primitive. Probably the best known and simplest use of one-way funtions, is forpasswords. Namely, in a time-shared omputer system, instead of storing a table of login passwords, one anstore, for eah password w, the value f(w). Passwords an easily be heked for orretness at login, buteven the system administrator an not dedue any user's password by examining the stored table.In Setion 1.3 we had provided a short list of some andidate one-way funtions. We now develop a theoretialtreatment of the subjet of one-way and trapdoor funtions, and arefully examine the andidate one-wayfuntions proposed in the literature. We will oasionaly refer to fats about number theory disussed inChapter C.We begin by explaining why one-way funtions are of fundamental importane to ryptography.2.1 One-Way Funtions: MotivationIn this setion, we provide motivation to the de�nition of one-way funtions. We argue that the existene ofone-way funtions is a neessary ondition to the existene of most known ryptographi primitives (inludingseure enryption and digital signatures). As the urrent state of knowledge in omplexity theory does notallow to prove the existene of one-way funtion, even using more traditional assumptions as P 6= NP ,we will have to assume the existene of one-way funtions. We will later try to provide evidene to theplausibility of this assumption.As stated in the introdution hapter, modern ryptography is based on a gap between eÆient algorithmsguaranteed for the legitimate user versus the unfeasibility of retrieving proteted information for an adversary.To make the following disussion more lear, let us onentrate on the ryptographi task of seure dataommuniation, namely enryption shemes.In seure enryption shemes, the legitimate user is able to deipher the messages (using some private infor-mation available to him), yet for an adversary (not having this private information) the task of deryptingthe iphertext (i.e., \breaking" the enryption) should be infeasible. Clearly, the breaking task an be per-formed by a non-deterministi polynomial-time mahine. Yet, the seurity requirement states that breakingshould not be feasible, namely ould not be performed by a probabilisti polynomial-time mahine. Hene,the existene of seure enryption shemes implies that there are tasks performed by non-deterministipolynomial-time mahines yet annot be performed by deterministi (or even randomized) polynomial-timemahines. In other words, a neessary ondition for the existene of seure enryption shemes is that NPis not ontained in BPP (and hene that P 6= NP). 17

18 Goldwasser and BellareHowever, the above mentioned neessary ondition (e.g., P 6= NP) is not a suÆient one. P 6= NP onlyimplies that the enryption sheme is hard to break in the worst ase. It does not rule-out the possibilitythat the enryption sheme is easy to break in almost all ases. In fat, one an easily onstrut \enryptionshemes" for whih the breaking problem is NP-omplete and yet there exist an eÆient breaking algorithmthat sueeds on 99% of the ases. Hene, worst-ase hardness is a poor measure of seurity. Seurity requireshardness on most ases or at least average-ase hardness. Hene, a neessary ondition for the existene ofseure enryption shemes is the existene of languages in NP whih are hard on the average. Furthermore,P 6= NP is not known to imply the existene of languages in NP whih are hard on the average.The mere existene of problems (in NP) whih are hard on the average does not suÆe. In order to be able touse suh problems we must be able to generate suh hard instanes together with auxiliary information whihenable to solve these instanes fast. Otherwise, the hard instanes will be hard also for the legitimate usersand they gain no omputational advantage over the adversary. Hene, the existene of seure enryptionshemes implies the existene of an eÆient way (i.e. probabilisti polynomial-time algorithm) of generatinginstanes with orresponding auxiliary input so that(1) it is easy to solve these instanes given the auxiliary input; and(2) it is hard on the average to solve these instanes (when not given the auxiliary input).We avoid formulating the above \de�nition". We only remark that the oin tosses used in order to generatethe instane provide suÆient information to allow to eÆiently solve the instane (as in item (1) above).Hene, without loss of generality one an replae ondition (2) by requiring that these oin tosses are hard toretrieve from the instane. The last simpli�ation of the above onditions essentially leads to the de�nitionof a one-way funtion.2.2 One-Way Funtions: De�nitionsIn this setion, we present several de�nitions of one-way funtions. The �rst version, hereafter referred toas strong one-way funtion (or just one-way funtion), is the most onvenient one. We also present weakone-way funtions whih may be easier to �nd and yet an be used to onstrut strong one way funtios,and non-uniform one-way funtions.2.2.1 (Strong) One Way FuntionsThe most basi primitive for ryptographi appliations is a one-way funtion. Informally, this is a funtionwhih is \easy" to ompute but \hard" to invert. Namely, any probabilisti polynomial time (PPT) algo-rithm attempting to invert the one-way funtion on a element in its range, will sueed with no more than\negligible" probability, where the probability is taken over the elements in the domain of the funtion andthe oin tosses of the PPT attempting the inversion.This informal de�nition introdues a ouple of measures that are prevalent in omplexity theoreti ryptog-raphy. An easy omputation is one whih an be arried out by a PPT algorithm; and a funtion �: N! Ris negligible if it vanishes faster than the inverse of any polynomial. More formally,De�nition 2.1 � is negligible if for every onstant � 0 there exists an integer k suh that �(k) < k� forall k � k.Another way to think of it is �(k) = k�!(1).A few words, onerning the notion of negligible probability, are in plae. The above de�nition and disussiononsiders the suess probability of an algorithm to be negligible if as a funtion of the input length the su-ess probability is bounded by any polynomial fration. It follows that repeating the algorithm polynomially(in the input length) many times yields a new algorithm that also has a negligible suess probability. Inother words, events whih our with negligible (in n) probability remain negligible even if the experiment

Cryptography: Leture Notes 19is repeated for polynomially (in k) many times. Hene, de�ning negligible suess as \ourring with proba-bility smaller than any polynomial fration" is naturally oupled with de�ning feasible as \omputed withinpolynomial time". A \strong negation" of the notion of a negligible fration/probability is the notion of anon-negligible fration/probability. we say that a funtion � is non-negligible if there exists a polynomial psuh that for all suÆiently large k's it holds that �(k) > 1p(k) . Note that funtions may be neither negligiblenor non-negligible.De�nition 2.2 A funtion f : f0; 1g� ! f0; 1g� is one-way if:(1) there exists a PPT that on input x output f(x);(2) For every PPT algorithm A there is a negligible funtion �A suh that for suÆiently large k,P h f(z) = y : x R f0; 1gk ; y f(x) ; z A(1k; y) i � �A(k)
Remark 2.3 The guarantee is probabilisti. The adversary is not unable to invert the funtion, but hasa low probability of doing so where the probability distribution is taken over the input x to the one-wayfuntion where x if of length k, and the possible oin tosses of the adversary. Namely, x is hosen at randomand y is set to f(x).Remark 2.4 The advsersary is not asked to �nd x; that would be pretty near impossible. It is asked to�nd some inverse of y. Naturally, if the funtion is 1-1 then the only inverse is x.Remark 2.5 Note that the adversary algorithm takes as input f(x) and the seurity parameter 1k (expressedin unary notatin) whih orresponds to the binary length of x. This represents the fat the adversary anwork in time polynomial in jxj, even if f(x) happends to be muh shorter. This rules out the possibility thata funtion is onsidered one-way merely beause the inverting algorithm does not have enough time to printthe output. Consider for example the funtion de�ned as f(x) = y where y is the log k least signi�ant bitsof x where jxj = k. Sine the jf(x)j = log jxj no algorithm an invert f in time polynomial in jf(x)j, yetthere exists an obvious algorithm whih �nds an inverse of f(x) in time polynomial in jxj. Note that in thespeial ase of length preserving funtions f (i.e., jf(x)j = jxj for all x's), the auxiliary input is redundant.Remark 2.6 By this de�nition it trivially follows that the size of the output of f is bounded by a polynomialin k, sine f(x) is a poly-time omputable.Remark 2.7 The de�nition whih is typial to de�nitions from omputational omplexity theory, workswith asymptoti omplexity|what happens as the size of the problem beomes large. Seurity is only askedto hold for large enough input lengths, namely as k goes to in�nity. Per this de�nition, it may be entirelyfeasible to invert f on, say, 512 bit inputs. Thus suh de�nitions are less diretly relevant to pratie, butuseful for studying things on a basi level. To apply this de�nition to pratie in ryptography we musttypially envisage not a single one-way funtion but a family of them, parameterized by a seurity parameterk. That is, for eah value of the seurity parameter k there is be a spei� funtion f : f0; 1gk ! f0; 1g�.Or, there may be a family of funtions (or ryptosystems) for eah value of k. We shall de�ne suh familesin subsequent setion.The next two setions disuss variants of the strong one-way funtion de�nition. The �rst time reader isenouraged to diretly go to Setion 2.2.4.

20 Goldwasser and Bellare2.2.2 Weak One-Way FuntionsOne way funtions ome in two avors: strong and weak. The de�nition we gave above, refers to a strongway funtion. We ould weaken it by replaing the seond requirement in the de�nition of the funtion bya weaker requirement as follows.De�nition 2.8 A funtion f : f0; 1g� ! f0; 1g� is weak one-way if:(1) there exists a PPT that on input x output f(x);(2) There is a polynomial funtions Q suh that for every PPT algorithm A, and for suÆiently large k,P h f(z) 6= y : x R f0; 1gk ; y f(x) ; z A(1k; y) i � 1Q(k)The di�erene between the two de�nitions is that whereas we only require some non-negligible fration ofthe inputs on whih it is hard to invert a weak one-way funtion, a strong one-way funtion must be hard toinvert on all but a negligible fration of the inputs. Clearly, the latter is preferable, but what if only weakone-way funtions exist ? Our �rst theorem is that the existene of a weak one way funtion implies theexistene of a strong one way funtion. Moreover, we show how to onstrut a strong one-way funtion froma weak one. This is important in pratie as illustarted by the following example.Example 2.9 Consider for example the funtion f : Z�Z 7! Z where f(x; y) = x � y. This funtion an beeasily inverted on at least half of its outputs (namely, on the even integers) and thus is not a strong one wayfuntion. Still, we said in the �rst leture that f is hard to invert when x and y are primes of roughly thesame length whih is the ase for a polynomial fration of the k-bit omposite integers. This motivated thede�nition of a weak one way funtion. Sine the probability that an k-bit integer x is prime is approximately1=k, we get the probability that both x and y suh that jxj = jyj = k are prime is approximately 1=k2. Thus,for all k, about 1� 1k2 of the inputs to f of length 2k are prime pairs of equal length. It is believed that noadversary an invert f when x and y are primes of the same length with non-negligible suess probability,and under this belief, f is a weak one way funtion (as ondition 2 in the above de�nition is satis�ed forQ(k) = O(k2)).Theorem 2.10 Weak one way funtions exist if and only if strong one way funtions exist.Proof Sketh: By de�nition, a strong one way funtion is a weak one way funtion. Now assume that f isa weak one way funtion suh that Q is the polynomial in ondition 2 in the de�nition of a weak one wayfuntion. De�ne the funtion f1(x1 : : : xN) = f(x1) : : : f(xN)where N = 2kQ(k) and eah xi is of length k.We laim that f1 is a strong one way funtion. Sine f1 is a onatenation of N opies of the funtion f ,to orretly invert f1, we need to invert f(xi) orretly for eah i. We know that every adversary has aprobability of at least 1Q(k) to fail to invert f(x) (where the probability is taken over x 2 f0; 1gk and theoin tosses of the adversary), and so intuitively, to invert f1 we need to invert O(kQ(k)) instanes of f . Theprobability that the adversary will fail for at least one of these instanes is extremely high.The formal proof (whih is omitted here and will be given in appendix) will take the form of a redution;that is, we will assume for ontradition that f1 is not a strong one way funtion and that there exists someadversary A1 that violates ondition 2 in the de�nition of a strong one way funtion. We will then show thatA1 an be used as a subroutine by a new adversary A that will be able to invert the original funtion f with

Cryptography: Leture Notes 21probability better than 1 � 1Q(jxj) (where the probability is taken over the inputs x 2 f0; 1gk and the ointosses of A). But this will mean that f is not a weak one way funtion and we have derived a ontradition.This proof tehnique is quite typial of proofs presented in this ourse. Whenever suh a proof is presentedit is important to examine the ost of the redution. For example, the onstrution we have just outlined isnot length preserving, but expands the size of the input to the funtion quadratially.2.2.3 Non-Uniform One-Way FuntionsIn the above two de�nitions of one-way funtions the inverting algorithm is probabilisti polynomial-time.Stronger versions of both de�nitions require that the funtions annot be inverted even by non-uniformfamilies of polynomial size algorithm We stress that the \easy to ompute" ondition is still stated in termsof uniform algorithms. For example, following is a non-uniform version of the de�nition of (strong) one-wayfuntions.De�nition 2.11 A funtion f is alled non-uniformly strong one-way if the following two onditions hold(1) easy to ompute: as before There exists a PPT algorithm to ompute for f .(2) hard to invert: For every (even non-uniform) family of polynomial-size algorithms A = fMkgk2N, thereexists a negligble �A suh that for all suÆiently large k'sP h f(z) 6= y : x R f0; 1gk ; y f(x) ; z Mk(y) i � �A(k)Note that it is redundent to give 1k as an auxiliary input to Mk.It an be shown that if f is non-uniformly one-way then it is (strongly) one-way (i.e., in the uniform sense).The proof follows by onverting any (uniform) probabilisti polynomial-time inverting algorithm into a non-uniform family of polynomial-size algorithm, without dereasing the suess probability. Details follow. LetA0 be a probabilisti polynomial-time (inverting) algorithm. Let rk denote a sequene of oin tosses for A0maximizing the suess probability of A0. The desired algorithm Mk inorporates the ode of algorithm A0and the sequene rk (whih is of length polynomial in k).It is possible, yet not very plausible, that strongly one-way funtions exist and but there are no non-uniformlyone-way funtions.2.2.4 Colletions Of One Way FuntionsInstead of talking about a single funtion f : f0; 1g� ! f0; 1g�, it is often onvenient to talk about olletionsof funtions, eah de�ned over some �nite domain and �nite ranges. We remark, however, that the singlefuntion format makes it easier to prove properties about one way funtions.De�nition 2.12 Let I be a set of indies and for i 2 I let Di and Ri be �nite. A olletion of strong oneway funtions is a set F = ffi : Di ! Rigi2I satisfying the following onditions.(1) There exists a PPT S1 whih on input 1k outputs an i 2 f0; 1gk \ I(2) There exists a PPT S2 whih on input i 2 I outputs x 2 Di(3) There exists a PPT A1 suh that for i 2 I and x 2 Di, A1(i; x) = fi(x).

22 Goldwasser and Bellare(4) For every PPT A there exists a negligible �A suh that 8 k large enoughP h fi(z) = y : i R I ; x R Di ; y fi(x) ; z A(i; y) i � �A(k)(here the probability is taken over hoies of i and x, and the oin tosses of A).In general, we an show that the existene of a single one way funtion is equivalent to the existene of aolletion of one way funtions. We prove this next.Theorem 2.13 A olletion of one way funtions exists if and only if one way funtions exist.Proof: Suppose that f is a one way funtion.Set F = ffi : Di ! Rigi2I where I = f0; 1g� and for i 2 I , take Di = Ri = f0; 1gjij and fi(x) = f(x).Furthermore, S1 uniformly hooses on input 1k, i 2 f0; 1gk, S2 uniformly hooses on input i, x 2 Di =f0; 1gjij and A1(i; x) = fi(x) = f(x). (Note that f is polynomial time omputable.) Condition 4 in thede�nition of a olletion of one way funtions learly follows from the similar ondition for f to be a one wayfuntion.Now suppose that F = ffi : Di ! Rigi2I is a olletion of one way funtions. De�ne fF (1k; r1; r2) =A1(S1(1k; r1); S2(S1(1k; r1); r2)) where A1, S1, and S2 are the funtions assoiated with F as de�ned inDe�nition 2.12. In other words, fF takes as input a string 1k Æ r1 Æ r2 where r1 and r2 will be the oin tossesof S1 and S2, respetively, and then� Runs S1 on input 1k using the oin tosses r1 to get the index i = S1(1k; r1) of a funtion fi 2 F .� Runs S2 on the output i of S1 using the oin tosses r2 to �nd an input x = S2(i; r2).� Runs A1 on i and x to ompute fF (1k; r1; r2) = A1(i; x) = fi(x).Note that randomization has been restrited to the input of fF and sine A1 is omputable in polynomialtime, the onditions of a one way funtion are learly met.A possible example is the following, treated thoroughly in Setion 2.3.Example 2.14 The hardness of omputing disrete logarithms yields the following olletion of funtions.De�ne EXP = fEXPp;g(i) = gi mod p; EXPp; g : Zp ! Z�pg<p;g>2I for I = f< p; g > p prime, g generatorfor Z�pg.2.2.5 Trapdoor Funtions and ColletionsInfromally, a trapdoor funtion f is a one-way funtion with an extra property. There also exists a seretinverse funtion (thetrapdoor) that allows its possessor to eÆiently invert f at any point in the domainof his hoosing. It should be easy to ompute f on any point, but infeasible to invert f on any pointwithout knowledge of the inverse funtion . Moreover, it should be easy to generate mathed pairs of f 's andorresponding trapdoor. One a mathed pair is generated, the publiation of f should not reveal anythingabout how to ompute its inverse on any point.De�nition 2.15 A trapdoor funtion is a one-way funtion f : f0; 1g� ! f0; 1g� suh that there exists apolynomial p and a probabilisti polynomial time algorithm I suh that for every k there exists an tk 2 f0; 1g�suh that jtkj � p(k) and for all x 2 f0; 1g�, I(f(x); tk) = y suh that f(y) = f(x).

Cryptography: Leture Notes 23An example of a funtion whih may be trapdoor if fatoring integers is hard was proposed by Rabin[164℄.Let f(x; n) = x2 mod n where n = pq a produt of two primes and x 2 Z�n. Rabin[164℄ has shown thatinverting f is easy i� fatoring omposite numbers produt of two primes is easy. The most famous andidatetrapdoor funtion is the RSA[170℄ funtion f(x; n; l) = xl mod n where (l; �(n)) = 1.Again it will be more onvenient to speak of families of trapdoor funtions parameterized by seurity pa-rameter k.De�nition 2.16 Let I be a set of indies and for i 2 I let Di be �nite. A olletion of strong one waytrapdoor funtions is a set F = ffi : Di ! Digi2I satisfying the following onditions.(1) There exists a polynomial p and a PTM S1 whih on input 1k outputs pairs (i; ti) where i 2 I \f0; 1gkand jtij < p(k) The information ti is referred to as the trapdoor of i.(2) There exists a PTM S2 whih on input i 2 I outputs x 2 Di(3) There exists a PTM A1 suh that for i 2 I , x 2 Di A1(i; x) = fi(x).(4) There exists a PTM A2 suh that A2(i; ti; fi(x)) = x for all x 2 Di and for all i 2 I (that is, fi is easyto invert when ti is known).(5) For every PPT A there exists a negligble �A suh that 8 k large enoughP h fi(z) = y : i R I ; x R Di ; y fi(x) ; z A(i; y) i � �A(k)A possible example is the following treated in in detail in the next setions.Example 2.17 [The RSA olletions of possible trapdoor funtions ℄ Let p; q denote primes, n = pq, Z�n =f1 � x � n; (x; n) = 1g the multipliative group whose ardinality is '(n) = (p � 1)(q � 1), and e 2 Zp�1relatively prime to '(n). Our set of indies will be I = f< n; e > suh that n = pq jpj = jqjg and the trapdoorassoiated with the partiular index < n; e > be d suh that ed = 1 mod �(n). Let RSA = fRSA<n;e> :Z�n ! Z�ng<n;e>2I where RSA<n;e>(x) = xe mod n2.3 In Searh of ExamplesNumber theory provides a soure of andidates for one way and trapdoor funtions. Let us start our searhfor examples by a digression into number theorey. See also the mini-ourse on number theory in Appendix C.Calulating Inverses in Z�pConsider the set Z�p = fx : 1 � x < p and gd(x; p) = 1g where p is prime. Z�p is a group under multipliatonmodulo p. Note that to �nd the inverse of x 2 Z�p; that is, an element y 2 Z�p suh that yx � 1 mod p, wean use the Eulidean algorithm to �nd integers y and z suh that yx+ zp = 1 = gd(x; p). Then, it followsthat yx � 1 mod p and so y mod p is the desired inverse.The Euler Totient Funtion '(n)Euler's Totient Funtion ' is de�ned by '(n) = jfx : 1 � x < p and gd(x; n) = 1g. The following are fatsabout '.(1) For p a prime and � � 1, '(p�) = p��1(p� 1).

24 Goldwasser and Bellare(2) For integers m;n with gd(m;n) = 1, '(mn) = '(m)'(n).Using the rules above, we an �nd ' for any n beause, in general,'(n) = '(kYi=1 pi�i)= kYi=1'(pi�i)= kYi=1 pi�i�1(pi � 1)Z�p Is CyliA group G is yli if and only if there is an element g 2 G suh that for every a 2 G, there is an integer isuh that gi = a. We all g a generator of the group G and we denote the index i by indg(a).Theorem 2.18 (Gauss) If p is prime then Z�p is a yli group of order p� 1. That is, there is an elementg 2 Z�p suh that gp�1 � 1 mod p and gi 6� 1 mod p for i < p� 1.>From Theorem 2.18 the following fat is immediate.Fat 2.19 Given a prime p, a generator g for Z�p, and an element a 2 Z�p, there is a unique 1 � i � p � 1suh that a = gi.The Legendre SymbolFat 2.20 If p is a prime and g is a generator of Z�p, theng = gagb mod p, = a+ b mod p� 1>From this fat it follows that there is an homomorphism f : Z�p ! Zp�1 suh that f(ab) = f(a) + f(b). Asa result we an work with Zp�1 rather than Z�p whih sometimes simpli�es matters. For example, supposewe wish to determine how many elements in Z�p are perfet squares (these elements will be referred to asquadrati residues modulo p). The following lemma tells us that the number of quadrati residues modulo pis 12 jZ�pj.Lemma 2.21 a 2 Z�p is a quadrati residue modulo p if and only if a = gx mod p where x satis�es 1 � x �p� 1 and is even.Proof: Let g be a generator in Z�p.(() Suppose an element a = g2x for some x. Then a = s2 where s = gx.()) Consider the square of an element b = gy. b2 = g2y � ge mod p where e is even sine 2y is reduedmodulo p � 1 whih is even. Therefore, only those elements whih an be expressed as ge, for e an eveninteger, are squares.Consequently, the number of quadrati residues modulo p is the number of elements in Z�p whih are an evenpower of some given generator g. This number is learly 12 jZ�pj.

Cryptography: Leture Notes 25The Legendre Symbol Jp(x) spei�es whether x is a perfet square in Z�p where p is a prime.Jp(x) = 8<: 1 if x is a square in Z�p0 if gd(x; p) 6= 1�1 if x is not a square in Z�pThe Legendre Symbol an be alulated in polynomial time due to the following theorem.Theorem 2.22 [Euler's Criterion℄ Jp(x) � x p�12 mod p.Using repeated doubling to ompute exponentials, one an alulate x p�12 in O(jpj3) steps. Though thisJp(x) an be alulated when p is a prime, it is not known how to determine for general x and n, whetherx is a square in Z�n.2.3.1 The Disrete Logarithm FuntionLet EXP be the funtion de�ned by EXP(p; g; x) = (p; g; gx mod p). We are partiularly interested in the asewhen p is a prime and g is a generator of Z�p . Deine an index set I = f(p; g) : p is prime and g is a generator of Z�pg.For (p; g) 2 I , it follows by Fat 2.19 that EXP(p; g; x) has a unique inverse and this allows us to de�nefor y 2 Z�p the disrete logarithm funtion DL by DL(p; g; y) = (p; g; x) where x 2 Zp�1 and gx � y mod p.Given p and g, EXP(p; g; x) an easily be omputed in polynomial time. However, it is unknown whether ornot its inverse DL an be omputed in polynomial time unless p�1 has very small fators (see [158℄). Pohligand Hellman [158℄ present e�etive tehniques for this problem when p� 1 has only small prime fators.The best fully proved up-to-date algorithm for omputing disrete logs is the Index-alulus algorithm. Theexpeted running time of suh algorithm is polynomial in epk log k where k is the size of the modulos p.There is a reent variant of the number �eld sieve algorithm for disrete logarithm whih seems to work infaster running time of e(k log k) 13 . It interesting to note that working over the �nite �eld GF (2k) rather thanworking modulo p seems to make the problem substantially easier (see Coppersmith [57℄ and Odlyzko [152℄).Curiously, omputing disrete logarithms and fatoring integers seem to have essentially the same diÆultyat least as indiated by the urrent state of the art algorithms.With all this in mind, we onsider EXP a good andidate for a one way funtion. We make the followingexpliit assumption in this diretion. The assumption basially says that there exists no polynomial timealgorithm that an solvethe disrete log problem with prime modulos.Strong Disrete Logarithm Assumption (DLA):1 For every polynomial Q and every PPT A, for allsuÆiently large k,Pr[A(p; g; y) = x suh that y � gx mod p where 1 � x � p� 1℄ < 1Q(k)(where the probability is taken over all primes p suh that jpj � k, the generators g of Z�p, x 2 Z�p and theoin tosses of A).An immediate onsequene of this assumption we getTheorem 2.23 Under the strong disrete logarithm assumption there exists a strong one way funtion;namely, exponentiation modulo a prime p.1We note that a weaker assumption an be made onerning the disrete logarithm problem, and by the standard onstrutionone an still onstrut a strong one-way funtion. We will assume for the purpose of the ourse the �rst stronger assumption.Weak Disrete Logarithm Assumption: There is a polynomial Q suh that for every PTM A there exists an integer k0suh that 8k > k0 Pr[A(p; g; y) = x suh that y � gx mod p where 1 � x � p � 1℄ < 1 � 1Q(k) (where the probability is takenover all primes p suh that jpj � k, the generators g of Z�p, x 2 Z�p and the oin tosses of A).

26 Goldwasser and BellareSome useful properties of EXP and DL follow.Remark 2.24 If DL(p; g1; y) is easy to alulate for some generator g1 2 Z�p then it is also easy to alulateDL(p; g2; y) for any other generator g2 2 Z�p. (The group Z�p has '(p � 1) generators.) To see this supposethat x1 = DL(p; g1; y) and x2 = DL(p; g2; y). If g2 � g1z mod p where gd(z; p � 1) then y � g1x2z mod pand onsequently, x2 � z�1x1 mod p� 1.The following result shows that to eÆiently alulate DL(p; g; y) for (p; g) 2 I it will suÆe to �nd apolynomial time algorithm whih an alulate DL(p; g; y) on at least a 1Q(jpj) fration of the possible inputsy 2 Z�p for some polynomial Q.Proposition 2.25 Let �, Æ 2 (0; 1) and let S be a subset of the prime integers. Suppose there is a proba-bilisti algorithm A suh that for all primes p 2 S and for all generators g of Z�pPr[A(p; g; y) = x suh that gx � y mod p℄ > �(where the probability is taken over y 2 Z�p and the oin tosses of A) and A runs in time polynomial in jpj.Then there is a probabilisti algorithm A0 running in time polynomial in ��1; Æ�1, and jpj suh that for allprimes p 2 S, generators g of Z�p, and y 2 Z�pPr[A0(p; g; y) = x suh that gx � y mod p℄ > 1� Æ(where the probability is taken over the oin tosses of A0).Proof: Choose the smallest integer N for whih 1eN < Æ.Consider the algorithm A0 running as follows on inputs p 2 S, g a generator of Z�p and y 2 Z�p.Repeat ��1N times.Randomly hoose z suh that 1 � z � p� 1.Let w = A(p; g; gzy)If A sueeds then gw = gzy = gz+x mod p where x = DLp;g(y)and therefore DLp;g(y) = w � z mod p� 1.Otherwise, ontinue to next iteration.End loopWe an estimate the probability that A0 fails:Pr[A0(p; g; y) fails℄ = Pr[A single iteration of the loop of A0 fails℄��1N< (1� �)��1N< (e�N)< ÆNote that sine N = O(log(Æ�1)) = O(Æ�1), A0 is a probabilisti algorithm whih runs in time polynomialin ��1, Æ�1, and jpj.The disrete logarithm problem also yields the following olletion of funtions.Let I = f(p; g) : p is prime and g is a generator of Z�pg and de�neEXP = fEXPp;g : Zp�1 ! Z�p where EXPp;g(x) = gx mod pg(p;g)2I :Then, under the strong disrete logarithm assumption, EXP is a olletion of strong one way funtions. Thislaim will be shown to be true next.

Cryptography: Leture Notes 27Theorem 2.26 Under the strong disrete logarithm assumption there exists a olletion of strong one wayfuntions.Proof: We shall show that under the DLA EXP is indeed a olletion of one way funtions. For this wemust show that it satis�es eah of the onditions in the de�nition of a olletion of one way funtions.For ondition 1, de�ne S1 to run as follows on input 1k.(1) Run Bah's algorithm (given in [8℄) to get a random integer n suh that jnj = k along with its fator-ization.(2) Test whether n+ 1 is prime. See primality testing in setion C.9.(3) If so, let p = n+ 1. Given the prime fatorization of p� 1 we look for generators g of Z�p as follows.(1) Choose g 2 Z�p at random.(2) If p� 1 =Yi qi�i is the prime fatorization of p� 1 then for eah qi hek that g p�1qi 6� 1 mod p.If so, then g is a generator of Z�p. Output p and g.Otherwise, repeat from step 1.Claim 2.27 g is a generator of Z�p if for eah prime divisor q of p� 1, g p�1q 6� 1 mod p.Proof: The element g is a generator of Z�p if gp�1 � 1 mod p and gj 6� 1 mod p for all j suh that 1 � j < p�1;that is, g has order p� 1 in Z�p.Now, suppose that g satis�es the ondition of Claim 2.27 and let m be the order of g in Z�p. Then m j p� 1.If m < p�1 then there exists a prime q suh that m j p�1q ; that is, there is an integer d suh that md = p�1q .Therefore g p�1q = (gm)d � 1 mod n ontraditing the hypothesis. Hene, m = p� 1 and g is a generator ofZ�p.Also, note that the number of generators in Z�p is '(p� 1) and in [172℄ it is shown that'(k) > k6 log log k :Thus we expet to have to hoose O(log log p) andidates for g before we obtain a generator. Hene, S1 runsin expeted polynomial time.For ondition 2 in the de�nition of a olletion of one way funtions, we an de�ne S2 to simply outputx 2 Zp�1 at random given i = (p; g).Condition 3 is true sine the omputation of gx mod p an be performed in polynomial time and ondition4 follows from the strong disrete logarithm assumption.2.3.2 The RSA funtionIn 1977 Rivest, Shamir, and Adleman [170℄ proposed trapdoor funtion andidate motivated by �nding apubli-key ryptosystem satisfying the requirements proposed by DiÆe and Hellman. The trapdoor funtion

28 Goldwasser and Bellareproposed is RSA(n; e; x) = xe mod n where the ase of interest is that n is the produt of two large primesp and q and gd(e; �(n)) = 1. The orresponding trapdoor information is d suh that d � e � 1 mod �(n).Viewd as a olletion, let RSA = fRSAn;e : Z�n ! Z�n where RSAn;e(x) = xe mod ng(n;e)2I : for I = f<n; e > s.t. n = pq jpj = jqj; (e; �(n)) = 1g .RSA is easy to ompute. How hard is it to invert? We know that if we an fator n we an invert RSAvia the Chinese Remainder Theorem, however we don't know if the onverse is true. Thus far, the best wayknown to invert RSA is to �rst fator n. There are a variety of algorithms for this task. The best runningtime for a fully proved algorithm is Dixon's random squares algorithms whih runs in time O(eplog n log logn).In pratie we may onsider others. Let ` = jpj where p is the smallest prime divisor of n. The Ellipti Curvealgorithm takes expeted time O(ep2` log `). The Quadrati Sieve algorithm runs in expeted O(eplnn ln lnn).Notie the di�erene in the argument of the superpolynomial omponent of the running time. This meansthat when we suspet that one prime fator is substantially smaller than the other, we should use the ElliptiCurve method, otherwise one should use the Quadrati sieve. The new number �eld sieve algorithm seems toahieve a O(e1:9(lnn)1=3(ln lnn)2=3) running time whih is a substantial improvement asymptotially althoughin pratie it still does not seem to run faster than the Quadrati Sieve algorithm for the size of integerswhih people urrently attempt to fator. The reommended size for n these days is 1024 bits.With all this in mind, we make an expliit assumption under whih one an prove that RSA provides aolletion of trapdoor funtions.Strong RSA Assumption:2 Let Hk = fn = pq : p 6= q are primes and jpj = jqj = kg. Then for everypolynomial Q and every PTM A, there exists an integer k0 suh that 8k > k0Pr[A(n; e;RSAn;e(x)) = x℄ < 1Q(k)(where the probability is taken over all n 2 Hk, e suh that gd(e; '(n)) = 1, x 2 Z�n, and the oin tosses ofA).We need to prove some auxilary laims.Claim 2.28 For (n; e) 2 I , RSAn;e is a permutation over Z�n.Proof: Sine gd(e; '(n)) = 1 there exists an integer d suh that ed � 1 mod '(n). Given x 2 Z�n, onsiderthe element xd 2 Z�n. Then RSAn;e(xd) � (xd)e � xed � x mod n. Thus, the funtion RSAn;e : Z�n �! Z�nis onto and sine jZ�nj is �nite it follows that RSAn;e is a permutation over Z�n.Remark 2.29 Note that the above is a onstrutive proof that RSA has an unique inverse. Sine gd(e; '(n)) =1 if we run the extended Eulidean algorithm we an �nd d 2 Z�n suh thatRSA�1n;e(x) = (xe mod n)d mod n = xed mod n = x mod n. Note that one we found a d suh that ed � 1 mod '(n) then we an invert RSAn;e eÆiently beausethen RSAn;e(x)d � xed � x mod '(n).Theorem 2.30 Under the strong RSA assumption, RSA is a olletion of strong one way trapdoor permu-tations.2A weaker assumption an be made whih under standard onstrutions is equivalent to the stronger one whih is madein this lass. Weak RSA Assumption: Let Hk = fn = pq : p 6= q are prime and jpj = jqj = kg. There is a polynomial Qsuh that for every PTM A, there exists an integer k0 suh that 8k > k0 Pr[A(n; e;RSAn;e(x)) = x℄ < 1 � 1Q(k) (where theprobability is taken over all n 2 Hk, e suh that gd(e; '(n)) = 1, x 2 Z�n, and the oin tosses of A).

Cryptography: Leture Notes 29Proof: First note that by Claim 2.28, RSAn;e is a permutation of Z�n. We must also show that RSAsatis�es eah of the onditions in De�nition 2.16. For ondition 1, de�ne S1 to ompute, on input 1k, a pair(n; e) 2 I \f0; 1gk and orresponding d suh that ed � 1 mod '(n). The algorithm piks two random primesof equal size by hoosing random numbers and testing them for primality and setting n to be their prout,then e 2 Z�(n) is hosen at random, and �nally d is omputed in polynomial time by �rst omputing'(n) = (p � 1)(q � 1) and then using the extended Eulidean algorithm. For ondition 2, de�ne S2 torandomly generate x 2 Z�n on input (n; e). Let A1((n; e); x) = RSAn;e(x). Note that exponentiation modulon is a polynomial time omputation and therefore ondition 3 holds. Condition 4 follows from the StrongRSA assumption. For ondition 5, let A2((n; e); d;RSAn;e(x)) � RSAn;e(x)d � xed � x mod n and this is apolynomial time omputation.One of the properties of the RSA funtion is that if we have a polynomial time algorithm that inverts RSAn;eon at least a polynomial proportion of the possible inputs x 2 Z�n then a subsequent probabilisti expetedpolynomial time algorithm an be found whih inverts RSAn;e on almost all inputs x 2 Z�n. This an betaken to mean that for a given n; e if the funtion is hard to invert then it is almost everywhere hard toinvert.Proposition 2.31 Let �, Æ 2 (0; 1) and let S � I . Suppose there is a probabilisti algorithm A suh thatfor all (n; e) 2 S Pr[A(n; e;RSAn;e(x)) = x℄ > �(where the probability is taken over x 2 Z�n and the oin tosses of A) and A runs in time polynomial in jnj.Then there is a probabilisti algorithm A0 running in time polynomial in ��1; Æ�1, and jnj suh that for all(n; e) 2 S, and x 2 Z�n Pr[A0(n; e;RSAn;e(x)) = x℄ > 1� Æ(where the probability is taken over the oin tosses of A0).Proof: Choose the smallest integer N for whih 1eN < Æ.Consider the algorithm A0 running as follows on inputs (n; e) 2 S and RSAn;e(x).Repeat ��1N times.Randomly hoose z 2 Z�n.Let y = A(n; e;RSAn;e(x) � RSAn;e(z)) = A(n; e;RSAn;e(xz)).If A sueeds then y = xz and therefore x = yz�1 mod n. Output x.Otherwise, ontinue to the next iteration.End loopWe an estimate the probability that A0 fails:Pr[A0(n; e;RSAn;e(x)) 6= x℄ = Pr[A single iteration of the loop of A0 fails℄��1N< (1� �)��1N< (e�N)< ÆNote that sine N = O(log(Æ�1)) = O(Æ�1), A0 is a probabilisti algorithm whih runs in time polynomialin ��1, Æ�1, and jnj.

30 Goldwasser and BellareOpen Problem 2.32 It remains to determine whether a similar result holds if the probability is also takenover the indies (n; e) 2 I . Spei�ally, if �, Æ 2 (0; 1) and A is a PTM suh thatPr[A(n; e;RSAn;e(x)) = x℄ > �(where the probability is taken over (n; e) 2 I , x 2 Z�n and the oin tosses of A), does there exist a PTM A0running in time polynomial in ��1 and Æ�1 suh thatPr[A0(n; e;RSAn;e(x)) = x℄ > 1� Æ(where the probability is taken over (n; e) 2 I and the oin tosses of A0)?2.3.3 Connetion Between The Fatorization Problem And Inverting RSAFat 2.33 If some PPT algorithm A an fator n then there exists a PPT A0 that an invert RSAhn;ei.The proof is obvious as �(n) = (p�1)(q�1). The trapdoor information d an be found by using the extendedEulidean algorithm beause d = e�1 mod �(n).Fat 2.34 If there exists a PTM B whih on input hn; ei �nds d suh that ed � 1 mod �(n) then there existsa PTM, B0 that an fator n.Open Problem 2.35 It remains to determine whether inverting RSA and fatoring are equivalent. Namely,if there is a PTM C whih, on input hn; ei, an invert RSAhn;ei, does there exist a PTM C 0 that an fatorn? The answer to this question is unknown. Note that Fat 2.34 does not imply that the answer is yes, asthere may be other methods to invert RSA whih do not neessarily �nd d.2.3.4 The Squaring Trapdoor Funtion Candidate by RabinRabin in [164℄ introdued a andidate trapdoor funtion whih we all the squaring funtion. The squaringfuntion resemble the RSA funtion exept that Rabin was able to atually prove that inverting the squaringfuntion is as hard as fatoring integers. Thus, inverting the squaring funtion is a omputation whih is atleast as hard as inverting the RSA funtion and possibly harder.De�nition 2.36 Let I = fn = pq : p and q are distint odd primes.g. For n 2 I, the squaring funtionSQUAREn : Z�n �! Z�n is de�ned by SQUAREn(x) � x2 mod n. The trapdoor information of n = pq 2 Iis tn = (p; q). We will denote the entire olletion of Rabin's funtions by RABIN = fSQUAREn : Z�n �!Z�ngn2I .Remark 2.37 Observe that while Rabin's funtion squares its input, the RSA funtion uses a varyingexponent; namely, e where gd(e; �(n)) = 1. The requirement that gd(e; �(n)) = 1 guarentees that theRSA funtion is a permutation. On the other hand, Rabin's funtion is 1 to 4 and thus it does not havea uniquely de�ned inverse. Spei�ally, let n = pq 2 I and let a 2 Z�p. As disussed in setion C.4,if a � x2 mod p then x and �x are the distint square roots of a modulo p and if a � y2 mod q theny and �y are the distint square roots of a modulo q. Then, there are four solutions to the ongruenea � z2 mod n, onstruted as follows. Let ; d 2 Zn be the Chinese Remainder Theorem oeÆients asdisussed in Appendix C.4. Then = � 1 mod p0 mod qand d = � 0 mod p1 mod qand the four solutions are x+ dy, x� dy, �x+ dy, and �x� dy.

Cryptography: Leture Notes 31The main result is that RABIN is a olletion of strong one way trapdoor funtions and the proof relies onan assumption onerning the diÆulty of fatoring. We state this assumption now.Fatoring Assumption: Let Hk = fpq : p and q are prime and jpj = jqj = kg. Then for every polynomialQ and every PTM A, 9k0 suh that 8k > k0Pr[A(n) = p : p j n and p 6= 1; n℄ < 1Q(k)(where the probability is taken over all n 2 Hk and the oin tosses of A).Our ultimate goal is to prove the following result.Theorem 2.38 Under the fatoring assumption, RABIN is a olletion of one way trapdoor funtions.Before proving this, we onsider two auxiliary lemmas. Lemma 2.39 onstruts a polynomial-time mahineA whih omputes square roots modulo a prime. Lemma 2.42 onstruts another polynomial-time mahine,SQRT, that inverts Rabin's funtion using the trapdoor information; spei�ally, it omputes a square rootmodulo omposites given the fatorization. SQRT makes alls to A.Lemma 2.39 Let p be an odd prime and let a be a square modulo p. There exists a probabilisti algorithmA running in expeted polynomial time suh that A(p; a) = x where x2 � a mod p.Proof: Let p be an odd prime and let a be a quadrati residue in Z�p. There are two ases to onsider;p � 1 mod 4 and p � 3 mod 4.Case 1 p � 3 mod 4; that is, p = 4m+ 3 for some integer m.Sine a is a square we have 1 = Jp(a) � a p�12 mod p =) a2m+1 � 1 mod p=) a2m+2 � a mod pTherefore, am+1 is a square root of a modulo p.Case 2 p � 1 mod 4; that is, p = 4m+ 1 for some integer m.As in Case 1, we will attempt to �nd an odd exponent e suh that ae � 1 mod p.Again, a is a square and thus 1 = Jp(a) � a p�12 mod p =) a2m � 1 mod p.However, at this point we are not done as in Case 1 beause the exponent on a in the above ongruene iseven. But notie that a2m � 1 mod p =) am � �1 mod p. If am � 1 mod p with m odd, then we proeedas in Case 1.This suggests that we write 2m = 2lr where r is an odd integer and ompute a2l�ir mod p for i = 1; : : : ; lwith the intention of reahing the ongruene ar � 1 mod p and then proeeding as in Case 1. However,this is not guarenteed as there may exist an integer l0 satisfying 0 � l0 < l suh that a2l0r � �1 mod p. Ifthis ongruene is enountered, we an reover as follows. Choose a quadrati nonresidue b 2 Z�p. Then�1 = Jp(b) � b p�12 mod p and therefore a2l0r � b2lr = a2l0r � b p�12 � 1 mod p. Thus, by multiplying byb2lr � �1 mod p, we obtain a new ongruene (arb2l�l0r)2l0 � 1 mod p. We proeed by taking square roots

32 Goldwasser and Bellarein this ongruene. Sine l0 < l, we will, after l steps, arrive at arb2s � 1 mod p where s is integral. At thispoint we have ar+1b2s � a mod p =) a r+12 bs is a square root of a mod p.From the above disussion (Cases 1 and 2) we obtain a probabilisti algorithm A for taking square roots.The algorithm A runs as follows on input a, p where Jp(a) = 1.(1) If p = 4m+ 3 for some integer m then output am+1 as a square root of a mod p.(2) If p = 4m + 1 for some integer m then randomly hoose b 2 Z�p until a value is found satisfyingJp(b) = �1.(1) Initialize i = 2m and j = 0.(2) Repeat until i is odd.i i2 and j j2 .If aibj = �1 then j j + 2m.Output a i+12 b j2 as a square root of a mod p.This algorithm terminates after O(l) iterations beause in step 2 (ii) the exponent on a is divided by 2. Notealso, that sine exatly half of the elements in Z�p are quadrati nonresidues, it is expeted that 2 iterationswill be required to �nd an appropriate value for b at the beginning of step 2. Thus, A runs in expetedpolynomial time and this ompletes the proof of Lemma 2.39.Remark 2.40 There is a deterministi algorithm due to Ren�e Shoof (see [179℄) whih omputes the squareroot of a quadrati residue a modulo a prime p in time polynomial in jpj and a (spei�ally, the algorithmrequires O((a 12+� log p)9) elementary operations for any � > 0). However, it is unknown whether there existsa deterministi algorithm running in time polynomial in jpj.Open Problem 2.41 Does there exist a deterministi algorithm that omputes square roots modulo aprime p in time polynomial in jpj?The next result requires knowledge of the Chinese Remainder Theorem. The statement of this theoremas well as a onstrutive proof is given in Appendix C.4. In addition, a more general form of the ChineseRemainder Theorem is presented there.Lemma 2.42 Let p and q be primes, n = pq and a a square modulo p. There exists a probabilisti algorithmSQRT running in expeted polynomial time suh that SQRT (p; q; n; a) = x where x2 � a mod n.Proof: The algorithm SQRT will �rst make alls to A, the algorithm of Lemma 2.39, to obtain square rootsof a modulo eah of the primes p and q. It then ombines these square roots, using the Chinese RemainderTheorem, to obtain the required square root.The algorithm SQRT runs as follows.(1) Let A(p; a) = x1 and A(q; a) = x2.(2) Use the Chinese Remainder Theorem to �nd (in polynomial time) y 2 Zn suh that y � x1 mod p andy � x2 mod q and output y.Algorithm SQRT runs orretly beause y2 � � x21 � a mod px22 � a mod q =) y2 � a mod n.

Cryptography: Leture Notes 33On the other hand, if the fators of n are unknown then the omputation of square roots modulo n is ashard as fatoring n. We prove this result next.Lemma 2.43 Computing square roots modulo n 2 Hk is as hard as fatoring n.Proof: Suppose that I is an algorithm whih on input n 2 Hk and a a square modulo n outputs y suh thata � y2 mod n and onsider the following algorithm B whih on input n outputs a nontrivial fator of n.(1) Randomly hoose x 2 Z�n.(2) Set y = I(n; x2 mod n).(3) Chek if x � �y mod n. If not then gd(x� y; n) is a nontrivial divisor of n. Otherwise, repeat from 1.Algorithm B runs orretly beause x2 � y2 mod n =) (x+ y)(x� y) � 0 mod n and so nj[(x+ y)(x� y)℄.But n 6 j (x � y) beause x 6� y mod n and n 6 j (x + y) beause x 6� �y mod n. Therefore, gd(x � y; n) is anontrivial divisor of n. Note also that the ongruene a � x2 mod n has either 0 or 4 solutions (a proof ofthis result is presented in Appendix C.4). Therefore, if I(n; x2) = y then x � �y mod n with probability 12and hene the above algorithm is expeted to terminate in 2 iterations.We are now in a position to prove the main result, Theorem 2.38.Proof: For ondition 1, de�ne S1 to �nd on input 1k an integer n = pq where p and q are primes of equallength and jnj = k. The trapdoor information is the pair of fators (p; q).For ondition 2 in the de�nition of a olletion of one way trapdoor funtions, de�ne S2 to simply outputx 2 Z�n at random given n.Condition 3 is true sine the omputation of x2 mod n an be performed in polynomial time and ondition4 follows from the fatoring assumption and Lemma 2.43.Condition 5 follows by applying the algorithm SQRT from Lemma 2.42.Lemma 2.43 an even be made stronger as we an also prove that if the algorithm I in the proof of Lemma 2.43works only on a small portion of its inputs then we are still able to fator in polynomial time.Proposition 2.44 Let �, Æ 2 (0; 1) and let S � Hk. Suppose there is a probabilisti algorithm I suh thatfor all n 2 S Pr[I(n; a) = x suh that a � x2 mod n℄ > �(where the probability is taken over n 2 S, a 2 Z�n2, and the oin tosses of I). Then there exists a probabilistialgorithm FACTOR running in time polynomial in ��1, Æ�1, and jnj suh that for all n 2 S,Pr[FACTOR(n) = d suh that d j n and d 6= 1; n℄ > 1� Æ(where the probability is taken over n and over the oins tosses of FACTOR).Proof: Choose the smallest integer N suh that 1eN < Æ.Consider the algorithm FACTOR running as follows on inputs n 2 S.

34 Goldwasser and BellareRepeat 2��1N times.Randomly hoose x 2 Z�n.Set y = I(n; x2 mod n).Chek if x � �y mod n. If not then gd(x� y; n) is a nontrivial divisor of n.Otherwise, ontinue to the next iteration.End loopWe an estimate the probability that FACTOR fails. Note that even when I(n; x2 mod n) produes a squareroot of x2 mod n, FACTOR(n) will be suessful exatly half of the time.Pr[FACTOR(n) fails to fator n℄ = Pr[A single iteration of the loop of FACTOR fails℄��1N< (1� 12�)2��1N< (e�N)< ÆSine N = O(log(Æ�1)) = O(Æ�1), FACTOR is a probabilisti algorithm whih runs in time polynomial in��1, Æ�1, and jnj.2.3.5 A Squaring Permutation as Hard to Invert as FatoringWe remarked earlier that Rabin's funtion is not a permutation. If n = pq where p and q are primes andp � q � 3 mod 4 then we an redue the Rabin's funtion SQUAREn to a permutation gn by restriting itsdomain to the quadrati residues in Z�n, denoted by Qn. This will yield a olletion of one way permutationsas we will see in Theorem 2.3.5. This suggestion is due to Blum and Williams.De�nition 2.45 Let J = fpq : p 6= q are odd primes; jpj = jqj; and p � q � 3 mod 4g. For n 2 J let thefuntion gn : Qn �! Qn be de�ned by gn(x) � x2 mod n and let BLUM-WILLIAMS = fgngn2J .We will �rst prove the following result.Lemma 2.46 Eah funtion gn 2 BLUM-WILLIAMS is a permutation. That is, for every element y 2 Qnthere is a unique element x 2 Qn suh that x2 = y mod n.Proof: Let n = p1p2 2 J. Note that by the Chinese Remainder Theorem, y 2 Qn if and only if y 2 Qn andy 2 Qp1 and y 2 Qp2 . Let ai and �ai be the square roots of y mod pi for i = 1, 2. Then, as is done in theproof of the Chinese Remainder Theorem, we an onstrut Chinese Remainder Theorem oeÆients 1, 2suh that 1 = � 1 mod p10 mod p2 and 2 = � 0 mod p11 mod p2 and onsequently, the four squareroots of y mod n are w1 = 1a1 + 2a2,w2 = 1a1 � 2a2,w3 = �1a1 � 2a2 = �(1a1 + 2a2) = �w1,and w4 = �1a1 + 2a2 = �(1a1 � 2a2) = �w2.Sine p1 � p2 � 3 mod 4, there are integers m1 and m2 suh that p1 = 4m1 + 3 and p2 = 4m2 + 3. Thus,Jp1(w3) = Jp1(�w1) = Jp1(�1)Jp1(w1) = (�1) p1�12 Jp1(w1) = �Jp1(w1) beause p1�12 is odd and similarly,Jp1(w4) = �Jp1(w2), Jp2(w3) = �Jp2(w1), and Jp2(w4) = �Jp2(w2). Therefore, without loss of generality,we an assume that Jp1(w1) = Jp1(w2) = 1 (and so Jp1(w3) = Jp1(w4) = �1).

Cryptography: Leture Notes 35Sine only w1 and w2 are squares modulo p1 it remains to show that only one of w1 and w2 is a squaremodulo n or equivalently modulo p2.First observe that Jp2(w1) � (w1) p2�12 � (1a1 + 2a2)2m2+1 � (a2)2m2+1 mod p2 and that Jp2(w2) �(w2) p2�12 � (1a1 � 2a2)2m2+1 � (�a2)2m2+1 mod p2 (beause 1 � 0 mod p2 and 2 � 1 mod p2). There-fore, Jp2(w2) = �Jp2(w1). Again, without loss of generality, we an assume that Jp2(w1) = 1 andJp2(w2) = �1 and hene, w1 is the only square root of y that is a square modulo both p1 and p2. Therefore,w1 is the only square root of y in Qn.Theorem 2.47 [Williams, Blum℄ BLUM-Williams is a olletion of one-way trapdoor permutations.Proof: This follows immediately from Lemma 2.46 beause eah funtion gn 2 J is a permutation. Thetrapdoor information of n = pq is tn = (p; q).2.4 Hard-ore Prediate of a One Way FuntionReall that f(x) does not neessarily hide everything about x even if f is a one-way funtion. E.g. if f is theRSA funtion then it preserves the Jaobi symbol of x, and if f is the disrete logarithm funtion EXP thenit is easy to ompute the least signi�ant bit of x from f(x) by a simple Legendre symbol alulation. Yet,it seems likely that there is at least one bit about x whih is hard to \guess" from f(x), given that x in itsentirety is hard to ompute. The question is: an we point to spei� bits of x whih are hard to ompute,and how hard to ompute are they. The answer is enouraging. A number of results are known whih givea partiular bit of x whih is hard to guess given f(x) for some partiular f 's suh as RSA and the disretelogarithm funtion. We will survey these results in subsequent setions.More generally, we all a prediate about x whih is impossible to ompute from f(x) better than guessingit at random a hard-ore prediate for f .We �rst look at a general result by Goldreih and Levin [94℄ whih gives for any one-way funtion f aprediate B suh that it is as hard to guess B(x) from f(x) as it is to invert f .Historial Note: The idea of a hard-ore prediate for one-way funtions was introdued by Blum, Goldwasserand Miali. It �rst appears in a paper by Blum and Miali [40℄ on pseduo random number generation. Theyshowed that a if the EXP funtion (fp;g(x) = gx (mod p)) is hard to invert then it is hard to even guessbetter than guessing at random the most signi�ant bit of x. Under the assumption that quadrati residuesare hard to distinguish from quadrati non-residues modulo omposite moduli, Goldwasser and Miali in[98℄ showed that the squaring funtion has a hard ore perdiate as well. Subsequently, Yao [201℄ showeda general result that given any one way funtion, there is a prediate B(x) whih is as hard to guess fromf(x) as to invert f for any funtion f . Goldreih and Levin's result is a signi�antly simpler onstrutionthan Yao's earlier onstrution.2.4.1 Hard Core Prediates for General One-Way FuntionsWe now introdue the onept of a hard-ore prediate of a funtion and show by expliit onstrution thatany strong one way funtion an be modi�ed to have a hard-ore prediate.Note: Unless otherwise mentioned, the probabilities during this setion are alulated uniformly over alloin tosses made by the algorithm in question.De�nition 2.48 A hard-ore prediate of a funtion f : f0; 1g� ! f0; 1g� is a boolean prediate B :f0; 1g� ! f0; 1g, suh that

36 Goldwasser and Bellare(1) 9PPT A; suh that 8xA(x) = B(x)(2) 8PPTG; 8 onstants ; 9 k0; s.t.8k>k0Pr[G(f(x)) = B(x)℄ < 12 + 1k :The probability is taken over the random oin tosses of G, and random hoies of x of length k.Intuitively, the de�nition guarantees that given x, B(x) is eÆiently omputable, but given only f(x), it ishard to even \guess" B(x); that is, to guess B(x) with a probability signi�antly better than 12 .Yao, in [201℄, showed that the existene of any trapdoor length-preserving permutation implies the existeneof a trapdoor prediate. Goldreih and Levin greatly simpli�ed Yao's onstrution and show that any one-way funtion an be modi�ed to have a trapdoor prediate as follows (we state a simple version of theirgeneral result).Theorem 2.49 [94℄ Let f be a (strong) length preserving one-way funtion. De�ne f 0(x Æ r) = f(x) Æ r,where jxj = jrj = k, and Æ is the onatenation funtion. ThenB(x Æ r) = �ki=1xiri(mod 2):is a hard-ore prediate for f 0.Note: v Æ w denotes onatenation of strings v and w. Computing B from f 0 is trivial as f(x) and r areeasily reoveravle from f 0(x; r). Finaly notie that if f is one-way then so is f 0.For a full proof of the theorem we refer the reader to [94℄.It is trivial to extend the de�nition of a hard-ore prediate for a one way funtion, to a olletion of hardore prediates for a olletion of one-way funtions.De�nition 2.50 A hard-ore prediate of a one-way funtion olletion F = ffi : Di ! Rigi2I is a olletionof boolean prediates B = fBi : Di ! Rigi2I suh that(1) 9PPT A; suh that 8i; xA(i; x) = Bi(x)(2) 8PPTG; 8 onstants ; 9 ; k0; s.t.8k>k0Pr[G(i; fi(x)) = Bi(x)℄ < 12 + 1k :The probability is taken over the random oin tosses of G, random hoies of i 2 I\f0; 1gk and randomx 2 Di.2.4.2 Bit Seurity Of The Disrete Logarithm FuntionLet us examine the bit seurity of the EXP olletion of funtions diretly rather than through the GoldreihLevin general onstrution.We will be interested in the most signi�ant bit of the disrete logarithm x of y modulo p.For (p; g) 2 I and y 2 Z�p, let Bp;g(y) =8>><>>: 0 if y = gx mod pwhere 0 � x < p�121 if y = gx mod pwhere p�12 � x < p� 1 .

Cryptography: Leture Notes 37We want to show that if for p a prime and g a generator of Z�p, EXPp;g(x) � gx mod p is hard to invert, thengiven y = EXPp;g(x), Bp;g(y) is hard to ompute in a very strong sense; that is, in attempting to omputeBp;g(y) we an do no better than essentially guessing its value randomly. The proof will be by way of aredution. It will show that if we an ompute Bp;g(y) in polynomial time with probability greater than12 + � for some non-negligible � > 0 then we an invert EXPp;g(x) in time polynomial in jpj, jgj, and ��1.The following is a formal statement of this fat.Theorem 2.51 Let S be a subset of the prime integers. Suppose there is a polynomial Q and a PTM Gsuh that for all primes p 2 S and for all generators g of Z�pPr[G(p; g; y) = Bp;g(y)℄ > 12 + 1Q(jpj)(where the probability is taken over y 2 Z�p and the oin tosses of G). Then for every polynomial P , there isa PTM I suh that for all primes p 2 S, generators g of Z�p, and y 2 Z�pPr[I(p; g; y) = x suh that y � gx mod p℄ > 1� 1P (jpj)(where the probability is taken over the oin tosses of I).We point to [40℄ for a proof of the above theorem.As a orollary we immediately get the following.De�nition 2.52 De�ne MSBp;g(x) = 0 if 1 � x < p�12 and 1 otherwise for x 2 Zp�1, and MSB =fMSBp;g(x) : Zp�1 ! f0; 1gg(p;g)2I . for I = f(p; g) : p is prime and g is a generator of Z�pg.Corollary 2.53 Under the strong DLA, MSB is a olletion of hard-ore prediates for EXP.It an be shown that atually O(log log p) of the most signi�ant bits of x 2 Zp�1 are hidden by the funtionEXPp;g(x). We state this result here without proof.Theorem 2.54 For a PTM A, let� = Pr[A(p; g; gx; xlog log pxlog log p�1 : : : x0) = 0 j x = xjpj : : : x0℄(where the probability is taken over x 2 Z�n and the oin tosses of A) and let� = Pr[A(p; g; gx; rlog log prlog log p�1 : : : r0) = 0 j ri 2R f0; 1g℄(where the probability is taken over x 2 Z�n, the oin tosses of A, and the bits ri). Then under the DisreteLogarithm Assumption, we have that for every polynomial Q and every PTM A, 9k0 suh that 8k > k0,j�� �j < 1Q(k) .Corollary 2.55 Under the Disrete Logarithm Assumption we have that for every polynomial Q and everyPTM A, 9k0 suh that 8k > k0 and 8kp < log log pPr[A(p; g; gx; xkp : : : x0) = xkp+1℄ < 12 + 1Q(k)(where the probability is taken over the primes p suh that jpj = k, the generators g of Z�p, x 2 Z�p, and theoin tosses of A).For further information on the simultaneous or individual seurity of the bits assoiated with the disretelogarithm see [131, 108℄.

38 Goldwasser and Bellare2.4.3 Bit Seurity of RSA and SQUARING funtionsLet I = f< n; e > | n = pq jpj = jqj; (e; �(n)) = 1g , and RSA = fRSA<n;e> : Z�n ! Z�ng<n;e>2I be theolletion of funtions as de�ned in 2.17.Alexi, Chor, Goldreih and Shnoor [6℄ showed that guessing the least signi�ant bit of x from RSA<n;e>(x)better than at random is as hard as inverting RSA.Theorem 2.56 [6℄ Let S � I . Let > 0. If there exists a probabilisti polynomial-time algorithm O suhthat for (n; e) 2 S, prob(O(n; e; xe mod n) = least signi�ant bit of x mod n) � 12 + 1k(taken over oin tosses of O and random hoies of x 2 Z�n) Then there exists a probabilisti expetedpolynomial time algorithm A suh that for all n; e 2 S, for all x 2 Z�n, A(n; e; xe mod n) = x mod n.Now de�ne LSB = fLSB<n;e> : Z�n ! Z�ng<n;e>2I where LSB<n;e>(x) =least signi�ant bit of x.A diret orollary to the above theorem is.Corollary 2.57 Under the (strong) RSA assumption, LSB is a olletion of hard ore prediates for RSA.A similar result an be shown for the most signifant bit of x and in fat for the log logn least (and most)signi�ant bits of x simultaneously. Moreover, similar results an be shown for the RABIN and BLUM-WILLIAMS olletions. We refer to [6℄, [199℄ for the detailed results and proofs. Also see [80℄ for redutionsof improved seurity.2.5 One-Way and Trapdoor PrediatesA one-way prediate, �rst introdued in [97, 98℄ is a notion whih preeeds hard ore prediates for one-wayfuntions and is strongly related to it. It will be very useful for both design of seure enryption and protooldesign.A one-way prediate is a boolean funtion B : f0; 1g� ! f0; 1g for whih(1) Sampling is possible: There exists a PPT algorithm that on input v 2 f0; 1g and 1k, selets a randomx suh that B(x) = v and jxj � k.(2) Guessing is hard: For all > 0, for all k suÆiently large, no PPT algorithm given x 2 f0; 1gk anompute B(x) with probability greater than 12 + 1k . (The probability is taken over the random hoiesmade by the adversary and x suh that jxj � k.)A trapdoor prediate is a one-way prediate for whih there exists, for every k, trapdoor information tkwhose size is bounded by a polynomial in k and whose knowledge enables the polynomial-time omputationof B(x), for all x suh that jxj � k.Restating as a olletion of one-way and trapdoor prediates is easy.De�nition 2.58 Let I be a set of indies and for i 2 I let Di be �nite. A olletion of one-way prediatesis a set B = fBi : Di ! f0; 1ggi2I satisfying the following onditions. Let Dvi = fx 2 Di; Bi(x) = v.(1) There exists a polynomial p and a PTM S1 whih on input 1k �nds i 2 I \ f0; 1gk.(2) There exists a PTM S2 whih on input i 2 I and v 2 f0; 1g �nds x 2 Di suh that Bi(x) = v.

Cryptography: Leture Notes 39(3) For every PPT A there exists a negligble �A suh that 8 k large enoughP h z = v : i R I \ f0; 1gk ; v R f0; 1g ; x R Dvi ; z R A(i; x) i � 12 + �A(k)De�nition 2.59 Let I be a set of indies and for i 2 I let Di be �nite. A olletion of trapdoor prediatesis a set B = fBi : Di ! f0; 1ggi2I satisfying the following onditions. Let Dvi = fx 2 Di; Bi(x) = v.(1) There exists a polynomial p and a PTM S1 whih on input 1k �nds pairs (i; ti) where i 2 I \ f0; 1gkand jtij < p(k) The information ti is referred to as the trapdoor of i.(2) There exists a PTM S2 whih on input i 2 I and v 2 f0; 1g �nds x 2 Di suh that Bi(x) = v.(3) There exists a PTM A1 suh that for i 2 I and trapdoor ti, x 2 Di A1(i; ti; x) = Bi(x).(4) For every PPT A there exists a negligble �A suh that 8 k large enoughP h z = v : i R I \ f0; 1gk ; v R f0; 1g ; x R Dvi ; z A(i; x) i � 12 + �A(k)Note that this de�nition implies that D0i is roughly the same size as D1i .2.5.1 Examples of Sets of Trapdoor PrediatesA Set of Trapdoor Prediates Based on the Quadrati Residue AssumptionLet Qn denote the set of all quadrati residues (or squares) modulo n; that is, x 2 Qn i� there exists a ysuh that x � y2 mod n.Reall that the Jaobi symbol (Jn(x)) is de�ned for any x 2 Z�n and has a value in f�1; 1g; this value iseasily omputed by using the law of quadrati reiproity, even if the fatorization of n is unknown. If n isprime then x 2 Qn , (Jn(x)) = 1; and if n is omposite, x 2 Qn) (Jn(x)) = 1. We let J+1n denote the setfx j x 2 Z�n^ (Jn(x)) = 1g , and we let ~Qn denote the set of pseudo-squares modulo n: those elements of J+1nwhih do not belong to Qn. If n is the produt of two primes then jQnj = j ~Qnj, and for any pseudo-squarey the funtion fy(x) = y � x maps Qn one-to-one onto ~Qn.The quadrati residuousity problem is: given a omposite n and x 2 J+1n , to determine whether x is a squareor a pseudo-square modulo n. This problem is believed to be omputationally diÆult, and is the basis fora number of ryptosystems.The following theorem informally shows for every n, if the quadrati residusosity is hard to ompute at allthen it is hard to distinguish between squares and non-squares for almost everywhere.Theorem 2.60 [97, 98℄: Let S � fns:t:n = pq; p; q; primesg If there exists a probabilisti polynomial-timealgorithm O suh that for n 2 S,prob(O(n; x) deides orretly whether x 2 J+1n) > 12 + � ; (2.1)where this probability is taken over the hoie of x 2 J+1n and O's random hoies, then there exists aprobabilisti algorithm B with running time polynomial in ��1; Æ�1 and jnj suh that for all n 2 S, for allx 2 J+1n , prob(B(x; n) deides orretly whether x 2 Qnjx 2 J+1n) > 1� Æ ; (2.2)where this probability is taken over the random oin tosses of B.

40 Goldwasser and BellareNamely, a probabilisti polynomial-time bounded adversary an not do better (exept by a smaller than anypolynomial advantage) than guess at random whether x 2 Jn is a square mod n, if quadrati residuosityproblem is not in polynomial time.This suggests immediately the following set of prediates: LetQRn;z(x) = � 0 if x is a square mod n1 if x is a non-square mod n �where QRn;z : J+1n ! f0; 1g and Ik = fn#z j n = pq, jpj = jqj = k2 , p and q primes, (Jn(z)) = +1, za non-square mod ng. It is lear that QR = fQRn;zg is a set of trapdoor prediates where the trapdoorinformation assoiated with every index < n; z > is the fatorization < p; q >. Lets hek this expliitly.(1) To selet pairs (i; ti) at random, �rst pik two primes, p and q, of size ��k2 �� at random, determining n.Next, searh until we �nd a non-square z in Z�n with Jaobi symbol +1. The pair we have found is then(< n; z >;< p; q >). We already know how to do all of these operations in expeted polynomial time .(2) Follows from the existene of the following algorithm to selet elements out of Dvn;z:� To selet x 2 D0n;z, let x = y2 mod n where y is an element of Z�n hosen at random.� To selet x 2 D1n;z, let x = zy2 mod n where y is an element of Z�n hosen at random.(3) To ompute QRn;z(x) given < p; q >, we ompute (Jp(x)) and (xq). If both are +1 then QRn;z(x) is 0,otherwise it is 1.(4) This follows from the Quadarati Residuosity Assumption and the above theorem.A Set of Trapdoor Prediates Based on the RSA AssumptionDe�ne Bn;e(x) = the least signi�ant bit of xd mod n for x 2 Z�n where ed = 1 mod �(n). Then, to seletuniformly an x 2 Z�n suh that Bn;e(x) = v simply selet a y 2 Z�n whose least signi�ant bit is v and setx = ye mod n. Given d it is easy to ompute Bn;e(x) = least signi�ant bit of xd mod n.The seurity of this onstrution follows trivially from the de�nition of olletion of hard ore prediates forthe RSA olletion of funtions.

C h a p t e r 3Pseudo-random bit generators

In this hapter, we disuss the notion of pseudo-random generators. Intuitively, a PSRG is a deterministiprogram used to generate long sequene of bits whih looks like random sequene, given as input a shortrandom sequene (the input seed).The notion of PSRG has appliations in various �elds:Cryptography:In the ase of private key enryption, Shannon showed (see leture 1) that the length of the lear textshould not exeed the length of the seret key, that is, the two parties have to agree on a very longstring to be used as the seret key. Using a PSRG G, they need to agree only on a short seed r, andexhange the message G(r)Lm.Algorithms Design:An algorithm that uses a soure of random bits, an manage with a shorter string, used as a seed to aPSRG.Complexity Theory:Given a probabilisti algorithm, an important question is whether we an make it deterministi. Us-ing the notion of a PSRG we an prove, assuming the existene of one-way funtion that BPP �\�DTIME(2n�)In this hapter we will de�ne good pseudo random number generators and give onstrutions of them underthe assumption that one way funtions exist.We �rst ask where do an we atually �nd truly random bit sequenes. 13.0.2 Generating Truly Random bit SequenesGenerating a one-time pad (or, for that matter, any ryptographi key) requires the use of a \natural" soureof random bits, suh as a oin, a radioative soure or a noise diode. Suh soures are absolutely essentialfor providing the initial seret keys for ryptographi systems.However, many natural soures of random bits may be defetive in that they produe biased output bits (sothat the probability of a one is di�erent than the probability of a zero), or bits whih are orrelated with1some of the preliminary disussion in the following three subsetions is taken from Rivest's survey artile on ryptographywhih appears in the handbook of omputer siene 41

42 Goldwasser and Bellareeah other. Fortunately, one an remedy these defets by suitably proessing the output sequenes produedby the natural soures.To turn a soure whih supplies biased but unorrelated bits into one whih supplies unbiased unorrelatedbits, von Neumann proposed grouping the bits into pairs, and then turning 01 pairs into 0's, 10 pairs into1's, and disarding pairs of the form 00 and 11 [200℄. The result is an unbiased unorrelated soure, sinethe 01 and 10 pairs will have an idential probability of ourring. Elias [75℄ generalizes this idea to ahievean output rate near the soure entropy.Handling a orrelated bit soure is more diÆult. Blum [38℄ shows how to produe unbiased unorrelatedbits from a biased orrelated soure whih produes output bits aording to a known �nite Markov hain.For a soure whose orrelation is more ompliated, Santha and Vazirani [176℄ propose modeling it as aslightly random soure, where eah output bit is produed by a oin ip, but where an adversary is allowedto hoose whih oin will be ipped, from among all oins whose probability of yielding \Heads" is betweenÆ and 1� Æ. (Here Æ is a small �xed positive quantity.) This is an extremely pessimisti view of the possibleorrelation; nonetheless U. Vazirani [197℄ shows that if one has two, independent, slightly-random souresX and Y then one an produe \almost independent" �-biased bits by breaking the outputs of X and Yinto bloks x;y of length k =
(1=Æ2 log(1=Æ) log(1=�)) bits eah, and for eah pair of bloks x;y produingas output the bit x � y (the inner produt of x and y over GF (2)). This is a rather pratial and elegantsolution. Chor and Goldreih [54℄ generalize these results, showing how to produe independent �-biased bitsfrom even worse soures, where some output bits an even be ompletely determined.These results provide e�etive means for generating truly random sequenes of bits|an essential requirementfor ryptography|from somewhat defetive natural soures of random bits.3.0.3 Generating Pseudo-Random Bit or Number SequenesThe one-time pad is generally impratial beause of the large amount of key that must be stored. Inpratie, one prefers to store only a short random key, from whih a long pad an be produed with a suitableryptographi operator. Suh an operator, whih an take a short random sequene x and deterministially\expand" it into a pseudo-random sequene y, is alled a pseudo-random sequene generator. Usually x isalled the seed for the generator. The sequene y is alled \pseudo-random" rather than random sine notall sequenes y are possible outputs; the number of possible y's is at most the number of possible seeds.Nonetheless, the intent is that for all pratial purposes y should be indistinguishable from a truly randomsequene of the same length.It is important to note that the use of pseudo-random sequene generator redues but does not eliminate theneed for a natural soure of random bits; the pseudo-random sequene generator is a \randomness expander",but it must be given a truly random seed to begin with.To ahieve a satisfatory level of ryptographi seurity when used in a one-time pad sheme, the output ofthe pseudo-random sequene generator must have the property that an adversary who has seen a portionof the generator's output y must remain unable to eÆiently predit other unseen bits of y. For example,note that an adversary who knows the iphertext C an guess a portion of y by orretly guessing theorresponding portion of the message M , suh as a standardized losing \Sinerely yours,". We would notlike him thereby to be able to eÆiently read other portions of M , whih he ould do if he ould eÆientlypredit other bits of y. Most importantly, the adversary should not be able to eÆiently infer the seed xfrom the knowledge of some bits of y.How an one onstrut seure pseudo-random sequene generators?Classial Pseudo-random Generators are UnsuitableClassial tehniques for pseudo-random number generation [120, Chapter 3℄ whih are quite useful ande�etive for Monte Carlo simulations are typially unsuitable for ryptographi appliations. For example,linear feedbak shift registers [104℄ are well-known to be ryptographially inseure; one an solve for the

Cryptography: Leture Notes 43feedbak pattern given a small number of output bits.Linear ongruential random number generators are also inseure. These generators use the reurreneXi+1 = aXi + b (mod m) (3.1)to generate an output sequene fX0; X1; : : :g from seret parameters a, b, and m, and starting point X0. Itis possible to infer the seret parameters given just a few of the Xi [157℄. Even if only a fration of the bitsof eah Xi are revealed, but a, b, and m are known, Frieze, H�astad, Kannan, Lagarias, and Shamir showhow to determine the seed X0 (and thus the entire sequene) using the marvelous lattie basis redution (or\L3") algorithm of Lenstra, Lenstra, and Lov�asz [83, 127℄.As a �nal example of the ryptographi unsuitability of lassial methods, Kannan, Lenstra, and Lovasz[118℄ use the L3 algorithm to show that the binary expansion of any algebrai number y (suh as p5 =10:001111000110111 : : :) is inseure, sine an adversary an identify y exatly from a suÆient number ofbits, and then extrapolate y's expansion.3.0.4 Provably Seure Pseudo-Random Generators: Brief overviewThis setion provides a brief overview of the history of the modern history of pseudo random bit generators.Subsequent setion de�ne these onepts formally and give onstrutions.The �rst pseudo-random sequene generator proposed for whih one an prove that it is impossible to preditthe next number in the sequene from the previous numbers assuming that it is infeasible to invert the RSAfuntion is due to Shamir [183℄. However, this sheme generates a sequene of numbers rather than asequene of bits, and the seurity proof shows that an adversary is unable to predit the next number, giventhe previous numbers output. This is not strong enough to prove that, when used in a one-time pad sheme,eah bit of the message will be well-proteted.Blum and Miali [40℄ introdued the �rst method for designing provably seure pseudo-random bit sequenegenerators, based on the use of one-way prediates. They all a pseudo-random bit generator seure if anadversary annot guess the next bit in the sequene from the pre�x of the sequene, better than guessing atrandom. Blum and Miali then proposed a partiular generator based on the diÆulty of omputing disretelogarithms. Blum, Blum, and Shub [35℄ propose another generator, alled the squaring generator , whih issimpler to implement and is provably seure assuming that the quadrati residuosity problem is hard. Alexi,Chor, Goldreih, and Shnorr [6℄ show that the assumption that the quadrati residuosity problem is hardan be replaed by the weaker assumption that fatoring is hard. A related generator is obtained by using theRSA funtion. Kaliski shows how to extend these methods so that the seurity of the generator depends onthe diÆulty of omputing ellipti logarithms; his tehniques also generalize to other groups [116, 117℄. Yao[201℄ shows that the pseudo-random generators de�ned above are perfet in the sense that no probabilistipolynomial-time algorithm an guess with probability greater by a non-negligible amount than 1=2 whetheran input string of length k was randomly seleted from f0; 1gk or whether it was produed by one of theabove generators. One an rephrase this to say that a generator that passes the next-bit test is perfetin the sense that it will pass all polynomial-time statistial tests. The Blum-Miali and Blum-Blum-Shubgenerators, together with the proof of Yao, represent a major ahievement in the development of provablyseure ryptosystems. Impagliazzo, Luby, Levin and H�astad show that atually the existene of a one-wayfuntion is equivalent to the existene of a pseudo random bit generator whih passes all polynomial timestatistial tests.3.1 De�nitionsDe�nition 3.1 Let Xn, Yn be probability distributions on f0; 1gn (That is, by t 2 Xn we mean thatt 2 f0; 1gn and it is seleted aording to the distribution Xn). We say that fXng is poly-time indistin-

44 Goldwasser and Bellareguishable from fYng if 8PTM A, 8 polynomial Q, 9n0, s.t 8n > n0,j Prt2Xn(A(t) = 1)� Prt2Yn(A(t) = 1)j < 1Q(n)i.e., for suÆiently long strings, no PTM an tell whether the string was sampled aording to Xn oraording to Yn.Intuitively, Pseudo random distribution would be a indistinguishable from the uniform distribution. Wedenote the uniform probability distribution on f0; 1gn by Un. That is, for every � 2 f0; 1gn, Prx2Un [x =�℄ = 12n .De�nition 3.2 We say that fXng is pseudo random if it is poly-time indistinguishable from fUng. Thatis, 8PTM A, 8 polynomial Q, 9n0, suh that 8n > n0,j Prt2Xn[A(t) = 1℄� Prt2Un[A(t) = 1℄j < 1Q(n)Comments:The algorithm A used in the above de�nition is alled a polynomial time statistial test. (Knuth, vol. 2,suggests various examples of statistial tests). It is important to note that suh a de�nition annot makesense for a single string, as it an be drawn from either distribution.If 9A and Q suh that the ondition in de�nition 2 is violated, we say that Xn fails the test A.De�nition 3.3 A polynomial time deterministi program G : f0; 1gk ! f0; 1gk̂ is a pseudo-random gener-ator (PSRG) if the following onditions are satis�ed.1. k̂ > k2. fGk̂gk̂ is pseudo-random where Gk̂ is the distribution on f0; 1gk̂ obtained as follows: to get t 2 Gk̂ :pik x 2 Ukset t = G(x)That is, 8PTMA;8 polynomial Q;8 suÆiently large k,j Prt2Gk̂(A(t) = 1)� Prt2Uk̂(A(t) = 1)j < 1Q(k̂) (3.2)
3.2 The Existene Of A Pseudo-Random GeneratorNext we prove the existene of PSRG's, if length-preserving one way permutations exist. It has been shownthat if one-way funtions exist (without requiring them to be length-preserving permutations) then one-wayfuntions exist, but we will not show this here.Theorem 3.4 Let f : f0; 1g� ! f0; 1g� be a length preserving one-way permutation. Then

Cryptography: Leture Notes 451. 9PSRG G : f0; 1gk ! f0; 1gk+1 (suh G is alled an extender).2. 8 polynomial Q, 9PSRG GQ : f0; 1gk ! f0; 1gQ(k).Proof:Proof of 1: Let f be as above. Let B be the hard ore bit of f . (that is, B is a boolean prediate,B : f0; 1g� ! f0; 1g, s.t it is eÆient to ompute B(x) given x, but given only f(x), it is hard to omputeB(x) with probability greater than 12 + � for non-negligible �.) Reall that we showed last lass thatevery OWF f(x) an be onverted into f1(x; r) for whih B0(x; r) =Pjxj1 xiri mod 2 is a hard ore bit. Fornotational ease, assume that B is already a hard-ore bit for f .De�ne G1(x) = f(x) ÆB(x)(Æ denotes the string onatenation operation). We will prove that G1(x) has the required properties. Clearly,G1 is omputed in poly-time, and for jxj = k, jG1(x)j = k + 1. It remains to show that the distributionfG1k+1g is pseudo random.Intuition : Indeed, knowing f(x) should not help us to predit B(x). As f is a permutation, f(Uk) isuniform on f0; 1gk, and any separation between Uk+1 and Gk+1 must aused by the hard ore bit. Wewould like to show that any suh separation would enable us to predit B(x) given only f(x) and obtain aontradition to B being a hard ore bit for f .We proeed by ontradition: Assume that (G is not good) 9 statistial test A, polynomial Q s.tPrt2Gk+1(A(t) = 1)� Prt2Uk+1(A(t) = 1) > 1Q(k + 1)(Note that we have dropped the absolute value from the inequality 3.2. This an be done wlog. We willlater see what would hange if the the other diretion of the inequality were true).Intuitively, we may thus interpret that if A answers 1 on a string t it is more likely that t is drawn fromdistribution Gk+1, and if A answers 0 on string t that it is more likely that t is drawn from distributionUk+1.We note that the probability that A(f(x)Æb) returns 1, is the sum of the weighted probability that A returns1 onditioned on the ase that B(x) = b and onditioned on the ase B(x) = 1. By, the assumed separationabove, we get that it is more likely that A(f(x) Æ b) will return 1 when b = B(x). This easily translates toan algorithm for prediting the hard ore bit of f(x).Formally, we havePrx2Uk;b2U1 [A(f(x) Æ b) = 1℄ = Pr[A(f(x) Æ b) = 1 j b = B(x)℄ � Pr[b = B(x)℄+ Pr[A(f(x) Æ b) = 1 j b = B(x)℄ � Pr[b = B(x)℄= 12 (� + �)where � = Pr[A(f(x) Æ b) = 1 j b = B(x)℄ and � = Pr[A(f(x) Æ b) = 1 j b = B(x)℄.From the assumption we therefore getPrx2Uk [A(f(x) ÆB(x)) = 1℄� Prx2Uk [A(f(x) Æ b) = 1℄ = �� 12 (�+ �)

46 Goldwasser and Bellare= 12 (�� �)> 1Q(k) .We now exhibit a polynomial time algorithm A0 that on input f(x) omputes B(x) with suess probabilitysigni�antly better than 1=2.A0 takes as input f(x) and outputs either a 0 or 1.1. hoose b 2 f0; 1g2. run A(f(x) Æ b)3. If A(f(x) Æ b) = 1, output b, otherwise output b.Notie that, when dropping the absolute value from the inequality 3.2, if we take the seond diretion wejust need to replae b by b in the de�nition of A0.Claim 3.5 Pr[A0(f(x) = B(x))℄ > 12 + 1Q(k) .Proof:Pr[A0(f(x) = b)℄ Pr[A(f(x) Æ b) = 1 j b = B(x)℄ Pr[b = B(x))Pr[A(f(x) Æ b) = 0jb = B(x)) Pr[b = B(x)℄+ 12�+ 12 (1� �)= 12 + 12 (�� �)> 12 + 1Q(k) .
This ontradits the hardness of omputing B(x). It follows that G1 is indeed a PSRG.Proof of 2: Given a PSRG G that expands random strings of length k to pseudo-random strings of lengthk+1, we need to show that, 8 polynomial Q, 9PSRGGQ : f0; 1g ! f0; 1gQ(k). We de�ne GQ by �rst usingG Q(k) times as follows:x ! G! f(x) ÆB(x)f(x) ÆB(x) ! G! f(f(x)) ÆB(f(x))f2(x) ÆB(f(x)) ! G! f3(x) ÆB(f2(x))���fQ(k)�2(x) ÆB(fQ(k)�1(x)) ! G! fQ(k)(x) ÆB(fQ(k)�1(x))The output of GQ(x) is the onatenation of the last bit from eah string i.e.,GQ(x) = B(x) ÆB(f(x)) Æ � � � ÆB(fQ(k)�1(x) =bG1 (x) Æ bG2 (x) Æ � � � Æ bGQ(jxj)(x)Clearly, GQ is poly-time and it satis�es the length requirements. We need to prove that the distributiongenerated by GQ, GQ(Uk), is poly-time indistinguishable from UQ(k). We proeed by ontradition, (and

Cryptography: Leture Notes 47show that it implies that G is not PSRG)If GQk is not poly-time indistinguishable from UQ(k), 9 statistial test A, and 9 polynomial P , s.t.Prt2GQ(k)(A(t) = 1)� Prt2UQ(k)(A(t) = 1) > 1P (k)(As before we omit the absolute value). We now de�ne a sequene D1; D2; :::; DQ(k) of distributions onf0; 1gQ(k), s.t. D1 is uniform (i.e. strings are random), DQ(k) = GQ(k), and the intermediate Di's aredistributions omposed of onatenation of random followed by pseudorandom distributions. Spei�ally,t 2 D1 is obtained by letting t = s where s 2 UQ(k)t 2 D2 is ontained by letting t = s ÆB(x) where s 2 UQ(k)�1; x 2 Ukt 2 D3 is ontained by letting t = s ÆB(x) ÆB(f(x)) where s 2 UQ(k)�2; x 2 Uk���t 2 DQ(k) is ontained by letting t = B(x)::: ÆB(fQ(k)�1(x)) where x 2 UkSine the sequene `moves' from D1 = UQ(k) to DQ(k) = GQ(k), and we have an algorithms A that distin-guishes between them, there must be two suessive distributions between whih A distinguishes.i.e. 9 i, 1 � i � Q(k), s.t. Prt2Di(A(t) = 1)� Prt2Di+1(A(t) = 1) > 1P (k)Q(k)We now present a poly-time algorithm A0 that distinguishes between Uk+1 and Gk+1, with suess proba-bility signi�antly better than 12 , ontraditing the fat that G is a PSRG.A0 works as follows on input � = �1�2:::�k+1 = �0 Æ b1. Choose 1 � i � q(k) at random.2. Let t = 1 Æ ::: Æ Q(k)�i�1 Æ b Æ bG1 (�0) Æ bG2 (�0) Æ ::: Æ bGi (�0)where the j are hosen randomly.(Note that t 2 Di if �0 Æ b 2 Uk+1, and that t 2 Di+1 if �0 Æ b 2 Gk+1.)3. We now run A(t). If we get 1, A0 returns 0 If we get 0, A0 returns 1(i.e if A returns 1, it is interpreted as a vote for Di and therefore for b 6= B(�`) and � 2 Uk+1. Onthe other hand, if A returns 0, it is interpreted as a vote for Di+1 and therefore for b = B(�0) and� 2 Gk+1.)It is immediate that: Pr�2Uk+1(A0(�) = 1)� Pr�2Gk+1(A0(�) = 1) > 1P (k)Q2(k)The extra 1Q(k) fator omes form the random hoie of i. This violates the fat that G was a pseudo randomgenerator as we proved in part 1. This is a ontradition

48 Goldwasser and Bellare3.3 Next Bit TestsIf a pseudo-random bit sequene generator has the property that it is diÆult to predit the next bit fromprevious ones with auray greater than 12 by a non-negligible amount in time polynomial in the size of theseed, then we say that the generator passes the \next-bit" test.De�nition 3.6 A next bit test is a speial kind of statistial test whih takes as input a pre�x of a sequeneand outputs a predition of the next bit.De�nition 3.7 A (disrete) probability distribution on a set S is a funtion D : S ! [0; 1℄ � R so thatPs2S D(s) = 1. For brevity, probability distributions on f0; 1gk will be subsripted with a k. The notationx 2 Xn means that x is hosen so that 8z 2 f0; 1gnPr[x = z℄ = Xn(z). In what follows, Un is the uniformdistribution.Reall the de�nition of a pseudo-random number generator:De�nition 3.8 A pseudo-random number generator (PSRG) is a polynomial time deterministi algorithmso that:1. if jxj = k then jG(x)j = k̂2. k̂ > k,3. Gk̂ is pseudo-random2, where Gk̂ is the probability distribution indued by G on f0; 1gk̂.De�nition 3.9 We say that a pseudo-random generator passes the next bit test A if for every polynomialQ there exists ,an integer k0 suh that for all k̂ > k0 and p < k̂Prt2Gk̂[A(t1t2 : : : tp) = tp+1℄ < 12 + 1Q(k)Theorem 3.10 G passes all next bit tests , G passes all statistial tests.Proof:(() Trivial.()) Suppose, for ontradition, that G passes all next bit test but fails some statistial test A. We willuse A to onstrut a next bit test A0 whih G fails. De�ne an operator � on probability distributionsso that [Xn � Ym℄(z) = Xn(zn) � Ym(zm) where z = zn Æ zm; jznj = n; jzmj = m (Æ is onatenation).For j � k̂ let Gj;k̂ be the probability distribution indued by Gk̂ on f0; 1gj by taking pre�xes. (That isGj;k̂(x) =Pz2f0;1gk̂;z extends xGk̂(z).)De�ne a sequene of distributions Hi = Gi;k̂ � Uk̂�i on f0; 1gk̂ of \inreasing pseudo-randomness." ThenH0 = Uk̂ and Hk̂ = Gk̂. Beause G fails A, A an di�erentiate between Uk̂ = H0 and Gk̂ = Hk̂; thatis, 9Q 2 Q[x℄ so that jPrt2H0 [A(t) = 1℄ � Prt2Hk̂ [A(t) = 1℄j > 1Q(k) . We may assume without loss ofgenerality that A(t) = 1 more often when t is hosen from Uk̂ (otherwise we invert the output of A) so2A pseudo-random distribution is one whih is polynomial time indistinguishable from Uk̂

Cryptography: Leture Notes 49that we may drop the absolute value markers on the left hand side. Then 9i; 0 � i � k̂ � 1 so thatPrt2Hi [A(t) = 1℄� Prt2Hi+1 [A(t) = 1℄ > 1k̂Q(k) .The next bit test A0 takes t1t2 : : : ti and outputs a guess for ti+1. A0 �rst onstrutss0 = t1t2 : : : ti0ri+2ri+3 : : : rk̂s1 = t1t2 : : : ti1r̂i+2r̂i+3 : : : r̂k̂where rj and r̂j are random bits for i+ 2 � j � k̂. A0 then omputes A(s0) and A(s1).If A(s0) = A(s1), then A0 outputs a random bit.If 0 = A(s0) = A(s1), then A0 outputs 0.If 1 = A(s0) = A(s1), then A0 outputs 1.Claim 3.11 By analysis similar to that done in the previous leture, Pr[A0(t1t2 : : : ti) = ti+1℄ > 12 + 1k̂Q(k) .Thus we reah a ontradition: A0 is a next bit test that G fails, whih ontradits our assumption that Gpasses all next bit tests.
3.4 Examples of Pseudo-Random GeneratorsEah of the one way funtions we have disussed indues a pseudo-random generator. Listed below arethese generators (inluding the Blum/Blum/Shub generator whih will be disussed afterwards) and theirassoiated osts. See [40, 35, 170℄.Name One way funtion Cost of omputing Cost of omputingone way funtion jthbit of generatorRSA xe mod n; n = pq k3 jk3Rabin x2 mod n; n = pq k2 jk2Blum/Miali EXP(p; g; x) k3 jk3Blum/Blum/Shub (see below) k2 max(k2 log j; k3)3.4.1 Blum/Blum/Shub Pseudo-Random GeneratorThe Blum/Blum/Shub pseudo-random generator uses the (proposed) one way funtion gn(x) = x2 mod nwhere n = pq for primes p and q so that p � q � 3 mod 4. In this ase, the squaring endomorphism x 7! x2on Z�n restrits to an isomorphism on (Z�n)2, so gn is a permutation on (Z�n)2. (Reall that every square hasa unique square root whih is itself a square.)Claim 3.12 The least signi�ant bit of x is a hard bit for the one way funtion gn.The jth bit of the Blum/Blum/Shub generator may be omputed in the following way:B(x2j mod n) = B(x� mod m)

50 Goldwasser and Bellarewhere � � 2j mod �(n). If the fators of n are known, then �(n) = (p� 1)(q� 1) may be omputed so that� may be omputed prior to the exponentiation. � = 2j mod �(n) may be omputed in O(k2 log j) time andx� may be be omputed in k3 time so that the omputation of B(x2j) takes O(max(k3; k2 log j)) time.An interesting feature of the Blum/Blum/Shub generator is that if the fatorization of n is known, the 2pn thbit an be generated in time polynomial in jnj. The following question an be raised: let GBBS(x; p; q) =B(f2pn(x)) Æ : : : Æ B(f2pn+2k(x)) for n = pq and jxj = k. Let GBBS2k be the distribution indued by GBBSon f0; 1g2k.Open Problem 3.13 Is this distribution GBBS2k pseudo-random? Namely, an you prove that8Q 2 Q[x℄;8PTM A; 9k0;8k > k0jPrt2GBBS2k [A(t) = 1℄� Prt2U2k [A(t) = 1℄j < 1Q(2k)The previous proof that G is pseudo-random doesn't work here beause in this ase the fatorization of n ispart of the seed so no ontradition will be reahed onerning the diÆulty of fatoring.More generally,Open Problem 3.14 Pseudo-random generators, given seed x, impliitly de�ne an in�nite string gx1gx2 : : :.Find a pseudo-random generator so that the distribution reated by restriting to any polynomially seletedsubset of bits of gx is pseudo-random. By polynomially seleted we mean examined by a polynomial timemahine whih an see gxi upon request for a polynomial number of i's (the mahine must write down thei's, restriting jij to be polynomial in jxj).

C h a p t e r 4Blok iphers and modes of operation

Blok iphers are the entral tool in the design of protools for shared-key ryptography. They are the mainavailable \tehnology" we have at our disposal. This hapter will take a look at these objets and desribethe state of the art in their onstrution.It is important to stress that blok iphers are just tools; they don't, by themselves, do something that anend-user would are about. As with any powerful tool, one has to learn to use this one. Even a wonderfulblok ipher won't give you seurity if you use don't use it right. But used well, these are powerful toolsindeed. Aordingly, an important theme in several upoming hapters will be on how to use blok ipherswell. We won't be emphasizing how to design or analyze blok iphers, as this remains very muh an art. Themain purpose of this hapter is just to get you aquainted with what typial blok iphers look like. We'lllook at two examples, DES, and AES. DES is the \old standby." It is urrently (year 2001) the most widely-used blok ipher in existene, and it is of suÆient historial signi�ane that every trained ryptographerneeds to have seen its desription. AES is a more modern blok ipher. It is a possible replaement for DES.4.1 What is a blok ipher?A blok ipher is a funtion E: f0; 1gk � f0; 1gl ! f0; 1gl that takes two inputs, a k-bit key K and anl-bit \plaintext" M , to return an l-bit \iphertext" C = E(K;M). The key-length k and the blok-length lare parameters assoiated to the blok ipher and vary from ipher to ipher, as of ourse does the designof the algorithm itself. For eah key K 2 f0; 1gk we let EK : f0; 1gl ! f0; 1gl be the funtion de�ned byEK(M) = E(K;M). For any blok ipher, and any key K, the funtion EK is a permutation on f0; 1gn.This means that it is a bijetion, ie. a one-to-one and onto funtion of f0; 1gl to f0; 1gl. Aordingly it hasan inverse, and we an denote it E�1K . This funtion also maps f0; 1gl to f0; 1gl, and of ourse we haveE�1K (FK(M)) = M and EK(E�1K (C)) = C for all M;C 2 f0; 1gl. We let E�1: f0; 1gk � f0; 1gl ! f0; 1gl bede�ned by E�1(K;C) = E�1K (C); this is the inverse ipher to E.The blok ipher is a publi and fully spei�ed algorithm. Both the ipher E and its inverse E�1 shouldbe easily omputable, meaning given K;M we an ompute E(K;M), and given K;C we an omputeE�1(K;C).In typial usage, a random key K is hosen and kept seret between a pair of users. The funtion EK is thenused by the two parties to proess data in some way before they send it to eah other. The adversary maysee input-output examples of EK , meaning pairs of the form (M;C) where C = EK(M), but is not diretlyshown the key K. Seurity relies on the serey of the key. (This is neessary, but not always suÆient,for seurity.). So at a �rst ut at least, you might view the adversary's goal as reovering the key K given51

52 Goldwasser and Bellaresome input-output examples of EK . The blok ipher should be designed to make this task omputationallydiÆult. Later we will re�ne this view, but it is the lassial one, so let's go with it for now.How do blok iphers work? Lets take a look at some of them to get a sense of this.4.2 Data Enryption StandardThe Data Enryption Standard (DES) is the quintessential blok ipher. Even though it is now feeling itsage, and on the way out, no disussion of blok iphers an really omit mention of this onstrution. DESis a remarkably well-engineered algorithm whih has had a powerful inuene on ryptography. DES is invery widespread use, and probably will be for some years to ome. Every time you use an ATM mahine,you are using DES.4.2.1 A brief historyIn 1972 the NBS (National Bureau of Standards, now NIST, the National Institute of Siene and Tehnology)initiated a program for data protetion and wanted as part of it an enryption algorithm that ould bestandardized. They put out a request for suh an algorithm. In 1974, IBM responded with a design basedon their \Luifer" algorithm. This design would eventually evolve into the DES.DES has a key-length of k = 56 and a blok-length of l = 64. It onsists of 16 rounds of what is alled a\Feistel network." We will desribe the details shortly.After NBS, several other bodies adopted DES as a standard, inluding ANSI (the Amerian National Stan-dards Institute) and the Amerian Bankers Assoiation.The standard was to be reviewed every �ve years to see whether or not it should be re-adopted. Althoughthere were laims that it would not be re-erti�ed, the algorithm was re-erti�ed again and again. Onlyreently did the work for �nding a replaement begin in earnest, in the form of the AES (Advaned EnryptionStandard) e�ort.DES proved remarkably seure. There has, sine the beginning, been onerns, espeially about exhaustivekey-searh. But for a fair length of time, the key size of 56 bits was good enough against all but verywell-funded organizations. Interesting attaks signi�antly di�erent from key searh emerged only in thenineties, and even then don't break DES in a sense signi�ant in pratie. But with today's tehnology, 56bits is too small a key size for many seurity appliations.4.2.2 ConstrutionThe onstrution is desribed in FIPS 46 [147℄. The following disussion is a quik guide that you an followif you have the FIPS doument at your side.Begin at page 87 where you see a big piture. The input is 64 bits and in addition there is a 56 bit key K.(They say 64, but atually every eighth bit is ignored. It an be set to the parity of the previous seven.)Notie the algorithm is publi. You operate with a hidden key, but nothing about the algorithm is hidden.The �rst thing the input is hit with is something alled the initial permutation, or IP. This just shu�es bitpositions. That is, eah bit is moved to some other position. How? In a �xed and spei�ed way: see page88. Similarly, right at the end, notie they apply the inverse of the same permutation. From now on, ignorethese. They do not a�et seurity. (As far as anyone an tell, they are there to make loading the hipseasier.)The essene of DES is in the round struture. There are 16 rounds. Eah round i has an assoiated subkeyKi whih is 48 bits long. The subkeys K1; : : : ;K16 are derived from the main key K, in a manner explainedon page 95 of the FIPS doument.

Cryptography: Leture Notes 53In eah round, the input is viewed as a pair (Li; Ri) of 32 bit bloks, and these are transformed into the newpair (Li+1; Ri+1), via a ertain funtion f that depends on a subkey Ki pertaining to round i. The strutureof this transformation is important: it is alled the Feistel transformation.The Feistel transformation, in general, is like this. For some funtion g known to the party omputingthe transformation, it takes input (L;R) and returns (L0; R0) where L0 = R and R0 = g(R)�L. A entralproperty of this transformation is that it is a permutation, and moreover if you an ompute g then youan also invert the transform. Indeed, given (L0; R0) we an reover (L;R) via R = L0 and L = g(R)�R0.For DES, the role of g in round i is played by f(Ki; �), the round funtion spei�ed by the subkey Ki.Sine DESK(�) is a sequene of Feistel transforms, eah of whih is a permutation, the whole algorithm is apermutation, and knowledge of the key K permits omputation of DES�1K (�).Up to now the struture has been quite generi, and indeed many blok-iphers use this high level design:a sequene of Feistel rounds. For a loser look we need to see how the funtion f(Ki; �) works. See thepiture on page 90 of the FIPS doument. Here Ki is a 48 bit subkey, derived from the 56 bit key in a waydepending on the round number. The 32 bit Ri is �rst expanded into 48 bits. How? In a preise, �xed way,indiated by the table on the same page, saying E-bit seletion table. It has 48 entries. Read it as whihinputs bits are output. Namely, output bits 32, 1, 2, 3, 4, 5, then 4, 5 again, and so on. It is NOT randomlooking! In fat barring that 1 and 32 have been swapped (see top left and bottom right) it looks almostsequential. Why did they do this? Who knows. That's the answer to most things about DES.Now Ki is XORed with the output of the E-box and this 48 bit input enters the famous S-boxes. There areeight S-boxes. Eah takes 8 bits to 6 bits. Thus we get out 32 bits. Finally, there is a P-box, a permutationapplied to these 32 bits to get another 32 bits. You an see it on page 91.What are the S-boxes? Eah is a �xed, tabulated funtion, whih the algorithm stores as tables in the odeor hardware. You an see them on page 93. How to read them? Take the 6 bit input b1; b2; b3; b4; b5; b6.Interpret the �rst two bits as a row number, between 1 and 4. Interpret the rest as a olumn number, 1through 16. Now index into the table.Well, without going into details, the main objetive of the above was to give you some idea of the kind ofstruture DES has. Of ourse, the main questions about the design are: why, why and why? What motivatedthese design hoies? We don't know too muh about this, although we an guess a little.4.2.3 SpeedHow fast an you ompute DES? Let's begin by looking at hardware implementations sine DES was infat designed to be fast in hardware. We will be pretty rough; you an �nd preise estimates, for di�erentarhitetures, in various plaes.You an get over a Gbit/se throughput using VLSI. Spei�ally at least 1.6 Gbits/se, maybe more. That'spretty fast.Some software �gures I found quoted are: 12 Mbits/se on a HP 9000/887; 9.8 Mbits/se on a DEC Alpha4000/610. The performane of DES in software is not as good as one would like, and is one reason peopleseek alternatives.4.3 Advaned Enryption StandardA new standard was hosen to replae the DES in February 2001. The AES (Advaned Enryption Standard)is a blok ipher alled Rijndael. It is desribed in [62℄. It has a blok length of 128 bits, and the key size isvariable: it ould be 128, 192 or 256 bits.

54 Goldwasser and Bellare4.4 Some Modes of operationLet a blok ipher E be �xed, and assume two parties share a key K for this blok ipher. This gives themthe ability to ompute the funtions EK(�) and E�1K (�). These funtions an be applied to an input of l-bits.An appliation of EK is a alled eniphering and an appliation of E�1K is alled deiphering.Typially the blok size l is 64 or 128. Yet in pratie we want to proess muh larger inputs, say text �les toenrypt. To do this one uses a blok ipher in some mode of operation. There are several of these. We willillustrate by desribing three of them that exhibit di�erent kinds of features. We look at ECB (EletroniCode-Book), CBC (Cipher Blok Chaining) and CTR (Counter). In eah ase there is an enryption proesswhih takes an nl-bit string M , usually alled the plaintext, and returns a string C, usually alled theiphertext. (If the length of x is not a multiple of l then some appropriate padding must be done to makeit so.) An assoiated deryption proess reovers M from C.If x is a string whose length is a multiple of l then we view it as divided into a sequene of l-bit bloks, andlet x[i℄ denote the i-th blok, for i = 1; : : : ; jxj=l. That is, x = x[1℄ : : : x[n℄ where n = jxj=l.4.4.1 Eletroni odebook modeEah plaintext blok is individually eniphered into an assoiated iphertext blok.Algorithm EK(M [1℄ : : :M [n℄)For i = 1; : : : ; n doC[i℄ EK(M [i℄)Return C[1℄ : : : C[n℄ Algorithm DK(C[1℄ : : : C[n℄)For i = 1; : : : ; n doM [i℄ E�1K (C[i℄)Return M [1℄ : : :M [n℄4.4.2 Cipher-blok haining modeCBC mode proesses the data based on some initial vetor IV whih is an l-bit string, as follows.Algorithm EK(IV;M [1℄ : : :M [n℄)C[0℄ IVFor i = 1; : : : ; n doC[i℄ EK(C[i� 1℄�M [i℄)Return C[0℄C[1℄ : : : C[n℄ Algorithm DK(C[0℄C[1℄ : : : C[n℄)For i = 1; : : : ; n doM [i℄ E�1K (C[i℄)�C[i� 1℄Return M [1℄ : : :M [n℄Unlike ECB enryption, this operation is not length preserving: the output is l-bits longer than the input.The initial vetor is used for enryption, but is then part of the iphertext, so that the reeiver need not beassumed to know it a priori.Di�erent spei� modes result from di�erent ways of hoosing the initial vetor. Unless otherwise stated,it is assumed that before applying the above enryption operation, the enryptor hooses the initial vetorat random, anew for eah message M to be enrypted. Other hoies however an also be onsidered, suhas letting IV be a ounter that is inremented by one eah time the algorithm is applied. The seurityattributed of these di�erent hoies are disussed later.CBC is the most popular mode, used pervasively in pratie.4.4.3 Counter modeCTR mode also uses an auxiliary value, an \initial value" IV whih is an integer in the range 0; 1; : : : ; 2l� 1.In the following, addition is done modulo 2l, and NtSl(j) denotes the binary representation of integer j asan l-bit string.

Cryptography: Leture Notes 55Algorithm EK(IV;M [1℄ : : :M [n℄)For i = 1; : : : ; n doC[i℄ EK(NtSl(IV + i))�M [i℄Return NtSl(IV)C[1℄ : : : C[n℄ Algorithm DK(NtSl(IV)C[1℄ : : : C[n℄)For i = 1; : : : ; n doM [i℄ EK(NtSl(IV + i))�C[i℄Return M [1℄ : : :M [n℄Notie that in this ase, deryption did not require omputation of E�1K , and in fat did not even requirethat EK be a permutation. Also notie the eÆieny advantage over CBC: the enryption is parallelizable.Again, there are several hoies regarding the initial vetor. It ould be a ounter maintained by the senderand inremented by n = jM j=l after messageM has been enrypted. Or, it ould be hosen anew at randomeah time the algorithm is invoked.4.5 Key reovery attaks on blok iphersPratial ryptanalysis of a blok ipher E: f0; 1gk�f0; 1gl ! f0; 1gl fouses on key-reovery. They formulatethe problem faing the ryptanalyst like this. A k-bit key K is hosen at random. Let q � 0 be some integerparameter.Given: The adversary has a sequene of q input-output examples of EK , say(M1; C1); : : : ; (Mq; Cq)where Ci = EK(Mi) for i = 1; : : : ; q and M1; : : : ;Mq are all distint l-bit strings.Find: The adversary must �nd the key K.Two kinds of \attak" models are onsidered within this framework:Known-message attak: M1; : : : ;Mq are any distint points; the adversary has no ontrol over them,and must work with whatever it gets.Chosen-message attak: M1; : : : ;Mq are hosen by the adversary, perhaps even adaptively. That is,imagine it has aess to an \orale" for the funtion EK . It an feed the orale M1 and get bak C1 =EK(M1). It an then deide on a value M2, feed the orale this, and get bak C2, and so on.Clearly a hosen-message attak gives the adversary muh more power, but is also less realisti in pratie.The most obvious attak is exhaustive key searh.Exhaustive key searh: Go through all possible keys K 0 2 f0; 1gk until you �nd the right one, namelyK. How do you know when you hit K? If EK0(M1) = C1, you bet that K 0 = K. Of ourse, you ould bewrong. But the \hane" of being wrong is small, and gets muh smaller if you do more suh tests. ForDES, two tests is quite enough. That is, the attak in this ase only needs q = 2, a very small number ofinput-output examples.Let us now desribe the attak in more detail. For i = 1; : : : ; 2k let Ki denote the i-th k-bit string (inlexiographi order). The following algorithm implements the attak.For i = 1; : : : ; 2k doIf E(Ki;M1) = C1then if E(Ki;M2) = C2 then return KiHow long does this take? In the worst ase, 2k omputations of the blok ipher. For the ase of DES, evenif you use the above mentioned 1.6 Gbits/se hip to do these omputations, the searh takes about 6,000years. So key searh appears to be infeasible.

56 Goldwasser and BellareYet, this onlusion is atually too hasty. We will return to key searh and see why later.Differential and linear ryptanalysis: The disovery of a less trivial attak waited until 1990. Dif-ferential ryptanalysis is apable of �nding a DES key using 247 input-output examples (that is, it requiresq = 247). However, di�erential ryptanalysis required a hosen-message attak.Linear ryptanalysis improved di�erential in two ways. The number of input-output examples required isredued to 243, but also only a known-message attak is required.These were major breakthroughs in ryptanalysis. Yet, their pratial impat is small. Why? It diÆultto obtain 243 input-output examples. Furthermore, simply storing all these examples requires about 140terabytes of data.Linear and di�erential ryptanalysis were however more devastating when applied to other iphers, some ofwhih suumbed ompletely to the attak.So what's the best possible attak against DES? The answer is exhaustive key searh. What we ignoredabove is parallelism.Key searh mahines: A few years bak it was argued that one an design a $1 million mahine thatdoes the exhaustive key searh for DES in about 3.5 hours. More reently, a DES key searh mahine wasatually built, at a ost of $250,000. It �nds the key in 56 hours, or about 2.5 days. The builders say it willbe heaper to build more mahines now that this one is built.Thus DES is feeling its age. Yet, it would be a mistake to take away from this disussion the impressionthat DES is weak. Rather, what the above says is that it is an impressively strong algorithm. After all theseyears, the best pratial attak known is still exhaustive key searh. That says a lot for its design and itsdesigners.Later we will see that that we would like seurity properties from a blok ipher that go beyond resistaneto key-reovery attaks. It turns out that from that point of view, a limitation of DES is its blok size.Birthday attaks \break" DES with about q = 232 input output examples. (The meaning of \break" here isvery di�erent from above.) Here 232 is the square root of 264, meaning to resist these attaks we must havebigger blok size. The next generation of iphers has taken this into aount.4.6 Limitations of key-reovery based seurityAs disussed above, lassially, the seurity of a blok iphers has been looked at with regard to key reovery.That is, analysis of a blok ipher E has foused primarily on the following question: given some number qof input-output examples (M1; C1)); : : : ; (Mq ; Cq), where K is a random, unknown key and Ci = EK(Mi),how hard is it for an attaker to �nd K? A blok ipher is viewed as \seure" if the best key-reovery attakis omputationally infeasible, meaning requires a value of q that is too large to make the attak pratial.In the sequel, we refer to this as seurity against key-reoveryHowever, as a notion of seurity, seurity against key-reovery is quite limited. A good notion should besuÆiently strong to be useful. This means that if a blok ipher is seure, then it should be possible to usethe blok ipher to make worthwhile onstrutions and be able to have some guarantee of the seurity ofthese onstrutions. But even a ursory glane at ommon blok ipher usages shows that good seurity inthe sense of key reovery is not suÆient for seurity of the usages of blok iphers.Take for example the CTR mode of operation disussed in Setion 4.4. Suppose that the blok ipher had thefollowing weakness: Given C;FK(C + 1); FK(C + 2), it is possible to ompute FK(C + 3). Then learly theenryption sheme is not seure, beause if an adversary happens to know the �rst two message bloks, it an�gure out the third message blok from the iphertext. (It is perfetly reasonable to assume the adversaryalready knows the �rst two message bloks. These might, for example, be publi header information, or thename of some known reipient.) This means that if CTR mode enryption is to be seure, the blok iphermust have the property that given C;FK(C + 1); FK(C + 2), it is omputationally infeasible to ompute

Cryptography: Leture Notes 57FK(C + 3). Let us all this property SP1, for \seurity property one".Of ourse, anyone who knows the key K an easily ompute FK(C + 3) given C;FK(C + 1); FK(C + 2).And it is hard to think how one an do it without knowing the key. But there is no guarantee that someoneannot do this without knowing the key. That is, on�dene in the seurity of F against key reovery doesnot imply that SP1 is true.This phenomenon ontinues. As we see more usages of iphers, we build up a longer and longer list of seurityproperties SP1, SP2, SP3, : : : that are neessary for the seurity of some blok ipher based appliation.Furthermore, even if SP1 is true, CTR mode enryption may still be weak. SP1 is not suÆient to guaranteethe seurity of CTR mode enryption. Similarly with other seurity properties that one might naively omeup with.This long list of neessary but not suÆient properties is no way to treat seurity. What we need is onesingle \MASTER" property of a blok ipher whih, if met, guarantees seurity of lots of natural usagesof the ipher.A good example to onvine oneself that seurity against key reovery is not enough is to onsider theblok ipher E: f0; 1gk � f0; 1gl ! f0; 1gl de�ned for all keys K 2 f0; 1gk and plaintexts x 2 f0; 1gl byF (K;x) = x. That is, eah instane FK of the blok ipher is the identity funtion. Is this a \good" blokipher? Surely not. Yet, it is exeedingly seure against key-reovery. Indeed, given any number of inputoutput examples of FK , an adversary annot even test whether a given key is the one in use.This might seem like an arti�ial example. Many people, on seeing this, respond by saying: \But, learly,DES and AES are not designed like this." True. But that is missing the point. The point is that seurityagainst key-reovery alone does not make a \good" blok ipher. We must seek a better notion of seurity.Chapter 5 on pseudorandom funtions does this.4.7 Exerises and ProblemsExerise 4.1 Show that for all K 2 f0; 1g56 and all x 2 f0; 1g64DESK(x) = DESK(x) :This is alled the key-omplementation property of DES.Exerise 4.2 Show how to use the key-omplementation property of DES to speed up exhaustive key searhby a fator of two. Explain any assumptions that you make.Exerise 4.3 Find a key K suh that DESK(�) = DES�1K (�). Suh a key is sometimes alled a \weak" key.How many weak keys an you �nd? Why do you think they are alled \weak?"

C h a p t e r 5Pseudo-random funtions

Pseudorandom funtions (PRFs) and their ousins, pseudorandom permutations (PRPs), �gure as entraltools in the design of protools, espeially those for shared-key ryptography. At one level, PRFs and PRPsan be used to model blok iphers, and they thereby enable the seurity analysis of protools based onblok iphers. But PRFs and PRPs are also a wonderful oneptual starting points in other ontexts. Inthis hapter we will introdue PRFs and PRPs and try to understand their basi properties.5.1 Funtion familiesA funtion family is a map F : Keys(F) � Dom(F) ! Range(F). Here Keys(F) is the set of keys of F ;Dom(F) is the domain of F ; and Range(F) is the range of F . The two-input funtion F takes a key Kand input x to return a point y we denote by F (K;x). For any key K 2 Keys(F) we de�ne the mapFK : Dom(F)! Range(F) by FK(x) = F (K;x). We all the funtion FK an instane of family F . Thus, Fspei�es a olletion of maps, one for eah key. That's why we all F a family of funtions.Most often Keys(F) = f0; 1gk and Dom(F) = f0; 1gl and Range(F) = f0; 1gL for some integer values ofk; l; L � 1. But sometimes the domain or range ould be sets of di�erent kinds, ontaining strings of varyinglengths.There is some probability distribution on the set of keys Keys(F). Most often, just the uniform distribution.So with Keys(F) = f0; 1gk, we are just drawing a random k-bit string as a key. We denote by K R Keys(F)the operation of seleting a random string from Keys(F) and naming it K. Then f R F denotes theoperation: K R Keys(F) ; f FK . In other words, let f be the funtion FK where K is a randomly hosenkey. We are interested in the input-output behavior of this randomly hosen instane of the family.A permutation is a map whose domain and range are the same set, and the map is a length-preservingbijetion on this set. That is, a map �: D ! D is a permutation if j�(x)j = jxj for all x 2 D and also � isone-to-one and onto. We say that F is a family of permutations if Dom(F) = Range(F) and eah FK is apermutation on this ommon set.Example 5.1 A blok ipher is a family of permutations. For example, DES is a family of permutations withKeys(DES) = f0; 1g56 and Dom(DES) = f0; 1g64 and Range(DES) = f0; 1g64. Here k = 56 and l = L = 64.Similarly AES is a family of permutations with Keys(AES) = f0; 1g128 and Dom(AES) = f0; 1g128 andRange(AES) = f0; 1g128. Here k = 128 and l = L = 128.58

Cryptography: Leture Notes 595.2 Random funtions and permutationsLet D;R � f0; 1g� be �nite sets and let l; L � 1 be integers. There are two funtion families that we �x.One is RandD!R, the family of all funtions of D to R. The other is PermD, the family of all permutationson D. For ompatness of notation we let Randl!L equal RandD!R with D = f0; 1gl and R = f0; 1gL. Wealso set Perml equal PermD with D = f0; 1gl.What are these families? The family RandD!R has domain D and range R, while the family PermD hasdomain and rangeD. The set of instanes of RandD!R is the set of all funtions mappingD toR, while the setof instanes of PermD is the set of all permutations on D. The key desribing any partiular instane funtionis simply a desription of this instane funtion in some anonial notation. For example, order the domainD lexiographially as x1; x2; : : :, and then let the key for a funtion f be the list of values (f(x1); f(x2); : : :).The key-spae of RandD!R is simply the set of all these keys, under the uniform distribution.Let us illustrate in more detail for the ases in whih we are most interested. The key of a funtion inRandl!L is simply a list of of all the output values of the funtion as its input ranges over f0; 1gl. ThusKeys(Randl!L) = f (y1; : : : ; y2l) : y1; : : : ; y2l 2 f0; 1gL gis the set of all sequenes of length 2l in whih eah entry of a sequene is an L-bit string. For any x 2 f0; 1glwe interpret x as an integer in the range f1; : : : ; 2lg and setRandl!L((y1; : : : ; y2l); x) = yx :Notie that the key spae is very large; it has size 2L2l . Naturally, sine there is a key for every funtionof l-bits to L-bits, and this is the number of suh funtions. The key spae is equipped with the uniformdistribution, so that f R Randl!L is the operation of piking a random funtion of l-bits to L-bits.On the other hand, for Perml, the key spae isKeys(Perml) = f(y1; : : : ; y2l) : y1; : : : ; y2l 2 f0; 1gl andy1; : : : ; y2l are all distintg :For any x 2 f0; 1gl we interpret x as an integer in the range f1; : : : ; 2lg and setPerml((y1; : : : ; y2l); x) = yx :The key spae is again equipped with the uniform distribution, so that f R Perml is the operation of pikinga random permutation on f0; 1gl. In other words, all the possible permutations on f0; 1gl are equally likely.Example 5.2 We exemplify Rand3!2, meaning l = 3 and L = 2. The domain is f0; 1g3 and the range isf0; 1g2. An example instane f of the family is illustrated below via its input-output table:x 000 001 010 011 100 101 110 111f(x) 10 11 01 11 10 00 00 10The key orresponding to this partiular funtion is(10; 11; 01; 11; 10; 00; 00; 10) :The key-spae of Rand3!2 is the set of all suh sequenes, meaning the set of all 8-tuples eah omponent ofwhih is a two bit string. There are 22�23 = 216 = 65; 536suh tuples, so this is the size of the key-spae.

60 Goldwasser and BellareWe will hardly ever atually think about these families in terms of this formalism. Indeed, it is worth pausinghere to see how to think about them more intuitively, beause they are important objets.We will onsider settings in whih you have blak-box aess to a funtion g. This means that there is a boxto whih you an give any value x of your hoie (provided x is in the domain of g), and box gives you bakg(x). But you an't \look inside" the box; your only interfae to it is the one we have spei�ed. A randomfuntion g: f0; 1gl ! f0; 1gL being plaed in this box orresponds to the following. Eah time you give thebox an input, you get bak a random L-bit string, with the sole onstraint that if you twie give the box thesame input x, it will be onsistent, returning both times the same output g(x). In other words, a randomfuntion of l-bits to L-bits an be thought of as a box whih given any input x 2 f0; 1gl returns a randomnumber, exept that if you give it an input you already gave it before, it returns the same thing as last time.It is this \dynami" view that we suggest the reader have in mind in thinking about random funtions.The dynami view an be thought of as following program. The program maintains the funtion in the formof a table T where T [x℄ holds the value of the funtion at x. Initially, the table is empty. The programproesses an input x 2 f0; 1gl as follows:If T [x℄ is not de�ned thenFlip oins to determine a string y 2 f0; 1gL and let T [x℄ yReturn T [x℄The answer on any point is random and independent of the answers on other points.Another way to think about a random funtion is as a large, pre-determined random table. The entries areof the form (x; y). For eah x someone has ipped oins to determine y and put it into the table.We are more used to the idea of piking points at random. Here we are piking a funtion at random.One must remember that the term \random funtion" is misleading. It might lead one to think that ertainfuntions are \random" and others are not. (For example, maybe the onstant funtion whih alwaysreturns 0L is not random, but a funtion with many di�erent range values is random.) This is not right.The randomness of the funtion refers to the way it was hosen, not to an attribute of the seleted funtionitself. When you hoose a funtion at random, the onstant funtion is just as likely to appear as any otherfuntion. It makes no sense to talk of the randomness of an individual funtion; the term \random funtion"just means a funtion hosen at random.Example 5.3 Let's do some simple probabilisti omputations to understand random funtions. Fix x 2f0; 1gl and y 2 f0; 1gL. Then: P h f(x) = y : f R Randl!L i = 2�L :Notie it doesn't depend on l. Also it doesn't depend on the values of x; y.Now �x x1; x2 2 f0; 1gl and y 2 f0; 1gL. Then:P h f(x1) = f(x2) = y : f R Randl!L i = � 2�2L if x1 6= x22�L if x1 = x2This illustrates independene. Finally �x x1; x2 2 f0; 1gl and y 2 f0; 1gL. Then:P h f(x1)� f(x2) = y : f R Randl!L i = 8<: 2�L if x1 6= x20 if x1 = x2 and y 6= 0L1 if x1 = x2 and y = 0LSimilar things hold for the sum of more than two things.

Cryptography: Leture Notes 615.3 Pseudorandom funtionsA pseudorandom funtion is a family of funtions with the property that the input-output behavior ofa random instane of the family is \omputationally indistinguishable" from that of a random funtion.Someone who has only blak-box aess to a funtion, meaning an only feed it inputs and get outputs, hasa hard time telling whether the funtion in question is a random instane of the family in question or arandom funtion. The purpose of this setion is to arrive at a suitable de�nition of this notion. Later wewill look at motivation and appliations.We �x a family of funtions F : Keys(F)�D ! R. (You may want to think Keys(F) = f0; 1gk, D = f0; 1gland R = f0; 1gL for some integers k; l; L � 1, sine this is the most ommon ase.) Imagine that you are ina room whih ontains a omputer that is onneted to another omputer outside your room. You an typesomething into your omputer and send it out, and an answer will ome bak. The allowed questions youan type must be strings from the domain D, and the answers you get bak will be strings from the rangeR. The omputer outside your room implements a funtion g: D ! R, so that whenever you type a valuex you get bak g(x). However, your only aess to g is via this interfae, so the only thing you an see isthe input-output behavior of g. We onsider two di�erent ways in whih g will be hosen, giving rise to twodi�erent \worlds."World 0: The funtion g is drawn at random from RandD!R, namely via g R RandD!R. (So g is just arandom funtion of D to R.)World 1: The funtion g is drawn at random from F , namely g R F . (This means that a key is hosen viaK R Keys(F) and then g is set to FK .)You are not told whih of the two worlds was hosen. The hoie of world, and of the orresponding funtiong, is made before you enter the room, meaning before you start typing questions. One made, however, thesehoies are �xed until your \session" is over. Your job is to disover whih world you are in. To do this, theonly resoure available to you is your link enabling you to provide values x and get bak g(x). After tryingsome number of values of your hoie, you must make a deision regarding whih world you are in. Thequality of pseudorandom family F an be thought of as measured by the diÆulty of telling, in the abovegame, whether you are in World 0 or in World 1.Intuitively, the game just models some way of \using" the funtion g in an appliation like an enryptionsheme. If it is not possible to distinguish the input-output behavior of a random instane of F from a trulyrandom funtion, the appliation should behave in roughly the same way whether it uses a funtion from For a random funtion. Later we will see exatly how this works out; for now let us ontinue to develop thenotion. But we warn that pseudorandom funtions an't be substituted for random funtions in all usagesof random funtions. To make sure it is OK in a partiular appliation, you have to make sure that it fallswithin the realm of appliations for whih the formal de�nition below an be applied.The at of trying to tell whih world you are in is formalized via the notion of a distinguisher. This is analgorithm whih is provided orale aess to a funtion g and tries to deide if g is random or pseudorandom.(Ie. whether it is in world 0 or world 1.) A distinguisher an only interat with the funtion by giving itinputs and examining the outputs for those inputs; it annot examine the funtion diretly in any way. Wewrite Ag to mean that distinguisher A is being given orale aess to funtion g. Intuitively, a family ispseudorandom if the probability that the distinguisher says 1 is roughly the same regardless of whih worldit is in. We apture this mathematially below. Further explanations follow the de�nition.De�nition 5.4 Let F : Keys(F)�D ! R be a family of funtions, and let A be an algorithm that takes anorale for a funtion g: D ! R, and returns a bit. We onsider two experiments:Experiment Expprf-1F;AK R Keys(F)d AFKReturn d Experiment Expprf-0F;Ag R RandD!Rd AgReturn d

62 Goldwasser and BellareThe prf-advantage of A is de�ned asAdvprfF;A = P hExpprf-1F;A = 1i�P hExpprf-0F;A = 1i :For any t; q; � we de�ne the prf-advantage of FAdvprfF (t; q; �) = maxA fAdvprfF;A gwhere the maximum is over all A having time-omplexity t and making at most q orale queries, the sum ofthe lengths of these queries being at must � bits.The algorithm A models the person we were imagining in our room, trying to determine whih world heor she was in by typing queries to the funtion g via a omputer. In the formalization, the person is analgorithm, meaning a piee of ode. We formalize the ability to query g as giving A an orale whih takesinput any string x 2 D and returns g(x). Algorithm A an deide whih queries to make, perhaps based onanswers reeived to previous queries. Eventually, it outputs a bit d whih is its deision as to whih worldit is in.It should be noted that the family F is publi. The adversary A, and anyone else, knows the desription ofthe family, and have ode to implement it, meaning are apable, given values K;x, of omputing F (K;x).The worlds are aptured by what we all \experiments." The �rst experiment piks a random instane FKof family F and then runs adversary A with orale g = FK . Adversary A interats with its orale, queryingit and getting bak answers, and eventually outputs a \guess" bit. The experiment returns the same bit.The seond experiment piks a random funtion g: D ! R and runs A with this as orale, again returningA's guess bit. Eah experiment has a ertain probability of returning 1. The probability is taken over therandom hoies made in the experiment. Thus, for the �rst experiment, the probability is over the hoieof K and any random hoies that A might make, for A is allowed to be a randomized algorithm. In theseond experiment, the probability is over the random hoie of g and any random hoies that A makes.These two probabilities should be evaluated separately; the two experiments are ompletely di�erent.To see how well A does at determining whih world it is in, we look at the di�erene in the probabilitiesthat the two experiments return 1. If A is doing a good job at telling whih world it is in, it would return 1more often in the �rst experiment than in the seond. So the di�erene is a measure of how well A is doing.We all this measure the prf-advantage of A. Think of it as the probability that A \breaks" the sheme F ,with \break" interpreted in a spei�, tehnial way based on the de�nition.Di�erent distinguishers will have di�erent advantages. There are two reasons why one distinguisher mayahieve a greater advantage than another. One is that it is more \lever" in the questions it asks and theway it proesses the replies to determine its output. The other is simply that it asks more questions, orspends more time proessing the replies. Indeed, we expet that as you see more and more input-outputexamples of g, your ability to tell whih world you are in will go up. The \seurity" of family F must thusbe measured as a funtion of the resoures allowed to the attaker. We want to know, for any given resourelimitation, what is the prf-advantage ahieved by the most \lever" distinguisher amongst all those who arerestrited to the given resoure limitations. We assoiate to the family F a prf-advantage funtion whih oninput any values of the resoure parameters returns the maximim prf-advantage that an adversary restritedto those resoures ould obtain. Think of it as the maximum possible ahievable probability of \breaking"the sheme F if an attaker is restrited to the given resoures.The hoie of resoures to onsider an vary. In this ase we have hosen to measure the time-omplexityof A, the number of queries q it makes, and the total length � of these queries. We assoiate to thefamily F an advantage funtion whih on input a partiular hoie of these resoure parameters returns themaximum possible advantage that ould be obtained by a distinguisher restrited in resoure usage by thegiven parameters. Put another way, it is the advantage of the \leverest" or \best" distinguisher restritedto the given resoures. The advantage funtion of F aptures the seurity of F as a PRF.Let us now explain the resoures, and some important onventions underlying their measurement, in moredetail. The �rst resoure is the time-omplexity of A. To make sense of this we �rst need to �x a model of

Cryptography: Leture Notes 63omputation. We �x some RAM model. Think of it as the model used in Algorithms ourses, so that youmeasure the running time of an algorithm just as you did there. However, we adopt the onvention that thetime-omplexity of A refers not just to the running time of A, but to the maximum of the running times ofthe two experiments in the de�nition, plus the size of the ode of A. In measuring the running time of the�rst experiment, we must ount the time to hoose the key K at random, and the time to ompute the valueFK(x) for any query x made by A to its orale. In measuring the running time of the seond experiment, weount the time to hoose the random funtion g in a dynami way, meaning we ount the ost of maintaininga table of values of the form (x; g(x)). Entries are added to the table as g makes queries. A new entry ismade by piking the output value at random.The number of queries made by A aptures the number of input-output examples it sees. In general, not allstrings in the domain must have the same length, and hene we also measure the sum of the lengths of allqueries made.There is one feature of the above parameterization about whih everyone asks. Suppose that F has key-lengthk. Obviously, the key length is a fundamental determinant of seurity: larger key length will typially meanmore seurity. Yet, the key length k does not appear expliitly in the advantage funtion AdvprfF (t; q; �).Why is this? The advantage funtion is in fat a funtion of k, but without knowing more about F it isdiÆult to know what kind of funtion. The truth is that the key length itself does not matter: what mattersis just the advantage a distinguisher an obtain. In a well-designed blok ipher, AdvprfF (t; q; �) should beabout t=2k. But that is really an ideal; in pratie we should not assume iphers are this good.The strength of this de�nition lies in the fat that it does not speify anything about the kinds of strategiesthat an be used by a distinguisher; it only limits its resoures. A distinguisher an use whatever meansdesired to distinguish the funtion as long as it stays within the spei�ed resoure bounds.What do we mean by a \seure" PRF? De�nition 5.4 does not have any expliit ondition or statementregarding when F should be onsidered \seure." It only assoiates to F a prf-advantage funtion. Intuitively,F is \seure" if the value of the advantage funtion is \low" for \pratial" values of the input parameters.This is, of ourse, not formal. It is possible to formalize the notion of a seure PRF using a omplexitytheoreti framework; one would say that the advantage of any adversary whose resoures are polynomially-bounded is negligible. This requires an extension of the model to onsider a seurity parameter in terms ofwhih asymptoti estimates an be made. We will disuss this in more depth later, but for now we stik to aframework where the notion of what exatly is a seure PRF remains fuzzy. The reason is that this reetsreal life. In real life, seurity is not some absolute or boolean attribute; seurity is a funtion of the resouresinvested by an attaker. All modern ryptographi systems are breakable in priniple; it is just a questionof how long it takes.This is our �rst example of a ryptographi de�nition, and it is worth spending time to study and understandit. We will enounter many more as we go along. Towards this end let us summarize the main featuresof the de�nitional framework as we will see them arise later. First, there are experiments, involving anadversary. Then, there is some advantage funtion assoiated to an adversary whih returns the probabilitythat the adversary in question \breaks' the sheme. Finally, there is an advantage funtion assoiated tothe ryptographi protool itself, taking input resoure parameters and returning the maximum possibleprobability of \breaking" the sheme if the attaker is restrited to the given resoure parameters. Thesethree omponents will be present in all de�nitions. The important omponent is the experiments; this iswhere we hose and pin down a model of seurity.5.4 Pseudorandom permutationsReall that a blok ipher F is a family of permutations: eah instane FK of the family is a permutation.With the intent of modeling blok iphers we introdue the notion of a pseudorandom permutation. Weproeed exatly as above, but replae RandD!R with PermD.In this setting, there are two kinds of attaks that one an onsider. One, as before, is that the adversarygets an orale for the funtion g being tested. However when g is a permutation one an also onsider the

64 Goldwasser and Bellarease where the adversary gets, in addition, and orale for g�1. We onsider these settings in turn. The �rstis the setting of hosen-plaintext attaks while the seond is the setting of hosen-iphertext attaks.5.4.1 PRP under CPAWe �x a family of funtions F : Keys(F)�D ! D. (You may want to think Keys(F) = f0; 1gk andD = f0; 1gl,sine this is the most ommon ase. We do not mandate that F be a family of permutations although againthis is the most ommon ase.) As before, we onsider an adversary A that is plaed in a room where it hasorale aess to a funtion g hosen in one of two ways.World 0: The funtion g is drawn at random from PermD, namely via g R PermD. (So g is just a randompermutation on D.)World 1: The funtion g is drawn at random from F , namely g R F . (This means that a key is hosen viaK R Keys(F) and then g is set to FK .)Notie that World 1 is the same in the PRF setting, but World 0 has hanged. As before the task faing theadversary A is to determine in whih world it was plaed based on the input-output behavior of g.De�nition 5.5 Let F : Keys(F)�D ! D be a family of funtions, and let A be an algorithm that takes anorale for a funtion g: D ! D, and returns a bit. We onsider two experiments:Experiment Expprp-pa-1F;AK R Keys(F)d AFKReturn d Experiment Expprp-pa-0F;Ag R PermDd AgReturn dThe prp-pa-advantage of A is de�ned asAdvprp-paF;A = P hExpprp-pa-1F;A = 1i�P hExpprp-pa-0F;A = 1i :For any t; q; � we de�ne the prp-pa-advantage of F viaAdvprp-paF (t; q; �) = maxA fAdvprp-paF;A gwhere the maximum is over all A having time-omplexity t and making at most q orale queries, the sum ofthe lengths of these queries being at must � bits.The intuition is similar to that for De�nition 5.4. The di�erene is that here the \ideal" objet with whih Fis being ompared is no longer the family of random funtions, but rather the family of random permutations.Experiment Expprp-pa-1F;A is atually idential to Expprf-1F;A . The probability is over the random hoie ofkey K and also over the oin tosses of A if the latter happens to be randomized. The experiment returnsthe same bit that A returns. In Experiment Expprp-pa-0F;A , a permutation g: f0; 1gl ! f0; 1gl is hosen atrandom, and the result bit of A's omputation with orale g is returned. The probability is over the hoieof g and the oins of A if any. As before, the measure of how well A did at telling the two worlds apart,whih we all the prp-pa-advantage of A, is the di�erene between the probabilities that the experimentsreturn 1.Conventions regarding resoure measures also remain the same as before. Informally, a family F is a seurePRP under CPA if Advprp-paF (t; q; �) is \small" for \pratial" values of the resoure parameters.

Cryptography: Leture Notes 655.4.2 PRP under CCAWe �x a family of permutations F : Keys(F)�D ! D. (You may want to think Keys(F) = f0; 1gk and D =f0; 1gl, sine this is the most ommon ase. This time, we do mandate that F be a family of permutations.)As before, we onsider an adversary A that is plaed in a room, but now it has orale aess to two funtions,g and its inverse g�1. The manner in whih g is hosen is the same as in the CPA ase, and one g is hosen,g�1 is automatially de�ned, so we do not have to say how it is hosen.World 0: The funtion g is drawn at random from PermD, namely via g R PermD. (So g is just a randompermutation on D.)World 1: The funtion g is drawn at random from F , namely g R F . (This means that a key is hosen viaK R Keys(F) and then g is set to FK .)In World 1, g�1 = F�1K is the inverse of the hosen instane, while in World 0 it is the inverse of the hosenrandom permutation. As before the task faing the adversary A is to determine in whih world it was plaedbased on the input-output behavior of its orales.De�nition 5.6 Let F : Keys(F)�D ! D be a family of permutations, and let A be an algorithm that takesan orale for a funtion g: D ! D, and also an orale for the funtion g�1: D ! D, and returns a bit. Weonsider two experiments: Experiment Expprp-a-1F;AK R Keys(F)d AFK ;F�1KReturn d Experiment Expprp-a-0F;Ag R PermDd Ag;g�1Return dThe prp-a-advantage of A is de�ned asAdvprp-aF;A = P hExpprp-a-1F;A = 1i�P hExpprp-a-0F;A = 1i :For any t; qe; �e; qd; �d we de�ne the prp-a-advantage of F viaAdvprp-aF (t; qe; �e; qd; �d) = maxA fAdvprp-aF;A gwhere the maximum is over all A having time-omplexity t, making at most qe queries to the g orale, thesum of the lengths of these queries being at must �e bits, and also making at most qd queries to the g�1orale, the sum of the lengths of these queries being at must �d bits,The intuition is similar to that for De�nition 5.4. The di�erene is that here the adversary has more power:not only an it query g, but it an diretly query g�1. Conventions regarding resoure measures also remainthe same as before. However, we add some resoure parameters. Spei�ally, sine there are now two orales,we ount separately the number of queries, and total length of these queries, for eah. Informally, a familyF is a seure PRP under CCA if Advprp-aF (t; qe; �e; qd; �d) is \small" for \pratial" values of the resoureparameters.5.4.3 Relations between the notionsIf an adversary above does not query g�1, the latter orale may as well not be there, and the adversary ise�etively mounting a hosen-plaintext attak. Thus we have the following:Proposition 5.7 Let F : Keys(F)�D ! D be a family of permutations. ThenAdvprp-paF pa(t; q; �) = Advprp-paF a(t; q; �; 0; 0)for any t; q; �.

66 Goldwasser and Bellare5.5 Sequenes of families of PRFs and PRPsAbove, the funtion families we onsider have a �nite key-spae, and typially also domains and ranges thatare �nite sets. A sequene of families of funtions is a sequene F 1; F 2; F 3; : : :, written fFngn�1. Eah Fnis a family of funtions with input length l(n), output length L(n) and key length k(n), where l; L; k arefuntions of the seurity parameter n, alled the input, output and key lengths of the sequene, respetively.In modeling blok iphers, families as we have onsidered them are the appropriate abstration. There areseveral reasons, however, for whih we may also want to onsider sequenes of families. One is that seurityan be de�ned asymptotially, whih is de�nitionally more onvenient, partiulary beause in that ase wedo have a well-de�ned notion of seurity, rather than merely having measures of inseurity as above. Also,when we look to designs whose seurity is based on the presumed hardness of number-theoreti problems, wenaturally get sequenes of families rather than families. Let us now state the de�nition of pseudorandomnessfor a sequene of families. (We omit the permutation ase, whih is analogous.)Let F = fFngn�1 be a sequene of funtion families with input length l(�) and output length L(�). We saythat F is polynomial-time omputable if there is an algorithm whih given n;K and x outputs Fn(K;x) intime poly(n). To de�ne seurity, we now onsider a sequene fDngn�1 of distinguishers. We say that D ispolynomial time if Dn always halts in poly(n) steps.De�nition 5.8 Let F = fFngn�1 be a sequene of funtion families and let D = fDngn�1 be a sequeneof distinguishers. The prf-advantage of D is the funtion AdvprfF;D(�), de�ned for every n byAdvprfF;D(n) = AdvprfFn;Dn :We say that F is a PRF if it is polynomial-time omputable and also the funtion AdvprfF;D(�) is negligiblefor every polynomial-time distinguisher sequene D.Notie that this time the de�nition insists that the funtions themselves an be eÆiently omputed.5.6 Usage of PRFs and PRPsWe disuss some motivation for these notions of seurity.5.6.1 The shared random funtion modelIn symmetri (ie. shared-key) ryptography, Alie and Bob share a key K whih the adversary doesn't know.They want to use this key to ahieve various things. In partiular, to enrypt and authentiate the datathey send to eah other. A key is (or ought to be) a short string. Suppose however that we allow the partiesa very long shared string. The form it takes is a random funtion f of l bits to L bits, for some pre-spei�edl; L. This is alled the shared random funtion model.The shared random funtion model annot really be realized in pratie beause, as we saw, random funtionsare just too big to even store. It is a oneptual model. To work in this model, we give the parties oraleaess to f . They may write down x 2 f0; 1gl and in one step be returned f(x).It turns out that the shared random funtion model is a very onvenient model in whih to think aboutryptography, formulate shemes, and analyze them. In partiular, we will see many examples where wedesign shemes in the shared random funtion model and prove them seure. This is true for a variety ofproblems, but most importantly for enryption and message authentiation. The proof of seurity here isabsolute: we do not make any restritions on the omputational power of the adversary, but are able tosimply provide an upper bound on the suess probability of the adversary.As an example, onsider the CTR mode of operation disussed in Setion 4.4.3. Consider the version wherethe initial vetor is a ounter. Consider replaeing every invoation of EK with an invoation of the random

Cryptography: Leture Notes 67funtion f . (Assume l = L). In that ase, the mode of operation turns into the one-time pad ryptosystem.The shared random key is just the random funtion f . As we have disussed, this is well known to meet astrong and well-de�ned seurity. So, in the shared random funtion model, CTR mode is easily seen to be\good".But now what? We have shemes whih are seure but a priori an't be eÆiently realized, sine they relyon random funtions. That's where pseudorandom funtion or permutation families ome in. A PRF familyis a family F of funtions indexed by small keys (eg. 56 or 128 bits). However, it has the property that if Kis shared between Alie and Bob, and we use FK in plae of a random funtion f in some sheme designed inthe shared random funtion model, the resulting sheme is still seure as long as the adversary is restritedin resoure usage.In other words, instanes of PRFs an be used in plae of random funtions in shared key shemes. Thede�nition of a PRF is rafted to make this possible for as wide a range of appliations as possible. Aninstane of a pseudorandom funtion is spei�ed by a short key K, and the parties need only store this key.Then, they use this funtion in plae of the random funtion in the sheme. And things should work out, inthe sense that if the sheme was seure when a random funtion was used, it should still be seure.This is a very rough idea. Tehnially, it is not always true: this is the intuition. Pseudorandom funtionsdon't always work. That is, you an't substitute them for random funtions in any usage of the latter andexpet things to work out. But if used right, it works out in a large number of ases. How do we identifythese ases? We have to resort to the formal de�nition of a pseudorandom funtion family and prove theseurity of our onstrut based on it. We will see how to do this later.In this ontext we stress one important point. The seurity of a PRF relies on the key K being seret.The adversary is not given K and annot diretly ompute the funtion. (Of ourse it might gain someinformation about values of FK on various points via the usage of FK by the legitimate parties, but that willbe OK.) In other words, you an substitute shared, seret random funtions by PRFs, but not publi ones.Pseudorandom funtions are an intriguing notion and a powerful tool that enable the following designparadism. When you want to design a sheme for enryption, authentiation, or some other purpose, designit in the shared random funtion model. Then simply substitute the random funtion with a pseudorandomone, and your sheme should still be seure.5.6.2 Modeling blok iphersOne of the primary motivations for the notions of pseudorandom funtions (PRFs) and pseudorandompermutations (PRPs) is to model blok iphers and thereby enable the seurity analysis of protools thatuse blok iphers.As disussed in Setion 4.6, lassially the seurity of DES or other blok iphers has been looked at onlywith regard to key reovery. That is, analysis of a blok ipher F has foused on the following question:Given some number of input-output examples(x1; FK(x1)); : : : ; (xq ; FK(xq))where K is a random, unknown key, how hard is it to �nd K? The blok ipher is taken as \seure" if theresoures required to reover the key are prohibitive. Yet, as we saw, even a ursory glane at ommon blokipher usages shows that hardness of key reovery is not suÆient for seurity. We had disussed wanting a\MASTER" seurity property of blok iphers under whih natural usages of blok iphers ould be provenseure. We suggest that this \MASTER" property is that the blok ipher be a seure PRP, under eitherCPA or CCA.We annot prove that spei� blok iphers have this property. The best we an do is assume they do, andthen go on to use them. For quantitative seurity assessements, we would make spei� onjetures aboutthe advantage funtions of various blok iphers. For example we might onjeture something like:Advprp-paDES (t; q; 64q) = 1 � t=TDES255 + 1 � q240

68 Goldwasser and BellareHere TDES is the time to do one DES omputation on our �xed RAM model of omputation, and 1 is someonstant. In other words, we are onjeturing that the best attaks are either exhaustive key searh or linearryptanalysis. We might be bolder with regard to AES and onjeture something likeAdvprp-paAES (t; q; 128q) = 1 � t=TAES2128 + 1 � q2128 :We ould also make similar onjetures regarding the strength of blok iphers as PRPs under CCA ratherthan CPA.More interesting is AdvprfDES(t; q). Here we annot do better than assume thatAdvprfDES(t; q; 64q) = 1 � t=TDES255 + q2264AdvprfAES(t; q; 128q) = 1 � t=TAES2128 + q22128 :This is due to the birthday attak disussed later. It is possible beause a blok ipher is a family ofpermutations, and is a general phenomenon.We stress that these are all onjetures, and barring the birthday attak, they are based on the assumptionthat the best possible attaks against the pseudorandomness of the ipher stem from the known key-reoveryattaks. Yet, there ould exist better attaks that break the ipher as a PRF without reovering the key.So far, we do not know of any suh attaks, but the amount of ryptanalyti e�ort that has foused on thisgoal is small. Certainly, to assume that a blok ipher is a PRF is a muh stronger assumption than that itis seure against key reovery. Nonetheless, the motivation and arguments we have outlined in favor of thePRF assumption stay, and our view is that if a blok ipher is broken as a PRF then it should be onsideredinseure, and a replaement should be sought.5.7 Example AttaksLet us illustrate the models by providing adversaries that attak di�erent funtion families in these models.Example 5.9 We de�ne a family of funtions F : f0; 1gk � f0; 1gl ! f0; 1gL as follows. We let k = Ll andview a k-bit key K as speifying an L row by l olumn matrix of bits. (To be onrete, assume the �rstL bits of K speify the �rst olumn of the matrix, the next L bits of K speify the seond olumn of thematrix, and so on.) The input string x = x[1℄ : : : x[l℄ is viewed as a sequene of bits, and the value of F (K;x)is the orresponding matrix vetor produt. That isFK(x) = 26664 K[1; 1℄ K[1; 2℄ � � � K[1; l℄K[2; 1℄ K[2; 2℄ � � � K[2; l℄... ...K[L; 1℄ K[L; 2℄ � � � K[L; l℄ 37775 � 26664 x[1℄x[2℄...x[l℄ 37775 = 26664 y[1℄y[2℄...y[L℄ 37775where y[1℄ = K[1; 1℄ � x[1℄�K[1; 2℄ � x[2℄� : : : �K[1; l℄ � x[l℄y[2℄ = K[2; 1℄ � x[1℄�K[2; 2℄ � x[2℄� : : : �K[2; l℄ � x[l℄... = ...y[L℄ = K[L; 1℄ � x[1℄�K[L; 2℄ � x[2℄� : : : �K[L; l℄ � x[l℄ :Here the bits in the matrix are the bits in the key, and arithmati is modulo two. The question we askis whether F is a \seure" PRF. We laim that the answer is no. The reason is that one an design anadversary algorithm A that ahieves a high advantage (lose to 1) in distinguishing between the two worlds.We observe that for any key K we have FK(0l) = 0L. This is a weakness sine a random funtion of l-bitsto L-bits is very unlikely to return 0L on input 0l, and thus this fat an be the basis of a distinguishing

Cryptography: Leture Notes 69adversary. Let us now show how the adversary works. Remember that as per our model it is given an oraleg: f0; 1gl ! f0; 1gL and will output a bit. Our adversary D works as follows:Adversary DgLet y g(0l)If y = 0L then return 1 else return 0This adversary queries its orale at the point 0l, and denotes by y the l-bit string that is returned. If y = 0Lit bets that g was an instane of the family F , and if y 6= 0L it bets that g was a random funtion. Let usnow see how well this adversary does. We laim thatP hExpprf-1F;D = 1i = 1P hExpprf-0F;D = 1i = 2�L :Why? Look at Experiment Expprf-1F;D as de�ned in De�nition 5.4. Here g = FK for some K. In that aseit is ertainly true that g(0l) = 0L so by the ode we wrote for D the latter will return 1. On the otherhand look at Experiment Expprf-0F;D as de�ned in De�nition 5.4. Here g is a random funtion. As we sawin Example 5.3, the probability that g(0l) = 0L will be 2�L, and hene this is the probability that D willreturn 1. Now as per De�nition 5.4 we subtrat to getAdvprfF;D = P hExpprf-1F;D = 1i�P hExpprf-0F;D = 1i= 1� 2�L :Now let t be the time omplexity of D. This is O(l+L) plus the time for one omputation of F , oming toO(l2L). The number of queries made by D is just one, and the total length of all queries is l. Thus we haveAdvprfF (t; 1; l) = maxA fAdvprfF;A g� AdvprfF;D= 1� 2�L :The �rst inequality is true beause the adversary D is one member of the set of adversaries A over whihthe maximum is taken, and hene the maximum advantage is at least that attained by D. Our onlusionis that the advantage funtion of F as a PRF is very high even for very low values of its resoure parameterinputs, meaning F is very inseure as a PRF.Example 5.10 Suppose we are given a seure PRF F : f0; 1gk � f0; 1gl ! f0; 1gL. We want to use F todesign a PRF G: f0; 1gk�f0; 1gl ! f0; 1g2L. The input length of G is the same as that of F but the outputlength of G is twie that of F . We suggest the following andidate onstrution: for every k-bit key K andevery l-bit input x GK(x) = FK(x)kFK(x) :Here \k" denotes onatenation of strings, and x denotes the bitwise omplement of the string x. We askwhether this is a \good" onstrution. \Good" means that under the assumption that F is a seure PRF,G should be too. However, this is not true. Regardless of the quality of F , the onstrut G is inseure. Letus demonstrate this.We want to speify an adversary attaking G. Sine an instane of G maps l bits to 2L bits, the adversaryD will get an orale for a funtion g that maps l bits to 2L bits. In World 0, g will be hosen as a randomfuntion of l bits to 2L bits, while in World 1, g will be set to GK where K is a random k-bit key. Theadversary must tell determine in whih world it is plaed. Our adversary works as follows:

70 Goldwasser and BellareAdversary DgLet y1 g(1l)Let y2 g(0l)Parse y1 as y1 = y1;1ky1;2 with jy1;1j = jy1;2j = LParse y2 as y2 = y2;1ky2;2 with jy2;1j = jy2;2j = LIf y1;1 = y2;2 then return 1 else return 0This adversary queries its orale at the point 1l to get bak y1 and then queries its orale at the point 0l toget bak y2. Notie that 1l is the bitwise omplement of 0l. The adversary heks whether the �rst half ofy1 equals the seond half of y2, and if so bets that it is in World 1. Let us now see how well this adversarydoes. We laim that P hExpprf-1G;D = 1i = 1P hExpprf-0G;D = 1i = 2�L :Why? Look at Experiment Expprf-1G;D as de�ned in De�nition 5.4. Here g = GK for some K. In that ase wehave GK(1l) = FK(1l)kFK(0l)GK(0l) = FK(0l)kFK(1l)by de�nition of the family G. Notie that the �rst half of GK(1l) is the same as the seond half of GK(0l).So D will return 1. On the other hand look at Experiment Expprf-0G;D as de�ned in De�nition 5.4. Here g isa random funtion. So the values g(1l) and g(0l) are both random and independent 2L bit strings. What isthe probability that the �rst half of the �rst string equals the seond half of the seond string? It is exatlythe probability that two randomly hosen L-bit strings are equal, and this is 2�L. So this is the probabilitythat D will return 1. Now as per De�nition 5.4 we subtrat to getAdvprfG;D = P hExpprf-1G;D = 1i�P hExpprf-0G;D = 1i= 1� 2�L :Now let t be the time omplexity of D. This is O(l+L) plus the time for two omputations of G, oming toO(l +L) plus the time for four omputations of F . The number of queries made by D is two, and the totallength of all queries is 2l. Thus we haveAdvprfG (t; 2; 2l) = maxA fAdvprfG;A g� AdvprfG;D= 1� 2�L :Our onlusion is that the advantage funtion of G as a PRF is very high even for very low values of itsresoure parameter inputs, meaning G is very inseure as a PRF.Exerise 5.11 Present a seure onstrution for the problem of the previous example. That is, suppose weare given a seure PRF F : f0; 1gk � f0; 1gl ! f0; 1gL. Design a PRF G: f0; 1gk � f0; 1gl ! f0; 1g2L whihis a seure PRF as long as F is seure. For simpliity you may assume k = l = L.5.8 Seurity against key-reoveryWe have mentioned several times that seurity against key-reovery is not suÆient as a notion of seurity fora blok ipher. However it is ertainly neessary: if key-reovery is easy, the blok ipher should be delared

Cryptography: Leture Notes 71inseure. We have indiated that we want to adopt as notion of seurity for a blok ipher the notion of aPRF or a PRP. If this is to be viable, it should be the ase that any funtion family that is inseure underkey-reovery is also inseure as a PRF or PRP. In this setion we verify this fat. Doing so will enable us toexerise the method of redutions.We begin by formalizing seurity against key-reovery. We onsider an adversary that, based on input-outputexamples of an instane FK of family F , tries to �nd K. Its advantage is de�ned as the probability thatit sueeds in �nding K. The probability is over the random hoie of K, and any random hoies of theadversary itself.We give the adversary orale aess to FK so that it an obtain input-output examples of its hoie. We donot onstrain the adversary with regard to the method it uses. This leads to the following de�nition.De�nition 5.12 Let F : Keys(F) �D ! R be a family of funtions, and let B be an algorithm that takesan orale for a funtion g: D ! R, and outputs a string. We onsider the experiment:Experiment ExpkrF;BK R Keys(F)K 0 BFKIf K = K 0 then return 1 else return 0The kr-advantage of B is de�ned as AdvkrF;B = P hExpkrF;B = 1i :For any t; q; � the kr-advantage of F is de�ned viaAdvkrF (t; q; �) = maxB fAdvkrF;B gwhere the maximum is over all B having time-omplexity t and making at most q orale queries, the sum ofthe lengths of these queries being at must � bits.This de�nition has been made general enough to apture all types of key-reovery attaks. Any of thelassial attaks suh as exhaustive key searh, di�erential ryptanalysis or linear ryptanalysis orrespondto di�erent, spei� hoies of adversary B. They fall in this framework beause all have the goal of �ndingthe key K based on some number of input-output examples of an instane FK of the ipher. To illustrate letus see what are the impliations of the lassial key-reovery attaks on DES for the value of the key-reoveryadvantage funtion of DES. Assuming the exhaustive searh attak is always suessful based on testing twoexamples leads to the fat that AdvkrDES(t; 2; 2 � 64) = 1for t being about 255 times the time TDES for one omputation of DES. On the other hand, linear rypt-analysis implies that AdvkrDES(t; 243; 243 � 64) = 1for t being about 243 �TDES. This gives us a ouple of data points on the urve AdvkrDES(t; q; ql). For a moreonrete example, let us look at the key reovery advantage of the family of Example 5.9.Example 5.13 Let F : f0; 1gk�f0; 1gl ! f0; 1gL be the family of funtions from Example 5.9. We saw thatits prf-advantage was very high. Let us now ompute is kr-advantage. The following adversary B reoversthe key. We let ej be the l-bit binary string having a 1 in position j and zeros everywhere else. We assumethat the manner in whih the key K de�nes the matrix is that the �rst L bits of K form the �rst olumn ofthe matrix, the next L bits of K form the seond olumn of the matrix, and so on.Adversary BFK

72 Goldwasser and BellareLet K 0 be the empty stringFor j = 1; : : : ; l doyj FK(ej)K 0 K 0kyjEndForReturn K 0The adversary B invokes its orale to ompute the output of the funtion on input ej . The result, yj , isexatly the j-th olumn of the matrix assoiated to the key K. The matrix entries are onatenated to yieldK 0, whih is returned as the key. Sine the adversary always �nds the key we haveAdvkrF;B = 1 :The time-omplexity of this adversary is t = O(l2L) sine it makes q = l alls to its orale and eahomputation of FK takes O(lL) time. ThusAdvkrF (t; l; l2) = 1 :The parameters here should still be onsidered small: l is 64 or 128, whih is small for the number of queries.So F is inseure against key-reovery. Note however that F is less seure as a PRF than against key-reovery:its advantage funtion as a PRF had a value lose to 1 for parameter values muh smaller than those above.This leads into our next laim, whih says that for any given parameter values, the kr-advantage of a familyannot be signi�antly more than its prf or prp-pa advantage.Now we laim that if a blok ipher is a seure PRF or PRP then it is also seure against all key-reoveryattaks. Put another way, the advantage of F with respet to key reovery annot be muh larger than itsadvantage as a PRF.Proposition 5.14 Let F : f0; 1gk�f0; 1gl ! f0; 1gL be a family of funtions. Then for any t; q with q < 2lwe have AdvkrF (t; q; ql) � AdvprfF (t0; q + 1; (q + 1)l) + 12L ; (5.1)and furthermore, if L = l, then alsoAdvkrF (t; q; ql) � Advprp-paF (t0; q + 1; (q + 1)l) + 12L � q ; (5.2)where we set t0 to be t plus the time for one omputation of F .The proof introdues the entral idea of redutions. We will show a transformation B 7! AB of any kr-adversary B into a prf-adversary AB suh thatAdvkrF;B � AdvprfF;AB + 12Land also, if the resoures used by B are t; q; ql, then those used by AB are t0; q + 1; (q + 1)l. We laim thatbarring manipulation, this proves the �rst equation of the laim. Indeed, by taking maximums on both sides,we will be able to get the equation in question, as we will see later.The problem that adversary AB is trying to solve is to determine whether its given orale g is a randominstane of F or a random funtion of l bits to L-bits. The idea behind a redution is that AB will run Bas a subroutine and use B's output to solve its own problem.B is an algorithm that expets to be in a world where it gets an orale FK , and it tries to �nd K via queriesto its orale. For simpliity, �rst assume that B makes no orale queries. Now, when AB runs B, it produes

Cryptography: Leture Notes 73some key K 0. AB an test K 0 by heking whether F (K 0; x) agrees with g(x) for some value x. If so, it betsthat g was an instane of F , and if not it bets that g was random.If B does make orale queries, we must ask how AB an run B at all. The orale that B wants is notavailable. However, B is a piee of ode, ommuniating with its orale via a presribed interfae. If youstart running B, at some point it will output an orale query, say by writing this to some presribed memoryloation, and stop. It awaits an answer, to be provided in another presribed memory loation. When thatappears, it ontinues its exeution. When it is done making orale queries, it will return its output. Nowwhen AB runs B, it will itself supply the answers to B's orale queries. When B stops, having made somequery, A will �ll in the reply in the presribed memory loation, and let B ontinue its exeution. B doesnot know the di�erene between this \simulated" orale and the real orale exept in so far as it an gleanthis from the values returned.The value that B expets in reply to query x is FK(x). That is not what AB gives it. Instead, it returnsg(x), where g is AB 's orale. When AB is in World 1, g(x) = FK(x), and so B is funtioning as it wouldin its usual environment, and will return the key K with a probability equal to its kr-advantage. Howeverwhen AB is in World 0, g is a random funtion, and B is getting bak values that bear little relation to theones it is expeting. That does not matter. B is a piee of ode that will run to ompletion and produesome output. When we are in World 0, we have no idea what properties this output will have. But it issome k-bit string, and AB will test it as indiated above. It will fail the test with high probability as longas the test point x was not one that B queried, and AB will make sure the latter is true via its hoie of x.Let us now proeed to the atual proof.Proof of Proposition 5.14: We prove the �rst equation and then briey indiate how to alter the proofto prove the seond equation.We will show that given any adversary B whose resoures are restrited to t; q; ql we an onstrut anadversary AB , using resoures t0; q + 1; (q + 1)l, suh thatAdvkrF;B � AdvprfF;AB + 12L : (5.3)If this is true then we an establish Equation (5.3) as follows:AdvkrF (t; q; �) = maxB fAdvkrF;B g� maxB fAdvprfF;AB + 2�L g� maxA fAdvprfF;A + 2�L g= AdvprfF (t; q + 1; (q + 1)l) + 2�L :The maximum, in the ase of B, is taken over all adversaries whose resoures are t; q; ql. In the seond line,we apply Equation (5.3). In the third line, we maximize over all A whose resoures are t; q+1; (q+1)l. Theinequality on the third line is true beause this set inludes all adversaries of the form AB . The last line issimply by de�nition. So it remains to show how to design AB so that Equation (5.3) holds. (This is the oreof the argument, namely what is alled the \redution.")As per De�nition 5.4, adversary AB will be provided an orale for a funtion g: f0; 1gl ! f0; 1gL, and willtry to determine in whih World it is. To do so, it will run adversary B as a subroutine. We provide thedesription followed by an explanation and analysis.Adversary AgBi 0Run adversary B, replying to its orale queries as followsWhen B makes an orale query x do

74 Goldwasser and Bellarei i+ 1 ; xi xyi g(xi)Return yi to B as the answerUntil B stops and outputs a key K 0Let x be an l bit string not in the set fx1; : : : ; xqgy g(x)If F (K 0; x) = y then return 1 else return 0As indiated in the disussion preeding the proof, AB is running B and itself providing answers to B'sorale queries via the orale g. When B has run to ompletion it returns some k-bit string K 0, whih ABtests by heking whether F (K 0x) agrees with g(x). Here x is a value di�erent from any that B queried, andit is to ensure that suh a value an be found that we require q < 2l in the statement of the Proposition.Now we laim that P hExpprf-1F;AB = 1i � AdvkrF;BP hExpprf-0F;AB = 1i = 2�L :We will justify these laims shortly, but �rst let us use them to onlude. Subtrating, as per De�nition 5.4,we get AdvprfF;AB = P hExpprf-1F;AB = 1i�P hExpprf-0F;AB = 1i� AdvkrF;B � 2�L :Re-arranging terms gives us Equation (5.3). It remains to justify Equations (5.4) and (5.4).Equation (5.4) is true beause in Expprf-1F;AB the orale g is FK for some K, whih is the orale that B expets,and thus B funtions as it does in ExpkrF;B . If B is suessful, meaning the key K 0 it outputs equals K, thenertainly AB returns 1. (It is possible that AB might return 1 even though B was not suessful. This wouldhappen if K 0 6= K but F (K 0; x) = F (K;x). It is for this reason that P hExpprf-1F;AB = 1i is greater than orequal to AdvkrF;B rather than merely equal to it.) Equation (5.4) is true beause in Expprf-0F;AB the funtion gis random, and sine x was never queried by B, the value g(x) is unpreditable to B. Imagine that g(x) ishosen only when x is queried to g. At that point, K 0, and thus F (K 0; x), is already de�ned. So g(x) has a2�L hane of hitting this �xed point. Note this is true regardless of how hard B tries to make F (K 0; x) bethe same as g(x).For the proof of Equation (5.2) we seek a redution B 7! AB with the property thatAdvkrF;B � Advprp-paF;AB + 12L � q : (5.4)The redution is idential to the one given above, meaning the adversary AB is the same. For the analysiswe see that P hExpprp-pa-1F;AB = 1i = AdvkrF;BP hExpprp-pa-0F;AB = 1i � 12L � q :Subtrating yields Advprp-paF;AB = P hExpprp-pa-1F;AB = 1i�P hExpprp-pa-0F;AB = 1i� AdvkrF;B � 12L � q

Cryptography: Leture Notes 75and re-arranging terms gives us Equation (5.4). The �rst equation above is true for the same reason asbefore. The seond equation is true beause in World 0 the map g is now a random permutation of l-bits tol-bits. So g(x) assumes any random value exept the values y1; : : : ; yq, meaning there are 2L � q things itould be. (Remember L = l in this ase.)The following example illustrates that the onverse of the above laim is far from true. The kr-advantage ofa family an be signi�antly smaller than its prf or prp-pa advantage, meaning that a family might be veryseure against key reovery yet very inseure as a prf or prp, and thus not useful for protool design.Example 5.15 De�ne the blok ipher E: f0; 1gk�f0; 1gl ! f0; 1gl by EK(x) = x for all k-bit keys K andall l-bit inputs x. We laim that it is very seure against key-reovery but very inseure as a PRP underCPA. More preisely, we laim that for all values of t; q, however high,AdvkrE (t; q; ql) = 2�k ;and on the other hand Advprp-paE (t; 1; l) � 1� 2�lfor t = O(l). In other words, given an orale for EK , you may make as many queries as you want, and spendas muh time as you like, before outputting your guess as to the value of K, yet your hane of getting itright is only 2�k. On the other hand, using only a single query to a given orale g: f0; 1gl ! f0; 1gl, andvery little time, you an tell almost with ertainity whether g is an instane of E or is a random funtionof l bits to l bits. Why are these laims true? Sine EK does not depend on K, an adversary with oraleEK gets no information about K by querying it, and hene its guess an as to the value of K an be orretonly with probability 2�k. On the other hand, an adversary an test whether g(0l) = 0l, and by returning 1if and only if this is true, attain a prp-advantage of 1� 2�l.5.9 The birthday attakSuppose E: f0; 1gk � f0; 1gl ! f0; 1gl is a family of permutations, meaning a blok ipher. If we are givenan orale g: f0; 1gl ! f0; 1gl whih is either an instane of E or a random funtion, there is a simple testto determine whih of these it is. Query the orale at distine points x1; x2; : : : ; xq , and get bak valuesy1; y2; : : : ; yq . You know that if g were a permutation, the values y1; y2; : : : ; yq must be distint. If g was arandom funtion, they may or may not be distint. So, if they are distint, bet on a permutation.Surprisingly, this is pretty good distinguisher, as we will argue below. Roughly, it takes q = p2l queries toget an advantage that is quite lose to 1. The reason is the birthday paradox. If you are not familiar withthis, you may want to look at Setion A.1, and then ome bak to the following.This tells us that an instane of a blok ipher an be distinguished from a random funtion based on seeinga number of input-output examples whih is approximately 2l=2. This has important onsequenes for theseurity of blok ipher based protools.Proposition 5.16 Let E: f0; 1gk � f0; 1gl ! f0; 1gl be a family of permutations. Suppose q satis�es2 � q � 2(l+1)=2. Then AdvprfE (t; q; ql) � 0:3 � q(q � 1)2l ;where and t is the time for q omputations of E, plus O(ql).Proof of Proposition 5.16: The birthday attak is implemented by an adversary D who, given an oraleg: f0; 1gl ! f0; 1gl, works like this:

76 Goldwasser and BellareAdversary DgFor i = 1; : : : ; q doLet xi be the i-th l-bit string in lexiographi orderyi g(xi)End ForIf y1; : : : ; yq are all distint then return 1, else return 0We laim that AdvprfE;D � 0:3 � q(q � 1)2l ;from whih the Proposition follows. Let us now justify this lower bound. Letting N = 2l, we laim thatP hExpprf-1E;D = 1i = 1 (5.5)P hExpprf-0E;D = 1i = 1� C(N; q) : (5.6)Here C(N; q), as de�ned in Setion A.1, is the probability that some bin gets two or more balls in theexperiment of randomly throwing q balls into N bins. We will justify these laims shortly, but �rst let ususe them to onlude. Subtrating, we getAdvprfE;D = P hExpprf-1E;D = 1i�P hExpprf-0E;D = 1i= 1� [1� C(N; q)℄= C(N; q)� 0:3 � q(q � 1)2l :The last line is by Proposition A.1. It remains to justify Equations (5.5) and (5.6).Equation (5.5) is lear beause in World 1, g = EK , and sine E is a family of permutations, g is apermutation, and thus y1; : : : ; yq are all distint. Now, suppose D is in World 0, so that g is a randomfuntion of l bits to l bits. What is the probability that y1; : : : ; yq are all distint? Sine g is a randomfuntion and x1; : : : ; xq are distint, y1; : : : ; yq are random, independently distributed values in f0; 1gl. Thuswe are looking at the birthday problem. We are throwing q balls into N = 2l bins and asking what is theprobability of there being no ollisions, meaning no bin ontains two or more balls. This is 1 � C(N; q),justifying Equation (5.6).5.10 PRFs versus PRPsWhen we ome to analyses of blok ipher based onstrutions, we will �nd a urious dihotomy. Analysesare onsiderably simpler and more natural assuming the blok ipher is a PRF. Yet, PRPs are what mostnaturally model blok iphers. To bridge the gap, we relate the prf and prp-pa advantage funtions ofa given blok ipher. The following says, roughly, that the birthday attak is the best possible one. Apartiular family of permutations E may have prf-advantage that is greater than its prp-advantage, but onlyby an amount of q(q � 1)=2l+1, the ollision probability term in the birthday attak.Proposition 5.17 Suppose E: f0; 1gk � f0; 1gl ! f0; 1gl is a family of permutations. ThenAdvprfE (t; q; ql) � q(q � 1)2l+1 +Advprp-paE (t; q; ql)for any t; q.

Cryptography: Leture Notes 77The proof is again by redution, but a very simple one. A given prf-adversary A is mapped to prp-adversaryA, meaning the adversary is unhanged. Aordingly, the following does not expliitly talk of redutions.Proof: Let A be an adversary that takes an orale for a funtion g: f0; 1gl ! f0; 1gl. Then we laim thatAdvprfE;A � Advprp-paE;A + q(q � 1)2l+1 ; (5.7)where q is the number of orale queries made by A. The Proposition follows by taking maximums, so itremains to prove Equation (5.7).Let B denote the adversary that �rst runs A to obtain an output bit b and then returns �b, the omplementof b. Then AdvprfE;A = P hExpprf-1E;A = 1i�P hExpprf-0E;A = 1i= �1�P hExpprf-1E;B = 1i�� �1�P hExpprf-0E;B = 1i�= P hExpprf-0E;B = 1i�P hExpprf-1E;B = 1i= P hExpprf-0E;B = 1i�P hExpprp-pa-1E;B = 1i= P hExpprf-0E;B = 1i�P hExpprp-pa-0E;B = 1i+ P hExpprp-pa-0E;B = 1i�P hExpprp-pa-1E;B = 1i= P hExpprf-0E;B = 1i�P hExpprp-pa-0E;B = 1i+Advprp-paE;A :So it suÆes to show thatP hExpprf-0E;B = 1i�P hExpprp-pa-0E;B = 1i � q(q � 1)2l+1 : (5.8)Let P [�℄ denote the probability in Experiment Expprf-0E;B , and let g denote the orale in that experiment.Assume without loss of generality that all orale queries of A |they are the same as those of B| aredistint. Let D denote the event that all the answers are distint, and let D denote the omplement of eventD. Then P hExpprf-0E;B = 1i = P [Bg = 1℄= P [Bg = 1 j D℄ �P [D℄ +P �Bg = 1 j D� �P �D�� P [Bg = 1 j D℄ +P �D�= P hExpprp-pa-0E;B = 1i+P �D�� P hExpprp-pa-0E;B = 1i+ q(q � 1)2l+1 :In the last step we used Proposition A.1. Re-arranging terms gives us Equation (5.8) and onludes theproof.5.11 Construtions of PRF familiesWhere an we �nd PRFs? There are a variety of ways. We an build them out of pseudorandom bit generatorsor one-way funtions, a onservative but to date ineÆient approah. There are more eÆient onstrutions

78 Goldwasser and Bellarewhose seurity is based on the presumed hardness of spei� number-theoreti problems. Finally in pratiewe might be willing to assume that blok iphers like the AES have the property, as disussed above.The notion of a pseudorandom bit generator (PRBG) was disussed in Chapter 3. Reall it is a polynomialtime omputable funtion G whih takes a k bit seed and produes a p(k) > k bit sequene of bits that lookrandom to any eÆient test.The �rst onstrution of PRF families was from PRBGs whih are length doubling: the output length istwie the input length.Theorem 5.18 [92℄ Given a length-doubling pseudorandom bit generator we an onstrut a sequene offamilies F whih is a PRF.The onstrution, alled the binary tree onstrution, is like this. The funtion G indues a tree of funtionsGz in the following way:� De�ne G0(x) ÆG1(x) = G(x) where k = jG0(x)j = jG1(x)j.� De�ne GzÆ0(x) ÆGzÆ1(x) = Gz(x) where k = jGzÆ0j = jGzÆ1j.Then fi(x) is de�ned in terms of the binary tree indued by G as follows: 8xfi(x) = Gx(i). We now letF = fF kgk�1 where F k is ffi : f0; 1gk ! f0; 1gkjjij = kg. It is shown in [92℄ that this is seure.Another onstrution based on a primitive alled synthesizers was given by Naor and Reingold [143℄. Thisyields a PRBG based onstrution whih is more parallelizable than the binary tree based one.We saw before that we an onstrut PRBGs from one-way funtions [111, 107℄. It follows from the abovethat we an build (in�nite) PRF families from one-way funtions. Furthermore, one an see that given anypseudorandom funtion family one an onstrut a one-way funtion [110℄. Thus we have the following.Theorem 5.19 There exists a sequene of families whih is a PRF if and only if there exist one-wayfuntions.This is quite a strong statement. One-way funtions are a seemingly weak primitive, a priori quite unrelatedto PRFs. Yet the one an be transformed into the other. Unfortunately the onstrution is not eÆientenough to be pratial.Naor and Reingold have suggested a onstrution of a sequene of families F = fFngn�1 whih they proveis a PRF assuming that the DDH (Deisional DiÆe-Hellman) problem is hard [144℄. In this onstrut,evaluation of partiular funtion from Fn on an l(n)-bit input requires l(n) modular multipliations and onemodular exponentiation, over an underlying group.5.11.1 Extending the domain sizeSuppose we start with a �nite PRF family with input length l. Often we need to extend the funtions to alarger domain in suh a way that they are still PRFs on the larger domain. (One of the important reasonsfor this is that pseudorandom funtions make good message authentiation odes. See Theorem 8.6.) Thereare various ways to do this. One is to use the CBC (ipher blok haining) onstrution.Here we are given a �nite PRF family with input length l and output length also l. An integer m is �xed andwe want to onstrut a family of funtions mapping f0; 1glm to f0; 1gl. The onstrution is like this. Thekeys for the new family are the same as for the old one. Let f = FK be the l bit to l bit funtion indiatedby key K. The new funtion, given M1 : : :Mm, does the following:Set Y0 = 0lSet Y1 = f(M1�Y0)

Cryptography: Leture Notes 79Set Y2 = f(M2�Y1)...Set Ym = f(Mm�Ym�1)Output Ym.Let F (m) denote the family of funtions in whih the funtion indexed by K maps f0; 1gml to f0; 1gl and isgiven by the CBC using f = FK .Theorem 5.20 [12℄ Let l;m � 1 and q; t � 0 be integers. Let F : KeysF � f0; 1gl ! f0; 1gl be a family offuntions. Then AdvprfF (m)(q; t) � AdvprfF (q0; t0) + 1:5 � q2m22l (5.9)� Advprp-paF (q0; t0) + q2m22l�1 (5.10)where q0 = mq and t0 = t+O(mql).We stress that the input must be of exatly nl bits, not at most nl bits. Else the onstrution is not seure.There are also other onstrutions. For example, the asade onstrution of [19℄. Also, based on the ideas ofXOR MACs [11℄, a onstrution alled the Proteted Counter Sum was given in [30℄. Di�erent onstrutionshave di�erent properties in terms of seurity and eÆieny.Similarly (or simultaneously) we may want to extend the output length. It turns out this is easier, so wewon't disuss it in detail.5.12 Some appliations of PRFs5.12.1 Cryptographially Strong HashingLet P1; P2 be polynomials so that 8x; P1(x) > P2(x). De�ne FP1;P2 = ff : f0; 1gP1(k) ! f0; 1gP1(k)g.Then we wish to hash names into address where jNamej = P1(k) and jAddressj = P2(k). We may usepseudo-random funtions to hash these names so that Address = fi(Name).Claim 5.21 If there exist one way funtions, then for all polynomials P , and for all integers k suÆientlylarge, the previous hashing algorithm admits no more than O(12pAddress) + 1P (k) ollisions even if, after �xingthe sheme, the names are hosen by an adversary with aess to previous (Name;Address) pairs.5.12.2 PreditionA predition test T (1k)1. queries an orale for f 2 Fk, disovering (x1; f(x1)); : : : ; (xl; f(xl)),2. outputs an \exam", x, and3. is given y so that with probability 12 , y = f(x) (otherwise, y is hosen randomly in f0; 1gjf(x)j�ff(x)g).4. outputs 1 if it guesses that y = f(x), 0 otherwise.

80 Goldwasser and BellareF is said to pass the predition test T if 8Q 2 Q[x℄; 9k0;8k > k0,Pr[T (1k) guesses orretly given y in step 3℄ < 12 + 1Q(k)The above pseudo-random funtions then pass all predition tests (assuming there exist one way funtions).5.12.3 LearningDe�ne a onept spae S and a onept C � S. A learner is exposed to a number of pairs (ei;�i) whereei 2 S and �i = + , ei 2 C. The learner is then requested to determine if a given e 2 S is an element ofC.The above pseudo-random funtion show that if there exist one way funtions, then there exist onepts notlearnable in polynomial time. (The onept in this ase would be fx; f(x)g � fx; yg.)5.12.4 Identify Friend or FoeConsider the situation of two fores of war planes �ghting an air battle. Eah plane wishes to identifypotential targets as friendly or enemy. This an be done using pseudo-random funtions in the followingway:1. All the planes on a ertain fore know i.2. To identify a target, a plane sends the target a random number r and expets to reeive bak fi(r) ifthe target is a friend.Then, even though the enemy planes see many pairs of the form (x; f(x)), they annot ompute f(y) for ythey have not yet seen.5.12.5 Private-Key EnryptionLet A and B privately agree on i. Then to enrypt message m, A produes a random string r and sends(r; fi(r) �m). B an ompute fi(r) and so ompute fi(r) �m� fi(r) = m. Assuming that there exist oneway funtions, suh a system is seure again hosen iphertext attak, that is, seure even if the adversaryan ompute (r; fi(r)) for a olletion of r's. See Chapter 6 for more on this.5.13 Historial NotesThe basi de�nition of a pseudorandom funtions is due to Goldreih, Goldwasser and Miali [92℄. Inpartiular these authors introdued the important notion of distinguishers. The notion of a pseudorandompermutation is due to Luby and Rako� [133℄. These works are in the omplexity-theoreti or \asymptoti"setting, where one onsiders sequenes of families rather than just one family, and de�nes seurity as perDe�nition 5.8. The approah used for the bulk of the urrent hapter, motivated by the desire to modelblok iphers, is alled \onrete seurity," and originates with [13℄. De�nitions 5.4 and 5.5 are from [13℄, asare Propositions 5.16 and 5.17.5.14 Exerises and ProblemsProblem 5.22 Let a[i℄ denote the i-th bit of a binary string i, where 1 � i � jaj. The inner produt ofn-bit binary strings a; b is h a; b i = a[1℄b[1℄�a[2℄b[2℄�� � ��a[n℄b[n℄ :

Cryptography: Leture Notes 81A family of funtions F : f0; 1gk � f0; 1gl ! f0; 1gL is said to be inner-produt preserving if for everyK 2 f0; 1gk and every distint x1; x2 2 f0; 1gl � f0lg we haveh F (K;x1); F (K;x2) i = h x1; x2 i :Prove that if F is inner-produt preserving thenAdvprfF (t; 2; 2l) � 12 ��1 + 12L�for t = q � TF + O(�), where TF denotes the time to perform one omputation of F . Explain in a sentenewhy this shows that if F is inner-produt preserving then F is not a seure PRF.Problem 5.23 Let E: f0; 1gk � f0; 1gl ! f0; 1gl be a blok ipher. The two-fold asade of E is the blokipher E(2): f0; 1g2k � f0; 1gl ! f0; 1gl de�ned byE(2)(K1kK2; x) = E(K1; E(K2; x))for all K1;K2 2 f0; 1gk and all x 2 f0; 1gl. (Here \k" stands for onatenation of strings.) Prove thatAdvprp-paE(2) (t; q; lq) � Advprp-paE (t; q; lq)for all t; q. Explain in a sentene why this shows that if E is a seure PRP then so is E(2).

C h a p t e r 6Private-key enryption

The private-key setting, also alled the symmetri setting, onsiders two parties who share a key and willuse this key to imbue ommuniated data with various seurity attributes. (How they ame into possessionof a shared key is not part of the problem onsidered here, and will be addressed later.) The main seuritygoals are privay and authentiity of the ommuniated data. A symmetri enryption sheme (also alleda private-key enryption sheme) enables parties in possession of a shared seret key to ahieve the goal ofdata privay. This is the anonial goal of ryptography.6.1 Symmetri enryption shemesA symmetri enryption sheme spei�es an enryption algorithm, whih tells the sender how to proessher data as a funtion of the key to produe the objet that is atually transmitted. It also spei�esa deapsulation algorithm whih tells the reeiver how to retrieve the original data from the transmissionwhile possibly also performing some veri�ation. Finally, there is a key generation algorithm, whih produesa key that the parties need to share. The formal desription follows.De�nition 6.1 A symmetri enryption sheme SE = (K; E ;D) onsists of three algorithms, as follows:� The key generation algorithm K is a randomized algorithm that returns a string K. We let Keys(SE)denote the set of all strings that have non-zero probability of being output by K. The members of thisset are alled keys. We write K R K for the operation of exeuting K and letting K denote the keyreturned.� The enryption algorithm E takes the key K 2 Keys(SE) and a plaintext M 2 f0; 1g� to return aiphertext C 2 f0; 1g�[f?g. This algorithm might be randomized or stateful. We write C R EK(M).� The deterministi deryption algorithm D takes a key K 2 Keys(SE) and a iphertext C 2 f0; 1g� toreturn some M 2 f0; 1g� [f?g. We write M DK(C).We require that for any key K 2 Keys(SE) and any message M 2 f0; 1g�, if EK(M) returns a iphertextC 6= ? then DK(C) =M .The key generation algorithm, as the de�nition indiates, is randomized. It takes no inputs. When it is run,it ips oins internally and uses these to selet a key K. Typially, the key is just a random string of somelength, in whih ase this length is alled the key length of the sheme. When two parties want to use the82

Cryptography: Leture Notes 83sheme, it is assumed they are in possession of K generated via K. How they ame into joint possessionof this key K in suh a way that the adversary did not get to know K is not our onern here; it is anassumption we make.One in possession of a shared key, the parties an enrypt data for transmission. To enrypt plaintext M ,the sender (or enrypter) runs the enryption algorithm with key K and input M to get bak a string weall the iphertext.The enryption algorithm may be either randomized or stateful. If randomized, it ips oins and uses thoseto ompute its output on a given input K;M . Eah time the algorithm is invoked, it ips oins anew,and in partiular invoking it twie on the same inpupts may not yield the same response both times. Ifthe enryption algorithm is stateful, its operation depends on a global variable suh as a ounter, whih isupdated upon eah invoation of the enryption algorithm. Thus, the enrypter maintains a ounter that isinitialized in some pre-spei�ed way. When the enryption algorithm is invoked on inputs K;M , it omputesa iphertext based on K;M and the urrent ounter value. It then updates the ounter, and the new ountervalue is stored. (The reeiver does not need to maintain a ounter, and in partiular deryption does notrequire aess to any global variable or all for any synhronization between parties.)When there is no suh ounter or global variable, the sheme is stateless. In stateful shemes the enryptionalgorithm typially does not ip oins internally. (It is still OK to all it a randomized algorithm. It justhappens to not make use of its given random number generator.) In stateless shemes, randomization isessential to seurity, as we will see.One a iphertext C is omputed, it is transmitted to the reeiver. The latter an reover the message byrunning the deryption algorithm with the same key used to reate the iphertext, namely viaM DK(C).The deryption algorithm is neither randomized nor stateful.Many enryption shemes restrit the set of strings that they are willing to enrypt. (For example, perhapsthe algorithm an only enrypt plaintexts of length a positive multiple of some blok length l, and an onlyenrypt plaintext of length up to so maximum length.) These kinds of restritions are aptured by having theenryption algorithm return the speial symbol ? when fed a message not meeting the required restrition.In a stateless sheme, there is typially a set of strings, alled the plaintext spae, suh that EK(M) 6= ? forall K and all M in the plaintext spae. In a stateful sheme, whether or not EK(M) returns ? depends notonly on M but also possibly on the value of the state variable. For example, when a ounter is being used,it is typial that there is a limit to the number of enryptions performed, and when the ounter reahes aertain value the enryption algorithm returns ? no matter what message it is fed.6.2 Some enryption shemesLet us begin with a few examples.Sheme 6.2 The one-time-pad enryption sheme (also alled the Vernam ipher) SE = (K; E ;D) is statefuland deterministi. The key generation algorithm simply returns a random k-bit string K, where the key-length k is a parameter of the sheme, so that the key spae is Keys(SE) = f0; 1gk. The enryptor maintainsa ounter tr whih is initially zero. The enryption and deryption algorithms operate as follows:Algorithm EK(M)Let n = jM jIf tr + n > k then return ?For i = 1 to n doC[i℄ K[tr + i℄�M [i℄EndFortr tr + nC C[1℄ : : : C[n℄Return (tr; C)
Algorithm DK((C; tr))Let n jM jFor i = 1 to n doM [i℄ K[tr + i℄�C[i℄EndForM M [1℄ : : :M [n℄Return M

84 Goldwasser and BellareHere X [i℄ dennotes the i-th bit of a binary string X . The enryption algorithm XORs the message bits withkey bits, starting with the key bit indiated by the urrent ounter value. The ounter is then inremented bythe length of the message. Key bits are not reused, and thus if not enough key bits are available to enrypta message, the enryption algorithm returns ?. Note that the iphertext returned inludes the value of theounter. This is in order to enable deryption. (Reall that the deryption algorithm, as per De�nition 6.1,must be stateless and deterministi, so we do not want it to have to maintain a ounter as well.)The following shemes rely either on a family of permutations (ie. a blok ipher) or a family of funtions. Itis onvenient if the length of the message to be enrypted is a positive multiple of a blok length assoiated tothe family. Aordingly, the enryption algorithm returns ? if this is not the ase. In pratie, however, onewould �rst pad the message appropriately so that the padded message always had length a positive multipleof the blok length, and apply the enryption algorithm to the padded message. The padding funtion shouldbe injetive and easily invertible.Sheme 6.3 Let E: f0; 1gk � f0; 1gl ! f0; 1gl be a blok ipher. Operating it in ECB (Eletroni CodeBook) mode yields a stateless symmetri enryption sheme, SE = (K; E ;D). The key generation algorithmsimply returns a random key for the blok ipher, meaning it piks a random k-bit string key and returnsit, so that the key spae is f0; 1gk. The enryption and deryption algorithms are as follows:Algorithm EK(M)If jM j < l then return ?If jM j mod l 6= 0 then return ?Parse M as M [1℄ : : :M [n℄For i = 1; : : : ; n doC[i℄ EK(M [i℄)EndForC C[1℄ : : : C[n℄Return C
Algorithm DK(C)If jCj < l then return ?If jCj mod l 6= 0 then return ?Parse C as C = C[1℄ : : : C[n℄For i = 1; : : : ; n doM [i℄ E�1K (M [i℄)EndForM M [1℄ : : :M [n℄Return MParsing M means that we divide it into l-bit bloks and let M [i℄ denote the i-th suh blok, and similarlyfor C. Notie that here the enryption algorithm did not make any random hoies. That does not meanwe are not allowed to all it a randomized algorithm; it is simply a randomized algorithm that happened tohoose to not make random hoies.Cipher-blok haining (CBC) is the most popular mode, used pervasively in pratie.Sheme 6.4 Let E: f0; 1gk � f0; 1gl ! f0; 1gl be a blok ipher. Operating it in CBC mode with randomIV yields a stateless symmetri enryption sheme, SE = (K; E ;D). The key generation algorithm simplyreturns a random key for the blok ipher, meaning it piks a random k-bit string key and returns it, so thatthe key spae is f0; 1gk. The enryption and deryption algorithms are as follows:Algorithm EK(M)If jM j < l then return ?If jM j mod l 6= 0 then return ?Parse M as M [1℄ : : :M [n℄C[0℄ R f0; 1glFor i = 1; : : : ; n doC[i℄ FK(C[i� 1℄�M [i℄)EndForC C[0℄C[1℄ : : : C[n℄Return C
Algorithm DK(C)If jCj < 2l then return ?If jCj mod l 6= 0 then return ?Parse C as C[0℄C[1℄ : : : C[n℄For i = 1; : : : ; n doM [i℄ E�1K (C[i℄)�C[i� 1℄EndForM M [1℄ : : :M [n℄Return MParsingM means that we divide it into l-bit bloks and let M [i℄ denote the i-th suh blok. In parsing C wealso divide it into l-bit bloks, but this time the bloks are numbered starting at 0. The IV is C[0℄, whih is

Cryptography: Leture Notes 85hosen at random by the enryption algorithm. This hoie is made independently eah time the algorithmis invoked.For the following shemes it is useful to introdue some notation. If l � 1 and i are integers with 0 � i � 2l�1then we let NtSl(i) (read \number to string") denote the l-bit string whih is the binary representation ofinteger i. If s is a string we let StN(s) (read \string to number") denote the non-negative integer whosebinary representation is s.The CTR (ounter) modes that follow are not muh used, to the best of our knowledge, but perhaps wronglyso. We will see later that they have good seurity properties. In ontrast to CBC, the enryption andderyption proedures are parallelizable, whih an be exploited to speed up these proesses in the preseneof hardware support. There are two variants of the mode, one random and the other stateful, and, as wewill see later, their seurity properties are di�erent.Sheme 6.5 Let F : f0; 1gk � f0; 1gl ! f0; 1gL be a family of funtions. (Not neessarily a family ofpermutations.) Operating it in CTR mode with starting point hosen at random anew for eah messageyields a stateless symmetri enryption sheme, SE = (K; E ;D), whih we all R-CTR mode or the R-CTRsymmetri enryption sheme. The key generation algorithm simply returns a random key for F , meaningit piks a random k-bit string key and returns it, so that the key spae is f0; 1gk. The enryption andderyption algorithms are as follows:Algorithm EK(M)If jM j < L then return ?If jM j mod L 6= 0 then return ?Parse M as M [1℄ : : :M [n℄R R f0; 1; : : : ; 2l � 1gFor i = 1; : : : ; n doC[i℄ FK(NtSl(R + i))�M [i℄EndForC[0℄ NtSl(R)C C[0℄C[1℄ : : : C[n℄Return C
Algorithm DK(C)If jCj < l + L then return ?If (jCj � l) mod L 6= 0 then return ?Let C[0℄ be the �rst l bits of CParse the rest of C as C[1℄ : : : C[n℄R StN(C[0℄)For i = 1; : : : ; n doM [i℄ FK(NtSl(R+ i))�C[i℄EndForM M [1℄ : : :M [n℄Return MParsingM means that we divide it into L-bit (not l-bit!) bloks and let M [i℄ denote the i-th suh blok. ForC the deryption algorithm �rst hops o� the �rst l bits, and then divides the rest of the string into L-bitbloks. The random value hosen by the enryption algorithm is an integer in the range 0; : : : ; 2l � 1. It isused to de�ne a sequene of values on whih FK is applied to produe a \pseudo one-time pad" to whihthe data is XORed. The random value is inluded in the iphertext in order to enable deryption.Sheme 6.6 Let F : f0; 1gk � f0; 1gl ! f0; 1gL be a family of funtions. (Not neessarily a family ofpermutations.) Operating it in CTR mode with ounter yields a stateful symmetri enryption sheme,SE = (K; E ;D), whih we all C-CTR mode or C-CTR symmetri enryption sheme. The key generationalgorithm simply returns a random key for F , meaning it piks a random k-bit string key and returns it, sothat the key spae is f0; 1gk. The enryptor maintains a ounter tr whih is initially zero. The enryptionand deryption algorithms are as follows:

86 Goldwasser and BellareAlgorithm EK(M)If jM j < L then return ?If jM j mod L 6= 0 then return ?Parse M as M [1℄ : : :M [n℄If tr + n � 2l then return ?For i = 1; : : : ; n doC[i℄ FK(NtSl(tr + i))�M [i℄EndForC[0℄ NtSl(tr)C C[0℄C[1℄ : : : C[n℄tr tr + nReturn C
Algorithm DK(C)If jCj < l + L then return ?If (jCj � l) mod L 6= 0 then return ?Let C[0℄ be the �rst l bits of CParse the rest of C as C[1℄ : : : C[n℄tr StN(C[0℄)For i = 1; : : : ; n doM [i℄ FK(NtSl(tr + i))�C[i℄EndForM M [1℄ : : :M [n℄Return MParsing M means that we divide it into L-bit (not l-bit!) bloks and let M [i℄ denote the i-th suh blok.For C the deryption algorithm �rst hops o� the �rst l bits, and then divides the rest of the string intoL-bit bloks. The ounter is not allowed to wrap around: the enryption algorithm returns ? if this wouldhappen. The ounter is inluded in the iphertext in order to enable deryption. The enryption algorithmupdates the ounter upon eah invoation, and begins with this updated value the next time it is invoked.We will return to the seurity of these shemes after we have developed the appropriate notions.6.3 Issues in seurityLet us �x a partiular symmetri enryption sheme SE = (K; E ;D). Two parties share a key K for thissheme, this key having being generated as K R K. The adversary does not a priori know K. We now wantto explore the issue of what seurity (in this ase, privay) of the sheme might mean.The adversary is assumed able to apture any iphertext that ows on the hannel between the two parties.It an thus ollet iphertexts, and try to glean something from them. Our question is: what exatly does\glean" mean? What tasks, were the adversary to aomplish them, would make us delare the shemeinseure? And, orrespondingly, what tasks, were the adversary unable to aomplish them, would make usdelare the sheme seure?It is muh easier to think about inseurity than seurity, beause we an ertainly identify adversary ationsthat indubitably imply the sheme is inseure. For example, if the adversary an, from a few iphertexts,derive the underlying key K, it an later derypt anything it sees, so if the sheme allowed easy key reoveryfrom a few iphertexts it is de�nitely inseure. Yet, an absene of easy key reovery is ertainly not enoughfor the sheme to be seure; maybe the adversary an do something else.One might want to say something like: given C, the adversary has no idea what M is. This however annotbe true, beause of what is alled a priori information. Often, something about the message is known. Forexample, it might be a paket with known headers. Or, it might be an English word. So the adversary, andeveryone else, has some information about the message even before it is enrypted.One might also try to say that what we want is: given iphertext C, the adversary an't easily reoverthe plaintext M . But atually, this isn't good enough. The reason is that the adversary might be able to�gure out partial information about M . For example, even though she might not be able to reover M , theadversary might, given C, be able to reover the �rst bit of M , or the sum of all the bits of M . This is notgood, beause these bits might arry valuable information.For a onrete example, say I am ommuniating to my broker a message whih is a sequene of \buy" or\sell" deisions for a pre-spei�ed sequene of stoks. That is, we have ertain stoks, numbered 1 throughl, and bit i of the message is 1 if I want to buy stok i and 0 otherwise. The message is sent enrypted. Butif the �rst bit leaks, the adversary knows whether I want to buy or sell stok 1, whih may be something

Cryptography: Leture Notes 87I de�nitely don't want to reveal. If the sum of the bits leaks, the adversary knows how many stoks I ambuying.Granted, this might not be a problem at all if the data was in a di�erent format. However, making assump-tions, or requirements, on how users format data, or how they use it, is a bad and dangerous approah toseure protool design. It is an important priniple of our approah that the enryption sheme should yieldseurity no matter what is the format of the data. That is, we don't want people to have to worry abouthow they format their data: it should be seure regardless.In other words, as designers of seurity protools, we annot make assumptions about data ontent orformats. Our protools must protet any data, no matter how formatted. We view it as the job of theprotool designer to ensure this is true. And we want shemes that are seure in the strongest possiblenatural sense.So what is the best we ould hope for? It is useful to make a thought experiment. What would an \ideal"enryption be like? Well, it would be as though some angel took the message M from the sender anddelivered it to the reeiver, in some magi way. The adversary would see nothing at all. Intuitively, ourgoal is to \approximate" this as best as possible. We would like enryption to have the properties of idealenryption. In partiular, no partial information would leak.As an example, onsider the ECB enryption sheme of Example 6.3. Given the iphertext, an an eaves-dropping adversary �gure out the message? Hard to see how, sine it does not know K, and if F is a \good"blok ipher, then it ought to have a hard time inverting FK without knowledge of the underlying key.Nonetheless this is not a good sheme. Consider just the ase n = 1 of a single blok message. Suppose Ihave just two messages, 0l for \buy" and 1l for \sell." I keep sending data, but always one of these two.What happens? The adversary sees whih are the same. That is, it might see that the �rst two are the sameand equal to the third, et.In a seure enryption sheme, it should not be possible to o-relate iphertexts of di�erent messages in suha way that information is leaked.This has a somewhat dramati impliation. Namely, enryption must be probabilisti or depend on stateinformation. If not, you an always tell if the same message was sent twie. Eah enryption must usefresh oin tosses, or, say, a ounter, and an enryption of a partiular message may be di�erent eah time.In terms of our setup it means E is a probabilisti or stateful algorithm. That's why we de�ned symmetrienryption shemes, above, to allow these types of algorithms.The reason this is dramati is that it goes in many ways against the historial or popular notion of enryption.Enryption is thought of as a ode, a �xed mapping of plaintexts to iphertexts. This is no longer true.A single plaintext will have many possible iphertexts. (Depending on the random hoies or state of theenryption algorithm.) Yet, it should be possible to derypt. How is this possible? We have seen severalexamples above.Let us now start looking at privay more formally. We will begin with the information-theoreti notion ofperfet privay introdued by Shannon, and analyze the one-time pad sheme in this light. Perfet seurity,however, requires a key as long as the total amount of data enrypted, and is not pratial. So we then lookat a notion of \omputational seurity." The seurity will only hold with respet to adversaries of limitedomputing power. If the adversary works harder, she an �gure out more, but a \feasible" amount of e�ortyields no notieable information. This is the important notion for us and will be used to analyze the seurityof shemes suh as those presented above.6.4 Information-theoreti seurityWe disuss the information-theoreti notion of seurity alled perfet seurity whih we will show is possessedby the one-time-pad sheme.We �x a partiular symmetri enryption sheme SE = (K; E ;D). Two parties share a key K for this shemeand the adversary does not a priori know K. The adversary is assumed able to apture any iphertext that

88 Goldwasser and Bellareows on the hannel between the two parties. Having aptured a iphertext, it attempts to glean informationabout the orresponding plaintext message.Take for example the one-time-pad sheme, and assume a single k-bit message is enrypted and transmitted,where k is the length of the key. Due to the random hoie of the key (pad), this ertainly seems very\seure." We would like to say that the adversray, given the iphertext, has \no idea" what the messagewas. But it is not lear how to say this, or if it is even really true. The adversary ould always guess themessage. Or, it ould have a pretty good idea what the message was from some ontext surrounding theenryption. For example, it may know that the �rst few bytes of the message is a paket header ontainingthe sender's (known) ip address.So we an't really say the adversary has no idea what the message is given the iphertext. Instead, we adopta omparitive measure of seurity. We are interested in how muh more the adversary knows about themessage given the iphertext as opposed to what it knew before it saw the iphertext. Perfet seurity holdsif \the adversary's best guess as to the message after having seen the iphertext is the same as before it sawthe iphertext." In other words, the iphertext was no help in �guring out anything new about the message.This is aptured this as follows. We assume a single message will be enrypted, and are interested onlyin the seurity of this enryption. There is some plaintext spae Plaintexts � f0; 1g� of messages that theenryptor is willing to enrypt. (For example, with the one-time pad sheme, if the key length is k bits thenPlaintexts = f0; 1gk.) Notie that this e�etively makes the sheme stateless.We model the a priori information (the information the adversary already possesses about the message) asa probability distribution on the set of possible messages. Formally, a message distribution on Plaintexts isa funtion D: Plaintexts! [0; 1℄ suh that XM2PlaintextsD(M) = 1 ;and also D(M) > 0 for all M 2 Plaintexts. For example, there might be four messages, 00; 01; 10; 11, withD(00) = 1=6; D(01) = 1=3; D(10) = 1=4; and D(11) = 1=4 :We imagine that the sender hooses a message at random aording to D, meaning that a spei� messageM 2 Plaintexts has probability D(M) of being hosen. In our example, the sender would hoose 00 withprobability 1=6, and so on.The message distribution, and the fat that the sender hooses aording to it, are known to the adversary.Before any iphertext is transmitted, the adversary's state of knowledge about the message hosen by thesender is given by D. That is, it knows that the message was 00 with probability 1=6, and so on.We say that the enryption sheme is perfetly seure if the possession of the iphertext does not impart anyadditional information about the message than was known a priori via the fat that it was hosen aordingto D. The setup is like this. After the sender has hosen the message aording to D, a key K is alsohosen, aording to the key generation algorithm, meaning K K, and the message is enrypted to get aiphertext, via C EK(M). The adversary is given C. We ask the adversary: given that you know C isthe iphertext produed, for eah possible value of the message, what is the probability that that partiularvalue was atually the message hosen? If the adversary an do no better than say that the probability thatM was hosen was D(M), it means that the possession of the iphertext is not adding any new informationto what is already known. This is perfet seurity.To state this more formally, we �rst letS = Keys(SE)� Plaintexts� f0; 1grdenote the sample spae underlying our experiment. Here r is the number of oins the enryption algorithmtosses. (This is zero if the enryption algorithm is deterministi, as is the ase for the one-time pad.) We letintrodue the following random variables:K: S ! Keys(SE) de�ned by (K;M;R) 7! KM: S ! Plaintexts de�ned by (K;M;R) 7!MC: S ! f0; 1g� de�ned by (K;M;R) 7! EK(M ;R)

Cryptography: Leture Notes 89ThusK simply returns the value of the hosen key whileM returns the value of the hosen message. The lastrandom variable returns the enryption of the message using keyK and oins R. The probability distributionunderlying this sample spae is denoted PD;SE [�℄ and is given by a hoie of K as per K, a hoie of M asper D, and a random hoie of R, all these being made independently.De�nition 6.7 Let SE = (K; E ;D) be a symmetri enryption sheme with assoiated message spaePlaintexts. Let D: Plaintexts ! [0; 1℄ be a message distribution on Plaintexts. We say that SE is perfetlyseure with respet to D if for every M 2 Plaintexts and every possible iphertext C it is the ase thatPD;SE [M =M j C = C℄ = D(M) : (6.1)We say that SE = (K; E ;D) is perfetly seure if it is perfetly seure with respet to every message distri-bution on Plaintexts.Here \M = M" is the event that the message hosen by the sender was M , and \C = C" is the event thatthe iphertext omputed by the sender and reeived by the adversary was C. The de�nition onsiders theonditional probability that the message wasM given that the iphertext was C. It says that this probabilityis exatly the a priori probability of the message M , namely D(M).In onsidering the one-time pad enryption sheme (f. Sheme 6.2) we omit the ounter as part of theiphertext sine only a single message is being enrypted. Thus, the iphertext is a k-bit string where k isthe length of the key and also of the message. Also note that in this sheme r = 0 sine the enryptionalgorithm is not randomized.Example 6.8 Let SE = (K; E ;D) be the one-time-pad enryption sheme with the key length (and thus alsomessage length and iphertext length) set to k = 2 bits and the message spae set to Plaintexts = f0; 1gk.Let D be the message distribution on Plaintexts de�ned by D(00) = 1=6, D(01) = 1=3, D(10) = 1=4 andD(11) = 1=4. For eah possible iphertext C 2 f0; 1gk, the �rst table of Figure 6.1 shows the value ofPD;SE [C = C jM =M ℄, the probability of obtaining this partiular iphertext if you enrypt M with theone-time pad sheme. As the table indiates, this probability is always 0:25. Why? Having �xed M , thepossible iphertexts are M�K as K ranges over f0; 1gk. So, regardless of the value of M , all di�erentk bit strings are equally likely as iphertexts. The orresponding general statement is stated and provedin Lemma 6.9 below. The seond table shows the value of PD;SE [M =M j C = C℄, the probability thatthe message was M given that an adversary sees iphertext C. Notie that this always equals the a prioriprobability D(M).The following lemma aptures the basi seurity property of the one-time-pad sheme: no matter what isthe message, eah possible k-bit iphertext is produed with probability 2�k, due to the random hoie ofthe key. .Lemma 6.9 Let k � 1 be an integer and let SE = (K; E ;D) be the one-time-pad enryption sheme ofSheme 6.2 with the key length set to k bits and the message spae set to Plaintexts = f0; 1gk. Let D be amessage distribution on Plaintexts. ThenPD;SE [C = Y jM = X ℄ = 2�k :for any X 2 Plaintexts and any Y 2 f0; 1gk.Proof of Lemma 6.9: If X is �xed and known, what's the probability that we see Y ? Sine Y = K�Xfor the one-time-pad sheme, it only happens if K = Y�X . The probability that K is this partiular stringis exatly 2�k sine K is a randomly hosen k-bit string.This enables us to show that the one-time-pad sheme meets the notion of perfet seurity we onsideredabove.

90 Goldwasser and BellareC 00 01 10 11D(M) M1=6 00 0:25 0:25 0:25 0:251=3 01 0:25 0:25 0:25 0:251=4 10 0:25 0:25 0:25 0:251=4 01 0:25 0:25 0:25 0:25C 00 01 10 11D(M) M1=6 00 1=6 1=6 1=6 1=61=3 01 1=3 1=3 1=3 1=31=4 10 1=4 1=4 1=4 1=41=4 01 1=4 1=4 1=4 1=4Figure 6.1: In the �rst table, the entry orresponding to row M and olumn C shows the value ofPD;SE [C = C jM =M ℄, for the one-time-pad sheme of Example 6.8. Here the key and message lengthare both k = 2. In the seond table, the entry orresponding to row M and olumn C shows the value ofPD;SE [M =M j C = C℄, for the same sheme.Theorem 6.10 Let k � 1 be an integer and let SE = (K; E ;D) be the one-time-pad enryption sheme ofSheme 6.2 with the key length set to k bits and the message spae set to Plaintexts = f0; 1gk. Let D be amessage distribution on Plaintexts. Then SE is perfetly seure with respet to D.Proof of Theorem 6.10: Let M 2 Plaintexts be a message and let C 2 f0; 1gk be a possible iphertext.We need to show that Equation (6.1) is true. We havePD;SE [M =M j C = C℄ = PD;SE [C = C jM =M ℄ � PD;SE [M =M ℄PD;SE [C = C ℄= 2�k � PD;SE [M =M ℄PD;SE [C = C℄ :The �rst equality was by Bayes' rule. The seond equality was obtained by applying Lemma 6.9 with X =Mand Y = C. By de�nition PD;SE [M =M ℄ = D(M)is the a priori probability of M . Now for the last term:PD;SE [C = C℄ = XX PD;SE [M = X℄ �PD;SE [C = C jM = X ℄= XX D(X) � 2�k= 2�k �XX D(X)= 2�k � 1 :The sum here was over all possible messages X 2 Plaintexts, and we used Lemma 6.9. Plugging all this intothe above we get PD;SE [M =M j C = C℄ = 2�k � D(M)2�k = D(M)

Cryptography: Leture Notes 91as desired.The one-time-pad sheme is not the only sheme possessing perfet seurity, but it seems to be the simplestand most natural one.6.5 Indistinguishability under hosen-plaintext attakPerfet seurity an only be ahieved by shemes with keys as long as the message enrypted, whih is notpratial. (We will not prove this.) We wish to �nd a notion of seurity that, even though not perfet inthe above sense, is as good in pratie. Roughly, the main di�erene is to take into aount the fat thatadversaries are omputationally restrited. There may be \useful" information in a iphertext, but if youan't ompute it, the iphertext hasn't really given you anything.In some ways, this is where modern ryptography really begins. For us, what is most relevant is not theabove, but what follows.We have already disussed the issues in Setion 6.3 above and will now distill a formal de�nition of seurity.6.5.1 De�nitionWe disussed above the ase where the sender is enrypting one of two known messages. It turns out that thisis the \worst" ase for seurity. We onsider an adversary (not in possession of the seret key) who knows(in fat, is allowed to hoose) two messages of the same length. Then, one is enrypted and the iphertextgiven to the adversary. The sheme is seure if the adversary has a hard time telling whih message wasenrypted.We atually want to onsider enryption not of one message, but a whole sequene of them, so this idea mustbe extended. There is a sequene of pairs of messages, (M1;0;M1;1); : : : ; (Mq;0;Mq;1), where, in eah pair,the two messages have the same length. This sequene is known to the adversary. Now, a \hallenge" bitb is hosen at random, and a sequene of iphertexts C1; : : : ; Cq is produed, where Ci EK(Mi;b). Notethat in these enryptions, the enryption algorithm uses fresh oins, or an updated state, eah time. Theadversary gets the sequene of iphertexts and must guess the bit b to win. In other words, the adversary istrying to determine whether the sender sent M1;0; : : : ;Mq;0 or M1;1; : : : ;Mq;1.To further empower the adversary, it is allowed to hoose the sequene of message pairs via a hosen plaintextattak. This means that it hooses the �rst pair, then reeives C1, then hooses the seond pair, and so on.Let us now formalize this. We �x a spei� enryption sheme SE = (K; E ;D). (It ould be either stateless orstateful). We onsider an adversary A. It is a program whih has aess to an orale to whih it an provideas input any pair (M0;M1) of equal-length messages. The orale will return a iphertext. We will onsidertwo possible ways in whih this iphertext is omputed by the orale, orresponding to two possible \worlds"in whih the adversary \lives". To do this, �rst de�ne the left-or-right enryption orale EK(LR(�; �; b)), asfollows:Orale EK(LR(M0;M1; b)) // b 2 f0; 1g and M0;M1 2 f0; 1g�C EK(Mb)Return CThe orale enrypts one of the messages, the hoie of whih being made aording to the bit b. Now thetwo worlds are as follows:World 0: The orale provided to the adversary is EK(LR(�; �; 0)). So, whenever the adversary makes a query(M0;M1) to its orale, the latter omputes C R EK(M0), and returns C as the answer.World 1: The orale provided to the adversary is EK(LR(�; �; 1)). So, whenever the adversary makes a query(M0;M1) to its orale, the latter omputes C R EK(M1), and returns C as the answer.

92 Goldwasser and BellareWe all the �rst world, or orale, the \left" world or orale, and the seond the \right" world or orale. Theproblem for the adversary is, after talking to its orale for some time, to tell whih of the two orales it wasgiven. Before we pin this down, let us further larify exatly how the orales operate.Think of an orale as a subroutine to whih A has aess. A an make an orale query (M0;M1) by writing(M0;M1) in some speial, spei�ed loation in memory, and, in one step, the answer is returned. A has noontrol on how the answer is omputed, nor an A even see the working of the orale, whih will typiallydepend on seret information that A is not given. A just has an interfae to this subroutine; the ability toall it as a blak-box, and get bak an answer.First assume the given symmetri enryption sheme SE is stateless. The orale, in either world, is proba-bilisti, beause it alls the enryption algorithm. Reall that this algorithm is probabilisti. Above, whenwe say C R EK(Mb), it is impliit that E piks its own random oins impliitly and uses them to omputeC.The random hoies of the enryption funtion are somewhat \under the rug" here, but should not beforgotten; they are entral to the meaningfulness of the notion, as also the seurity of the shemes.If the given symmetri enryption sheme SE was stateful, the orales, in either world, beome stateful too.(Think of a subroutine that maintains a global variable aross alls to the subroutine.) In world b the oralebegins with a state value initialized aording to the spei�ation of the sheme. For example, for CTRmode with a ounter, it is a ounter tr set to 0. Now, eah time the orale is invoked, it omputes EK(Mb)aording to the spei�ation of algorithm E . This algorithm will, as a side-e�et, update the ounter, andupon the next invoation of the orale, the new ounter value will be used.We larify that the hoie of whih world we are in is made one, a priori, and then the adversary exeutes.In world 0, all message pairs sent to the orale are answered by the orale enrypting the left message in thepair, while in world 1, all message pairs are answered by the orale enrypting the right message in the pair.The hoie of whih does not ip-op from orale query to orale query; it is made one and then remainsthe same for all messages.We onsider an enryption sheme to be \seure against hosen-plaintext attak" if a \reasonable" adversaryannot obtain \signi�ant" advantage in distinguishing the ases b = 0 and b = 1 given aess to the orale,where reasonable reets its resoure usage. The tehnial notion is alled indistinguishability under hosen-plaintext attak, denoted IND-CPA.Before presenting it we need to disuss a subtle point. There are ertain queries that an adversary an maketo its lr-enryption orale whih will de�nately enable it to learn the value of the hidden bit b (meaning�gure out in whih world it is) but whih we onsider illegitimate. One is to query the orale with messagesM0;M1 of di�erent lengths. We do not ask that enryption hide the length of the plaintext, and indeedommon shemes reveal this beause the length of the iphertext depends on the length of the plaintext,so an adversary making suh a query ould easily win. Another, less obvious attak is for the adversary tomake a query M0;M1 of equal-length messages suh that EK(M0) 6= ? and EK(M1) = ?. (If the shemeis stateless, this means M0 is in the plaintext spae and M1 is not.) For some shemes, it is easy for theadversary to �nd suh messages. However, the response of the lr-enryption orale then gives away the bitb. We have hosen to deal with these issues by simply disallowing the adversary from making suh queries.That is, let us say that an adversary is illegitimate if it either makes a lr-enryption query onsisting of twomessages of di�erent lengths, or makes an lr-enryption query M0;M1 for whih EK(M) = ? with positiveprobability for some value of . The adversary is legitimate if it is not illegitimate.The issue of legitimay an, one disussed, be forgotten, sine in all our redutions and results we will haveonly legitimate adversaries, but we do have to deal with it in the de�nition.De�nition 6.11 Let SE = (K; E ;D) be a symmetri enryption sheme, let b 2 f0; 1g, and let A be analgorithm that has aess to an orale that takes input a pair of strings and returns a string. We onsiderthe following experiment:

Cryptography: Leture Notes 93Experiment Expind-pa-bSE;AK R Kd AEK (LR(�;�;b))Return dThe ind-pa-advantage of A is de�ned asAdvind-paSE;A = P hExpind-pa-1SE;A = 1i�P hExpind-pa-0SE;A = 1iif A is legitimate, and 0 otherwise. For any t; q; � we de�ne the ind-pa-advantage of SE viaAdvind-paSE (t; q; �) = maxA nAdvind-paSE;A owhere the maximum is over all legitimate A having time-omplexity t, making to the orale at most q queriesthe sum of whose lengths is at most � bits.We disuss some important onventions. The time-omplexity mentioned above is the worst ase totalexeution time of the experiment, plus the size of the ode of the adversary, in some �xed RAM model ofomputation. We stress that the the total exeution time of the experiment is more than the running time ofthe adversary. It inludes the time of all operations in the experiment, inluding the time for key generationand the omputation of answers to orale queries. This onvention for measuring time omplexity is thesame as used in other parts of these notes.Another onvention is that the length of a query M0;M1 to a left-or-right enryption orale is de�ned asjM0j. (We an assume this equals jM1j sine the adversary is assumed to be legitimate.) This onvention isused in measuring the parameter �.If Advind-paSE;A is small, it means that A is outputting 1 just about as often in world 0 as in world 1, meaningit is not doing a good job of telling whih world it is in. If this quantity is large (meaning lose to one) thenthe adversary A is doing well, meaning our sheme SE is not seure.For symmetri enryption sheme SE to be seure against hosen plaintext attak, the ind-pa-advantageof an adversary must be small, no matter what strategy the adversary tries. However, we expet that theadvantage grows as the adversary invests more e�ort in the proess. To apture this we have de�ned theadvantage funtion Advind-paSE (�; �; �) as above. This is a funtion assoiated to any symmetri enryptionsheme SE , whih beomes �xed one we �x the sheme. The resoures of the adversary we have hosento use in the parameterization are three. First, its time-omplexity, measured aording to the onventionabove. Seond, the number of orale queries, or the number of message pairs the adversary asks of itsorale. These messages may have di�erent lengths, and our third parameter is the sum of all these lengths,denoted �, again measured aording to the onvention above. The ind-pa-advantage funtion of the shememeasures the maximum probability that the seurity of the sheme SE an be ompromised by an adversaryusing the indiated resoures.6.5.2 Alternative interpretation of advantageWhy is the Advind-paSE;A alled the \advantage" of the adversary? We an view the task of the adversary astrying to guess whih world it is in. A trivial guess is for the adversary to return a random bit. In that ase,it has probability 1=2 of being right. Clearly, it has not done anything damaging in this ase. The advantageof the adversary measures how muh better than this it does at guessing whih world it is in, namely theexess over 1=2 of the adversary's probability of guessing orretly. In this subsetion we will see how theabove de�nition orresponds to this alternative view, a view that lends some extra intuition to the de�nitionand is also useful in later usages of the de�nition.As usual we �x a symmetri enryption sheme SE = (K; E ;D). We now onsider the following game, orexperiment.

94 Goldwasser and BellareExperiment Expind-pa-gSE;APik a bit b at randomLet K R Kg AEK(LR(�;�;b))If b = g return 1 else return 0Here, A is run with an orale for world b, where the bit b is hosen at random. A eventually outputs a bitg, its guess as to the value of b. The experiment returns 1 if A's guess is orret. ThusP hExpind-pa-gSE;A = 1iis the probability that A orretly guesses whih world it is in. (The probability is over the initial hoieof world as given by the bit b, the hoie of K, the random hoies of EK(�) if any, and the oins of A ifany.) The following proposition says that one-half of the advantage is exatly the exess above one-half ofthe hane that A orretly guesses whih world it is in.Proposition 6.12 Let SE be a symmetri enryption sheme. ThenP hExpind-pa-gSE;A = 1i = 12 + Advind-paSE;A2 :for any ind-pa-adversary A.Proof of Proposition 6.12: We let P [�℄ be the probability of event \�00 in the experiment Expind-pa-gSE;A ,and refer below to quantities in this experiment. The laim of the Proposition follows by a straightforwardalulation: P hExpind-pa-gSE;A = 1i= P [b = g℄= P [b = g j b = 1℄ �P [b = 1℄ +P [b = g j b = 0℄ �P [b = 0℄= P [b = g j b = 1℄ � 12 +P [b = g j b = 0℄ � 12= P [g = 1 j b = 1℄ � 12 +P [g = 0 j b = 0℄ � 12= P [g = 1 j b = 1℄ � 12 + (1�P [g = 1 j b = 0℄) � 12= 12 + 12 � (P [g = 1 j b = 1℄�P [g = 1 j b = 0℄)= 12 + 12 � �P hExpind-pa-1SE;A = 1i�P hExpind-pa-0SE;A = 1i�= 12 + 12 �Advind-paSE;A :We began by expanding the quantity of interest via standard onditioning. The term of 1=2 in the thirdline emerged beause the hoie of b is made at random. In the fourth line we noted that if we are askingwhether b = g given that we know b = 1, it is the same as asking whether g = 1 given b = 1, and analogouslyfor b = 0. In the �fth line and sixth lines we just manipulated the probabilities and simpli�ed. The nextline is important; here we observed that the onditional probabilities in question are exatly the suessprobabilities in the real and random games respetively. That meant we had reovered the advantage, asdesired.

Cryptography: Leture Notes 956.6 Example hosen-plaintext attaksWe illustrate the use of the model in �nding attaks by providing an attak on ECB mode, and also a generalattak on deterministi, stateless shemes.6.6.1 Attak on ECBLet us �x a blok ipherE: f0; 1gk�f0; 1gl ! f0; 1gl. The ECB symmetri enryption sheme SE = (K; E ;D)is that of Sheme 6.3. Suppose an adversary sees a iphertext C = EK(M) orresponding to some unknownplaintext text M , enrypted under the key K also unknown to the adversary. Can the adversary reoverM?Not easily, if E is a \good" blok ipher. For example if E is AES, it seems quite infeasible. Yet, we havealready disussed how infeasability of reovering plaintext from iphertext is not an indiation of seurity.ECB has other weaknesses. Notie that if two plaintexts M and M 0 agree in the �rst blok, then so do theorresponding iphertexts. So an adversary, given the iphertexts, an tell whether or not the �rst bloks ofthe orresponding plaintexts are the same. This is loss of partial information about the plaintexts, and isnot permissible in a seure enryption sheme.It is a test of our de�nition to see that the de�nition aptures these weaknesses and also �nds the shemeinseure. It does. To show this, we want to show that there is an adversary that has a high ind-pa-advantagewhile using a small amount of resoures. This is what the following proposition says.Proposition 6.13 Let E: f0; 1gk�f0; 1gl ! f0; 1gl be a blok ipher, and SE = (K; E ;D) the orrespondingECB symmetri enryption sheme as desribed in Sheme 6.3. ThenAdvind-paSE (t; 1; 2l) = 1for t = O(l) plus the time for two appliations of the blok ipher.The advantage of this adversary is 1 even though it uses hardly any resoures: just one query, and not along one at that. That is learly an indiation that the sheme is inseure.Proof of Proposition 6.13: We will present an adversary algorithm A, having time-omplexity t, making1 query to its orale, this query being of length 2l, and havingAdvind-paSE;A = 1 :The Proposition follows.Remember the adversaryA is given a lr-enryption orale EK(LR(�; �; b)) whih takes input a pair of messages,and returns an enryption of either the left or the right message in the pair, depending on the value of b.The goal of A is to determine the value of b. Our adversary works like this:Adversary AEK(LR(�;�;b))M1 02l ; M0 0lk1lC[1℄C[2℄ EK(LR(M0;M1; b))If C[1℄ = C[2℄ then return 1 else return 0The adversary's single orale query is the pair of messages M0;M1. Sine eah of them is two bloks long,so is the iphertext omputed aording to the ECB sheme. Now, we laim thatP hExpind-pa-1SE;A = 1i = 1P hExpind-pa-0SE;A = 1i = 0 :

96 Goldwasser and BellareHene Advind-paSE;A = 1 � 0 = 1. And A ahieved this advantage by making just one orale query, whoselength, whih as per our onventions is just the length of M0, is 2l bits. So Advind-paSE (t; 1; 2l) = 1.Why are the two equations laimed above true? You have to return to the de�nitions of the quantities inquestion, and trae through the experiments de�ned there. In World 1, meaning when b = 1, the oralereturns C[1℄C[2℄ = EK(0l)kEK(0l), so C[1℄ = C[2℄ and A returns 1. In World 0, meaning when b = 0, theorale returns C[1℄C[2℄ = EK(0l)EK(1l). Sine EK is a permutation, C[1℄ 6= C[2℄. So A returns 0 in thisase.As an exerise, try to analyze the same adversary as an adversary against CBC or CTR modes, and onvineyourself that the adversary will not get a high advantage.There is an important feature of this attak that must be emphasized. Namely, ECB is an inseure enryptionsheme even if the underlying blok ipher E is highly seure. The weakness is not in the tool being used,but in the manner we are using it. It is the ECB mehanism that is at fault. Even a good tool is useless ifyou don't use it well.This is the kind of design aw that we want to be able to spot and eradiate. Our goal is to �nd symmetrienryption shemes that are seure as long as the underlying blok ipher is seure. In other words, thesheme has no inherent aw. As long as you use good ingredients, the reipe produes a good meal. If youdon't use good ingredients? Well, that is your problem.6.6.2 Deterministi, stateless shemes are inseureECB mode is deterministi and stateless, so that if the same message is enrypted twie, the same iphertextis returned. It turns out that this property, in general, results in an inseure sheme, and provides perhapsa better understanding of why ECB fails. Let us state the general fat more preisely.Proposition 6.14 Let SE = (K; E ;D) be a deterministi, stateless symmetri enryption sheme. Assumethere is an integer m suh that the plaintext spae of the sheme ontains two distint strings of length m.Then Advind-paSE (t; 2; 2m) = 1for t = O(l) plus the time for two enryptions.The requirement being made on the message spae is minimal; typial shemes have messages spaes ontain-ing all strings of lengths between some minimum and maximum length. Note that this Proposition appliesto ECB and is enough to show the latter is inseure, but Proposition 6.13 shows something a little strongerbeause there there is only one query rather than two.Proof of Proposition 6.14: We will present an adversary algorithm A, having time-omplexity t, making2 queries to its orale, eah query being of length m, and havingAdvind-paSE;A = 1 :The Proposition follows.Remember the adversaryA is given a lr-enryption orale EK(LR(�; �; b)) whih takes input a pair of messages,and returns an enryption of either the left or the right message in the pair, depending on the value of b.The goal of A is to determine the value of b. Our adversary works like this:Adversary AEK(LR(�;�;b))Let X;Y be distint, m-bit strings in the plaintext spaeC1 EK(LR(X;Y; b))C2 EK(LR(Y; Y; b))If C1 = C2 then return 1 else return 0

Cryptography: Leture Notes 97Now, we laim that P hExpind-pa-1SE;A = 1i = 1P hExpind-pa-0SE;A = 1i = 0 :Hene Advind-paSE;A = 1 � 0 = 1. And A ahieved this advantage by making two orale query, eahof whose length, whih as per our onventions is just the length of the �rst message, is m bits. SoAdvind-paSE (t; 2; 2m) = 1.Why are the two equations laimed above true? In World 1, meaning when b = 1, the orale returnsC1 = EK(Y) and C2 = EK(Y), and sine the enryption funtion is deterministi and stateless, C1 = C2, soA returns 1. In World 0, meaning when b = 0, the orale returns C1 = EK(X) and C2 = EK(Y), and sineit is required that deryption be able to reover the message, it must be that C1 6= C2. So A returns 0.6.7 Seurity against plaintext reoveryIn Setion 6.3 we noted a number of seurity properties that are neessary but not suÆient for seurity. Forexample, it should be omputationally infeasible for an adversary to reover the key from a few plaintext-iphertext pairs, or to reover a plaintext from a iphertext. A test of our de�nition is that it implies theseproperties, in the sense that a sheme that is seure in the sense of our de�nition is also seure againstkey-reovery or plaintext-reovery.The situation is analogous to what we saw in the ase of PRFs. There we showed that a seure PRF isseure against key-reovery. In order to have some variation, this time we hoose a di�erent property, namelyplaintext reovery. We formalize this, and then show if there was an adversary B apable of reovering theplaintext from a given iphertext, then this would enable us to onstrut an adversary A that broke thesheme in the IND-CPA sense, meaning �gured out whih of the two Worlds it is in. But if the sheme isseure in the IND-CPA sense, that latter adversary ould not exist. Hene, neither ould the former.The idea of this argument illustrates how we onvine ourselves that the above de�nition is good, and apturesall the properties we might want for seurity against hosen plaintext attak. Take some other property thatyou feel a seure sheme should have: infeasability of key reovery from a few plaintext-iphertext pairs;infeasabilty of prediting the XOR of the plaintext bits; et. Imagine there was an adversary B that wassuessful at this task. We laim this would enable us to onstrut an adversary A that broke the shemein the left-or-right sense, and hene B does not exist if the sheme is seure in the left-or-right sense. Morepreisely, we would use the inseurity funtion of the sheme to bound the probability that adversary Bsueeds. Assuming the inseurity funtion is small at the spei�ed parameter values, so is the hane thatadversary B sueeds.Let us now go through the plaintext reovery example in detail. The task faing the adversary will be toderypt a iphertext whih was formed by enrypting a randomly hosen hallenge message of some lengthm. In the proess we want to give the adversary the ability to see plaintext-iphertext pairs, and apturethis by giving it aess to an enryption orale. This enryption orale is not the lr-enryption orale we sawabove: instead, it simply takes input a single message M and returns a iphertext C R EK(M) omputedby enrypting M . To apture providing the adversary with a hallenge iphertext, we introdue anotherorale that takes no inputs, and upon being invoked piks a random m-bit string (plaintext) M , omputesC R EK(M), and returns C. The adversary is allowed only a single query to this orale, and wins if it anoutput the plaintext M orresponding to the iphertext C that this hallenge orale returns. We denotethe hallenge orale by EK($m). Here $m is meant to indiate the hoosing of a random m-bit string as theinput to EK .For simpliity we assume the enryption sheme is stateless, and that f0; 1gm is a subset of the plaintext spaeassoiated to the sheme. As usual, when either the enryption or the hallenge orale invoke the enryption

98 Goldwasser and Bellarefuntion, it is impliit that they respet the randomized nature of the enryption funtion, meaning thelatter tosses oins anew upon eah invoation of the orale.De�nition 6.15 Let SE = (K; E ;D) be a stateless symmetri enryption sheme whose plaintext spaeinludes f0; 1gm, and let B be an algorithm that has aess to two orales. We onsider the followingexperiment: Experiment ExpprSE;BK R KM BEK(�);EK($m)If DK(C) =M , where C was the response to B's query to EK($m)then return 1else return 0The pr-advantage of B is de�ned asAdvprSE;B = P hExpprSE;B = 1i :For any t; q; � we de�ne the pr-advantage of SE viaAdvprSE(t; q; �) = maxB nAdvprSE;B owhere the maximum is over all B having time-omplexity t, making to the enryption orale at most qqueries the sum of whose lengths is at most � bits.In the experiment above, B is exeuted with its two orales. Reall that it is allowed exatly one query toits hallenge orale. We denote the iphertext returned as response to this query by C. (Reall the hallengeorale takes no inputs.) The adversary B wins if it an orretly derypt C, and in that ase the experimentreturns 1. In the proess, the adversary an make enryption orale queries as it pleases.The following Proposition says that the probability that an adversary suessfully reovers a plaintext froma hallenge iphertext annot exeed the ind-pa-advantage of the sheme (with resoure parameters those ofthe plaintext reovery adversary) plus the hane of simply guessing the plaintext. In other words, seurityin the IND-CPA sense implies seurity against plaintext reovery.Proposition 6.16 Let SE = (K; E ;D) be a stateless symmetri enryption sheme whose plaintext spaeinludes f0; 1gm. Then AdvprSE(t; q; �) � Advind-paSE (t; q + 1; �+m) + 12mfor any t; q; �.The reason this is true is quite simple. If an adversary B were apable of derpting a hallenge iphertext,we ould easily build an adversary AB that, using B as a subroutine, would be able to tell whether it is inWorld 0 or World 1. In other words, it is a redution.Proof of Proposition 6.16: We will show that given any adversary B whose resoures are restrited tot; q; � we an onstrut an adversary AB , using resoures t; q + 1; �+m, suh thatAdvprSE;B � Advind-paSE;AB + 12m : (6.2)The Proposition follows by the usual maximization proess.As per De�nition 6.1, adversary AB will be provided a lr-enryption orale, and will try to determine inwhih World it is. To do so, it will run adversary B as a subroutine. We provide the desription followed byan explanation and analysis.

Cryptography: Leture Notes 99Adversary AEK(LR(�;�;b))BRun adversary B, replying to its orale queries as followsWhen B makes an enryption orale query X doY EK(LR(X;X; b))Return Y to B as the answerWhen B makes its hallenge orale query doM0 R f0; 1gm ; M1 R f0; 1gmC EK(LR(M0;M1; b))Return C to B as the answerUntil B stops and outputs a plaintext MIf M =M1 then return 1 else return 0Here AB is running B and itself providing answers to B's orale queries. When B makes an enryptionorale query X , adversary AB needs to return EK(X). It does this by invoking its lr-enryption orale withboth messages in the pair set to X , so that regardless of the value of the bit b, the iphertext returned isan enryption of X , just as B wants. When B makes its (one and only) query to the hallenge orale, ABpiks two random messages, eah of length m, and invokes its lr-enryption orale on them to get bak aiphertext C. Now B returns a message M whih is supposed to be the deryption of C. Adversary ABtests whether M =M1 and if so bets that it is in World 1. Else it bets that it is in World 0. Now we laimthat P hExpind-pa-=SE;AB;1 1i � AdvprSE;BP hExpind-pa-=SE;AB;0 1i � 2�m :We will justify these laims shortly, but �rst let us use them to onlude. Subtrating, as per De�nition 6.1,we get Advind-paSE;AB = P hExpind-pa-=SE;AB ;1 1i�P hExpind-pa-=SE;AB;0 1i� AdvprSE;B � 2�m :Re-arranging terms gives us Equation (6.2). It remains to justify Equations (6.3) and (6.3).Adversary B will return the M = DK(C) with probability at least AdvprSE;B . In World 1, iphertext C is anenryption ofM1, so this means thatM =M1 with probability at least AdvprSE;B , and thus Equation (6.3) istrue. Now assume AB is in World 0. In that ase, AB will return 1 only if B returnsM =M1. But B is givenno information about M1, sine C is an enryption of M0 and M1 is hosen randomly and independently ofM0. It is simply impossible for B to output M1 with probability greater than 2�m. Thus Equation (6.3) istrue.Similar arguments an be made to show that other desired seurity properties of a symmetri enryptionsheme follow from this de�nition. For example, is it possible that some adversary B, given some plaintext-iphertext pairs and then a hallenge iphertext C, an ompute the XOR of the bits of M = DK(C)? Orthe sum of these bits? Or the last bit of M? Its probability of doing any of these annot be more thanmarginally above 1=2 beause were it so, we ould design an adversary A that won the left-or-right gameusing resoures omparable to those used by B. We leave as an exerise the formulation and working out ofother suh examples along the lines of Proposition 6.16.Of ourse one annot exhaustively enumerate all desirable seurity properties. But you should be movingtowards being onvined that our notion of left-or-right seurity overs all the natural desirable properties ofseurity under hosen plaintext attak. Indeed, we err, if anything, on the onservative side. There are someattaks that might in real life be viewed as hardly damaging, yet our de�nition delares the sheme inseureif it suumbs to one of these. That is all right; there is no harm in being a little onservative. What is moreimportant is that if there is any attak that in real life would be viewed as damaging, then the sheme willfail the left-or-right test, so that our formal notion too delares it inseure.

100 Goldwasser and Bellare6.8 Seurity of CTR against hosen-plaintext attakLet F : f0; 1gk � f0; 1gl ! f0; 1gL be a family of funtions. The CTR symmetri enryption sheme omesin two variants: the randomized (stateless) one of Sheme 6.5 and the ounter-based (stateful) one ofSheme 6.6. Both are seure against hosen-plaintext attak, but, interestingly, the ounter version is moreseure than the randomized version. We will �rst state the main theorems about the shemes, disuss them,and then prove them. For the ounter version we have:Theorem 6.17 Let F : f0; 1gk � f0; 1gl ! f0; 1gL be a family of funtions and let SE = (K; E ;D) be theorresponding C-CTR symmetri enryption sheme as desribed in Sheme 6.6. Then for any t; q; � with� < L2l we have Advind-paSE (t; q; �) � 2 �AdvprfF (t; q0; lq0) ;where q0 = �=L.And for the randomized version:Theorem 6.18 Let F : f0; 1gk � f0; 1gl ! f0; 1gL be a family of funtions and let SE = (K; E ;D) be theorresponding R-CTR symmetri enryption sheme as desribed in Sheme 6.5. Then for any t; q; � with� < L2l we have Advind-paSE (t; q; �) � 2 �AdvprfF (t; q0; lq0) + �(q � 1)L2l ;where q0 = �=L.This kind of result is what this whole approah is about. Namely, we are able to provide provable guaranteesof seurity of some higher level ryptographi onstrut (in this ase, a symmetri enryption sheme) basedon the assumption that some building blok (in this ase an underlying blok ipher treated as a PRF) isseure. They are the �rst example of the \punh-line" we have been building towards. So it is worth pausingat this point and trying to make sure we really understand what these theorems are saying and what aretheir impliations.If we want to entrust our data to some enryption mehanism, we want to know that this enryptionmehanism really provides privay. If it is ill-designed, it may not. We saw this happen with ECB. Even ifwe used a seure blok ipher, the design aws of ECB mode made it an inseure enryption sheme.Flaws are not apparent in CTR at �rst glane. But maybe they exist. It is very hard to see how one an beonvined they do not exist, when one annot possible exhaust the spae of all possible attaks that ouldbe tried. Yet this is exatly the diÆulty that the above theorems irumvent. They are saying that CTRmode does not have design aws. They are saying that as long as you use a good blok ipher, you areassured that nobody will break your enryption sheme. One annot ask for more, sine if one does not usea good blok ipher, there is no reason to expet seurity anyway. We are thus getting a onvition that allattaks fail even though we do not even know exatly how these attaks operate. That is the power of theapproah.Now, one might appreiate that the ability to make suh a powerful statement takes work. It is for this thatwe have put so muh work and time into developing the de�nitions: the formal notions of seurity that makesuh results meaningful. For readers who have less experiene with de�nitions, it is worth knowing, at least,that the e�ort is worth it. It takes time and work to understand the notions, but the payo�s are big: youatually have the ability to get guarantees of seurity.How, exatly, are the theorems saying this? The above disussion has pushed under the rug the quantitativeaspet that is an important part of the results. It may help to look at a onrete example.

Cryptography: Leture Notes 101Example 6.19 Let us suppose that F is AES. So the key size is k = 128 and the blok size is l = L = 128.Suppose I want to enrypt q = 240 messages, eah 128�23 bits long, so that I am enrypting a total of � = 250bits of data. Can I do this seurely using ounter-mode CTR? What is the hane that an adversary �guresout something about my data? Well, if the adversary has t = 260 omputing yles, then by de�nitionits hane is not more than Advind-paSE (t; q; �). That has nothing to do with the theorem: it is just ourde�nitions, whih say that this is the maximum probability of being able to break the enryption shemein these given resoures. So the question of whether the sheme is seure for my hosen parameters boilsdown to asking what is the value of Advind-paSE (t; q; �). A priori, we have no idea. But now, we appealto Theorem 6.17, whih says that this hane is at most 2 �AdvprfF (t; q0; 128q0), where q0 is as given in thetheorem. Namely q0 = �=L = 250=128 = 243. So the question is, what is the value of AdvprfF (t; q0; 128q0)with these values of t0; q0?Thus, what the theorem has done is redue the question of estimating the probability of loss of privay fromthe enryption sheme to the question of estimating the pseudorandomness of AES. As per Setion 5.6.2,one might onjeture that AdvprfAES(t; q0; 128q0) = 1 � t=TAES2128 + (q0)22128 ;where TAES is the time to do one AES omputation on our �xed RAM model of omputation. Now plug int = 260 and q0 = 243 and take into aount what we omputed above. We getAdvind-paSE (t; q; �) � 2 �AdvprfAES(t; q0; 128q0)� 21 � t=TAES2128 + 2(q0)22128= 2612128 � 1TAES + 243�2+12128= 1267 � 1TAES + 1241� 1241 :In the last step, we made the (very reasonable) assumption that 1=TAES is at most 226. Thus, the hane theadversary gets any information about our enrypted data is about 2�41, even though we allow this adversaryomputing time up to 260, and are enrypting 250 bits of data. This is a very small hane, and we anertainly live with it. It is in this sense that we say the sheme is seure.Example 6.20 You are enouraged to work out another example along the following lines. Don't assumeF is AES, but rather assume it is an even better PRF. It still has k = l = L = 128, but assume it is not apermutation, so that there are no birthday attaks; spei�ally, assumeAdvprfF (t; q0; 128q0) = 1 � t=TAES2128 + 1 � q2128 :Now, onsider both the ounter-based CTR sheme and the randomized one. In the theorems, the di�ereneis the �(q� 1)=L2l term. Try to see what kind of di�erene this makes. For eah sheme, onsider how highyou an push q; �; t and still have some seurity left. For whih sheme an you push them higher? Whihsheme is thus \more seure"?These examples illustrate how to use the theorems to �gure out how muh seurity you will get from theCTR enryption sheme in some appliation.6.8.1 Proof of Theorem 6.17The paradigm used is quite general in many of its aspets, and we will use it again, not only for enryptionshemes, but for other kinds of shemes that are based on pseudorandom funtions.

102 Goldwasser and BellareAlgorithm Eg(M)If jM j < L then return ?If jM j mod L 6= 0 then return ?Parse M as M [1℄ : : :M [n℄If tr + n � 2l then return ?For i = 1; : : : ; n doC[i℄ g(NtSl(tr + i))�M [i℄EndForC[0℄ NtSl(tr)C C[0℄C[1℄ : : : C[n℄tr tr + nReturn C
Algorithm Df (C)If jCj < l+ L then return ?If (jCj � l) mod L 6= 0 then return ?Let C[0℄ be the �rst l bits of CParse the rest of C as C[1℄ : : : C[n℄tr StN(C[0℄)For i = 1; : : : ; n doM [i℄ g(NtSl(tr + i))�C[i℄EndForM M [1℄ : : :M [n℄Return MFigure 6.2: Version SE [G℄ = (K; E ;D) of the C-CTR sheme parameterized by a family of funtions G.An important observation regarding the CTR sheme is that the enryption and deryption operations donot need diret aess to the key K, but only aess to a subroutine, or orale, that implements the funtionFK . This is important beause one an onsider what happens when FK is replaed by some other funtion.To onsider suh replaements, we reformulate the sheme. We introdue a sheme that takes as a parameterany given family of funtions G having domain f0; 1gl and range f0; 1gL. As we will see later the ases ofinterest are G = F and G = Randl!L. Let us �rst however desribe this parameterized sheme. In therest of this proof, SE [G℄ = (K; E ;D) denotes the symmetri enryption sheme de�ned as follows. The keygeneration algorithm simply returns a random instane of G, meaning piks a funtion g R G from familyG at random, and views g as the key. The enryptor maintains a ounter tr whih is initially zero. Theenryption and deryption algorithms are shown in Figure 6.2. In the �gure, parsingM means that we divideit into L-bit (not l-bit!) bloks and let M [i℄ denote the i-th suh blok. For C the deryption algorithm �rsthops o� the �rst l bits, and then divides the rest of the string into L-bit bloks. The enryption algorithmupdates the ounter upon eah invoation, and begins with this updated value the next time it is invoked.As the desription indiates, the sheme is exatly C-CTR, exept that funtion g is used in plae of FK .This seemingly osmeti hange of viewpoint is quite useful, as we will see.We observe that the sheme in whih we are interested, and whih the theorem is about, is simply SE [F ℄where F is our given family of funtions as per the theorem. Now, the proof breaks into two parts. The�rst step removes F from the piture, and looks instead at an \idealized" version of the sheme. Namelywe onsider the sheme SE [Randl!L℄. Here, a random funtion g of l-bits to L-bits is being used where theoriginal sheme would use FK . We then assess an adversary's hane of breaking this idealized sheme. Weargue that this hane is atually zero. This is the main lemma in the analysis.This step is de�nitely a thought experiment. No real implementation an use a random funtion in plaeof FK beause even storing suh a funtion takes an exorbitant amount of memory. But this analysis ofthe idealized sheme enables us to fous on any possible weaknesses of the CTR mode itself, as opposed toweaknesses arising from properties of the underlying blok ipher. We an show that this idealized shemeis seure, and that means that the mode itself is good.It then remains to see how this \lifts" to a real world, in whih we have no ideal random funtions, but ratherwant to assess the seurity of the sheme SE [F ℄ that uses the given family F . Here we exploit the notion ofpseudorandomness to say that the hane of an adversary breaking the SE [F ℄ an di�er from its hane ofbreaking the ideal-world sheme SE [Randl!L℄ by an amount not exeeding the probability of breaking thepseudorandomness of F .Lemma 6.21 Let A be any ind-pa-adversary attaking SE [Randl!L℄. ThenAdvind-paSE[Randl!L℄;A = 0

Cryptography: Leture Notes 103as long as the total length of A's orale queries is at most L2l.The lemma onsiders an aribtrary adversary. Let us say this adversary has time-omplexity t, makes qqueries to its lr-enryption orale, these totalling � bits. The lemma does not are about the values of tand q, but insists that � be at most L2l. Under this restrition, it makes a strong statement. It says thatadversary has zero advantage, meaning no hane at all of breaking the sheme. The strength of this laimis enhaned when one onsiders that the only restrition, that � be at most L2l, is hardly a restrition inpratie, where l is typially at least 64. The fat that no restrition is made on t indiates that the resultis information-theoreti: it holds regardless of how muh omputing time the adversary invests.Of ourse, this lemma refers to the idealized sheme, namely the one where the funtion g being used by theenryption algorithm is random. But remember that ECB was inseure even in this setting. (The attakswe provided for ECB work even if the underlying ipher E is Perml, the family of all permutations.) So thestatement is not ontent-free; it is saying something quite meaningful and important about the CTR mode.It is not true of all modes.We postpone the proof of the lemma. Instead we will �rst see how to use it to onlude the proof of thetheorem. The argument here is quite simple and generi.The lemma tells us that the C-CTR enryption sheme is (very!) seure when g is a random funtion. Butwe are interested in the ase where g is is an instane of our given family F . So our worry is that the atualsheme SE [F ℄ is inseure even though the idealized sheme SE [Randl!L℄ is seure. In other words, we worrythat there might be an adversary having large ind-pa-advantage in attaking SE [F ℄, even though we knowthat its advantage in attaking SE [Randl!L℄ is zero. But we laim that this is not possible if F is a seurePRF. Intuitively, the existene of suh an adversary indiates that F is not approximating Randl!L, sinethere is some detetable event, namely the suess probability of some adversary in a ertain experiment,that happens with high probability when F is used and with low probability when Randl!L is used. Toonretize this intuition, let A be a ind-pa-adversary attaking SE [F ℄. We assoiate to A a distinguisherDA that is given orale aess to a funtion g: f0; 1gl ! f0; 1gL and is trying to determine whih world it isin, where in World 0 g is a random instane of Randl!L and in World 1 g is a random instane of F . Wesuggest the following strategy to the distinguisher. It runs A, and replies to A's orale queries in suh a waythat A is attaking SE [Randl!L℄ in DA's World 0, and A is attaking SE [Randl!L℄ in DA's World 1. Thereason it is possible for DA to do this is that it an exeute the enryption algorithm Eg(�) of Figure 6.2,whih simply requires aess to the funtion g. If the adversary A wins, meaning breaks the enryptionsheme, DA bets that g is an instane of F , and otherwise DA bets that g is an instane of Randl!L.We stress the key point that makes this argument work. It is that the enryption funtion of the C-CTRsheme invokes the funtion FK purely as an orale. If it had, instead, made diret some diret use of thekey K, the paradigm above would not work. The full proof follows.Proof of Theorem 6.17: Let A be any ind-pa-adversary attaking SE = (K; E ;D). Assume A makes qorale queries totalling � bits, and has time-omplexity t. We will design a distinguisher DA suh thatAdvind-paSE;A � 2 �AdvprfF;DA : (6.3)Furthermore,DA will make �=L orale queries and have time-omplexity t. Now, the statement of Theorem 6.17follows as usual, by taking maximums. So the main thing is to provide the distinguisher for whih Equation (6.3)is true. This distinguisher uses A as a subroutine.Remember that DA takes an orale g: f0; 1gl ! f0; 1gL. This orale is either drawn at random from F orfrom Randl!L and DA does not know a priori whih. To �nd out, DA will use A. But remember that A toogets an orale, namely a lr-enryption orale. From A's point of view, this orale is simply a subroutine: Aan write, at some loation, a pair of messages, and is returned a response by some entity it alls its orale.When DA runs A as a subroutine, it is DA that will \simulate" the lr-enryption orale for A, meaning DAwill provide the responses to any orale queries that A makes. Here is the desription of DA:Distinguisher DgA

104 Goldwasser and Bellareb R f0; 1gRun adversary A, replying to its orale queries as followsWhen A makes an orale query (M0;M1) doC R Eg(Mb)Return C to A as the answerUntil A stops and outputs a bit dIf d = b then return 1 else return 0Here Eg(�) denotes the enryption funtion of the generalized C-CTR sheme that we de�ned in Figure 6.2.The ruial fat we are exploiting here is that this funtion an be implemented given an orale for g.Distinguisher DA itself piks the hallenge bit b representing the hoie of worlds for A, and then seeswhether or not A sueeds in guessing the value of this bit. If it does, it bets that g is an instane of F , andotherwise it bets that g is an instane of Randl!L. For the analysis, we laim thatP hExpprf-1F;DA = 1i = 12 + 12 �Advind-paSE[F ℄;A (6.4)P hExpprf-0F;DA = 1i = 12 + 12 �Advind-paSE[Randl!L℄;A : (6.5)We will justify these laims shortly, but �rst let us use them to onlude. Subtrating, as per De�nition 5.4,we get AdvprfF;DA = P hExpprf-1F;DA = 1i�P hExpprf-0F;DA = 1i= 12 �Advind-paSE[F ℄;A � 12 �Advind-paSE[Randl!L℄;A (6.6)= 12 �Advind-paSE[F ℄;A :The last inequality was obtained by applying Lemma 6.21, whih told us that the term Advind-paSE[Randl!L℄;Awas simply zero. Re-arranging terms gives us Equation (6.3). Now let us hek the resoure usage. Eahomputation Eg(Mb) requires jMbj=L appliations of g, and hene the total number of queries made byDA to its orale g is �=L. The time-omplexity of DA equals that of A one one takes into aount theonvention that time-omplexity refers to the time of the entire underlying experiment. It remains to justifyEquations (6.4) and (6.5).Distinguisher DA returns 1 when b = d, meaning that ind-pa-adversary A orretly identi�ed the world b inwhih it was plaed, or, in the language of Setion 6.5.2, made the \orret guess." The role played by DA'sworld is simply to alter the enryption sheme for whih this is true. When DA is in World 1, the enryptionsheme, from the point of view of A, is SE [F ℄, and when DA is in World 0, the enryption sheme, from thepoint of view of A, is SE [Randl!L℄. Thus, using the notation from Setion 6.5.2, we haveP hExpprf-1F;DA = 1i = P hExpind-pa-gSE[F ℄;A = 1iP hExpprf-0F;DA = 1i = P hExpind-pa-gSE[Randl!L℄;A = 1i :To obtain Equations (6.4) and (6.5) we an now apply Proposition 6.12.For someone unused to PRF based proofs of seurity the above may seem omplex, but the underlying ideais atually very simple, and will be seen over and over again. It is simply that one an view the experimentof the ind-pa-adversary attaking the enryption sheme as information about the underlying funtion gbeing used, and if the adversary has more suess in the ase that g is an instane of F than that g is aninstane of Randl!L, then we have a distinguishing test between F and Randl!L. Let us now prove thelemma about the seurity of the idealized C-CTR sheme.

Cryptography: Leture Notes 105Proof of Lemma 6.21: The intuition is simple. When g is a random funtion, its value on suessiveounter values yields a one-time pad, a truly random and unpreditable sequene of bits. As long as thenumber of data bits enrypted does not exeed L2l, we invoke g only on distint values in the entire enryptionproess. The outputs of g are thus random. Sine the data is XORed to this sequene, the adversary getsno information whatsoever about it.Now, we must make sure that this intuition arries through in our setting. Our lemma statement makesreferene to our notions of seurity, so we must use the setup in Setion 6.5.1. The adversary A has aessto a lr-enryption orale. Sine the sheme we are onsidering is SE [Randl!L℄, the orale is Eg(LR(�; �; b)),where the funtion Eg was de�ned in Figure 6.2, and g is a random instane of Randl!L, meaning a randomfuntion.The adversary makes some number q of orale queries. Let (Mi;0;Mi;1) be the i-th query, and let ni be thenumber of bloks in Mi;0. (This is the same as the number of bloks in Mi;1.) Let Mi;[j℄ be the value of thej-th L-bit blok of Mi; for 2 f0; 1g. Let Ci be the response returned by the orale to query (Mi;0;Mi;1).It onsists of ni + 1 bloks, the �rst blok being the l-bit binary representation of the ounter at the startof the enryption Eg(Mi;b), where b is the hallenge bit underlying the Eg(LR(�; �; b)) orale, and the otherbloks are denoted Ci[1℄ : : : Ci[ni℄. Pitorially:M1;b = M1;b[1℄M1;b[1℄ : : :M1;b[n1℄C1 = NtSl(0)C1[1℄ : : : C1[n1℄M2;b = M2;b[1℄M2;b[2℄ : : :M2;b[n2℄C2 = NtSl(n1)C2[1℄ : : : C2[n2℄... ...Mq;b = Mq;b[1℄Mq;b[2℄ : : :Mq;b[nq℄Cq = NtSl(n1 + � � �+ nq�1)Cq [1℄ : : : Cq [nq ℄What kind of distribution do the outputs reeived by A have? We laim that the n1 + � � �+ nq values Ci[j℄(i = 1; : : : ; q and j = 1; : : : ; ni) are randomly and independently distributed, not only of eah other, but ofthe queried messages and the bit b, and moreover this is true in both worlds. Why? Here is where we use aruial property of the CTR mode, namely that it XORs data with the value of g on a ounter. We observethat aording to the shemeCi[j℄ = g(NtSl(n1 + � � �+ ni�1 + j)) �� Mi;1[j℄ if we are in world 1Mi;0[j℄ if we are in world 0.Now, we an �nally see that the idea we started with is really the heart of it. The values on whih g is beingapplied above are all distint. So the outputs of g are all random and independent. It matters not, then,what we XOR these outputs with; what omes bak is just random.This tells us that any given output sequene from the orale is equally likely in both worlds. Sine theadversary determines its output bit based on this output sequene, its probability of its returning 1 must bethe same in both worlds,P hExpind-pa-1SE[Randl!L℄;A = 1i = P hExpind-pa-0SE[Randl!L℄;A = 1i :Hene A's ind-pa-advantage is zero.

106 Goldwasser and BellareAlgorithm Eg(M)If jM j < L then return ?If jM j mod L 6= 0 then return ?Parse M as M [1℄ : : :M [n℄R R f0; 1; : : : ; 2l � 1gFor i = 1; : : : ; n doC[i℄ g(NtSl(R+ i))�M [i℄EndForC[0℄ NtSl(R)C C[0℄C[1℄ : : : C[n℄Return C
Algorithm Df (C)If jCj < l + L then return ?If (jCj � l) mod L 6= 0 then return ?Let C[0℄ be the �rst l bits of CParse the rest of C as C[1℄ : : : C[n℄R StN(C[0℄)For i = 1; : : : ; n doM [i℄ g(NtSl(R+ i))�C[i℄EndForM M [1℄ : : :M [n℄Return MFigure 6.3: Version SE [G℄ = (K; E ;D) of the R-CTR sheme parameterized by a family of funtions G.6.8.2 Proof of Theorem 6.18The proof of Theorem 6.18 re-uses a lot of what we did for the proof of Theorem 6.17 above. We �rst lookat the sheme when g is a random funtion, and then use the pseudorandomness of the given family F todedue the theorem. As before we assoiate to a family of funtions G having domain f0; 1gl and rangef0; 1gL a parameterized version of the R-CTR sheme, SE [G℄ = (K; E ;D). The key generation algorithmsimply returns a random instane of G, meaning piks a funtion g R G from family G at random, andviews g as the key, and the enryption and deryption algorithms are shown in Figure 6.3. Here is the mainlemma.Lemma 6.22 Let A be any ind-pa-adversary attaking SE [Randl!L℄. ThenAdvind-paSE[Randl!L℄;A � �(q � 1)L2l ;where q is the number of orale queries made by A and � < L2l is the total length of these queries.The proof of Theorem 6.18 given this lemma is easy at this point beause it is almost idential to the aboveproof of Theorem 6.17. So let us �nish that �rst, and then go on to prove Lemma 6.22.Proof of Theorem 6.18: Let A be any ind-pa-adversary attaking SE = (K; E ;D). Assume A makes qorale queries totalling � bits, and has time-omplexity t. We will design a distinguisher DA suh thatAdvind-paSE;A � 2 �AdvprfF;DA + �(q � 1)L2l :Furthermore,DA will make �=L orale queries and have time-omplexity t. Now, the statement of Theorem 6.18follows as usual, by taking maximums.The ode for DA is the same as in the proof of Theorem 6.17. However note that the underlying algorithmEg(�) has hanged, now being the one of Figure 6.3 rather than that of Figure 6.2. For the analysis, the onlyhange is that the term Advind-paSE[Randl!L℄;Ain Equation (6.6), rather than being zero, is upper bounded as per Lemma 6.22, and thusAdvprfF;DA � 12 �Advind-paSE[F ℄;A � 12 � �(q � 1)L2l : (6.7)The rest is as before.

Cryptography: Leture Notes 107The above illustrates how general and generi was the \simulation" argument of the proof of Theorem 6.17.Indeed, it adapts easily not only to the randomized version of the sheme, but to the use of pseudorandomfuntions in many other shemes, even for di�erent tasks like message authentiation. The key point thatmakes it work is that the sheme itself invokes g as an orale.Before we prove Lemma 6.22, we will analyze a ertain probabilisti game. The problem we isolate here ispurely probabilisti; it has nothing to do with enryption or even ryptography.Lemma 6.23 Let n; q; l be positive integers, and let n1; : : : ; nq < 2l also be positive integers. Suppose wepik q integers r1; : : : ; rq from the range f0; 1; : : : ; 2l � 1g, uniformly and independently at random. Weonsider the following n1 + � � �+ nq numbers:r1 + 1; r1 + 2; � � � ; r1 + n1r2 + 1; r2 + 2; � � � ; r2 + n2... ...rq + 1; rq + 2; � � � ; rq + nq ;where the addition is performed modulo 2l. We say that a ollision ours if some two (or more) numbersin the above table are equal. Then P [Col℄ � (q � 1)(n1 + � � �+ nq)2l ;where Col denotes the event that a ollision ours.Proof of Lemma 6.23: As with many of the probabilisti settings that arise in this area, this is a questionabout some kind of \balls thrown in bills" setting, related to the birthday problem studied in Setion A.1,and indeed a reader may �nd it helpful to have studied that appendix �rst.Think of having 2l bins, numbered 0; 1; : : : ; 2l � 1. We have q balls, numbered 1; : : : ; q. For eah ball wehoose a random bin whih we all ri. We hoose the bins one by one, so that we �rst hoose r1, then r2,and so on. When we have thrown in the �rst ball, we have de�ned the �rst row of the above table, namelythe values r1 + 1; : : : ; r1 + n1. Then we pik the assignment r2 of the bin for the seond ball. This de�nesthe seond row of the table, namely the values r2 + 1; : : : ; r2 + n2. A ollision ours if any value in theseond row equals some value in the �rst row. We ontinue, up to the q-th ball, eah time de�ning a rowof the table, and are �nally interested in the probability that a ollision ourred somewhere in the proess.To upper bound this, we want to write this probability in suh a way that we an do the analysis step bystep, meaning view it in terms of having thrown, and �xed, some number of balls, and seeing whether thereis a ollision when we throw in one more ball. To this end let Coli denote the event that there is a ollisionsomewhere in the �rst i rows of the table, for i = 1; : : : ; q. Let NoColi denote the event that there is noollision in the �rst i rows of the table, for i = 1; : : : ; q. Then by onditioning we haveP [Col℄ = P [Colq ℄= P [Colq�1℄ +P [Colq j NoColq�1℄ �P [NoColq�1℄� P [Colq�1℄ +P [Colq j NoColq�1℄� ...� P [Col1℄ + qXi=2 P [Coli j NoColi�1℄= qXi=2 P [Coli j NoColi�1℄ :

108 Goldwasser and BellareThus we need to upper bound the hane of a ollision upon throwing the i-th ball, given that there was noollision reated by the �rst i� 1 balls. Then we an sum up the quantities obtained and obtain our bound.We laim that for any i = 2; : : : ; q we haveP [Coli j NoColi�1℄ � (i� 1)ni + ni�1 + � � �+ n12l : (6.8)Let us �rst see why this proves the lemma and then return to justify it. From the above and Equation (6.8)we have P [Col℄ � qXi=2 P [Coli j NoColi�1℄� qXi=2 (i� 1)ni + ni�1 + � � �+ n12l= (q � 1)(n1 + � � �+ nq)2l :How did we do the last sum? The term ni ours with weight i � 1 in the i-th term of the sum, and thenwith weight 1 in the j-th term of the sum for j = i+1; : : : ; q. So its total weight is (i� 1)+ (q� i) = q� 1.It remains to prove Equation (6.8). To get some intuition about it, begin with the ases i = 1; 2. When wethrow in the �rst ball, the hane of a ollision is zero, sine there is no previous row with whih to ollide,so that is simple. When we throw in the seond, what is the hane of a ollision? The question is, what isthe probability that one of the numbers r2 + 1; : : : ; r2 + n2 de�ned by the seond ball is equal to one of thenumbers r1 + 1; : : : ; r1 + n1 already in the table? View r1 as �xed. Observe that a ollision ours if andonly if r1 � n2+1 � r2 � r1 +n1� 1. So there are (r1 +n1� 1)� (r1 �n2 +1)+ 1 = n1 +n2� 1 hoies ofr2 that ould yield a ollision. This means that P [Col2 j NoCol1℄ � (n2 + n1 � 1)=2l.We need to extend this argument as we throw in more balls. So now suppose i� 1 balls have been thrownin, where 2 � i � q, and suppose there is no ollision in the �rst i � 1 rows of the table. We throw in thei-th ball, and want to know what is the probability that a ollision ours. We are viewing the �rst i � 1rows of the table as �xed, so the question is just what is the probability that one of the numbers de�ned byri equals one of the numbers in the �rst i� 1 rows of the table. A little thought shows that the worst ase(meaning the ase where the probability is the largest) is when the existing i� 1 rows are well spread-out.We an upper bound the ollision probability by reasoning just as above, exept that there are i�1 di�erentintervals to worry about rather than just one. The i-th row an interset with the �rst row, or the seondrow, or the third, and so on, up to the (i� 1)-th row. So we getP [Coli j NoColi�1℄ � (ni + n1 � 1) + (ni + n2 � 1) + � � �+ (ni + ni�1 � 1)2l= (i� 1)ni + ni�1 + � � �+ n1 � (i� 1)2l ;and Equation (6.8) follows by just dropping the negative term in the above.Let us now extend the proof of Lemma 6.21 to prove Lemma 6.22.Proof of Lemma 6.22: Reall that the idea of the proof of Lemma 6.21 was that when g is a randomfuntion, its value on suessive ounter values yields a one-time pad. This holds whenever g is applied onsome set of distint values. In the ounter ase, the inputs to g are always distint. In the randomized asethey may not be distint. The approah is to onsider the event that they are distint, and say that in thatase the adversary has no advantage; and on the other hand, while it may have a large advantage in theother ase, that ase does not happen often. We now ush all this out in more detail.

Cryptography: Leture Notes 109The adversary makes some number q of orale queries. Let (Mi;0;Mi;1) be the i-th query, and let ni bethe number of bloks in Mi;0. (This is the same as the number of bloks in Mi;1.) Let Mi;[j℄ be thevalue of the j-th L-bit blok of Mi; for 2 f0; 1g. Let Ci be the response returned by the orale to query(Mi;0;Mi;1). It onsists of ni + 1 bloks, the �rst blok being the l-bit binary representation of the randominteger ri 2 f0; 1; : : : ; 2l � 1g hosen by Eg(Mi;b), where b is the hallenge bit underlying the Eg(LR(�; �; b))orale, and the other bloks are denoted Ci[1℄ : : : Ci[ni℄. Pitorially:M1;b = M1;b[1℄M1;b[1℄ : : :M1;b[n1℄C1 = NtSl(r1)C1[1℄ : : : C1[n1℄M2;b = M2;b[1℄M2;b[2℄ : : :M2;b[n2℄C2 = NtSl(r2)C2[1℄ : : : C2[n2℄... ...Mq;b = Mq;b[1℄Mq;b[2℄ : : :Mq;b[nq ℄Cq = NtSl(rq)Cq [1℄ : : : Cq [nq ℄Let NoCol be the event that the following n1 + � � �+ nq values are all distint:r1 + 1; r1 + 2; � � � ; r1 + n1r2 + 1; r2 + 2; � � � ; r2 + n2... ...rq + 1; rq + 2; � � � ; rq + nqLet Col be the omplement of the event NoCol, meaning the event that the above table ontains at least twovalues that are the same. It is useful for the analysis to introdue the following shorthand:P0 [�℄ = The probability of event \�" in world 0P0 [�℄ = The probability of event \�" in world 1 :We will use the following three laims, whih are proved later. The �rst laim says that the probability of aollision in the above table does not depend on whih world we are in.Claim 1: P1 [Col℄ = P0 [Col℄. 2The seond laim says that A has zero advantage in winning the left-or-right game in the ase that noollisions our in the table. Namely, its probability of outputting one is idential in these two world underthe assumption that no ollisions have ourred in the values in the table.Claim 2: P0 [A = 1 j NoCol℄ = P1 [A = 1 j NoCol℄. 2We an say nothing about the advantage of A if a ollision does our in the table. That is, it might be big.However, it will suÆe to know that the probability of a ollision is small. Sine we already know that thisprobability is the same in both worlds (Claim 1) we bound it just in world 0:Claim 3: P0 [Col℄ � �(q � 1)L2l . 2Let us see how these put together omplete the proof of the lemma, and then go bak and prove them.Proof of Lemma given Claims: It is a simple onditioning argument:Advind-paSE[Randl!L℄;A

110 Goldwasser and Bellare= P1 [A = 1℄�P0 [A = 1℄= P1 [A = 1 j Col℄ �P1 [Col℄ +P1 [A = 1 j NoCol℄ �P1 [NoCol℄� P0 [A = 1 j Col℄ �P0 [Col℄�P0 [A = 1 j NoCol℄ �P0 [NoCol℄Using Claim 1 and Claim 2, the above equals= (P1 [A = 1 j Col℄�P0 [A = 1 j Col℄) �P0 [Col℄� P0 [Col℄ :In the last step we simply bounded the parenthesized expression by 1. Now apply Claim 3, and we aredone. 2It remains to prove the three laims.Proof of Claim 1: The event NoCol depends only on the random values r1; : : : ; rq hosen by the enryptionalgorithm Eg(�). These hoies, however, are made in exatly the same way in both worlds. The di�erenein the two worlds is what message is enrypted, not how the random values are hosen. 2Proof of Claim 2: Given the event NoCol, we have that, in either game, the funtion g is evaluated ata new point eah time it is invoked. (Here we use the assumption that � < L2l, sine otherwise theremay be wraparound in even a single query.) Thus the output is randomly and uniformly distributed overf0; 1gL, independently of anything else. That means the reasoning from the ounter-based sheme as givenin Lemma 6.21 applies. Namely we observe that aording to the shemeCi[j℄ = g(NtSl(ri + j)) �� Mi;1[j℄ if we are in world 1Mi;0[j℄ if we are in world 0.Thus eah ipher blok is a message blok XORed with a random value. A onsequene of this is that eahipher blok has a distribution that is independent of any previous ipher bloks and of the messages. 2Proof of Claim 3: This follows from Lemma 6.23. We simply note that n1 + � � �+ nq = �=L. 2This onludes the proof.6.9 Seurity of CBC against hosen-plaintext attakCBC enryption, presented in Sheme 6.4, is the most popular mode. We looked at the CTR modes �rstbeause they are easier to analyze. Indeed, we will not present the (more omplex) analysis of CBC modeenryption here, but we will state the result. The proof an be found in [20℄.Theorem 6.24 [20℄ Suppose Let F : f0; 1gk � f0; 1gl ! f0; 1gL be a family of funtions and let SE =(K; E ;D) be the orresponding CBC symmetri enryption sheme as desribed in Sheme 6.4. Then for anyt; q; � we have Advind-paSE (t; q; �) � 2 �AdvprfF (t; q0; lq0) + 2�2l22l ;where q0 = �=L.Notie that if all messages are of n bloks then � = nql so the additive term above is O(n2q2=2l).So what about we try to improve this using ounters? We an do ounters with CBC too! But this is nogood. It is a nie exerise to try to �nd the attak. Note this is true even for variations in whih the ounteris inremented by the number of message bloks rather than by just one per message.

Cryptography: Leture Notes 111How about if the ounter is enrypted? Then these attaks appear to vanish, but birthdays are bak. So wedon't really win out over the random IV sheme. In fat the two beome very similar idential: f() where is a ounter is exatly a random number. (They are not idential beause may also arise somewhere inthe plaintext.)In analyzing this, see how to think about these shemes via the modelling we have been doing. Ie think off as a random funtion. In that world the random CBC and enrypted ounter modes are similar.6.10 Indistinguishability under hosen-iphertext attakAbove, we have onsidered privay under hosen-plaintext attak. Sometimes we want to onsider privaywhen the adversary is apable of mounting a stronger type of attak, namely a hosen-iphertext attak. Inthis type of attak, an adversary has aess to a deryption orale. It an feed this orale a iphertext, andget bak the orresponding plaintext.How might suh a situation arise? We ould imagine that an adversary at some point gains temporary aessto the equipment performing deryption. It an feed the equipment iphertexts and see what plaintextsemerge. (We assume it annot diretly extrat the key from the equipment, however.)If an adversary has aess to a deryption orale, seurity at �rst seems moot, sine after all it an deryptanything it wants. To reate a meaningful notion of seurity, we put a restrition on the use of the deryptionorale. To see what this is, let us look loser at the formalization. As in the ase of hosen-plaintext attaks,we onsider two worlds:World 0: The adversary is provided the orale EK(LR(�; �; 0)) as well as the orale DK(�).World 1: The adversary is provided the orale EK(LR(�; �; 1)) as well as the orale DK(�).The adversary's goal is the same as in the ase of hosen-plaintext attaks: it wants to �gure out whihworld it is in. There is one easy way to do this. Namely, query the lr-enryption orale on two distint, equallength messagesM0;M1 to get bak a iphertext C, and now all the deryption orale on C. If the messagereturned by the deryption orale is M0 then the adversary is in World 0, and if the message returned by thederyption orale is M1 then the adversary is in World 1. The restrition we impose is simply that this allto the deryption orale is not allowed. More generally, all a query C to the deryption orale illegitimateif C was previously been returned by the lr-enryption orale. Then, only legitimate queries are allowed. Inthe formalization below, the experiment simply returns 0 if the adversary makes an illegitimate query. (Welarify that a query C is legitimate if C is returned by the lr-enryption orale after C was queried to thederyption orale. It is only when C was previously output by the lr-enryption orale that it is illegitimate.)This restrition still leaves the adversary with a lot of power. Typially, a suessful hosen-iphertextattak proeeds by taking a iphertext C returned by the lr-enryption orale, modifying it into a relatediphertext C 0, and querying the deryption orale with C 0. The attaker seeks to reate C 0 in suh a waythat its deryption tells the attaker what was the message underlying M . We will see this illustrated inSetion 6.11 below.The model we are onsidering here might seem quite arti�ial. If an adversary has aess to a deryptionorale, how an we prevent it from alling the deryption orale on ertain messages? The restrition mightarise due to the adversary's having aess to the deryption equipment for a limited period of time. Weimagine that after it has lost aess to the deryption equipment, it sees some iphertexts, and we areapturing the seurity of these iphertexts in the fae of previous aess to the deryption orale. Furthermotivation for the model will emerge when we see how enryption shemes are used in protools. We will seethat when an enryption sheme is used in an authentiated key exhange protool, the adversary e�etivelyhas the ability to mount hosen-iphertext attaks of the type we are disussing. For now let us just providethe de�nition and exerise it.

112 Goldwasser and BellareDe�nition 6.25 Let SE = (K; E ;D) be a symmetri enryption sheme, let b 2 f0; 1g, and let A be analgorithm that has aess to two orales and returns a bit. We onsider the following experiment:Experiment Expind-a-bSE;AK R Kd AEK(LR(�;�;b)) ;DK(�)If A queried DK(�) on a iphertext previously returned by EK(LR(�; �; b))Then return 0Else return dThe ind-a-advantage of A is de�ned asAdvind-aSE;A = P hExpind-a-1SE;A = 1i�P hExpind-a-0SE;A = 1i :For any t; qe; �e; qd; �d we de�ne the ind-a-advantage of SE viaAdvind-aSE (t; qe; �e; qd; �d) = maxA nAdvind-aSE;A owhere the maximum is over all A having time-omplexity t, making to the lr-enryption orale at most qequeries the sum of whose lengths is at most �e bits, and making to the deryption orale at most qd queriesthe sum of whose lengths is at most �d bits.The onventions with regard to resoure measures are the same as those used in the ase of hosen-plaintextattaks. In partiular, the length of a query M0;M1 to the lr-enryption orale is the length is de�ned asthe length of M0, and the time-omplexity is the exeution time of the entire experiment plus the size of theode of the adversary.We onsider an enryption sheme to be \seure against hosen-iphertext attak" if a \reasonable" adversaryannot obtain \signi�ant" advantage in distinguishing the ases b = 0 and b = 1 given aess to the orales,where reasonable reets its resoure usage. The tehnial notion is alled indistinguishability under hosen-iphertext attak, denoted IND-CCA.6.11 Example hosen-iphertext attaksChosen-iphertext attaks are powerful enough to break all the standard modes of operation, even those likeCTR and CBC that (as we will see later) are seure against hosen-plaintext attak. The one-time pad shemeis also vulnerable to a hosen-iphertext attak: perfet seurity only takes into aount hosen-plaintextattaks. Let us now illustrate a few hosen-iphertext attaks.6.11.1 Attak on CTRLet F : f0; 1gk � f0; 1gl ! f0; 1gL be a family of funtions and let SE = (K; E ;D) be the assoiated R-CTR symmetri enryption sheme as desribed in Sheme 6.5. The weakness of the sheme that makes itsuseptible to a hosen-iphertext attak is the following. Say C[0℄C[1℄ is a iphertext of some L-bit messageM , and we ip bit i of C[1℄, resulting in a new iphertext C[0℄C 0[1℄. Let M 0 be the message obtained byderypting the new iphertext. Then M 0 equals M with the i-th bit ipped. (You should hek that youunderstand why by looking at Sheme 6.5.) Thus, by making a deryption orale query of C[0℄C 0[1℄ one anlearn M 0 and thus M . In the following, we show how this idea an be applied to break the sheme in ourmodel by �guring out in whih world an adversary has been plaed.Proposition 6.26 Let F : f0; 1gk�f0; 1gl ! f0; 1gL be a family of funtions and let SE = (K; E ;D) be theorresponding R-CTR symmetri enryption sheme as desribed in Sheme 6.5. ThenAdvind-aSE (t; 1; L; 1; l+ L) = 1

Cryptography: Leture Notes 113for t = O(l + L) plus the time for one appliation of F .The advantage of this adversary is 1 even though it uses hardly any resoures: just one query to eah orale.That is learly an indiation that the sheme is inseure.Proof of Proposition 6.26: We will present an adversary algorithm A, having time-omplexity t, making1 query to its lr-enryption orale, this query being of length L, making 1 query to its deryption orale,this query being of length l + L, and havingAdvind-aSE;A = 1 :The Proposition follows.Remember the the lr-enryption orale EK(LR(�; �; b)) takes input a pair of messages, and returns an enryp-tion of either the left or the right message in the pair, depending on the value of b. The goal of A is todetermine the value of b. Our adversary works like this:Adversary AEK(LR(�;�;b)) ;DK(�)M0 0L ; M1 1LC[0℄C[1℄ EK(LR(M0;M1; b))C 0[1℄ C[1℄�1L ; C 0 C[0℄C 0[1℄M DK(C 0)If M =M0 then return 1 else return 0The adversary's single lr-enryption orale query is the pair of distint messages M0;M1, eah one bloklong. It is returned a iphertext C[0℄C[1℄. It ips the bits of C[1℄ to get C 0[1℄ and then feeds the iphertextC[0℄C 0[1℄ to the deryption orale. It bets on World 1 if it gets bak M0, and otherwise on World 0. It isimportant that C[0℄C 0[1℄ 6= C[0℄C[1℄, so the deryption orale query is legitimate. Now, we laim thatP hExpind-a-1SE;A = 1i = 1P hExpind-a-0SE;A = 1i = 0 :Hene Advind-aSE;A = 1 � 0 = 1. And A ahieved this advantage by making just one lr-enryption oralequery, whose length, whih as per our onventions is just the length of M0, is L bits, and just one deryptionorale query, whose length is l + L bits. So Advind-aSE (t; 1; L; 1; l+ L) = 1.Why are the two equations laimed above true? You have to return to the de�nitions of the quantities inquestion, as well as the desription of the sheme itself, and walk it through. In World 1, meaning whenb = 1, let C[0℄C[1℄ denote the iphertext returned by the lr-enryption orale, and let R = StN(C[0℄). ThenC[1℄ = FK(NtSl(R+ 1))�M1 = FK(NtSl(R + 1))�1L :Now notie that M = DK(C[0℄C 0[1℄)= FK(NtSl(R + 1))�C 0[1℄= FK(NtSl(R + 1))�C[1℄�1L= FK(NtSl(R + 1))�(FK(NtSl(R+ 1))�1L)�1L= 0L= M0 :

114 Goldwasser and BellareThus, the deryption orale will return M0, and thus A will return 1. In World 0, meaning when b = 0, letC[0℄C[1℄ denote the iphertext returned by the lr-enryption orale, and let R = StN(C[0℄). ThenC[1℄ = FK(NtSl(R+ 1))�M0 = FK(NtSl(R + 1))�0L :Now notie that M = DK(C[0℄C 0[1℄)= FK(NtSl(R + 1))�C 0[1℄= FK(NtSl(R + 1))�C[1℄�1L= FK(NtSl(R + 1))�(FK(NtSl(R+ 1))�0L)�1L= 1L= M1 :Thus, the deryption orale will return M1, and thus A will return 0, meaning will return 1 with probabilityzero.An attak on C-CTR (f. Sheme 6.6) is similar, and is left to the reader.6.11.2 Attak on CBCLet E: f0; 1gk�f0; 1gl ! f0; 1gl be a blok ipher and let SE = (K; E ;D) be the assoiated CBC symmetrienryption sheme as desribed in Sheme 6.4. The weakness of the sheme that makes it suseptible to ahosen-iphertext attak is the following. Say C[0℄C[1℄ is a iphertext of some l-bit message M , and we ipbit i of the IV C[0℄, resulting in a new iphertext C 0[0℄C[1℄. Let M 0 be the message obtained by deryptingthe new iphertext. Then M 0 equals M with the i-th bit ipped. (You should hek that you understandwhy by looking at Sheme 6.4.) Thus, by making a deryption orale query of C 0[0℄C[1℄ one an learn M 0and thus M . In the following, we show how this idea an be applied to break the sheme in our model by�guring out in whih world an adversary has been plaed.Proposition 6.27 Let E: f0; 1gk � f0; 1gl ! f0; 1gl be a blok ipher and let SE = (K; E ;D) be theorresponding CBC symmetri enryption sheme as desribed in Sheme 6.4. ThenAdvind-aSE (t; 1; l; 1; 2l) = 1for t = O(l) plus the time for one appliation of F .The advantage of this adversary is 1 even though it uses hardly any resoures: just one query to eah orale.That is learly an indiation that the sheme is inseure.Proof of Proposition 6.27: We will present an adversary algorithm A, having time-omplexity t, making1 query to its lr-enryption orale, this query being of length l, making 1 query to its deryption orale, thisquery being of length 2l, and having Advind-aSE;A = 1 :The Proposition follows.Remember the the lr-enryption orale EK(LR(�; �; b)) takes input a pair of messages, and returns an enryp-tion of either the left or the right message in the pair, depending on the value of b. The goal of A is todetermine the value of b. Our adversary works like this:

Cryptography: Leture Notes 115Adversary AEK(LR(�;�;b)) ;DK(�)M0 0l ; M1 1lC[0℄C[1℄ EK(LR(M0;M1; b))C 0[0℄ C[0℄�1L ; C 0 C 0[0℄C[1℄M DK(C 0)If M =M0 then return 1 else return 0The adversary's single lr-enryption orale query is the pair of distint messages M0;M1, eah one bloklong. It is returned a iphertext C[0℄C[1℄. It ips the bits of the IV C[0℄ to get a new IV C 0[0℄ and thenfeeds the iphertext C 0[0℄C[1℄ to the deryption orale. It bets on World 1 if it gets bak M0, and otherwiseon World 0. It is important that C 0[0℄C[1℄ 6= C[0℄C[1℄, so the deryption orale query is legitimate. Now,we laim that P hExpind-a-1SE;A = 1i = 1P hExpind-a-0SE;A = 1i = 0 :Hene Advind-aSE;A = 1 � 0 = 1. And A ahieved this advantage by making just one lr-enryption oralequery, whose length, whih as per our onventions is just the length of M0, is l bits, and just one deryptionorale query, whose length is 2l bits. So Advind-aSE (t; 1; l; 1; 2l) = 1.Why are the two equations laimed above true? You have to return to the de�nitions of the quantities inquestion, as well as the desription of the sheme itself, and walk it through. In World 1, meaning whenb = 1, the lr-enryption orale returns C[0℄C[1℄ withC[1℄ = EK(C[0℄�M1) = EK(C[0℄�1l) :Now notie that M = DK(C 0[0℄C[1℄)= E�1K (C[1℄)�C 0[0℄= E�1K (EK(C[0℄�1l))�C 0[0℄= (C[0℄�1l)�C 0[0℄= (C[0℄�1l)�(C[0℄�1l)= 0l= M0 :Thus, the deryption orale will return M0, and thus A will return 1. In World 0, meaning when b = 0, thelr-enryption orale returns C[0℄C[1℄ withC[1℄ = EK(C[0℄�M0) = EK(C[0℄�0l) :Now notie that M = DK(C 0[0℄C[1℄)= E�1K (C[1℄)�C 0[0℄= E�1K (EK(C[0℄�0l))�C 0[0℄= (C[0℄�0l)�C 0[0℄= (C[0℄�0l)�(C[0℄�1l)

116 Goldwasser and Bellare= 1l= M1 :Thus, the deryption orale will return M1, and thus A will return 0, meaning will return 1 with probabilityzero.6.12 Other methods for symmetri enryption6.12.1 Generi enryption with pseudorandom funtionsThere is a general way to enrypt with pseudorandom funtions. Suppose you want to enrypt m bitmessages. (Think of m as large.) Suppose we have a pseudorandom funtion family F in whih eah key Kspei�es a funtion FK mapping l bits to m bits, for some �xed but quite large value l. Then we an enryptM via EK(M) = (r; FK(r)�M) for random r. We derypt (r; C) by omputing M = FK(r)�C. This is themethod of [92℄.Theorem 6.28 [92℄ Suppose F is a pseudorandom funtion family with output length m. Then the sheme(E ;D) de�ne above is a seure private key enryption sheme for m-bit messages.The di�erene between this and the CBC and XOR methods is that in the latter, we only needed a PRFmapping l bits to l bits for some �xed l independent of the message length. One way to get suh a PRFis to use DES or some other blok ipher. Thus the CBC and XOR methods result in eÆient enryption.To use the general sheme we have just de�ned we need to onstruting PRFs that map l bits to m bits forlarge m.There are several approahes to onstruting \large" PRFs, depending on the eÆieny one wants and whatassumptions one wants to make. We have seen in Chapter 5 that pseudorandom funtion families an bebuilt given one-way funtions. Thus we ould go this way, but it is quite ineÆient. Alternatively, we ouldtry to build these length extending PRFs out of given �xed length PRFs. See Setion 5.11.6.12.2 Enryption with pseudorandom bit generatorsA pseudorandom bit generator is a deterministi funtion G whih takes a k-bit seed and produes a p(k) > kbit sequene of bits that looks pseudorandom. These objet were de�ned and studied in Chapter 3. Reallthe property they have is that no eÆient algorithm an distinguish between a random p(k) bit string andthe string G(K) with random K.Reall the one-time pad enryption sheme: we just XOR the message bits with the pad bits. The problemis we run out of pad bits very soon. Pseudorandom bit generators provide probably the most natural way toget around this. If G is a pseudorandom bit generator and K is the k-bit shared key, the parties impliitlyshare the long sequene G(K). Now, XOR message bits with the bits of G(K). Never use an output bit ofG(K) more than one. Sine we an streth to any polynomial length, we have enough bits to enrypt.More preisely, the parties maintain a ounter N , initially 0. Let Gi(K) denote the i-th bit of the outputof G(K). Let M be the message to enrypt. Let Mi be its i-th bit, and let n be its length. The senderomputes Ci = GN+i(K)�Mi for i = 1; : : : ; n and lets C = C1 : : : Cn be the iphertext. This is transmittedto the reeiver. Now the parties update the ounter via N N + n. The total number of bits that an beenrypted is the number p(k) of bits output by the generator. One an show, using the de�nition of PRBGs,that this works:Theorem 6.29 If G is a seure pseudorandom bit generator then the above is a seure enryption sheme.

Cryptography: Leture Notes 117One seeming disadvantage of using a PRBG is that the parties must maintain a ommon, synhronizedounter, sine both need to know where they are in the sequene G(K). (Note that the shemes we havedisussed above avoid this. Although some of the shemes above may optionally use a ounter instead of arandom value, this ounter is not a synhronized one: the sender maintains a ounter, but the reeiver doesnot, and doesn't are that the sender thinks of ounters.) To get around this, we might have the sender sendthe urrent ounter value N (in the lear) with eah message. If authentiation is being used, the value Nshould be authentiated.The more major disadvantage is that the pseudorandom sequene G(K) may not have random aess. Toprodue the i-th bit one may have to start from the beginning and produe all bits up to the i-th one. (Thismeans the time to enrypt M depends on the number and length of message enrypted in the past, not adesirable feature.) Alternatively the sequene G(K) may be pre-omputed and stored, but this uses a lot ofstorage. Whether this drawbak exists or not depends of ourse on the hoie of PRBG G.So how do we get pseudorandom bit generators? We saw some number theoreti onstrutions in Chapter 3.These are less eÆient than blok ipher based methods, but are based on di�erent kinds of assumptionswhih might be preferable. More importantly, though, these onstrutions have the drawbak that randomaess is not possible. Alternatively, one ould build pseudorandom bit generators out of �nite PRFs. Thisan be done so that random aess is possible. However the resulting enryption sheme ends up being nottoo di�erent from the XOR sheme with a ounter so it isn't lear it is worth a separate disussion.6.12.3 Enryption with one-way funtionsWe saw in Chapter 3 that pseudorandom bit generators exist if one-way funtions exist [109℄. It is alsoknown that given any seure private key enryption sheme one an onstrut a one-way funtion [110℄.Thus we have the following.Theorem 6.30 There exists a seure private key enryption sheme if and only if there exists a one-wayfuntion.We will see later that the existene of seure publi key enryption shemes requires di�erent kinds ofassumptions, namely the existene of primitives with \trapdoors."6.13 Historial NotesThe pioneering work on the theory of enryption is that of Goldwasser and Miali [98℄, with re�nements by[141, 91℄. This body of work is however in the asymmetri (ie. publi key) setting, and uses the asymptotiframework of polynomial-time adversaries and negligible suess probabilities. The treatment of symmetrienryption we are using is from iteBellareRo:symmetri. In partiular De�nition 6.1 and the onrete seu-rity framework are from [20℄. The analysis of the CTR mode enryption shemes, as given in Theorems 6.17and 6.18, is also from [20℄.6.14 Exerises and ProblemsProblem 6.31 Formalize a notion of seurity against key-reovery for symmstri enryption shemes, andprove an analogue of Proposition 6.16.Problem 6.32 Let l � 1 and m � 2 be integers, and let SE = (K; E ;D) be a given symmetri enryptionsheme whose assoiated plaintext spae is f0; 1gl, meaning one an safely enrypt only messages of lengthl. In order to be able to enrypt longer messages, we de�ne a new symmetri enryption sheme SE (m) =(K; E(m);D(m)) having the same key generation algorithm as that of SE , plaintext spae f0; 1glm, andenryption and deryption algorithms as follows:

118 Goldwasser and BellareAlgorithm E(m)K (M)Parse M as M [1℄ : : :M [m℄For i = 1 to m doC[i℄ EK(M [i℄)EndForC (C[1℄; : : : ; C[m℄)Return C
Algorithm D(m)K (C)Parse C as (C[1℄; : : : ; C[m℄)For i = 1 to m doM [i℄ DK(C[i℄)If M [i℄ = ? then return ?EndForM M [1℄ : : :M [m℄Return MHere M is lm bits long. For enryption, M is broken into a sequene of bloks M = M [1℄ : : :M [m℄, eahblok being l-bits long. For deryption, C is parsed as a sequene of m strings, eah bits long, where denotes the length of a iphertext in sheme SE . If any omponent iphertexts C[i℄ is invalid (meaning DKreturns ? for it) then the entire iphertext (C[1℄; : : : ; C[m℄) is delared invalid.(a) Show that Advind-aSE(m) (t; 1; lm; 1; m) = 1for some small t that you must speify.(b) Show that Advind-paSE(m) (t; q; lmq) � Advind-paSE (t;mq; lmq)for any t; q.Part (a) says that SE (m) is inseure against hosen-iphertext attak. Note this is true regardless of theseurity properties of SE , whih may itself be seure against hosen-iphertext attak. Part (b) says that ifSE is seure against hosen-plaintext attak, then so is SE(m).Problem 6.33 Let E: f0; 1gk � f0; 1gl ! f0; 1gl be a blok ipher. Operating it in CBC mode with IVa ounter yields a stateful symmetri enryption sheme, SE = (K; E ;D). The key generation algorithmsimply returns a random key for the blok ipher, meaning it piks a random k-bit string key and returnsit, so that the key spae is f0; 1gk. The enryption and deryption algorithms are as follows:Algorithm EK(M)If jM j < l then return ?If jM j mod l 6= 0 then return ?Parse M as M [1℄ : : :M [n℄C[0℄ R NtSl(tr)For i = 1; : : : ; n doC[i℄ FK(C[i� 1℄�M [i℄)EndForC C[0℄C[1℄ : : : C[n℄tr tr + nReturn C

Algorithm DK(C)If jCj < 2l then return ?If jCj mod l 6= 0 then return ?Parse C as C[0℄C[1℄ : : : C[n℄For i = 1; : : : ; n doM [i℄ E�1K (C[i℄)�C[i� 1℄EndForM M [1℄ : : :M [n℄Return MParsing M means that we divide it into l-bit bloks and let M [i℄ denote the i-th suh blok. In parsingC we also divide it into l-bit bloks, but this time the bloks are numbered starting at 0. The enryptermaintains a ounter tr, initially zero. The IV is C[0℄, whih is hosen to be the l-bit binary representationof the integer tr. The ounter is updated by the enryption algorithm as indiated.Show that SE is inseure against hosen-plaintext attak. Namely, present a lower bound onAdvind-paSE (t; q; �)for ertain spei�, small values of t; q; � that you will speify, along with a ertain large (ie. lose to one)

Cryptography: Leture Notes 119value of the lower bound itself. Prove your laim orret by presenting and analyzing the orrespondingadversary.Your attak an assume that the initial value of the ounter used by the LR-enryption orale is is zero.(This orresponds to a setting in whih the attaker is present right from the moment the enrypter startsusing the sheme.) One you have solved the problem in this setting, however, try to also �nd an attak inwhih the initial value of the ounter used by the LR-enryption orale is not known to the attaker. (Thisorresponds to the more realisti setting in whih the attaker enters the piture after the sheme has beenin use for some time.)Problem 6.34 Let P : f0; 1gk � f0; 1g2l ! f0; 1g2l be a family of permutations. We de�ne a symmetrienryption sheme SE = (K; E ;D). The key generation algorithm simply returns a random key for P ,meaning it piks a random k-bit string key and returns it, so that the key spae is f0; 1gk. The messagespae is f0; 1gln where n > 1 is some �xed, given integer. The enryption and deryption algorithms are asfollows: Algorithm EK(M)If jM j 6= nl then return ?Parse M as M [1℄ : : :M [n℄For i = 1; : : : ; n doR[i℄ R f0; 1gl ; C[i℄ PK(R[i℄kM [i℄)Return C[1℄ : : : C[n℄
Algorithm DK(C)If jCj 6= 2nl then return ?Parse C as C[1℄ : : : C[n℄For i = 1; : : : ; n doR[i℄kM [i℄ P�1K (C[i℄)Return M [1℄ : : :M [n℄Show that this sheme is seure against hosen-plaintext attak as long as P is a seure PRP. More preiselyshow that Advind-paSE (t; q; lnq) � 2 �Advprp-paP (t0; q0) + n2q22l ;where you must speify the values of t0; q0 as funtions of t; q; l; n.Hint: Proeed in analogy to the analysis of CTR mode enryption done above. First analyze the shemewhih uses in plae of P the family Perm2l of random permutations on 2l bits. Then turn to the shemeusing the given PRP P .Problem 6.35 Let l � 64 be an integer, and let P : f0; 1gk � f0; 1gl ! f0; 1gl be a pseudorandom permu-tation. We de�ne a symmetri enryption sheme S as follows. The key is a randomly hosen k-bit stringK, meaning a key for the PRP. The enryption and deryption algorithms are as follows:Algorithm EK(x1 : : : xn)r R f0; 1; : : : ; 2l � 1gFor i = 1; : : : ; n doyi PK(hr + ii�xi)End ForReturn hriy1 : : : yn

Algorithm DK(hriy1 : : : yn)For i = 1; : : : ; n doxi P�1K (yi)�hr + iiEnd ForReturn x1 : : : xnHere the enryption algorithm takes as input a message x of length a multiple of l, whih it views asdivided into l bit bloks, x = x1 : : : xn. It returns a string y of length l(n + 1), omputed as shown. Thederyption algorithm takes y to return x. Here \+" denotes addition modulo 2l, and hji denotes the binaryrepresentation of integer j as an l-bit string.Show that this sheme is inseure. More preisely, show thatAdvind-paSE (t; q; �) � 13 ;where t; q; � are values that you will speify, and should be as small as possible.

C h a p t e r 7Publi-key enryption

The idea of a publi-key ryptosystem (PKC) was proposed by DiÆe and Hellman in their pioneering paper[68℄ in 1976. Their revolutionary idea was to enable seure message exhange between sender and reeiverwithout ever having to meet in advane to agree on a ommon seret key. They proposed the oneptof a trapdoor funtion and how it an be used to ahieve a publi-key ryptosystem. Shortly there afterRivest, Shamir and Adelman proposed the �rst andidate trapdoor funtion, the RSA. The story of modernryptography followed.The setup for a publi-key ryptosystem is of a network of users u1 � � �un rather than an single pair of users.Eah user u in the network has a pair of keys < Pu; Su > assoiated with him, the publi key Pu whih ispublished under the users name in a \publi diretory" aessible for everyone to read, and the private-keySu whih is known only to u. The pairs of keys are generated by running a key-generation algorithm. Tosend a seret messagem to u everyone in the network uses the same exat method, whih involves looking upPu, omputing E(Pu;m) where E is a publi enryption algorithm, and sending the resulting iphertext tou. Upon reeiving iphertext , user u an derypt by looking up his private key Su and omputing D(Su;)where D is a publi deryption algorithm. Clearly, for this to work we need that D(Su; E(Pu;m)) = m.A partiular PKC is thus de�ned by a triplet of publi algorithms (G;E;D), the key generation, enryption,and deryption algorithms.7.1 De�nition of Publi-Key EnryptionWe now formally de�ne a publi-key enryption sheme. For now the de�nition will say nothing about wemean by \seurity" of a sheme (whih is the subjet of muh disussion in subsequent setions).De�nition 7.1 A publi-key enryption sheme is a triple, (G;E;D), of probabilisti polynomial-time al-gorithms satisfying the following onditions(1) key generation algorithm : a probabilisti expeted polynomial-time algorithm G, whih, on input1k (the seurity parameter) produes a pair (e; d) where e is alled the publi key , and d is theorresponding private key. (Notation: (e; d) 2 G(1k)). We will also refer to the pair (e; d) a pair ofenryption/deryption keys.(2) An enryption algorithm: a probabilisti polynomial time algorithm E whih takes as input a seurityparameter 1k, a publi-key e from the range of G(1k) and string m 2 f0; 1gk alled the message, andprodues as output string 2 f0; 1g� alled the iphertext. (We use the notation 2 E(1k; e;m) to120

Cryptography: Leture Notes 121denote being an enryption of message m using key e with seurity parameter k. When lear, we useshorthand 2 Ee(m), or 2 E(m).)(3) A deryption algorithm: a probabilisti polynomial time algorithm D that takes as inputs a seurityparameter 1k, a private-key d from the range of G(1k), and a iphertext from the range of E(1k; e;m),and produes as output a string m0 2 f0; 1g�, suh that for every pair (e; d) in the range of G(1k), forevery m, for every 2 D(1k; e;m), the prob(D(1k ; d;) 6= m0) is negligible.(4) Furthermore, this system is \seure" (see De�nition 7.3).How to use this de�nition. To use a publi-key enryption sheme (G;E;D) with seurity parameter1k, user A runs G(1k) to obtain a pair (e; d) of enryption/deryption keys. User A then "publishes" e in apubli �le, and keeps private d. If anyone wants to send A a message, then need to lookup e and omputeE(1k; e;m). Upon reeipt of 2 E(1k; e;m), A omputes message m = D(1k; d;).Comments on the De�nitionsComment 0: Note that essentially there is no di�erene between the de�nition of a private-key enryptionsheme and the de�nition of a publi-key enryption sheme at this point. We ould have de�ned a privatekey enryption sheme to have one key e for enryption and a di�erent key d for deryption. The di�erenebetween the two de�nitions omes up in the seurity de�nition. In a publi-key enryption sheme theadversary or "breaking algorithm" is given e (the publi key) as an additional input; whereas in private-keysheme e is not given to the adversary (thus without loss of generality one may assume that e = d).Comment 1: At this stage, enryption using a key of length k is de�ned only for messages of length k;generalization is postponed to Convention 7.1.Comment 2: Note that as algorithm G is polynomial time, the length of its output (e; d) (or e in theprivate-key enryption ase) is bounded by a polynomial in k. On the other hand, sine k also serves as the\seurity parameter", k must be polynomial in jdj (or jej in the private-key enryption ase) in whih ase\polynomial in k" is equivalent to \polynomial in jdj".Comment 3: Condition (3) in De�nition 7.7 and 7.1 may be relaxed so that inequality may our withnegligible probability. For simpliity, we hose to adopt here the more onservative requirement.Comment 4: We have allowed the enryption algorithm in both of the above de�nitions to be probabilisti.Namely, there an be many yphertexts orresponding to the same message. In the simple (informal) exampleof a publi-key enryption sheme based on a trapdoor funtion outlined in the introdution, every messagehas a unique orresponding iphertext. That is too restritive as, for example, if E is deterministi, the sameinputs would always produe the same outputs, an undesirable harateristi.Comment 5: We allowed D to be a probabilisti algorithms. This may oneivably allow the onsiderationof enryption shemes whih may o�er higher seurity ([46℄). Aordingly, we may relax the requirementthat 8m;D(E(m)) = m to hold only with high probability.Conventions Regarding De�nitionsMessages of length not equal to k (the length of the enryption key) are enrypted by breaking them intobloks of length k and possibly padding the last blok. We extend the notation so thatEe(�1 � � ��l�l+1) = Ee(�1) � � �Ee(�l) �Ee(�l+1p)where j�1j = � � � = j�lj = k, j�l+1j�k, and p is some standard padding of length k � j�l+1j.The above onvention may be interpreted in two ways. First, it waves the extremely restriting onventionby whih the enryption sheme an be used only to enrypt messages of length equal to the length of the

122 Goldwasser and Bellarekey. Seond, it allows to redue the seurity of enrypting many messages using the same key to the seurityof enrypting a single message.The next onvention regarding enryption shemes introdues a breah of seurity: namely, the length of theleartext is always revealed by enryption shemes whih follow this onvention. However, as we show in alatter setion some information about the length of the leartext must be leaked by any enryption sheme.The enryption algorithm maps messages of the same length to ryptograms of the same length.7.2 Simple Examples of PKC: The Trapdoor Funtion ModelA olletion of trapdoor funtions, disussed at length in the hapter on one-way funtions and trapdoorfuntions, has been de�ned as F = ffi : Di ! Digi2I where Di � f0; 1gjij, and I is a set of indies. Reallthat 8i, fi was easy to ompute, but hard to invert; and 8i, there existed ti suh that given ti and fi(x),fi(x) ould be inverted in polynomial time.DiÆe and Hellman suggested using the supposed existene of trapdoor funtions to implement Publi KeyCryptosystems as follows.(1) The generator G on seurity parameter 1k outputs pairs (f; tf) where f is a trapdoor funtion and tfits assoiated trapdoor information.(2) For every message m 2M , E(f;m) = f(m).(3) Given 2 E(f;m) and tf , D(tf ;) = f�1() = f�1(f(m)) = m.7.2.1 Problems with the Trapdoor Funtion ModelThere are several immediate problems whih ome up in using the trapdoor funtion model for publi keyenryption.We summarize briey the main problems whih will be elaborated on in the next few setions.(1) Speial Message Spaes. The fat that f is a trapdoor funtion doesn't imply that inverting f(x) whenx is speial is hard. Namely, suppose that the set of messages that we would like to send is drawn froma highly strutured message spae suh as the English language, or more simply M = f0; 1g, it may beeasy to invert f(m). In fat, it is always easy to distinguish between f(0) and f(1)).(2) Partial Information. The fat that f is a one-way or trapdoor funtion doesn't neessarily imply thatf(x) hide all information about x. Even a bit of leakage many be too muh for some appliations. Forexample, for andidate one-way funtion f(p; g; x) = gx mod p where p is prime and g is a generator, theleast signi�ant bit of x is always easily omputable from f(x). For RSA funtion f(n; l; x) = xl mod n,the Jaobi symbol Jn(x) = Jn(xl mod n). Namely, the Jaobi symbol of x is easy to ompute fromf(n; l; x) { this was observed by Lipton[130℄ who used this fast to rak a protool for Mental poker byShamir Rivest and Adleman[185℄. See below. Moreover, In fat, for any one-way funtion f , informationsuh as \the parity of f(m)" about m is always easy to ompute from f(m). See below.(3) Relationship between Enrypted Messages Clearly, we may be sending messages whih are related toeah other in the ourse of a ommuniation. Some examples are: sending the same seret message toseveral reipients, or sending the same message (or slight variants) many times. It is thus desirable andsometimes essential that suh dependenies remain seret. In the trapdoor funtion model, it is trivialto see that sending the same message twie is always detetable. More serious problems were noted byseveral researhers, most notably by H�astad who shows [106℄ that if RSA with an exponent l is used,and the same message (or known linear ombinations of the same message) is send to l reipients, thenthe message an be omputed by an adversary.

Cryptography: Leture Notes 1237.2.2 Problems with Deterministi Enryption in GeneralThe above problems are atually shared by any publi-key ryptosystem in whih the enryption algorithmis deterministi.It is obvious for problems 1 and 3 above. It is easy to show also for problem 3 as follows. Let E is anydeterministi enryption algorithm, we an extrat partial information by using something similar to thefollowing prediate: P (x) = � 1 if E(x) even0 if E(x) odd �It is lear that we an easily ompute this prediate sine all we have to do is take the low bit of E(x). UnlessE(x) is always even or always odd for all the x's in the message spae, we have obtained partial informationabout x. If E(x) is always even or odd, the low bit of E(x) ontains no information. But, some other bit ofE(x) must ontain some information otherwise the message spae is omposed of only one message in whihase we have total information. Then, simply use that bit instead of the lowest bit and we have a partialinformation obtaining prediate.7.2.3 The RSA CryptosystemIn 1977 Shamir, Rivest and Adelman proposed the �rst implementation of trapdoor funtion, the RSAfuntion, [170℄. We refer the reader to hapter 2, in partiular setions 2.2.5 and Setion 2.17 for a thoroughtreatment of the RSA trapdoor funtion.Here, let us examine the use of the RSA trapdoor funtion for the purpose of enryption in the straightforward manner proposed by DiÆe and Hellman. We will show that it will not satisfy the kind of seuritywhih we desire. We will later see that a probabilisti variant will do the job.Reall the de�nition of RSA trapdoor funtion 2.17. Let p; q denote primes, n = pq, Z�n = f1 � x �n; (x; n) = 1g the multipliative group whose ardinality is '(n) = (p � 1)(q � 1), and e 2 Zp�1 relativelyprime to '(n). Our set of indies will be I = f< n; e > suh that n = pq jpj = jqjg and the trapdoorassoiated with the partiular index < n; e > be t<n;e> = d suh that ed = 1 mod �(n). Let RSA =fRSA<n;e> : Z�n ! Z�ng<n;e>2I where RSA<n;e>(x) = xe mod nSparse Message SpaesWe showed that the RSA funtion has some nie properties that seem espeially good for use as a PKC. Forexample, we showed for a given pair < n; e >, it is either hard to invert RSA<n;e> for all but a negligiblefration of x's in Z�n, or easy to invert RSA<n;e>(x) 8x; x 2 Z� . Does this mean that the RSA ryptosystemis diÆult to break for almost all messages if fatoring integers is hard? The answer is negative.Suppose that the message spae M we are interested in is the English language. Then, let Mk = f0; 1gkwhere m 2 Mk is an English sentene. Compared to the entire spae, the set of English sentenes is quitesmall. For example, jMkjjZ�nj � 12pn . Thus it is possible that fn;e(x) is easy to invert for all x 2 Mk, even ifthe fatorization problem is hard. In other words, English sentenes are highly strutured; it might well bethe ase that our funtion an be easily inverted on all suh inputs. Clearly, we would ultimately like ourenryption shemes to be seure for all types of message spaes, inluding English text.Partial Information about RSAWhat partial information about x an be omputed from RSA<n;e>(x).We showed in the hapter on one-way and trapdoor funtions, that indeed some bits suh as the leastsigni�ant bit and most signi�ant bit of RSA are very well hidden. This is the good news.

124 Goldwasser and BellareUnfortunately, in some ases very subtle leakage of partial information an defeat the whole purpose ofenryption. We present a \ute" example of this shown by Lipton shortly after RSA was invented.An Example: Mental Poker (SRA '76): Mental Poker is a protool by whih two parties eah of whomdistrusts the other an deal eah other ards from a dek without either being able to heat. The protoolfor A to deal B a ard goes like this:(1) A and B agree on a set X = fx1; : : : ; x52g; xi 2 Z�n, of random numbers where n = pq, p and q primeand known to both A and B. These numbers represent the dek of ards, xi representing the ith ardin the dek.(2) A piks s suh that (s; '(n)) = 1, and t suh that st � 1 (mod '(n)) seretly. B does the same for eand f . (I.e., ef � 1 (mod '(n)))(3) A alulates xsi mod n for i = 1 : : : 52, shu�es the numbers, and sends them to B.(4) B alulates (xsi mod n)e mod n for i = 1 : : : 52, shu�es the numbers, and sends them to A.(5) A alulates ((xsi mod n)e mod n)t mod n = xei mod n for i = 1 : : : 52. A then hooses a ard randomly(I.e., piks xej where j 2 [1 : : : 52℄) and sends it to B.(6) B then takes (xej mod n)d mod n = xj mod n. This is the ard B has been dealt.Why it works: Note that so long as no partial information an be obtained from the RSA trapdoor funtion,neither A nor B an inuene in any way the probably of B getting any given ard. A is unable to give Bbad ards and likewise B an not deal himself good ards. This follows from the fat that enrypting theards is analogous to plaing eah of them in boxes loked with padloks. So long as a ard is loked in abox with a padlok of the other player's on it, nothing an be told about it and it is indistinguishable fromthe other loked boxes.When B gets the dek in step 3, he has no idea whih ard is whih and thus is unable to inuene whihard he is dealt. However, A an still tell them apart sine its A's padloks that are on the boxes. To preventA from being able to inuene the ards, B then puts his own loks on the boxes as well and shu�es thedek. Now A also an not tell the ards apart so when he is fored to make his hoie, he is fored to justdeal a random ard. Thus, the two players in spite of distrusting eah other an play poker.How to extrat partial information from the RSA funtion: The protool fails, however, beauseit is possible to extrat partial information from the RSA funtion and thus determine to some degree ofauray whih ards are whih and hene inuene the outome of the draw. One way to do this is byomputing the Jaobi symbol sine (Jn(xi)) = (Jn(xsi)) sine s is odd. Thus, sine half of the xi's have aJaobi symbol of 1 on the average sine they are random numbers in Z�n, we an extrat roughly one bit ofinformation from eah of the ards. In order to inuene the draw in our favor, we simply determine whetheror not the ards with a Jaobi symbol of 1 or the ards with a Jaobi symbol of -1 are better for us and thendraw only from that set of ards.One's immediate reation to this, of ourse, is simply to modify the protool so that in step 1 only numberswith say a Jaobi symbol of 1 are hosen. Then no information will be gained by omputing the Jaobisymbol. However, this is no guarantee that some other more lever prediate does not exist whih an stillextrat partial information and indeed suh funtions must exist by the very nature of trapdoor funtions.Low exponent attaksLet the exponent be e = 3. We saw that any exponent relatively prime to '(N) is OK, and we an easilyhoose N = pq so that 3 is relatively prime to (p�1)(q�1) = '(N). This is a popular hoie for performanereasons. Enryption is now fast. And we saw that RSA is still (assumed) one-way under this hoie.So enryption of m is now m3 mod N . Here is an interesting attak illustrating the weaknesses of RSAenryption, due to Coppersmith, Franklin, Patarin and Reiter [58℄. Suppose I enrypt m and then m+ 1. I

Cryptography: Leture Notes 125laim you an reover m. We have iphertexts:1 = m32 = (m+ 1)3 = m3 + 3m+ 3m2 + 1 = 1 + 3m+ 3m2 + 1Now lets try to solve for m. Perhaps the �rst thought that springs to mind is that we have a quadratiequation for m. But taking square roots is hard, so we don't know how to solve it that way. It turns out thefollowing works: 2 + 21 � 12 � 1 + 2 = (m+ 1)3 + 2m3 � 1(m+ 1)3 �m3 + 2 = 3m3 + 3m2 + 3m3m2 + 3m+ 3 = m :This an be generalized. First, you an generalize to messages m and �m + � for known �; �. Seond, itworks for exponents greater than 3. The attak then runs in time O(e2) so it is feasible for small exponents.Finally, it an work for k messages related by a higher degree polynomial.These are the kinds of attaks we most de�nitely would like to avoid.7.2.4 Rabin's Publi key CryptosystemReall Rabin's trapdoor funtion from Chapter 2.fn(m) � m2 mod nwhere n is the produt of two large primes, p and q. One again, this funtion an yield another example ofa trapdoor/publi key ryptosystem exept that fn is not as permutation but a 4-to-1 funtion. An inverseof fn(m): f�1n (m2) = x suh that x2 = m2 mod nHowever, in pratie, when we invert Rabin's funtion, we do not simply want any square root of theenrypted message, but the orret one of the four that was meant to be sent by the sender and wouldbe meaningful to the intended reipient. So, we need to add a onstraint to uniquely identify the root xwhih must be output by the deryption algorithm on fn(m2) suh as �nd x suh that x2 = m2 mod n,and x 2 S where S is a property for whih it is quite unlikely that there exists two roots m;x 2 S. Whatould S be? Well if the message spae M is sparse in Z�n (whih would usually be the ase), then S may besimply M . In suh ase it is unlikely that there exists m 6= m0 2 M suh that m02 = m2 mod n. (If M isnot sparse, S may be the all x whose last 20 digits are r for some random r. Then to send m in serey,(fn(m0) = fn(220m+ r); r) need be sent.)Reall, that earlier in the lass, we had shown that inverting Rabin's funtion is as hard as fatoring. Namely,we had shown that inverting Rabin's funtion for � of the m2 2 Z�n's implies the ability to fator. The proofwent as follows:� Suppose there existed a blak box that on inputs x2 responded with a y suh that x2 = y2 mod n.Then, to fator n, hoose an i at random from Z�n and give as input i2 mod n to the blak box. If thebox responds with a y, suh that y 6= �i, then we an indeed fator n by omputing gd(i� y; n). Inthe ase that y = �i, we have gained no information, so repeat.If we think of this blak box as a deoding algorithm for the publi key system based on Rabin's funtionused to enrypt messages in message spae M , an we onlude that if it is possible to derypt the publi keysystem fn(m) for m 2M , then it is possible to fator n?If the message spae M is sparse, then the answer is no. Why? for the blak box (above) to be of any usewe need to feed it with an fn(i) for whih there exists an y suh that y 2M and y 6= i. The probability thatsuh y exists is about jMjjZ�nj , whih may be exponentially small.

126 Goldwasser and BellareIf the message spae M is not sparse, we run into another problem. Rabin's sheme would not be seure inthe presene of an ative adversary who is apable of a hosen iphertext attak. This is easy to see againusing the above proof that inverting Rabin's funtion is as hard as fatoring. Temporary aess to a deodingalgorithm for Rabin's publi key enryption for message in M , is the same as having aess to the blak boxof the above proof. The adversary hooses i at random and feeds the deoding algorithm with fn(i). If theadversary gets bak y suh that y2 = i2 mod n, (again, i 6= �y), fator n, and obtain the seret key. If M isnot sparse this will be the ase after trying a polynomial number of i's. From here on, the adversary wouldbe able to derypt any iphertext with the aid of the seret key and without the need for a blak box.Therefore, either Rabin's sheme is not equivalent to fatoring, whih is the ase when inverting on a sparsemessage spae, or (when M is not sparse) it is inseure before a hosen iphertext adversary.7.2.5 KnapsaksA number of publi-key ryptosystems have been proposed whih are based on the knapsak (or | moreproperly | the subset sum) problem: given a vetor a = (a1; a2; : : : ; an) of integers, and a target value C, todetermine if there is a length-n vetor x of zeroes and ones suh that a �x = C. This problem is NP-omplete[86℄.To use the knapsak problem as the basis for a publi-key ryptosystem, you reate a publi key by reatinga knapsak vetor a, and publish that as your publi key. Someone else an send you the enryption of amessage M (where M is a length-n bit vetor), by sending you the value of the inner produt C = M � a.Clearly, to derypt this iphertext is an instane of the knapsak problem. To make this problem easy foryou, you need to build in hidden struture (that is, a trapdoor) into the knapsak so that the enryptionoperation beomes one-to-one and so that you an derypt a reeived iphertext easily. It seems, however,that the problem of solving knapsaks ontaining a trapdoor is not NP-omplete, so that the diÆulty ofbreaking suh a knapsak is no longer related to the P = NP question.In fat, history has not been kind to knapsak shemes; most of them have been broken by extremely leveranalysis and the use of the powerful L3 algorithm [127℄ for working in latties. See [137, 180, 182, 2, 184,123, 44, 151℄.Some knapsak or knapsak-like shemes are still unbroken. The Chor-Rivest sheme [56℄, and the multi-pliative versions of the knapsak [137℄ are examples. MEliee has a knapsak-like publi-key ryptosystembased on error-orreting odes [136℄. This sheme has not been broken, and was the �rst sheme to userandomization in the enryption proess.We are now ready to introdue what is required from a seure Publi Key Cryptosystem.7.3 De�ning SeurityBrain storming about what it means to be seure brings immediately to mind several desirable properties.Let us start with the the minimal requirement and build up.First and foremost the private key should not be reoverable from seeing the publi key. Seondly, with highprobability for any message spae, messages should not be entirely reovered from seeing their enryptedform and the publi �le. Thirdly, we may want that in fat no useful information an be omputed aboutmessages from their enrypted form. Fourthly, we do not want the adversary to be able to ompute anyuseful fats about traÆ of messages, suh as reognize that two messages of idential ontent were sent,nor would we want her probability of suessfully deiphering a message to inrease if the time of deliveryor relationship to previous enrypted messages were made known to her.In short, it would be desirable for the enryption sheme to be the mathematial analogy of opaque envelopesontaining a piee of paper on whih the message is written. The envelopes should be suh that all legalsenders an �ll it, but only the legal reipient an open it.

Cryptography: Leture Notes 127We must answer a few questions:� How an \opaque envelopes" be aptured in a preise mathematial de�nition?� Are \opaque envelopes" ahievable mathematially?Several de�nitions of seurity attempting to apture the \opaque envelope" analogy have been proposed. Allde�nitions proposed so far have been shown to be equivalent. We desribe two of them and show they areequivalent.7.3.1 De�nition of Seurity: Polynomial IndistinguishabilityInformally, we say that an enryption sheme is polynomial time indistinguishable if no adversary an �ndeven two messages, whose enryptions he an distinguish between. If we reall the envelope analogy, thistranslates to saying says that we annot tell two envelopes apart.De�nition 7.2 We say that a Publi Key Cryptosystem (G;E;D) is polynomial time indistinguishable iffor every PPT M , A, and for every polynomial Q, 8 suÆiently large kPr(A(1k; e;m0;m1;) = m j (e; d) R G(1k) ; fm0;m1g R M(1k) ; m R fm0;m1g ; R E(e;m))< 12 + 1Q(k) (7.1)In other words, it is impossible in polynomial in k time to �nd two messages m0;m1 suh that a polynomialtime algorithm an distinguish between 2 E(e;m0) and 2 E(e;m1).Remarks about the de�nition:(1) We remark that a stronger form of seurity would be: the above holding 8m0;m1, (not only those whihan be found in polynomial time by running M(1k)). Suh seurity an be shown in a non-uniformmodel, or when the messages are hosen before the keys, and thus an not involve any informationabout the seret keys themselves.(2) In the ase of private-key enryption sheme, the de�nition hanges ever so slightly. The enryptionkey e is not given to algorithm A.(3) Note that any enryption sheme in whih the enryption algorithm E is deterministi immediately failsto pass this seurity requirement. (e.g given f;m0;m1 and 2 ff(m1); f(m0)g it is trivial to deidewhether = f(m0) or = f(m1).(4) Note that even if the adversary know that the messages being enrypted is one of two, he still annottell the distributions of iphertext of one message apart from the other.7.3.2 Another De�nition: Semanti SeurityConsider the following two games. Let h :M ! f0; 1g�, where M is a message spae in whih we an samplein polynomial time, or equivalently, a probabilisti polynomial time algorithm M that takes as input 1k andgenerates a message m 2 f0; 1gk, and h(m) is some information about the message (for example, let be suhthat h(m) = 1 if m has the letter 'e' in it, then V = f0; 1g).� Game 1: I tell the adversary that I am about to hoose m 2M(1k) and, ask her to guess h(m).� Game 2: I tell the adversary � 2 E(m); for somem 2M(1k) and one again, ask her to guess h(m).

128 Goldwasser and BellareIn both of the above ases we may assume that the adversary knows the message spae algorithm M andthe publi key P .In the �rst game, the adversary only knows that a message m is about to be hosen. In addition to thisfat, the adversary of the Game 2 sees the atual iphertext itself. For all types of message spaes, semantiseurity will essentially require that the probability of the adversary winning Game 1 to be about the same asher probability of winning Game 2. Namely, that the adversary should not gain any advantage or informationfrom having seen the iphertext resulting from our enryption algorithm.Said di�erently, this de�nition will require that for all probability distributions over the message spae, nopartial information about the message an be omputed from the iphertext. This requirement is reminisentof Shannon's perfet seurity de�nition { with respet to a omputationally bounded adversary.De�nition 7.3 We say that an enryption sheme (G;E;D) is semantially seure if for all PPT algorithmsM and A, funtions h, polynomials Q there is a PPT B suh that for suÆiently large k,Pr(A(1k ; ; e) = h(m) j (e; d) R G(1k) ; m R M(1k) ; R E(e;m))� Pr(B(1k) = h(m) j m R M(1k)) + 1Q(k) (7.2)Here, Game 1 is represented by PTM B, and Game 2 by PTM A. Again, this an only hold true whenthe enryption algorithm is a probabilisti one whih selets one of many possible enodings for a message;otherwise, if E were deterministi, and M = f0; 1g, then any adversary would have 100% hane of guessingorretly h(m) for m 2M by simply testing whether E(0) = or E(1) = .Theorem 7.4 A Publi Key Cryptosystem passes Indistinguishable Seurity if and only if it passes SemantiSeurity.7.4 Probabilisti Publi Key EnryptionWe turn now to showing how to atually build a publi key enryption sheme whih is polynomial timeindistinguishable.In order to do so, we must abandon the trapdoor funtion PKC model and deterministi algorithms ofenryption all together, in favor of probabilisti enryption algorithm. The probabilisti enryption algorithmwhih we will onstrut will still assume the existene of trapdoor funtions and use them as a primitivebuilding blok.The key to the onstrution is to �rst answer a simpler problem: How to seurely enrypt single bits. Weshow two ways to approah this problem. The �rst is based on trapdoor prediates as disussed in Setion 2.5,and the seond is based on hard ore prediates as disussed in Setion 2.4.7.4.1 Enrypting Single Bits: Trapdoor PrediatesTo enrypt single bits, the notion of one-way and trapdoor prediates was introdued by [98℄. It later turnedout to be also quite useful for protool design. We refer the reader to setion 2.5 for a general treatment ofthis subjet. Here we look at its use for enryption.The Idea: Briey, a one-way prediate, is a Boolean funtion whih is hard to ompute in a very strongsense. Namely, an adversary annot ompute the prediate value better than by taking a random guess.Yet, it is possible to sample the domain of the prediate for elements for whih the prediate evaluates to 0and to 1. A trapdoor prediate possesses the extra feature that there exists some trapdoor information that

Cryptography: Leture Notes 129enables the omputation of the prediate. We an onstrut examples of olletion of trapdoor prediatesbased on the intratability of fatoring, RSA inversion and the diÆulty of distinguishing quadrati residuesfrom non-residues.Now, given a olletion of trapdoor prediates exist, we use them to set up a ryptosystem for one bitenryption as follows. Every user A hooses and publishes a random trapdoor prediate, keeping seret theorresponding trapdoor information. To send A a one bit message m, any other user hooses at randoman element in the domain of the trapdoor prediate for whih the prediate evaluates to m. To derypt, Auses his trapdoor information to ompute the value of prediate on the domain element it reeives. Note,that this is a probabilisti enryption with many possible yphertexts for 0 as well as 1, where essentially anadversary annot distinguish between an enoding of 0 and an enoding of 1.Reall, the formal de�nition of trapdoor prediates 2.59.Let I be a set of indies and for i 2 I let Di be �nite. A olletion of trapdoor prediates is a set B = fBi :Di ! f0; 1ggi2I satisfying the following onditions. Let Dvi = fx 2 Di; Bi(x) = v.1. There exists a polynomial p and a PTM S1 whih on input 1k �nds pairs (i; ti) where i 2 I \ f0; 1gkand jtij < p(k) The information ti is referred to as the trapdoor of i.2. There exists a PTM S2 whih on input i 2 I and v 2 f0; 1g outputs x 2 Di at random suh thatBi(x) = v.3. There exists a PTM A1 suh that for i 2 I and trapdoor ti, x 2 Di A1(i; ti; x) = Bi(x).4. For every PPT A there exists a negligible �A suh that 8 k large enoughP h z 6= v : i R I \ f0; 1gk ; v R f0; 1g ; x R Dvi ; z A(i; x) i � �A(k)De�nition 7.5 Assume that B is a olletion of trapdoor prediates. We an now de�ne a publi keyryptosystem (G;E;D)B for sending single bit messages as follows:� Key generation algorithm: G(1k) hooses (i; ti) (publi key is then i and private key is ti). This isdoable by running algorithm S1.� Enryption algorithm: Let m 2 f0; 1g be the message. Enryption algorithm E(i; e) selets x 2 Dmi .(The iphertext is thus x). This is doable by running algorithm S2.� Deryption algorithm: D(; ti) omputes Bi(). This is doable using A1 given the trapdoor information.It is lear from the de�nition of a set of trapdoor prediates, that all of the above operations an be done inexpeted polynomial time and that messages an indeed be sent this way. It follows immediately from thede�nition of trapdoor prediates than indeed this system is polynomially indistinguishable when restritedto one bit message spaes.7.4.2 Enrypting Single Bits: Hard Core PrediatesAlternatively, you may take the following perhaps simpler approah, starting diretly with trapdoor funtionsand using their hard ore prediates. For a detailed disussion of trapdoor funtions and hard ore prediatesfor them see setion Setion 2.59. The disussion here assumes suh knowledge.Reall that a olletion of trapdoor permutations is a set F = ffi : Di �! Digi2I suh that:1. S1(1k) samples (i; ti) where i 2 I , jij = k and jtij < p(k) for some polynomial p.

130 Goldwasser and Bellare2. S2(i) samples x 2 Di.3. 9 PTM A1 suh that A1(i; x) = fi(x).4. Pr[A(i; fi(x)) 2 f�1i (fi(x))℄ < 1Q(k) 8 PTM A, 8Q, 8k > k0.5. 9 PTM A2 suh that A2(i; ti; fi(x)) = x, 8x 2 Di, i 2 I .Further, let Bi(x) be hard ore for fi(x). Reall that the existene of F implies the existene of F 0 thathas a hard ore prediate. So, for notational simpliity assume that F = F 0. Also reall that for the RSAolletion of trapdoor funtions, LSB is a olletion of hard ore prediate the LSB.De�nition 7.6 Given a olletion F with hard ore prediates B, de�ne publi key ryptosystem (G;E;D)Bfor sending a single bit as follows:� Key generation algorithm: G(1k) hooses pair < i; ti > by running S1(1k). (for RSA, G(1k) hooses< n; e >; d suh that n is an RSA modulus, and ed = 1 mod �(n).)� Enryption algorithm: E(i;m) hooses at random an x 2 Di suh that Bi(x) = m, and output as aiphertext fi(x). Using the Goldreih Levin onstrution of a hard ore prediate, simply hoose x; rsuh that the inner produt of x and r is m and output f(x) Æ r. (for RSA, to enrypt bit m, hooseat random an x 2 Z�n suh that LSB<n;e>(x) = m and output as a iphertext RSA<n;e>(x).)� Deryption algorithm: To derypt = fi(x), given i and ti, the deryption algorithm D(ti;) omputeBi(f�1i ()) = Bi(x) = m. Using the Goldreih Levin onstrution this amounts to given = fi(x) Æ rto omputing the inner produt of x and r. (for RSA, to derypt , given n; e and d, ompute theLSB((RSA<n;e>(x))d) = least signi�ant bit of x.)7.4.3 General Probabilisti EnryptionHow should we enrypt arbitrary length messages?The �rst answer is to simply enrypt eah bit individually using one of the above methods. as above. Beforeonsidering whether this is wise from an eÆieny point of view, we need to argue that it indeed will produea enryption sheme whih is polynomial time indistinguishable. This requires reetion, as even throughevery bit individually is seure, it an be the ase that say that some prediate omputed on all the bits iseasily omputable, suh as the exlusive or of the bits. This turns out lukily not to be the ase, but requiresproof.We now provide onstrution and proof.De�nition 7.7 We de�ne a probabilisti enryption based on trapdoor olletion F with hard ore bit Bto be PE = (G;E;D) where:� G(1k) hooses (i; ti) by running S1(1k) (Publi key is i, private key is ti).� Let m = m1 : : :mk where mj 2 f0; 1g be the message.E(i;m) enrypts m as follows:Choose xj 2R Di suh that Bi(xj) = mj for j = 1; : : : ; k.Output = fi(x1) : : : fi(xk).� Let = y1 : : : yk where yi 2 Di be the yph ertext.D(ti;) derypts as follows:Compute mj = Bi(f�1i (yj)) for j = 1; : : : ; k.Output m = m1 : : :mk.

Cryptography: Leture Notes 131
Claim 7.8 If F is a olletion of trapdoor permutations then the probabilisti enryption PE = (G;E;D)is indistinguishably seure.Proof: Suppose that (G;E;D) is not indistinguishably seure. Then there is a polynomial Q, a PTM Aand a message spae algorithm M suh that for in�nitely many k, 9m0;m1 2M(1k) with,Pr[A(1k; i;m0;m1;) = jjmj 2 fm0;m1g; 2 E(i;mj))℄ > 12 + 1Q(k)where the probability is taken over the oin tosses of A, (i; ti) 2 G(1k), the oin tosses of E and mj 2fm0;m1g. In other words, A says 0 more often when is an enryption of m0 and says 1 more often when is an enryption of m1.De�ne distributions Dj = E(i; sj) for j = 0; 1; : : : ; k where k = jm0j = jm1j and suh that s0 = m0; sk = m1and sj di�ers from sj+1 in preisely 1 bit.Let Pj = Pr[A(1k; i;m0;m1;) = 1j 2 Dj = E(i; sj)℄.Then 12 + 1Q(k) < Pr[A hooses j orretly℄ = (1� P0)(12) + Pk(12).Hene, Pk � P0 > 2Q(k) and sine Pk�1j=0 (Pj+1 � Pj) = Pk � P0, 9j suh that Pj+1 � Pj > 2Q(k)k .Now, onsider the following algorithm B whih takes input i; fi(y) and outputs 0 or 1. Assume that sj andsj+1 di�er in the lth bit; that is, sj;l 6= sj+1;l or, equivalently, sj+1 = �sj .B runs as follows on input i; fi(y):(1) Choose y1; : : : ; yk suh that Bi(yr) = sj;r for r = 1; : : : ; k.(2) Let = fi(y1); : : : ; fi(y); : : : ; fi(yk) where fi(y) has replaed fi(yl) in the lth blok.(3) If A(1k; i; ;m0;m1;) = 0 then output sj;l.If A(1k; i; ;m0;m1;) = 0 then output sj+1;l = �sj;l.Note that 2 E(i; sj) if Bi(y) = sj;l and 2 E(i; sj+1) if Bi(y) = sj+1;l.Thus, in step 3 of algorithm B, outputting sj;l orresponds to A prediting that is an enoding of sj ; inother words, is an enoding of the string nearest to m0.Claim. Pr[B(i; fi(y)) = Bi(y)℄ > 12 + 1Q(k)kProof:Pr[B(i; fi(y)) = Bi(y)℄ = Pr[A(1k; i;m0;m1;) = 0j 2 E(i; sj)℄ Pr[2 E(i; sj)℄+Pr[A(1k; i;m0;m1;) = 1j 2 E(i; sj+1)℄ Pr[2 E(i; sj+1)℄� (1� Pj)(12) + (Pj+1)(12)= 12 + 12 (Pj+1 � Pj)> 12 + 1Q(k)k 2Thus, B will predit Bi(y) given i, fi(y) with probability better than 12 + 1Q(k)k . This ontradits theassumption that Bi(y) is hard ore for fi(y).

132 Goldwasser and BellareHene, the probabilisti enryption PE = (G;E;D) is indistinguishably seure.In fat, the probabilisti enryption PE = (G;E;D) is also semantially seure. This follows from the fatthat semanti and indistinguishable seurity are equivalent.7.4.4 EÆient Probabilisti EnryptionHow eÆient are the probabilisti shemes? In the shemes desribed so far, the iphertext is longer than theleartext by a fator proportional to the seurity parameter. However, it has been shown [35, 39℄ using laterideas on pseudo-random number generation how to start with trapdoor funtions and build a probabilistienryption sheme that is polynomial-time seure for whih the iphertext is longer than the leartext byonly an additive fator. The most eÆient probabilisti enryption sheme is due to Blum and Goldwasser[39℄ and is omparable with the RSA deterministi enryption sheme in speed and data expansion. Reall,that private-key enryption seemed to be muh more eÆient. Indeed, in pratie the publi-key methods areoften used to transmit a seret session key between two partiipants whih have never met, and subsequentlythe seret session key is used in onjuntion with a private-key enryption method.We �rst desribe a probabilisti publi key ryptosystem based on any trapdoor funtion olletion whihsu�ers only from a small additive bandwidth expansion.As in the previous probabilisti enryption PE, we begin with a olletion of trapdoor permutations F = ffi :Di ! Dig with hard ore prediates B = fBi : Di ! f0; 1g. For this setion, we onsider that Di � f0; 1gk,where k = jij.Then EPE = (G;E;D) is our PKC based on F with:Key Generation: G(1k) = S1(1k) = (i; ti). The publi key is i, and the seret key is ti.Enryption Algorithm: To enrypt m, E(i;m) runs as follows, where l = jmj:(1) Choose r 2 Di at random.(2) Compute fi(r); f2i (r); : : : ; f li (r).(3) Let p = Bi(r)Bi(fi(r))Bi(f2i (r)) : : : Bi(f l�1i (r)).(4) Output the iphertext = (p�m; f li (r)).Deryption Algorithm: To derypt a iphertext = (m0; a), D(ti;) runs as follows, where l = jm0j:(1) Compute r suh that f li (r) = a. We an do this sine we an invert fi using the trapdoorinformation, ti, and this r is unique sine fi is a permutation.(2) Compute the pad as above for enryption: p = Bi(r)Bi(fi(r)) : : : Bi(f l�1i (r)).(3) Output derypted message m = m0 � p.To onsider the eÆieny of this sheme, we note that the hannel bandwidth is jj = jmj+ k, where k is theseurity parameter as de�ned above. This is a signi�ant improvement over the jmj � k bandwidth ahievedby the sheme proposed in the previous leture, allowing improvement in seurity with only minimal inreasein bandwidth.If Ci1 is the ost of omputing fi, and Ci2 is the ost of omputing f�1i given ti, then the ost of enryptionis jmj � Ci1, and the ost of deryption is jmj � Ci2, assuming that the ost of omputing Bi is negligible.Another interesting point is that for all funtions urrently onjetured to be trapdoor, even with ti, it isstill easier to ompute fi than f�1i , that is, Ci1 < Ci2, though of ourse, both are polynomial in k = jij.Thus in EPE, if it is possible to ompute f�li more eÆiently than as l ompositions of f�1i , then omputing

Cryptography: Leture Notes 133r = f�li (a), and then omputing fi(r); f2i (r); : : : ; f l�1i (r) may redue the overall ost of deryption. Thefollowing implementation demonstrates this.7.4.5 An implementation of EPE with ost equal to the ost of RSAIn this setion, we onsider a partiular implementation of EPE as eÆient as RSA. This uses for F asubset of Rabin's trapdoor funtions whih were introdued in Leture 5. Reall that we an redue Rabin'sfuntions to permutations if we only onsider the Blum primes, and restrit the domain to the set of quadratiresidues. In fat, we will restrit our attention to primes of the form p � 7 mod 8.1Let N = fnjn = pq; jpj = jqj; p; q � 7 mod 8g. Then let F = ffn : Dn �! Dngn2N , where fn(x) �x2 mod n, and Dn = Qn = fyjy � x2 mod ng. Beause p; q � 3 mod 4, we have that fn is a permutation onDn. Bn(x) is the least signi�ant bit (LSB) of x, whih is a hard ore bit if and only if fatoring is diÆult,i.e., the Fatoring Assumption from Leture 5 is true. (This fat was stated, but not proven, in Leture 7.)Then onsider the EPE (G;E;D), with:Generation: G(1k) = (n; (p; q)) where pq = n 2 N , and jnj = k. Thus n is the publi key, and (p,q) is theseret key.Enryption: E(n;m), where l = jmj (exatly as in general ase above):(1) Choose r 2 Qn randomly.(2) Compute r2; r4; r8; : : : ; r2l (mod n).(3) Let p = LSB(r)LSB(r2)LSB(r4) : : :LSB(r2l�1).(4) Output = (m� p; r2l mod n).The ost of enrypting is O(k2 � l).Deryption: D((p; q);), where = (m0; a); l = jm0j (as in general ase above):(1) Compute r suh that r2l � a mod n.(2) Compute p = LSB(r)LSB(r2)LSB(r4) : : :LSB(r2l�1).(3) Output m = m0 � p.Sine p; q � 7 mod 8, we have p = 8t+ 7 and q = 8s+ 7 for some integers s; t. Reall from Leture 3that if p is prime, the Legendre symbol Jp(a) = a p�12 � 1 mod p if and only if a 2 Qp, Sine a 2 Qn,we also have a 2 Qp. Thus we an omputea � a � a p�12 � a1+4t+3 � (a2t+2)2 (mod p);yielding, pa � a2t+2 mod p. Furthermore, a2t+2 = (at+1)2 2 Qp, so we an do this repeatedly to�nd rp � 2lpa � a(2t+2)l mod p. (This is why we require p � 7 mod 8.) Analogously, we an �ndrq � 2lpa � a(2s+2)l mod q, and using the Chinese Remainder Theorem (Leture 5), we an �ndr � 2lpa mod n. The ost of derypting in this fashion is O(k3 � l).However, we an also ompute r diretly by omputing u = (2t + 2)l and v = (2s + 2)l �rst, and infat, if the length of the messages is known ahead of time, we an ompute u and v o�-line. In anyevent, the ost of derypting then is simply the ost of omputing au mod p and av mod q, using theChinese Remainder Theorem, and then omputing p given r, just as when enrypting. This omes outto O(k3 + k2 � l) = O(k3) if l = O(k).1More reent results indiate that this additional restrition may not be neessary.

134 Goldwasser and BellareEPE Passes Indistinguishable SeurityWe wish to show that EPE also passes indistinguishable seurity. To do this we use the notion of pseudo-random number generators (PSRG) introdued in the hapter on pseudo random number generation. Notethat PSRG(r; i) = f li (r) ÆBi(r)Bi(fi(r))Bi(f2i (r)) : : : Bi(f l�1i (r)) = a Æ p where p and a are generated whileenrypting messages, (Æ is the onatenation operator.) is a pseudo-random number generator. Indeed, thisis the onstrution we used to prove the existene of PSRGs, given one-way permutations.Certainly if the pad p were ompletely random, it would be impossible to derypt the message sinem0 = m�pmaps m0 to a random string for any m. Sine p is pseudo-random, it appears random to any PTM withoutfurther information i.e., the trapdoor ti. However, the adversary does know a = f li (r), and we have to showthat it annot use this to ompute p.More preisely, we note that if there exists a PTM A that an distinguish between (m�p)Æa and (m�R)Æawhere R is a ompletely random string from f0; 1gl, then it an distinguish between p Æ a and R Æ a. Wean use this then, as a statistial test to hek whether a given string is a possible output of PSRG, whihontradits the laim that PSRG is pseudo-random, and thus the laim that fi is one-way. It is left as anexerise to express this formally.7.4.6 Pratial RSA based enryption: OAEPConsider a sender who holds a k-bit to k-bit trapdoor permutation f and wants to transmit a message x toa reeiver who holds the inverse permutation f�1. We onentrate on the ase whih arises most often inryptographi pratie, where n = jxj is at least a little smaller than k. Think of f as the RSA funtion.Enryption shemes used in pratie have the following properties: enryption requires just one omputationof f ; deryption requires just one omputation of f�1; the length of the eniphered text should be preisely k;and the length n of the text x that an be enrypted is lose to k. Examples of shemes ahieving theseonditions are [173, 113℄.Unfortunately, these are heuristi shemes. A provably seure sheme would be preferable. We have nowseen several provably good asymmetri (i.e. publi key) enryption shemes. The most eÆient is theBlum-Goldwasser sheme [39℄. But, unfortunately, it still doesn't math the heuristi shemes in eÆieny.Aordingly, prationers are ontinuing to prefer the heuristi onstrutions.This setion presents a sheme alled the OAEP (Optimal Asymmetri Enryption Padding) whih an �llthe gap. It was designed by Bellare and Rogaway [23℄. It meets the pratial onstraints but at the sametime has a seurity that an be reasonably justi�ed, in the following sense. The sheme an be proven seureassuming some underlying hash funtions are ideal. Formally, the hash funtions are modeled as randomorales. In implementation, the hash funtions are derived from ryptographi hash funtions.This random orale model represents a pratial ompromise under whih we an get eÆieny with reason-able seurity assuranes. See [15℄ for a full disussion of this approah.RSA-OAEP is urrently inluded in several standards and draft standards and is implemented in varioussystems. In partiular, it is the RSA PKCS#1 v2 enryption standard and is also in the IEEE P1363/P1363adraft standards. It is also used in the SET (Seure Eletroni Transations) protool of Visa and Masterard.Simple embedding shemes and OAEP featuresThe heuristi shemes invariably take the following form: one (probabilistially, invertibly) embeds x intoa string rx and then takes the enryption of x to be f(rx).2 Let's all suh a proess a simple-embeddingsheme. We will take as our goal to onstrut provably-good simple-embedding shemes whih allow n tobe lose to k.2It is well-known that a naive embedding like rx = x is no good: besides the usual de�ienies of any deterministienryption, f being a trapdoor permutation does not mean that f(x) oneals all the interesting properties of x. Indeed it wasexatly suh onsiderations that helped inspire ideas like semanti seurity [98℄ and hardore bits [40, 201℄.

Cryptography: Leture Notes 135The best known example of a simple embedding sheme is the RSA PKCS #1 standard. Its design is howeverad ho; standard assumptions on the trapdoor permutation there (RSA) do not imply the seurity of thesheme. In fat, the sheme suumbs to hosen iphertext attak [34℄. The OAEP sheme we disuss belowis just as eÆient as the RSA PKCS #1 sheme, but resists suh attaks. Moreover, this resistane is bakedby proofs of seurity. The new version of the RSA PKCS#1 standard, namely v2, uses OAEP.OAEP is a simple embedding sheme that is bit-optimal (i.e., the length of the string x that an be enryptedby f(rx) is almost k). It is proven seure assuming the underlying hash funtions are ideal. It is shown in[23℄ that RSA-OAEP ahieves semanti seurity (as de�ned by [98℄). It is shown in [84℄ (building on [188℄)that it also ahieves a notion alled \plaintext-aware enryption" de�ned in [23, 21℄. The latter notion isvery strong, and in partiular it is shown in [21℄ that semanti seurity plus plaintext awareness implies\ambitious" goals like hosen-iphertext seurity and non-malleability [71℄ in the ideal-hash model.Now we briey desribe the basi sheme and its properties. We refer the reader to [23℄ for full desriptionsand to [23, 84℄ for proofs of seurity.The shemeReall k is the seurity parameter, f mapping k-bits to k-bits is the trapdoor permutation. Let k0 be hosensuh that the adversary's running time is signi�antly smaller than 2k0 steps. We �x the length of themessage to enrypt as let n = k � k0 � k1 (shorter messages an be suitably padded to this length). Thesheme makes use of a \generator" G: f0; 1gk0 ! f0; 1gn+k1 and a \hash funtion" H : f0; 1gn+k1 ! f0; 1gk0 .To enrypt x 2 f0; 1gn hoose a random k0-bit r and setEG;H(x) = f(x0k1 �G(r)kr �H(x0k1 �G(r))):The deryption DG;H is de�ned as follows. Apply f�1 to the iphertext to get a string of the form akb withjaj = k � k0 and jbj = k0. Compute r = H(a)� b and y = G(r) � a. If the last k1 bits of y are not all zerothen rejet; else output the �rst n bits of y as the plaintext.The use of the redundany (the 0k1 term and the hek for it in deryption) is in order to provide plaintextawareness.EÆienyThe funtion f an be set to any andidate trapdoor permutation suh as RSA [170℄ or modular squaring[164, 35℄. In suh a ase the time for omputing G and H is negligible ompared to the time for omputingf; f�1. Thus omplexity is disussed only in terms of f; f�1 omputations. In this light the sheme requiresjust a single appliation of f to enrypt, a single appliation of f�1 to derypt, and the length of theiphertext is k (as long as k � n+ k0 + k1).The ideal hash funtion paradigmAs we indiated above, when proving seurity we take G;H to be random, and when we want a onretesheme, G;H are instantiated by primitives derived from a ryptographi hash funtion. In this regard weare following the paradigm of [15℄ who argue that even though results whih assume an ideal hash funtiondo not provide provable seurity with respet to the standard model of omputation, assuming an ideal hashfuntion and doing proofs with respet to it provides muh greater assurane bene�t than purely ad. ho.protool design. We refer the reader to that paper for further disussion of the meaningfulness, motivationand history of this ideal hash approah.Exat seurityWe want the results to be meaningful for pratie. In partiular, this means we should be able to saymeaningful things about the seurity of the shemes for spei� values of the seurity parameter (e.g., k =

136 Goldwasser and Bellare512). This demands not only that we avoid asymptotis and address seurity \exatly," but also that westrive for seurity redutions whih are as eÆient as possible.Thus the theorem proving the seurity of the basi sheme quanti�es the resoures and suess probabilityof a potential adversary: let her run for time t, make qgen queries of G and qhash queries of H , and supposeshe ould \break" the enryption with advantage �. It then provides an algorithmM and numbers t0; �0 suhthat M inverts the underlying trapdoor permutation f in time t0 with probability �0. The strength of theresult is in the values of t0; �0 whih are spei�ed as funtions of t; qgen; qhash; � and the underlying shemeparameters k; k0; n (k = k0 + n). Now a user with some idea of the (assumed) strength of a partiular f(e.g., RSA on 512 bits) an get an idea of the resoures neessary to break our enryption sheme. See [23℄for more details.OAEP ahieves semanti seurity for any trapdoor funtion f , as shown in [23℄. It ahieves plaintextawareness, and thus seurity against hosen-iphertext attak, when f is RSA, as shown in [84℄.7.4.7 EnhanementsAn enhanement to OAEP, made by Johnson and Matyas [114℄, is to use as redundany, instead of the 0k1above, a hash of information assoiated to the key. This version of OAEP is proposed in the ANSI X9.44draft standard.7.5 Exploring Ative AdversariesUntil now we have foused mostly on passive adversaries. But what happens if the adversaries are ative?This gives rise to various stronger-than-semanti notions of seurity suh as non-malleability [71℄, seurityagainst hosen iphertext attak, and plaintext awareness [23, 21℄. See [21℄ for a lassi�ation of these notionsand disussion of relations among them.In partiular, we onsider seurity against hosen iphertext attak. In this model, we assume that ouradversary has temporary aess to the deoding equipment, and an use it to derypt some yphertexts thatit hooses. Afterwards, the adversary sees the iphertext it wants to derypt without any further aess tothe deoding equipment. Notie that this is di�erent from simply being able to generate pairs of messagesand yphertexts, as the adversary was always apable of doing that by simply enrypting messages of itshoie. In this ase, the adversary gets to hoose the iphertext and get the orresponding message from thedeoding equipment.We saw in previous setions that suh an adversary ould ompletely break Rabin's sheme. It is not knownwhether any of the other shemes disussed for PKC are seure in the presene of this adversary. However,attempts to provably defend against suh an adversary have been made.One idea is to put heks into the deoding equipment so that it will not derypt yphertexts unless it hasevidene that someone knew the message (i.e., that the iphertext was not just generated without knowledgeof what the message being enoded was). We might think that a simple way to do this would be to requiretwo distint enodings of the same message, as it is unlikely that an adversary ould �nd two separateenodings of the same message without knowing the message itself. Thus a iphertext would be (�1; �2)where �1; �2 are hosen randomly from the enryptions of m.Unfortunately, this doesn't work beause if the deoding equipment fails to derypt the iphertext, theadversary would still gain some knowledge, i.e., that �1 and �2 do not enrypt the same message. Forexample, in the probabilisti enryption sheme proposed last leture, an adversary may wish to learn thehard-ore bit Bi(y) for some unknown y, where it has fi(y). Given deoding equipment with the protetiondesribed above, the adversary ould still disover this bit as follows:(1) Pik m 2 M(1l), the message spae, and let b be the last bit of m.(2) Pik �1 2 E(i;m) randomly and independently.

Cryptography: Leture Notes 137(3) Reall that �1 = (fi(x1); fi(x2); : : : ; fi(xl)), with xj hosen randomly from Di for j = 1; 2; : : : ; l. Let�2 = (fi(x1); : : : ; fi(xl�1); fi(y)).(4) Use the deoding equipment on = (�1; �2). If it answers m, then Bi(y) = b. If it doesn't derypt ,then Bi(y) = b.What is done instead uses the notion of Non-Interative Zero-Knowledge Proofs (NIZK) [41, 146℄. The ideais that anyone an hek a NIZK to see that it is orret, but no knowledge an be extrated from it aboutwhat is being proved, exept that it is orret. Shamir and Lapidot have shown that if trapdoor funtionsexist, then NIZKs exist. Then a iphertext will onsist of three parts: two distint enodings �1; �2 of themessage, and a NIZK that �1 and �2 enrypt the same message. Then the deoding equipment will simplyrefuse to derypt any iphertext with an invalid NIZK, and this refusal to derypt will not give the adversaryany new knowledge, sine it already knew that the proof was invalid.The pratial importane of hosen iphertext attak is illustrated in the reent attak of Bleihenbaher onthe RSA PKCS #1 enryption standard, whih has reeived a lot of attention. Bleihenbaher [34℄ showshow to break the sheme under a hosen iphertext attak. One should note that the OAEP sheme disussedin Setion 7.4.6 above is immune to suh attaks.

C h a p t e r 8Message authentiation

A message authentiation sheme enables parties in possession of a shared seret key to ahieve the goal ofdata integrity. This is the seond main goal of private-key ryptography.8.1 Introdution8.1.1 The problemSuppose you reeive a ommuniation that purports to ome from a ertain entity, all it S. Here S mightbe one of many di�erent types of entities: for example a person, or a orporation, or a network address.You may know that it is S that purports to send this ommuniation for several reasons. For example, S'sidenti�er ould be attahed to the ommuniation. The identi�er here is a publi identity that is known tobelong to S: for example, if S is a person or orporation, typially just the name of the person or orporation;if a network address, the address itself. Or, it may be that from the ontext in whih the ommuniation istaking plae you are expeting the ommuniation to be from a ertain known entity S.In many suh settings, seurity requires that the reeiver have on�dene that the ommuniated data doesoriginate with the laimed sender. This is neessary to implement aess ontrol, so that servies andinformation are provided to the intended parties. The risk is that an attaker will \impersonate" S. It willsend a ommuniation with S's identity attahed, so that the reeiver is lead to believe the ommuniationis from S. This an have various undesirable onsequenes. Examples of the damage aused abound; hereare a few that one might onsider.An on-line stok broker S replies to a quote request by sending the value of a ertain stok, but an adversarymodi�es the transmission, hanging the dollar value of the quote. The person who requested the quotereeives inorret information and ould be lead to make a �nanially detrimental ation. This applies toany data being obtained from a database: its value lies in its authentiity as vouhed for by the databaseservie provider. Or onsider S needing to send data of only two kinds, say \buy" and \sell", or \�re" and\don't �re". This might be enoded in a single bit, and if an adversary ips this bit, the wrong ation istaken. Or onsider eletroni banking. S sends its bank a message asking that $200 be transferred from heraount to A's aount. A might play the role of adversary and hange the sum to $2,000.In fat the authentiity of data transmitted aross a network an be even more important to seurity thanprivay of the data when it omes to enabling network appliations and ommere.This ability to send data purporting to be from a soure it is not requires an ative attak on the part of theadversary. That is, the adversary must have the means to modify transmitted ommuniations or introdue138

Cryptography: Leture Notes 139new ones. These abilities depend on the setting. It may be hard to introdue data into a dediated phoneline, but not on a network like the Internet. It would be advisable to assume adversaries do have suhabilities.The authentiation problem is very di�erent from the enryption problem. We are not worried about sereyof the data; let the data be in the lear. We are worried about the adversary modifying it.8.1.2 Enryption does not provide data integrityWe know how to enrypt data so as to provide privay. Something often suggested (and done) is to enryptto provide data integrity, as follows. Fix a symmetri enryption sheme SE = (K; E ;D), and let parties Sand B share a key K for this sheme. When S wants to send a messageM to B, she enrypts it, transferringa iphertext C generated via C R EK(M). B derypts it, reovering DK(C).The argument that this provides data integrity is as follows. Suppose S transmits, as in the above example,a message M to its bank B asking that $200 be transferred from S's aount to A's aount. A wants tohange the $200 to $2,000. If M is sent in the lear, A an easily modify it. But if M is enrypted so thatiphertext C is sent, how is A to modify C so as to make B reover the modi�ed message M 0? It does notknow the key K, so annot enrypt the modi�ed message M 0. The privay of the message appears to maketampering diÆult.This argument is fallaious. To see the aws let's �rst look at a ounter-example and then the issues.Consider, say the randomized CTR sheme, using some blok ipher F , say RC6. We proved in the hapteron symmetri enryption that this was a seure enryption sheme assuming RC6 is a pseudorandom funtion.For simpliity say that the message M above is a single 128 bit blok, ontaining aount information forthe parties involved, plus a �eld for the dollar amount. To be onrete, the last 16 bits of the 128-bit blokhold the dollar amount enoded as a 16-bit binary number. (So the amount must be at most $65,535.)Thus, the last 16 bits of M are 0000000011001000, the binary representation of the integer 200. We assumethat A is aware that the dollar amount in this eletroni hek is $200; this information is not seret. Nowreall that under randomized CTR enryption the iphertext transmitted by S has the form C = hriy wherey = FK(hr + 1i)�M . A's attak is as follows. It gets C = hriy and sets y0 = y�01120000011100001000. Itsets C 0 = hriy0 and forwards C 0 to B. B will derypt this, so that it reovers the message FK(hr + 1i)�y0.Denoting it by M 0, its value isM 0 = FK(hr + 1i)�y0= FK(hr + 1i)�y�01120000011100001000= M�01120000011100001000= Mpre�x0000011111000000where Mpre�x is the �rst 112 bits of the original message M . Notie that the last 16 bits of M 0 is the binaryrepresentation of the integer 2000, while the �rst 112 bits of M 0 are equal to those of M . So the end resultis that the bank B will be misled into exeuting the transation that S requested exept that the dollaramount has been hanged from 200 to 2000.There are many possible reations to this ounter-example, some sound and some unsound. Let's take a lookat them.What you should onlude from this is that enryption does not provide data integrity. With hindsight,it is pretty lear. The fat that data is enrypted need not prevent an adversary from being able to makethe reeiver reover data di�erent from that whih the sender had intended, for many reasons. First, thedata, or some part of it, might not be private at all. For example, above, some information about M wasknown to A: as the reipient of the money, A an be assumed to know that the amount will be $200, a sumprobably agreed upon beforehand. However, even when the data is not known a priori, an adversary anmake the reeiver reover something inorret. For example with the randomized CTR sheme, an adversaryan e�etively ip an bit in the message M . Even if it does not know what is the value of the original bit,

140 Goldwasser and Bellaredamage an be aused by ipping it to the opposite value. Another possibility is for the adversary to simplytransmit some string C. In many enryption shemes, inluding CTR and CBC enryption, C will deryptto something, all it M . The adversary may have no idea what M will be, but we should still view it aswrong that the reeiver aepts M as being sent by S when in fat it wasn't.Now here is another possible reation to the above ounter-example: CTR mode enryption is bad, sineit permits the above attak. So one should not use this mode. Let's use CBC instead; there you an't ipmessage bits by ipping iphertext bits.This is an unsound reation to the ounter-example. Nonetheless it is not only often voied, but even printed.Why is it unsound? Beause the point is not the spei� attak on CTR, but rather to reognize the disparityin goals. There is simply no reason to expet enryption to provide integrity. Enryption was not designedto solve the integrity problem. The way to address this problem is to �rst pin down preisely what is theproblem, and then seek a solution. Nonetheless there are many existing systems, and plaes in the literature,where enryption and authentiation are onfused, and where the former is assumed to provide the latter.It turns out that CBC enryption an also be attaked from the integrity point of view, again leading tolaims in some plaes that it is not a good enryption mehanism. Faulting an enryption sheme for notproviding authentiity is like faulting a srewdriver beause you ould not ut vegetables with it. There isno reason to expet a tool to solve a problem it was not designed to solve.It is sometimes suggested that one should \enrypt with redundany" to provide data integrity. That is, thesender S pads the data with some known, �xed string, for example 128 bits of zeros, before enrypting it.The reeiver derypts the iphertext and heks whether the derypted string ends with 128 zeros. If not,the reeiver rejets the transmission as unauthenti; else it outputs the rest of the string as the atual data.This too an fail in general; for example it is easy to see that with CTR mode enryption, an attak justlike the above applies. It an be attaked under CBC enryption too.Good ryptographi design is goal oriented. One must �rst understand and formalize the goal. Only thendoes one have the basis on whih to design and evaluate potential solutions. Aordingly, our next step willbe to ome up with a de�nition of message authentiation shemes and their seurity.8.2 Message authentiation shemesIn the private key setting, the primitive used to provide data integrity is a message authentiation sheme.This is a sheme spei�ed by three algorithms: a key generation algorithm K; a tagging algorithm T and averi�ation algorithm V . The sender and reeiver are assumed to be in possession of a key K generated viaK and not known to the adversary. When the sender wants to send M in an authentiated way to B, sheomputes a tag � for M as a funtion of M and the seret key K shared between the sender and reeiver,in a manner spei�ed by the tagging algorithm; namely, she sets � TK(M). This tag aompanies themessage in transmission; that is, S transmits the pair M;� to B. (Notie that the message is sent in thelear. Also notie the transmission is longer than the original message by the length of the tag �.) Uponreeiving a transmission M 0; �0 purporting to be from S, the reeiver B veri�es the authentiity of the tagby using the spei�ed veri�ation proedure, whih depends on the message, tag, and shared key. Namelyhe omputes VK(M 0; �0), whose value is a bit. If this value is 1, it is read as saying the data is authenti,and so B aepts it as oming from S. Else it disards the data as unauthenti.As we have disussed before, there are many ways in whih the reeiver might know that the transmissionpurports to be from S. For example, S's identity might aompany the transmission, or the ommuniationmay be taking plae in a ontext where the reeiver is already expeting to be interating with S. Aordingly,we do not address this issue expliitly in the model, preferring to leave it as being attended to \out of band".A viable sheme of ourse requires some seurity properties. But these are not our onern now. First wewant to pin down what onstitutes a spei�ation of a sheme, so that we know what are the kinds of objetswhose seurity we want to assess. Let us now summarize the above in a de�nition.De�nition 8.1 A message authentiation sheme MA = (K; T ;V) onsists of three algorithms, as follows:

Cryptography: Leture Notes 141� The key generation algorithm K is a randomized algorithm that returns a key K; we write K R K� The tagging algorithm T is a (possibly randomized) algorithm that takes the key K and a messageMto return a tag �; we write � TK(M)� The veri�ation algorithm V is a deterministi algorithm that takes the key K, a message M , and aandidate tag � for M to return a bit; we write d VK(M;�).Assoiated to the sheme is a message spae Plaintexts from whih M is allowed to be drawn. We requirethat VK(M; TK(M)) = 1 for all M 2 Plaintexts.The last part of the de�nition says that tags that were orretly generated will pass the veri�ation test.This simply ensures that authenti data will be aepted by the reeiver.The tagging algorithm might be randomized, meaning internally ip oins and use these oins to determineits output. In this ase, there may be many orret tags assoiated to a single message M . The algorithmmight also be stateful, for example making use of a ounter that is maintained by the sender. In that asethe tagging algorithm will aess the ounter as a global variable, updating it as neessary.Unlike enryption shemes, whose enryption algorithms must be either randomized or stateful for the shemeto be seure, a deterministi, stateless tagging algorithm is not only possible, but ommon, and in that asewe refer to the message authentiation sheme as deterministi. In this ase, veri�ation an be performedby omputing the orret tag and heking that the transmitted tag equals the orret one. That is, theveri�ation algorithm is simply the following:Algorithm VK(M;�)�0 TK(M)If � = �0 then return 1 else return 0Hene when the tagging algorithm is deterministi, the veri�ation algorithm need not be expliitly spei�ed;it is understood that it is the above.Example 8.2 Let F : f0; 1gk � f0; 1gl ! f0; 1gl be a blok ipher. The CBC MAC with base family Fis the (deterministi) message authentiation sheme in whih the tag of a message is the last blok ofiphertext obtained by proessing the message in CBC mode with zero IV. In more detail, the sheme isCBC-MACF = (K; T ;V) with the algorithms de�ned as follows. We let K be the algorithm whih piks ak-bit key K by ipping k oins and returning their outome. The message M input to the algorithms belowmust have length a multiple of l bits.Algorithm TK(M)Divide M into l bit bloks, M = x1 : : : xny0 R 0lFor i = 1; : : : ; n do yi FK(yi�1�xi)Return yn Algorithm VK(M;�)Divide M into l bit bloks, M = x1 : : : xny0 R 0lFor i = 1; : : : ; n do yi FK(yi�1�xi)If yn = � then return 1 else return 0Sine the tagging algorithm is deterministi, the veri�ation algorithm simply heks whether or not � is theorret tag, as disussed above.The hoie of message spae is important for the seurity of the CBC MAC as we will see later. If messagesof varying length are allowed the sheme is inseure, but if the length of the messages is restrited to somesingle pre-spei�ed and �xed value, the sheme is seure.8.3 A notion of seurityWe will �rst try to build up some intuition about what properties a message authentiation sheme shouldhave to all it \seure", and then distill a formal de�nition of seurity.

142 Goldwasser and Bellare8.3.1 Issues in seurityThe goal that we seek to ahieve in using a message authentiation sheme is to be able to detet any attemptby the adversary to modify the transmitted data. What we are afraid of is that the adversary an produemessages that the reeiver aepts as oming from the legitimate sender S when in fat S did not send thismessage. That is, A an produe M;� suh that VK(M;�) = 1, but M did not originate with the sender S.This is alled a forgery.Perhaps the �rst question one might ask is whether one should try to gauge the value of the forgery to theadversary, for example by asking what is the ontent of the message. For example, say the messages areexpeted to have ertain formats, and the forgery is just a random string. Should this really be viewed as aforgery? The answer is yes. We have seen this general issue before. It would be unwise to make assumptionsabout how the messages are formatted or interpreted. Good protool design means the seurity is guaranteedno matter what is the appliation. Aordingly we view the adversary as suessful if she produes M;�suh that the sender never authentiated M but VK(M;�) = 1.In some disussions of seurity in the literature, the adversary's goal is viewed as being to reover the sharedseret key K. Certainly if she ould do this, it would be a disaster, sine she ould forge anything. It isimportant to understand, however, that she might be able to forge without reovering the key. Thus, we arehere making the notion of adversarial suess more liberal: what ounts is forgery, not key reovery. So aseure sheme has a stronger guarantee of seurity.In making forgeries we must onsider various attaks, of inreasing severity. The simplest setting is that thesender has not yet sent any transmissions, and the adversary may simply attempt to onot a pair M;�whih passes the veri�ation test, namely suh that VK(M;�) = 1. This is alled a no-message attak.However, the adversary also has the ability to see what is transmitted. She might try to make forgeriesbased on this information. So suppose the sender sends the transmission M;� onsisting of some messageM and its legitimate (orret) tag �. The reeiver will ertainly aept this. At one, a simple attak omesto mind. The adversary an just opy this transmission. That is, she stores M;�, and at some later timere-transmits it. If the reeiver aepted it the �rst time, he will do so again. This is alled a replay attak.Is this a valid forgery? In real life it probably should be so onsidered. Say the �rst message was \Transfer$1000 from my aount to the aount of B." B suddenly sees a way of enrihing herself. She keeps replayingthis message and her bank balane inreases.It is important to protet against replay attaks. But for the moment we will not try to do this. We willsay that a replay is NOT a valid forgery. To be valid, a forgery must be of a message M whih was nottransmitted by the sender. We will later see that we an ahieve seurity against replay by addition of timestamps or ounters to any normal message authentiation mehanism. At this point, separating the issuesresults in a leaner problem and allows greater modularity in protool design. Namely we will ut up theproblem into logial parts and solve them one by one. Aordingly from now on don't regard replay as avalid attak.So if the adversary wants to be suessful, it must somehow use the valid transmission M;� to onot apair M 0; �0 suh that M 6= M 0 but VK(M 0; �0) = 1. If she an do this, we say she is suessful. Thus, wehave a very liberal notion of adversarial suess. So when we say a sheme is seure, it is seure in a verystrong sense.We have allowed the adversary to see an example message. Of ourse, it may see more than one, and forgerymust still be hard. We expet that the adversary's ability to forge will inrease as it sees more examples oflegitimately authentiated data, so that as usual we expet the notion of seurity to be quantitative, withthe adversary's suess probability being a funtion of of the number q of legitimate pairs seen.In many settings, it is possible for the adversary to inuene the hoie of legitimate messages being tagged.In the worst ase, we an think the adversary herself hooses these messages. This is alled a hosen plaintextattak. At �rst glane a hosen plaintext attak may seem unrealistially strong. There are two argumentsagainst this view. First, we will see examples where suh an attak is quite realisti. Seond, reall ourgeneral priniples. We want to design shemes whih are seure in any usage. This requires that we make\worst ase" notions of seurity in whih if we err, it is on the side of aution, allowing the adversary as

Cryptography: Leture Notes 143muh power as possible. Sine eventually we will be able to design shemes that meet suh stringent notionsof seurity, we only gain by the proess.One instane of a hosen-message attak is a setting in whih S is forwarding to B data that it reeives fromC, and authentiating that data based on a key K shared between S and B, in the proess. If C wants toplay an adversarial role, C an hoose the data as it wishes, and then see the orresponding tags as sent byS to B. Other senarios are also possible.In summary, we want a notion of seurity to apture the following. We allow an adversary to mount ahosen-message attak on the sender, obtaining from the sender orret tags of messages of the adversary'shoie. Then, the adversary attempts a forgery, and is delared suessful if the forgery is valid (meaningaepted by the reeiver) and the message in it was never authentiated by the sender.8.3.2 A notion of seurityLet MA = (K; T ;V) be an arbitrary message authentiation sheme. Our goal is to formalize a measurea inseurity against forgery under hosen-message attak for this sheme. As disussed above, we envisiona hosen-message attak mounted on the sender, and then a forgery attempt direted at the reeiver. Informalizing this we begin by distilling the key aspets of the model. There is no need, in fat, to thinkexpliitly of the sender and reeiver as animate entities. The result of the adversary requesting the senderto authentiate a message M is that the adversary obtains a tag � generated via � TK(M), where K isthe key shared between sender and reeiver. Thus, we may as well simplify the situation and think of theadversary as having orale aess to the algorithm TK(�). It an query this orale at any point M in themessage spae and obtain the result. Correspondingly we eliminate the reeiver from the piture and fousonly on the veri�ation proess. The adversary will eventually output a pair M;� and it is a valid forgeryas long as VK(M;�) = 1 and M was never a query to the tagging orale.Note the key K is not diretly given to the adversary, and neither are any random hoies or ounter usedby the tagging algorithm; the adversary sees only the generated tag �. However � is a funtion of the keyand the random hoies or ounter, so it might provide information about these, to an extent that dependson the sheme. If the tag allows the adversary to infer the key, the sheme will ertainly be inseure.The adversary's ations are thus viewed as divided into two phases. The �rst is a \learning" phase in whihit is given orale aess to TK(�), where K was a priori hosen at random aording to K. It an query thisorale up to q times, in any manner it pleases, as long as all the queries are messages in the underlyingmessage spae Plaintexts assoiated to the sheme. One this phase is over, it enters a \forgery" phases,in whih it outputs a pair (M;�). The adversary is delared suessful if VK(M;�) = 1 and M was nevera query made by the adversary to the tagging orale. Assoiated to any adversary A is thus a suessprobability. (The probability is over the hoie of key K, any probabilisti hoies that T might make, andthe probabilisti hoies, if any, that A makes.) The inseurity of the sheme is the suess probability of the\leverest" possible adversary, amongst all adversaries restrited in their resoures to some �xed amount.We hoose as resoures the running time of the adversary, the number of queries it makes, and the totalbit-length of all queries ombined plus the bit-length of the output message M in the forgery.Formally we de�ne the \experiment of running the adversary" A in an attak on shemeMA = (K; T ;V)as the following.Experiment Expuf-maMA;ALet K R KLet (M;�) ATK(�)If VK(M;�) = 1 and M was not a query of A to its oraleThen return 1 else return 0De�nition 8.3 LetMA = (K; T ;V) be a message authentiation sheme, and let A be an adversary thathas aess to an orale. Let Advuf-maMA;A be the probability that experiment Expuf-maMA;A returns 1. Then for

144 Goldwasser and Bellareany t; q; � let Advuf-maMA (t; q; �) = maxA fAdvuf-maMA;A gwhere the maximum is over all A running in time t, making at most q orale queries, and suh that the sumof the lengths of all orale queries plus the length of the message M in the output forgery is at most � bits.In pratie, the queries orrespond to tagged messages sent by the legitimate sender, and it would makesense that getting these examples is more expensive than just omputing on one's own. That is, we wouldexpet q to be smaller than t. That is why q; � are resoures separate from t.8.3.3 Using the de�nition: Some examplesLet us examine some example message authentiation shemes and use the de�nition to assess their strengthsand weaknesses. We �x a PRF F : f0; 1gk�f0; 1gl ! f0; 1gL. Our �rst shemeMA1 = (K; T ;V) works likethis{ Algorithm TK(M)Divide M into l bit bloks, M = x1 : : : xnFor i = 1; : : : ; n do yi FK(xi)� y1�� � � �ynReturn � Algorithm VK(M;�)Divide M into l bit bloks, M = x1 : : : xnFor i = 1; : : : ; n do yi FK(xi)�0 y1� � � ��ynIf � = �0 then return 1 else return 0Now let us try to assess the seurity of this message authentiation sheme.Suppose the adversary wants to forge the tag of a ertain given message M . A priori it is unlear this anbe done. The adversary is not in possession of the seret key K, so annot ompute FK and hene will havea hard time omputing �. However, remember that the notion of seurity we have de�ned says that theadversary is suessful as long as it an produe a orret tag for some message, not neessarily a given one.We now note that even without a hosen-message attak (in fat without seeing any examples of orretlytagged data) the adversary an do this. It an hoose a message M onsisting of two equal bloks, sayM = xkx where x is some l-bit string, set � 0l, and output M;�. Notie that VK(M;�) = 1 beauseFK(x)�FK(x) = 0l = �. So the adversary is suessful. In more detail, the adversary is:Adversary ATK(�)1Let x be some l-bit stringLet M xkxLet � 0lReturn (M;�)Then Advuf-maMA1;A1 = 1. Furthermore A1 makes no orale queries, uses t = O(l) time, and outputs an l-bitmessage in its forgery, so we have shown thatAdvuf-maMA1 (t; 0; l) = 1 :That is, the shemeMA1 is totally inseure.There are many other attaks. For example we note that if � = FK(M1)�FK(M2) is the tag of M1M2then � is also the orret tag of M2M1. So it is possible, given the tag of a message, to forge the tag of anew message formed by permuting the bloks of the old message. We leave it to the reader to speify theorresponding adversary and ompute its advantage.Let us now try to strengthen the sheme to avoid these attaks. Instead of applying FK to a data blok, wewill �rst pre�x the data blok with its index. To do this we pik some parameter m with 1 � m � l� 1, andwrite the index as an m-bit string. The message authentiation shemeMA1 = (K; T ;V) looks like this:

Cryptography: Leture Notes 145Algorithm TK(M)Divide M into l�m bit bloks, M = x1 : : : xnFor i = 1; : : : ; n do yi FK(hiikxi)� y1� � � ��ynReturn � Algorithm VK(M;�)Divide M into l �m bit bloks, M = x1 : : : xnFor i = 1; : : : ; n do yi FK(hiikxi)�0 y1� � � ��ynIf � = �0 then return 1 else return 0As the ode indiates, we divide M into smaller bloks: not of size l, but of size l �m. Then we pre�x thei-th message blok with the value i itself, the blok index, written in binary. Above hii denotes the integeri written as a binary string of m bits. It is to this padded blok that we apply FK before taking the XOR.Note that enoding of the blok index i as an m-bit string is only possible if i < 2m. This means that weannot authentiate a message M having more than 2m bloks. That is, the message spae is on�ned tostrings of length at most (l �m)(2m � 1), and, for simpliity, of length a multiple of l �m bits. Howeverthis is hardly a restrition in pratie sine a reasonable value of m, like m = 32, is large enough that typialmessages fall in the message spae, and sine l is typially at least 64, we have at least 32 bits left for thedata itself.Anyway, the question we are really onerned with is the seurity. Has this improved with respet toMA1?Begin by notiing that the attaks we found onMA1 no longer work. For example take the adversary A1above. (It needs a minor modi�ation to make sense in the new setting, namely the hosen blok x shouldnot be of length l but of length l �m. Consider this modi�ation made.) What is its suess probabilitywhen viewed as an adversary attaking MA2? The question amounts to asking what is the hane thatVK(M;�) = 1 where V is the veri�ation algorithm of our amended sheme and M;� is the output of A1.The veri�ation algorithm will ompute �0 = FK(h1ikx)�FK(h2ikx) and test whether this equals 0l, thevalue of � output by A. This happens only whenFK(h1ikx) = FK(h2ikx) ;and this is rather unlikely. For example if we are using a blok ipher it never happens beause FK is apermutation. Even when F is not a blok ipher, this event has very low probability as long as F is a goodPRF; spei�ally, Advuf-maMA2;A1 is at most AdvprfF (t; 2) where t = O(l). (A reader might make sure they seewhy this bound is true.) So the attak has very low suess probability.Similar arguments show that the seond attak disussed above, namely that based on permuting of messagebloks, also has low suess against the new sheme. Why? In the new shemeTK(M1M2) = FK(h1ikM1)�FK(h2ikM2)TK(M2M1) = FK(h1ikM2)�FK(h2ikM1) :These are unlikely to be equal for the same reasons disussed above. As an exerise, a reader might upperbound the probability that these values are equal in terms of the value of the inseurity of F at appropriateparameter values.However,MA2 is still inseure. The attaks however require a more non-trivial usage of the hosen-messageattaking ability. The adversary will query the tagging orale at several related points and ombine theresponses into the tag of a new message. We all it A2{Adversary ATK(�)2Let x1; x01 be distint, l�m bit strings, and let x2; x02 be distint l �m bit strings�1 TK(x1x2) ; �2 TK(x1x02) ; �3 TK(x01x2)� �1��2��3Return (x01x02; �)We laim that Advuf-maMA2;A2 = 1. Why? This requires two things. First that VK(x01x02; �) = 1, and seondthat x01x02 was never a query to TK(�) in the above ode. The latter is true beause we insisted above thatx1 6= x01 and x2 6= x02, whih together mean that x01x02 62 fx1x2; x1x2; x01x2g. So now let us hek the �rst

146 Goldwasser and Bellarelaim. We use the de�nition of the tagging algorithm to see that�1 = FK(h1ikx1)�FK(h2ikx2)�2 = FK(h1ikx1)�FK(h2ikx02)�3 = FK(h1ikx01)�FK(h2ikx2) :Now look how A2 de�ned � and do the omputation; due to anellations we get� = �1��2��3= FK(h1ikx01)�FK(h2ikx02) :This is indeed the orret tag of x01x02, meaning the value �0 that VK(x01x02; �) would ompute, so the latteralgorithm returns 1, as laimed. In summary we have shown thatAdvuf-maMA2 (t; 3; 4(l �m)) = 1 ;where t = O(l). So the shemeMA2 is also totally inseure.Later we will see how a slight modi�ation of the above atually yields a seure sheme. For the momenthowever we want to stress a feature of the above attaks. Namely that these attaks did not ryptanalyze thePRF F . The ryptanalysis of the message authentiation shemes did not are anything about the strutureof F ; whether it was DES, RC6, or anything else. They found weaknesses in the message authentiationshemes themselves. In partiular, the attaks work just as well when FK is a random funtion, or a \perfet"ipher. This illustrates again the point we have been making, about the distintion between a tool (here thePRF) and its usage. We need to make better usage of the tool, and in fat to tie the seurity of the shemeto that of the underlying tool in suh a way that attaks like those illustrated here are provably impossibleunder the assumption that the tool is seure.8.4 The XOR shemesWe now onsider a family of message authentiation shemes alled XOR MACs due to [11℄, and show thatthey are seure.8.4.1 The shemesThe shemes use a similar paradigm to the seond example sheme disussed above. A ertain blok size lis given. We hoose a parameter m, this time 1 � m � l � 2. We view the message M as being dividedinto bloks of size l�m� 1, and denote the i-th blok by xi. We denote by hii the enoding of integer i asan m-bit binary string. We assume that jM j � (l �m � 1)(2m � 1) so that the index of any blok an bewritten as an m-bit string.Both to de�ne the shemes and to analyze their seurity it is helpful to �rst introdue an auxiliary funtionwhih we all XOR-Tag?(�; �). It takes an orale for a funtion f : f0; 1gl ! f0; 1gL. It also takes two inputs.The �rst is an l � 1 bit string whih we all s, and whose role will emerge later. The seond is the messageM disussed above. It proesses these inputs using f as indiated below and returns a value we all � .Algorithm XOR-Tagf (s;M)Divide M into l �m� 1 bit bloks, M = x1 : : : xny0 f(0ks)For i = 1; : : : ; n do yi f(1khiikxi)� y0�y1�� � � �ynReturn �

Cryptography: Leture Notes 147Our auxiliary funtion applies f at n + 1 points, eah of these points being an l-bit string. The �rst pointis 0ks. Namely we pre�x the (l � 1)-bit string s with a zero bit, whih brings the total to l-bits, and thenapply f to get y0. The other n points on whih f is applied are all pre�xed with the bit 1. That is followedby an enoding of the blok index and then the data blok itself, for a total length of 1+m+(l�m� 1) = lbits.We are now ready to desribe the sheme. We �x a family of funtions F : f0; 1gk�f0; 1gl ! f0; 1gL, and thekey for the message authentiation sheme is simply a k-bit key K for the family F , whih spei�es a spei�funtion FK . The parties will use FK in the role of f above. There are atually two versions of the sheme.One is deterministi and stateful, making use of a global ounter; the other is stateless and randomized.The di�erene is only in how s is hosen. We begin with the ounter version. Here the sender maintains aninteger ounter tr, initially 0. We denote by htri its enoding as an l � 1 bit integer. (The ounter thusranges from 0 to 2l�1 � 1. Note that when i is a blok index, hii also denotes its binary enoding, but as anm bit string, so that the notation h�i is a bit overloaded in that the length of the string returned depends onthe ontext of its argument, but hopefully this will not ause too muh onfusion.) The ounter-based XORMAC sheme using F , denoted C-XORF = (K; T ;V), works as follows{Algorithm TK(M)� XOR-TagFK (htri;M)� (htri; �)tr tr + 1Return � Algorithm VK(M;�)Parse � as (s; �)� 0 XOR-TagFK (s;M)If � = � 0 then return 1 else return 0In other words, the tag for message M = x1 : : : xn is a pair onsisting of the urrent ounter value trenoded in binary, and the subtag � , where� = FK(0khtri)�FK(1kh1ikx1)�� � � �FK(1khnikxn) :To verify the reeived tag � = (htri; �) the veri�ation algorithm reomputes the orret subtag, alling it� 0, as a funtion of the given ounter value, and then heks that this subtag mathes the one provided in �.The randomized version of the sheme, namely the randomized XOR MAC sheme using F , is denotedR-XORF = (K; T ;V). It simply substitutes the ounter with a random (l � 1)-bit value hosen anew ateah appliation of the tagging algorithm. In more detail, the algorithms work as follows{Algorithm TK(M)r R f0; 1gl�1� XOR-TagFK (r;M)� (r; �)Return � Algorithm VK(M;�)Parse � as (r; �)� 0 XOR-TagFK (r;M)If � = � 0 then return 1 else return 0In other words, the tag for message M = x1 : : : xn is a pair onsisting of a random value r and the subtag �where � = FK(0kr)�FK(1kh1ikx1)� � � � �FK(1khnikxn) :To verify the reeived tag � = (r; �) the veri�ation algorithm reomputes the orret subtag, alling it � 0,as a funtion of the given value r, and then heks that this subtag mathes the one provided in �.8.4.2 Seurity onsiderationsBefore we onsider seurity it is important to larify one thing about possible forgeries. Reall that a forgeryis a pair M;� onsisting of a message M and a value � whih purports to be a valid tag for M . In the XORshemes, a tag � is a pair (s; �) where s is an (l � 1)-bit string and � is an L-bit string. Now, we knowthat the tagging algorithm itself generates the �rst omponent in a very spei� way. For onreteness, take

148 Goldwasser and Bellarethe ounter-based XOR sheme; here s is the value of a ounter, and thus for legitimately tagged messages,a value that never repeats from one message to the next. (We assume no more than 2l�1 messages areauthentiated so that the ounter does not wrap around.) This does not mean that the adversary is foredto use a ounter value in the role of s in its attempted forgery M; (s; �). The adversary is free to try anyvalue of s, and in partiular to re-use an already used ounter value. Remember that the adversary's goalis to get the veri�ation algorithm to aept the pair M; (s; �), subjet only to the onstraint that M wasnot a query to the tagging orale. Look at the ode of the veri�ation algorithm: it does not in any wayreet knowledge of s as a ounter, or try to hek any ounter-related property of s. In fat the veri�ationalgorithm does not maintain a ounter at all; it is stateless. So there is nothing to onstrain an adversary touse the value of the ounter in its attempted forgery.A similar situation holds with respet to the randomized version of the XOR sheme. Although the legitimateparty hooses r at random, so that legitimate tags have random values of r as the �rst omponent of theirtags, the adversary an attempt a forgery M; (r; �) in whih r is quite non-random; the adversary gets tohoose r and an set it to whatever it wants. This freedom on the part of the adversary must be rememberedin analyzing the shemes.To get some intuition about the seurity of these shemes, it is helpful to return to the attak that we usedto break the example shemeMA2 in the previous setion, and see that it fails here. We will look at theattak in the ontext of the ounter-based XOR sheme. Remember that the attak, spei�ed by adversaryA2 above, requested the tags of three related messages and XORed the returned values to get the tag of thethird message, exploiting ommonality between the values to get anellations. For the same three messagesunder the new sheme, let us look at the subtags returned by the tagging orale. They are:XOR-TagFK (h0i; x1x2) = FK(0kh0i)�FK(1kh1ikx1)�FK(1kh2ikx2)XOR-TagFK (h1i; x1x02) = FK(0kh1i)�FK(1kh1ikx1)�FK(1kh2ikx02)XOR-TagFK (h2i; x01x2) = FK(0kh2i)�FK(1kh1ikx01)�FK(1kh2ikx2) :Summing these three values yields a mess, something that does not look like the subtag of any message,beause the values orresponding to the ounter don't anel. So this attak does not work.Is there another attak? It seems hard to ome up with one, but that does not mean muh; maybe theattak is quite lever. This is the point where the kind of approah we have been developing, namelyprovable seurity, an be instrumental. We will see that the XOR shemes an be proven seure under theassumption that the family F is a PRF. This means that simple attaks like the above do not exist. And ouron�dene in this stems from muh more than an inability to �nd the attaks; it stems from our on�denethat the underlying family F is itself seure.8.4.3 Results on the seurity of the XOR shemesWe state the theorems that summarize the seurity of the shemes, beginning with the ounter-based sheme.We all the (nteger) parameter m in the sheme the blok-indexing parameter in the following. We also letPlaintexts(l;m) denote the set of all strings M suh that the length of M is n � (l �m� 1) for some integern in the range 1 � n � 2m � 1; this is the message spae for the XOR message authentiation shemes.The theorem below has (what should by now be) a familiar format. It upper bounds the inseurity of theounter-based XOR message authentiation sheme in terms of the inseurity of the underlying PRF F . Inother words, it upper bounds the maximum (over all strategies an adversary might try) of the probabilitythat the adversary an break the XOR sheme (namely, suessfully forge a orret tag for an as yet un-authentiated message), and the upper bound is in terms of the (assumed known) maximum ability to breakthe PRF F that underlies the sheme. It is another example of the kind of \punh line" we strive towards:a guarantee that there is simply no attak against a sheme, no matter how lever, as long as we know thatthe underlying tool is good. In partiular we are assured that attaks like those we have seen above on ourexample shemes will not work against this sheme.Also as usual, the bounds are quantitative, so that we an use them to assess the amount of seurity we will

Cryptography: Leture Notes 149get when using some spei� PRF (say a blok ipher) in the role of F . The bounds are rather good: wesee that the hane of breaking the message authentiation sheme is hardly more than that of breaking thePRF.Theorem 8.4 [11℄ Suppose F : f0; 1gk � f0; 1gl ! f0; 1gL is a PRF, and let C-XORF = (K; T ;V) be theorresponding ounter-based XOR message authentiation sheme as desribed above, with blok-indexingparameter m � l � 2 and message spae Plaintexts(l;m). Then for any t; q; � with q < 2l�1 we haveAdvuf-maC-XORF (t; q; �) � AdvprfF (t0; q0) + 2�L ;where t0 = t+O(�) and q0 = q + 1 + �=(l �m� 1).The result for the randomized version of the sheme is similar exept for aruing an extra term. This time,there is a \ollision probability" type term of q2=2l in the upper bound, indiating that we are unable torule out a breaking probability of this magnitude regardless of the quality of the PRF. We will see later thatthis is an inherent feature of the sheme, whih is subjet to a sort of birthday attak.Theorem 8.5 [11℄ Suppose F : f0; 1gk � f0; 1gl ! f0; 1gL is a PRF, and let R-XORF = (K; T ;V) bethe orresponding randomized XOR message authentiation sheme as desribed above, with blok-indexingparameter m � l � 2 and message spae Plaintexts(l;m). Then for any t; q; �Advuf-maR-XORF (t; q; �) � AdvprfF (t0; q0) + q22l + 2�L ;where t0 = t+O(�) and q0 = q + 1 + �=(l �m� 1).We will not prove these results at this time. We will be able to do this later when we have developed somemore tehnology.8.5 Pseudorandom funtions make good MACsA general method for designing MACs is to make use of the fat that any pseudorandom funtion is infat a MAC. The redution is due to [92, 93℄ and the onrete seurity analysis that follows is from [12℄.It shows that the redution is almost tight|seurity hardly degrades at all. This relation means that toprove the seurity of the CBC MAC as a MAC it is enough to show that the CBC transform preservespseudorandomness. For simpliity the domain of the MAC is restrited to strings of length exatly d forsome integer d.Theorem 8.6 Let MAC : KeysMAC �f0; 1gd! f0; 1gs be a family of funtions, and let q; t � 1 be integers.Then Advuf-maMAC (t; q; dq) � AdvprfMAC (t0; q) + 12s (8.1)where t0 = t+O(s + d).The onstant hidden in the O-notation depends only on details of the model of omputation. It is a smallonstant; one should think of t0 � t.Proof: Let A by any forger attaking the message authentiation ode MAC . Assume the orale in Experi-ment Forge(MAC ; A) is invoked at most q times, and the \running time" of A is at most t, these quantitiesbeing measured as disussed in De�nition 8.3. We design a distinguisher BA for MAC versus Randd!s suhthat AdvprfMAC (BA) � Advuf-maMAC ;A � 12s : (8.2)

150 Goldwasser and BellareMoreover B will run in time t0 and make at most q queries to its orale, with the time measured as disussedin De�nition 5.4. This implies Equation (8.1) beauseAdvuf-maMAC (t; q; dq) = maxA nAdvuf-maMAC ;A o� maxA nAdvprfMAC (BA) + 2�s o= maxA nAdvprfMAC (BA) o+ 2�s� maxB nAdvprfMAC (B) o+ 2�s= AdvprfMAC (t0; q) + 2�s :Above the �rst equality is by the de�nition of the inseurity funtion in De�nition 8.3. The followinginequality uses Equation (8.2). Next we simplify using properties of the maximum, and onlude by usingthe de�nition of the inseurity funtion as per De�nition 5.4.So it remains to design BA suh that Equation (8.2) is true. Remember that BA is given an orale for afuntion f : f0; 1gd ! f0; 1gs. It will run A, providing it an environment in whih A's orale queries areanswered by BA. When A �nally outputs its forgery, BA heks whether it is orret, and if so bets that fmust have been an instane of the family MAC rather than a random funtion.By assumption the orale in Experiment Forge(MAC ; A) is invoked at most q times, and for simpliity weassume it is exatly q. This means that the number of queries made by A to its orale is q � 1. Here now isthe ode implementing BA.Distinguisher BfAFor i = 1; : : : ; q � 1 doWhen A asks its orale some query, Mi, answer with f(Mi)End ForA outputs (M;�)�0 f(M)If � = �0 and M 62 fM1; : : : ;Mq�1gthen return 1 else return 0Here BA initializes A with some random sequene of oins and starts running it. When A makes its �rstorale query M1, algorithm BA pauses and omputes f(M1) using its own orale f . The value f(M1) isreturned to A and the exeution of the latter ontinues in this way until all its orale queries are answered.Now A will output its forgery (M;�). BA veri�es the forgery, and if it is orret, returns 1.We now proeed to the analysis. We laim thatP h BfA = 1 : f R MAC i = Advuf-maMAC ;A (8.3)P h BfA = 1 : f R Randd!s i � 12s : (8.4)Subtrating, we get Equation (8.2), and from the ode it is evident that BA makes q orale queries. Takinginto aount our onventions about the running times referring to that of the entire experiment it is alsotrue that the running time of BA is t+O(d + s). So it remains to justify the two equations above.In the �rst ase f is an instane of MAC , so that the simulated environment that BA is providing for A isexatly that of experiment Forge(MAC ; A). Sine BA returns 1 exatly when A makes a suessful forgery,we have Equation (8.3).

Cryptography: Leture Notes 151In the seond ase, A is running in an environment that is alien to it, namely one where a random funtionis being used to ompute MACs. We have no idea what A will do in this environment, but no matter what,we know that the probability that � = f(M) is 2�s, beause f is a random funtion, as long as A did notquery M of its orale. Equation (8.4) follows.8.6 The CBC MACThe most popular message authentiation ode in use is the CBC (Cipher Blok Chaining) MAC. Letf : f0; 1gl ! f0; 1gl be a funtion. Let f (n): f0; 1gnl ! f0; 1gl be the funtion whih on input x1 : : : xnoutputs yn where yi = f(yi�1�xi) and y0 = 0l. If F is a �nite family of funtions with input length l andoutput length l then let F (n) denote the family of funtions in whih the funtion indexed by key K is F (n)K .The new family has input length nl and output length l and is alled the CBC of F .When F is DES, we have the CBC onstrution used in pratie, alled the DES CBCMAC. This onstrutionis both a US and an International Standard, extensively used in the banking and �nanial setors. Its seurityis worth investigation.8.6.1 Seurity of the CBC MACWe disussed the CBC onstrution in Example 8.2 and Setion 5.11.1, and noted in Theorem 5.20 that if Fis a PRF family then so is F (n). From Theorem 8.6 we an now onlude that the CBC onstrution makesa good MAC as long as the underlying funtions are pseudorandom.Theorem 8.7 [12℄ Let l;m � 1 and q; t � 1 be integers suh that qm � 2(l+1)=2. Let F : KeysF �f0; 1gl !f0; 1gl be a family of funtions. ThenAdvuf-maF (m) (t; q;mql) � AdvprfF (t0; q0) + 3q2m2 + 22l+1� Advprp-paF (t0; q0) + 2q2m2 + 12lwhere q0 = mq and t0 = t+O(mql).In partiular, if F = DES we have an assessment of the strength of the DES CBC MAC in terms of thestrength of DES as a PRF. Unfortunately as we disussed in Setion 5.6.2, DES is not too strong as a PRF.We would be better of with stronger blok iphers.8.6.2 Birthday attak on the CBC MACThe basi idea behind the attak, due to Preneel and Van Oorshott [163℄ and (independently) to Krawzyk,is that internal ollisions an be exploited for forgery. The attaks presented in [163℄ are analyzed assumingthe underlying funtions are random, meaning the family to whih the CBC-MAC transform is applied isRandl!l or Perml. Here we do not make suh an assumption. This attak is from [12℄ and works for anyfamily of permutations. The randomness in the attak (whih is the soure of birthday ollisions) omes fromoin tosses of the forger only. This makes the attak more general. (We fous on the ase of permutationsbeause in pratie the CBC-MAC is usually based on a blok ipher.)Proposition 8.8 Let l;m; q be integers suh that 1 � q � 2(l+1)=2 and m � 2. Let F : KeysF � f0; 1gl !f0; 1gl be a family of permutations. Then there is a forger A making q + 1 orale queries, running for time

152 Goldwasser and BellareO(lmq log q) and ahieving Advuf-maF (m);A � 0:3 � q(q � 1)2l :As a onsequene for q � 2 Advuf-maF (m) (t; q; qml) � 0:3 � (q � 1)(q � 2)2l :The time assessment here puts the ost of an orale all at one unit.Comparing the above to Theorem 8.7 we see that the upper bound is tight to within a fator of the squareof the number of message bloks.We now proeed to the proof. We begin with a ouple of lemmas. The �rst lemma onsiders a slight variantof the usual birthday problem and shows that the \ollision probability" is still the same as that of the usualbirthday problem.Lemma 8.9 Let l; q be integers suh that 1 � q � 2(l+1)=2. Fix b1; : : : ; bq 2 f0; 1gl. ThenP h 9 i; j suh that i 6= j and bi�ri = bj�rj : r1; : : : ; rq R f0; 1gl i � 0:3 � q(q � 1)2l :Proof: This is just like throwing q balls into N = 2l bins and lower bounding the ollision probability, exeptthat things are \shifted" a bit: the bin assigned to the i-th ball is ri�bi rather than ri as we would usuallyimagine. But with bi �xed, if ri is uniformly distributed, so is ri�bi. So the probabilities are the same as inthe standard birthday problem of Appendix A.1.The �rst part of the following lemma states an obvious property of the CBC-MAC transform. The item ofreal interest is the seond part of the lemma, whih says that in the ase where the underlying funtion isa permutation, the CBC-MAC transform has the property that output ollisions our if and only if inputollisions our. This is ruial to the attak we will present later.Lemma 8.10 Let l;m � 2 be integers and f : f0; 1gl ! f0; 1gl a funtion. Suppose �1 � � ��m and �1 � � ��min f0; 1gml are suh that �k = �k for k = 3; : : : ;m. Thenf(�1)��2 = f(�1)��2) f (m)(�1 � � ��m) = f (m)(�1 � � ��m) :If f is a permutation then, in addition, the onverse is true:f (m)(�1 � � ��m) = f (m)(�1 � � ��m)) f(�1)��2 = f(�1)��2 :Proof: The �rst part follows from the de�nition of f (m). For the seond part let f�1 denote the inverse ofthe permutation f . The CBC-MAC omputation is easily unraveled using f�1. Thus the proedureym f (m)(�1 � � ��m) ; For k = m downto 3 do yk�1 f�1(yk)��k End For ; Return f�1(y2)returns f(�1)��2, while the proedureym f (m)(�1 � � ��m) ; For k = m downto 3 do yk�1 f�1(yk)��k End For ; Return f�1(y2)

Cryptography: Leture Notes 153returns f(�1)��2. But the proedures have the same value of ym by assumption and we know that �k = �kfor k = 3; : : : ;m, so the proedures return the same thing.Proof of Proposition 8.8: Before presenting the forger let us disuss the idea.The forger A has an orale g = f (m) where f is an instane of F . The strategy of the forger is to makeq queries all of whih agree in the last m � 2 bloks. The �rst bloks of these queries are all distint but�xed. The seond bloks, however, are random and independent aross the queries. Denoting the �rst blokof query n by an and the seond blok as rn, the forger hopes to have i 6= j suh that f(ai)�ri = f(aj)�rj .The probability of this happening is lower bounded by Lemma 8.9, but simply knowing the event happenswith some probability is not enough; the forger needs to detet its happening. Lemma 8.10 enables us tosay that this internal ollision happens i� the output MAC values for these queries are equal. (This is truebeause f is a permutation.) We then observe that if the seond bloks of the two olliding queries aremodi�ed by the xor to both of some value a, the resulting queries still ollide. The forger an thus forge bymodifying the seond bloks in this way, obtaining the MAC of one of the modi�ed queries using the seond,and outputting it as the MAC of the seond modi�ed query.The forger is presented in detail below. It makes use of a subroutine Find that given a sequene �1; : : : ; �qof values returns a pair (i; j) suh that �i = �j if suh a pair exists, and otherwise returns (0; 0).Forger AgLet a1; : : : ; aq be distint l-bit stringsFor i = 1; : : : ; q do ri R f0; 1glFor i = 1; : : : ; q doxi;1 ai ; xi;2 riFor k = 3; : : : ;m do xi;k 0lXi xi;1 : : : xi;m�i g(Xi)End For(i; j) Find(�1; : : : ; �q)If (i; j) = (0; 0) then abortElseLet a be any l-bit string di�erent from 0lx0i;2 xi;2�a ; x0j;2 xj;2�aX 0i xi;1x0i;2xi;3 � � �xi;m ; X 0j xj;1x0j;2xj;3 � � �xj;m�0i g(X 0i)Return (X 0j ; �0i)End IfTo estimate the probability of suess, suppose g = f (m) where f is an instane of F . Let (i; j) be the pairof values returned by the Find subroutine. Assume (i; j) 6= (0; 0). Then we know thatf (m)(xi;1 � � �xi;m) = f (m)(xj;1 � � �xj;m) :By assumption f is a permutation and by design xi;k = xj;k for k = 3; : : : ;m. The seond part of Lemma 8.10then implies that f(ai)�ri = f(aj)�rj . Adding a to both sides we get f(ai)�(ri�a) = f(aj)�(rj�a). Inother words, f(ai)�x0i;2 = f(aj)�x0j;2. The �rst part of Lemma 8.10 then implies that f (m)(X 0i) = f (m)(X 0j).Thus �0i is a orret MAC of X 0j . Furthermore we laim that X 0j is new, meaning was not queried of theg orale. Sine a1; : : : ; aq are distint, the only thing we have to worry about is that X 0j = Xj , but this isruled out beause a 6= 0l.We have just argued that if the Find subroutine returns (i; j) 6= (0; 0) then the forger is suessful, so thesuess probability is the probability that (i; j) 6= (0; 0). This happens whenever here is a ollision amongst

154 Goldwasser and Bellarethe q values �1; : : : ; �q . Lemma 8.10 tells us however that there is a ollision in these values if and only ifthere is a ollision amongst the q values f(a1)�r1; : : : ; f(aq)�rq . The probability is over the random hoiesof r1; : : : ; rq . By Lemma 8.9 the probability of the latter is lower bounded by the quantity laimed in theProposition. We onlude the theorem by noting that, with a simple implementation of FindCol (say usinga balaned binary searh tree sheme) the running time is as laimed.8.6.3 Length VariabilityFor simpliity, let us assume throughout this setion that strings to be authentiated have length whih is amultiple of l bits. This restrition is easy to dispense with by using simple and well-known padding methods:for example, always append a \1" and then append the minimal number of 0's to make the string a multipleof l bits.The CBC MAC does not diretly give a method to authentiate messages of variable input lengths. In fat,it is easy to \break" the CBC MAC onstrution if the length of strings is allowed to vary. You are askedto do this in a problem at the end of this hapter. Try it; it is a good exerise in MACs!One possible attempt to authentiate messages of varying lengths is to append to eah string x = x1 � � �xmthe number m, properly enoded as the �nal l-bit blok, and then CBC MAC the resulting string m + 1bloks. (Of ourse this imposes a restrition that m < 2l, not likely to be a serious onern.) We de�nef�a (x1 � � �xm) = f (m+1)a (x1 � � �xm m).We show that f� is not a seure MAC. Take arbitrary l-bit words b, b0 and , where b 6= b0. It is easy tohek that given(1) tb = f�(b),(2) tb0 = f�(b0), and(3) tb1 = f�(bk1k)the adversary has in hand f�(b0k1ktb�tb0�) |the authentiation tag of a string she has not asked aboutbefore|sine this is preisely tb1.Despite the failure of the above method there are many suitable ways to obtain a PRF that is good onvariable input lengths. We mention three. In eah, let F be a �nite funtion family from and to l-bit strings.Let x = x1 � � �xm be the message to whih we will apply fa:(1) Input-length key separation. Set f�a (x) = f (m)am (x), where am = fa(m).(2) Length-prepending. Set f�a (x) = f (m+1)a (mkx).(3) Enrypt last blok. Set f�a1a2(x) = fa2(f (m)a1 (x)).The �rst two methods are from [12℄. The last method appears in an informational Annex of [112℄, and hasnow been analyzed by Petrank and Rako� [156℄. It is the most attrative method of the bunh, sine thelength of x is not needed until the end of the omputation, failitating on-line MAC omputation.8.7 Universal hash based MACsToday the most e�etive paradigm for fast message authentiation is based on the use of \almost universalhash funtions". The design of these hash funtions reeives muh attention and has resulted in some veryfast ones [32℄, so that universal hash based MACs are the fastest MACs around. Let us begin by desribingthe tool, and then seeing how it an be used for message authentiation.

Cryptography: Leture Notes 1558.7.1 Almost universal hash funtionsLet H : Keys(H)�Dom(H)! f0; 1gL be a family of funtions. We think of them as hash funtions beausethe domain Dom(H) of any individual funtion HK is typially large, being the message spae of the desiredmessage authentiation sheme.De�nition 8.11 Let H : Keys(H)�Dom(H)! f0; 1gL be a family of funtions. LetAdvuhH = maxa1;a2 nP hHK(a1) = HK(a2) : K R Keys(H) i o ;the maximum being over all distint points a1; a2 2 Dom(H).The smaller the value of AdvuhH , the better the quality of H as an almost universal funtion. We say thatH is a universal hash funtion if AdvuhH = 2�L. (We will see later that this is the lowest possible value ofthe inseurity.)A stronger property is almost xor-universality.De�nition 8.12 Let H : Keys(H)�Dom(H)! f0; 1gL be a family of funtions. LetAdvxuhH = maxa1;a2;bnP hHK(a1)�HK(a2) = b : K R Keys(H) i o ;the maximum being over all distint points a1; a2 2 Dom(H) and all strings b 2 f0; 1gL.The smaller the value of AdvxuhH , the better the quality of H as an almost xor-universal funtion. Wesay that H is a xor-universal hash funtion if AdvxuhH = 2�L. (We will see later that this is the lowestpossible value of the inseurity.)Almost xor-universality is a stronger requierement than almost universality.Proposition 8.13 Let H : Keys(H)� Dom(H)! f0; 1gL be a family of funtions. ThenAdvuhH � AdvxuhH :Proof: Setting b = 0L in De�nition 8.12 yields the quantity of De�nition 8.11.The simplest example is the family of all funtions.Proposition 8.14 The family Randl!L of all funtions of l-bits to L-bits is universal and xor-universal,meaning AdvuhRandl!L = AdvxuhRandl!L = 2�L :Proof: By Proposition 8.13 we need only show that AdvxuhRandl!L = 2�L. With distint a1; a2 2 f0; 1gl,and b 2 f0; 1gL �xed, we learly haveP h h(a1)�h(a2) = b : h R Randl!L i = 2�Lbeause h is a random funtion.Another soure of examples is polynomials over �nite �elds.

156 Goldwasser and BellareExample 8.15 Identify f0; 1gl with GF(2l), the �nite �eld of 2l elements. We �x an irreduible, degree lpolynomial over GF(2) so as to be able to do arithmati over the �eld. The hash funtion H we de�ne takesas key a pair �; � of points in f0; 1gl suh that � 6= 0. The domain is f0; 1gl and the range is f0; 1gL whereL � l. We de�ne the funtion by H�;�(x) = [�x+ �℄1:::L :That is, with key �; � and input x 2 f0; 1gl, �rst ompute, in the �nite �eld, the value �x+ �. View this asan l-bit string, and output the �rst L bits of it.Proposition 8.16 The family H : Keys(H) � f0; 1gl ! f0; 1gL de�ned above, where L � l and Keys(H) isthe set of all pairs (a; b) of l-bit strings suh that a 6= 0, is a xor-universal hash funtion.Proof: We need to show that AdvH = 2�L. Aordingly �x a1; a2 2 f0; 1gl suh that a1 6= a2, and �xb 2 f0; 1gL. Fix any key for the funtion, meaning any � 6= 0 and any �. Notie that y = �x + � i�x = ��1(y � �). (The arithmati here is over the �nite �eld, and we are using the assumption that � 6= 0.)This means that the map of GF(2l) to GF(2l) given by x 7! �x + � is a permutation. The propositionfollows from this.For the following it is useful to have some terminology. Fix any two points a1; a2 in the domain Dom(H) ofthe family, the only restrition on them being that they are not allowed to be equal. Also �x a point b inthe range f0; 1gL of the family. With H �xed, we an assoiate to these three points a probabilityUHColPrH(a1; a2; b) = P hHK(a1)�HK(a2) = b : K R Keys(H) i= P h h(a1)�h(a2) = b : h R H i ;the two expressions above being equal by de�nition.It is useful to interpret the almost xor-universal measure in another, more dynami way. Imagine that thehoie of the points a1; a2; b is made by an adversary. This adversary C knows that H is the target family.It lunks along for a while and then outputs some distint values a1; a2 2 Dom(H), and a value b 2 f0; 1gL.Now a key K is hosen at random, de�ning the funtion HK : Dom(H) ! f0; 1gL, and we test whether ornot HK(a1)�HK(a2) = b. If so, the adversary C wins. We denote the probability that the adversary winsby AdvxuhH;C. We then laim that this probability is at most AdvxuhH .The reason is that there is a single best strategy for the adversary, namely to hoose points a1; a2; b whihmaximize the probability UHColPrH(a1; a2; b) de�ned above. This should be relatively lear, at least for thease when the adversary is deterministi. But the laim is true even when the adversary is probabilisti,meaning that the triple of points it outputs an be di�erent depending on its own oin tosses. (In suh aase, the probability de�ning AdvxuhH;C is taken over the hoie of K and also the oin tosses of C.) Wejustify this laim in Proposition 8.17 below. We thus have two, equivalent ways of thinking about AdvxuhH ,one more \stati" and the other more \dynami". Depending on the setting, we may bene�t more from oneview than another.Before stating and proving Proposition 8.17, however, let us emphasize some features of this notion. Akey feature of the game is that the steps must follow a partiular order: �rst the adversary hooses pointsa1; a2; b, then K is hosen at random and the funtion HK is de�ned. The adversary is not allowed to hoosea1; a2; b as a funtion of K; it must �rst ommit to them, and then there is some probability of its winningthe game.This notion di�ers from others we have onsidered in that there is no omputational restrition on theadversary. Namely, it an run for as long as it likes in deiding how to hoose a1; a2; b, and the seurityondition is true nonetheless. Thus, it is a purely information theoreti notion.Here now is the promised bound.

Cryptography: Leture Notes 157Proposition 8.17 LetHKeys(H)�Dom(H)! f0; 1gL be a family of funtions and C a (possibly probabilis-ti) algorithm that outputs a triple a1; a2; b suh that a1; a2 are distint points in Dom(H) and b 2 f0; 1gL.Then AdvxuhH;C � AdvxuhH :Proof: Remember that to say C is probabilisti means that it has as an auxiliary input a sequene � ofrandom bits of some length r, and uses them in its omputation. Depending on the value of r, the outputtriple of C will hange. We an denote by a1(�); a2(�); b(�) the triple that C outputs when its oins are �.For any partiular value of � it is lear from De�nition 8.11 thatP hHK(a1(�))�HK(a2(�)) = b(�) : K R Keys(H) i� maxa1;a2;bfP hHK(a1)�HK(a2) = b : K R Keys(H) i g= AdvxuhH :Using this we getAdvxuhH;C = P hHK(a1(�))�HK(a2(�)) = b(�) : � R f0; 1gr ; K R Keys(H) i= X�2f0;1grP hHK(a1(�))�HK(a2(�)) = b(�) : K R Keys(H) i � 2�r� X�2f0;1grAdvxuhH � 2�r= AdvxuhH :The �rst equality is by de�nition of AdvxuhH;C. In the seond line we used the fat that the oins of C arehosen at random from the set of all strings of length r. In the third line, we used the above observation.How low an AdvxuhH go? We laim that the lowest possible value is 2�L, the value ahieved by a xor-universal family. The following justi�es this laim.Proposition 8.18 Let HKeys(H)�Dom(H)! f0; 1gL be a family of funtions. ThenAdvxuhH � 2�L :Proof: Fix two distint points a1; a2 2 Dom(H), and for any �xed key K 2 Keys(H) let(K) = P hHK(a1)�HK(a2) = b : b R f0; 1gL i :Then (K) = 2�L. Why? With K; a1; a2 all �xed, HK(a1)�HK(a2) is some �xed value, all it b0. The aboveis then just asking what is the probability that b = b0 if we pik b at random, and this of ourse is 2�L.

158 Goldwasser and BellareNow onsider the adversary C that piks b at random from f0; 1gL and outputs the triple a1; a2; b. (Notethis adversary is probabilisti, beause of its random hoie of b.) ThenAdvxuhH;C = P hHK(a1)�HK(a2) = b : b R f0; 1gL ; K R Keys(H) i= XK2Keys(H) (K) �P [K 0 = K : K 0 Keys(H) ℄= XK2Keys(H) 2�L �P [K 0 = K : K 0 Keys(H) ℄= 2�L � 1 :Thus we have been able to present an adversary C suh that AdvxuhH;C = 2�L. From Proposition 8.17 itfollows that AdvxuhH � 2�L.8.7.2 MACing using UH funtionsLet H : Keys(H)�Plaintexts! f0; 1gL be a family of hash funtions, and let F : f0; 1gk�f0; 1gl ! f0; 1gL bea PRF. We assoiate to them the universal hash based MAC. The key will be a pair of strings, K1;K2, wherethe �rst subkey is for H and the seond is for F . (We all them the hashing and masking keys respetively.)The message is �rst hashed to a string x using HK1 , and this value is then \enrypted" by applying FK2(s)to yield a value � whih is the tag. Here now is the full desription of the sheme, UHMH;F = (K; T ;V){Algorithm TK1;K2(M)x HK1(M)� FK2(x)Return � Algorithm VK1;K2(M;�)x HK1(M)�0 FK2(x)If � = �0 then return 1 else return 0Lemma 8.19 Let H : Keys(H)�Plaintexts! f0; 1gL be a family of funtions, and A an adversary attakingthe message authentiation sheme UHMH;Randl!L . Then for any q; � we haveAdvuf-maUHMH;Randl!L ;A � q(q � 1)2 �AdvuhH :Theorem 8.20 LetH : Keys(H)�Plaintexts! f0; 1gL be a family of funtions, and let F : f0; 1gk�f0; 1gl !f0; 1gL be a PRF. Then for any t; q; � we haveAdvuf-maUHMH;F (t; q; �) � q(q � 1)2 �AdvuhH +AdvprfF (t0; q + 1)where t0 = t+O(�).8.7.3 MACing using XUH funtionsLet H : Keys(H) � Plaintexts! f0; 1gL be a family of hash funtions, and let F : f0; 1gk � f0; 1gl ! f0; 1gLbe a PRF. We assoiate to them the xor-universal hash based MACs. There are two suh MACs; one stateful(using ounters) and deterministi, the other stateless and randomized. The key will be a pair of strings,K1;K2, where the �rst subkey is for H and the seond is for F . (We all them the hashing and maskingkeys respetively.) In both ases, the basi paradigm is the same. The message is �rst hashed to a string x

Cryptography: Leture Notes 159using HK1 , and this value is then \enrypted" by XORing with FK2(s) to yield a value � , where s is somepoint hosen by the sender. The tag ontains � , but also s so as to permit veri�ation. The di�erene in thetwo version is in how s is seleted. In the ounter version it is a ounter, and in the randomized version arandom number hosen anew with eah appliation of the tagging algorithm.Here now is the full desription of the ounter-based version of the sheme, C-UHMH;F = (K; T ;V){Algorithm TK1;K2(M)x HK1(M)� FK2(tr)�x� (tr; �)tr tr + 1Return � Algorithm VK1;K2(M;�)Parse � as (s; �)x0 FK2(s)��x HK1(M)If x = x0 then return 1 else return 0The randomized version R-UHMH;F = (K; T ;V) is like this{Algorithm TK1;K2(M)x HK1(M)r R f0; 1gl� FK2(r)�x� (r; �)Return �
Algorithm VK1;K2(M;�)Parse � as (s; �)x0 FK2(s)��x HK1(M)If x = x0 then return 1 else return 0Lemma 8.21 Let H : Keys(H)�Plaintexts! f0; 1gL be a family of funtions, and A an adversary attakingthe message authentiation sheme C-UHMH;Randl!L . Then for any q; � with q < 2l we haveAdvuf-maC-UHMH;Randl!L ;A � AdvxuhH :Proof of Lemma 8.21: The adversary A makes a sequene M1; : : : ;Mq of queries to its TK1;K2(�) orale,and these are answered aording to the above sheme. Pitorially:M1 =) �1 = (s1; �1)M2 =) �2 = (s2; �2)...Mq =) �q = (sq ; �q)Here si = hi � 1i is simply the (binary representation of the) ounter value, and �i = f(si)�h(Mi), whereh = HK1 is the hash funtion instane in use, and f = Randl!LK2 is the random funtion spei�ed by theseond key. Following this hosen-message attak, A outputs a pair M;� where � = (s; �). We may assumewlog that M 62 fM1; : : : ;Mqg. We know that A will be onsidered suessful if VK1;K2(M;�) = 1. We wishto upper bound the probability of this event.Let New be the event that s 62 fs1; : : : ; sqg, and Old the omplement event, namely that s = si for some valueof i 2 f1; : : : ; qg. LetP [�℄ denote the probability of event \�" in the experiment ForgeExp(C-UHMH;Randl!L ; A).We onsider p1 = P [VK1;K2(M;�) = 1 j Old℄p2 = P [VK1;K2(M;�) = 1 j New℄q = P [New℄ :We will use the following two laims.

160 Goldwasser and BellareClaim 1: p1 � AdvuhH .Claim 2: p2 � 2�L.We will prove these laims later. Let us �rst hek that they yield the desired result:Advuf-maC-UHMH;Randl!L ;A = P [VK1;K2(M;�) = 1℄= p1q + p2(1� q)� AdvuhH � q + 2�L � (1� q)� AdvuhH � q +AdvuhH � (1� q)� AdvuhH :The �rst line is simply by de�nition of the suess probability. The seond line is obtained by onditioning.In the third line we used the laims. In the fourth line we used Proposition 8.18.It remains to prove the laims. We begin with the seond.Proof of Claim 2: Sine the queries of the adversary did not result in the funtion f being evaluted on thepoint s, the value f(s) is uniformly distributed from the point of view of A. Or, remember the dynami viewof random funtions; we an imagine that f gets spei�ed only as it is queried. Sine the tagging orale (asinvoked by A) has not applied f at s, we an imagine that the oins to determine f(s) are tossed after theforgery is reated. With that view it is lear thatp2 = P [f(s)�h(M) = � ℄ = 2�L :Note that here we did not use anything about the hash funtion; the laim is true due only to the randomnessof f . 2Proof of Claim 2:Adversary CInitialize ounter tr to 0For i = 1; : : : ; q doA!Mi�i R f0; 1gL ; si htri ; �i (si; �i)A �i ; tr tr + 1A!M;�Parse � as (s; �)If s 62 fs1; : : : ; sqg then FAILElse let i be suh that s = siLet b �i�� and return M;Mi; bWe laim that AdvuhH;C = p1.Theorem 8.22 LetH : Keys(H)�Plaintexts! f0; 1gL be a family of funtions, and let F : f0; 1gk�f0; 1gl !f0; 1gL be a PRF. Then for any t; q; � we haveAdvuf-maC-UHMH;F (t; q; �) � AdvxuhH +AdvprfF (t0; q + 1)where t0 = t+O(�).

Cryptography: Leture Notes 1618.8 MACing with ryptographi hash funtionsReently there has been a surge of interest in MACing using only ryptographi hash funtions like MD5 orSHA. It is easy to see why. The popular hash funtions like MD5 and SHA-1 are faster than blok iphers insoftware implementation; these software implementations are readily and freely available; and the funtionsare not subjet to the export restrition rules of the USA and other ountries.The more diÆult question is how best to do it. These hash funtions were not originally designed to beused for message authentiation. (One of many diÆulties is that hash funtions are not keyed primitives,ie. do not aommodate naturally the notion of seret key.) So speial are must be taken in using them tothis end.A variety of onstrutions have been proposed and analyzed. (See Tsudik [195℄ for an early desription ofsuh onstrutions and Touh [194℄ for a list of Internet protools that use this approah. Preneel and vanOorshot [163, 162℄ survey existing onstrutions and point out to some of their properties and weaknesses;in partiular, they present a detailed desription of the e�et of birthday attaks on iterated onstrutions.They also present a heuristi onstrution, the MDx-MAC, based on these �ndings. Kaliski and Robshaw[115℄ disuss and ompare various onstrutions. Performane issues are disussed in [194, 11℄.) Reently,one onstrution seems to be gaining aeptane. This is the HMAC onstrution of [18℄. In partiularHMAC was reently hosen as the mandatory to implement authentiation transform for Internet seurityprotools and for this purpose is desribed in an Internet RFC [122℄.8.8.1 The HMAC onstrutionLet H be the hash funtion. For simpliity of desription we may assume H to be MD5 or SHA-1; howeverthe onstrution and analysis an be applied to other funtions as well (see below). H takes inputs of anylength and produes l-bit output (l = 128 for MD5 and l = 160 for SHA-1). Let Text denote the data towhih the MAC funtion is to be applied and let K be the message authentiation seret key shared by thetwo parties. (It should not be larger than 64 bytes, the size of a hashing blok, and, if shorter, zeros areappended to bring its length to exatly 64 bytes.) We further de�ne two �xed and di�erent 64 byte stringsipad and opad as follows (the \i" and \o" are mnemonis for inner and outer):ipad = the byte 0x36 repeated 64 timesopad = the byte 0x5C repeated 64 times.The funtion HMAC takes the key K and Text, and produes HMACK(Text) =H(K � opad; H(K � ipad;Text)) :Namely,(1) Append zeros to the end of K to reate a 64 byte string(2) XOR (bitwise exlusive-OR) the 64 byte string omputed in step (1) with ipad(3) Append the data stream Text to the 64 byte string resulting from step (2)(4) Apply H to the stream generated in step (3)(5) XOR (bitwise exlusive-OR) the 64 byte string omputed in step (1) with opad(6) Append the H result from step (4) to the 64 byte string resulting from step (5)(7) Apply H to the stream generated in step (6) and output the resultThe reommended length of the key is at least l bits. A longer key does not add signi�antly to the seurityof the funtion, although it may be advisable if the randomness of the key is onsidered weak.HMAC optionally allows trunation of the �nal output say to 80 bits.

162 Goldwasser and BellareAs a result we get a simple and eÆient onstrution. The overall ost for authentiating a stream Text islose to that of hashing that stream, espeially as Text gets large. Furthermore, the hashing of the paddedkeys an be preomputed for even improved eÆieny.Note HMAC uses the hash funtion H as a blak box. No modi�ations to the ode for H are requiredto implement HMAC. This makes it easy to use library ode for H , and also makes it easy to replae apartiular hash funtion, suh as MD5, with another, suh as SHA-1, should the need to do this arise.8.8.2 Seurity of HMACThe advantage of HMAC is that its seurity an be justi�ed given some reasonable assumptions about thestrength of the underlying hash funtion.The assumptions on the seurity of the hash funtion should not be too strong, sine after all not enoughon�dene has been gathered in urrent andidates like MD5 or SHA. (In partiular, we now know that MD5is not ollision-resistant [70℄. We will disuss the MD5 ase later.) In fat, the weaker the assumed seurityproperties of the hash funtion, the stronger the resultant MAC onstrution.We make assumptions that reet the more standard existing usages of the hash funtion. The propertieswe require are mainly a ertain kind of weak ollision-freeness and some limited \unpreditability." What isshown is that if the hash funtion funtion has these properties the MAC is seure; the only way the MACould fail is if the hash funtion fails.The analysis of [18℄ applies to hash funtions of the iterated type, a lass that inludes MD5 and SHA,and onsists of hash funtions built by iterating appliations of a ompression funtion CF aording to theproedure of Merkle [138℄ and Damg�ard [63℄. (In this onstrution a l-bit initial variable IV is �xed, andthe output of H on text x is omputed by breaking x into 512 bit bloks and hashing in stages using CF, ina simple way that the reader an �nd desribed in many plaes, e.g. [115℄.) Roughly what [18℄ say is thatan attaker who an forge the HMAC funtion an, with the same e�ort (time and olleted information),break the underlying hash funtion in one of the following ways:(1) The attaker �nds ollisions in the hash funtion even when the IV is random and seret, or(2) The attaker is able to ompute an output of the ompression funtion even with an IV that is random,seret and unknown to the attaker. (That is, the attaker is suessful in forging with respet to theappliation of the ompression funtion seretly keyed and viewed as a MAC on �xed length messages.)The feasibility of any of these attaks would ontradit some of our basi assumptions about the ryptographistrength of these hash funtions. Suess in the �rst of the above attaks means suess in �nding ollisions,the prevention of whih is the main design goal of ryptographi hash funtions, and thus an usually beassumed hard to do. But in fat, even more is true: suess in the �rst attak above is even harder than�nding ollisions in the hash funtion, beause ollisions when the IV is seret (as is the ase here) is farmore diÆult than �nding ollisions in the plain (�xed IV) hash funtion. This is beause the former requiresinteration with the legitimate user of the funtion (in order to generate pairs of input/outputs from thefuntion), and disallows the parallelism of traditional birthday attaks. Thus, even if the hash funtion isnot ollision-free in the traditional sense, our shemes ould be seure.Some \randomness" of hash funtions is assumed in their usage for key generation and as pseudo-randomgenerators. (For example the designers of SHA suggested that SHA be used for this purpose [81℄.) Ran-domness of the funtion is also used as a design methodology towards ahieving ollision-resistane. Thesuess of the seond attak above would imply that these randomness properties of the hash funtions arevery poor.It is important to realize that these results are guided by the desire to have simple to state assumptions anda simple analysis. In reality, the onstrution is even stronger than the analyses indiates, in the sense thateven were the hash funtions found not to meet the stated assumptions, the shemes might be seure. Forexample, even the weak ollision resistane property is an overkill, beause in atuality, in our onstrutions,the attaker must �nd ollisions in the keyed funtion without seeing any outputs of this funtion, whih is

Cryptography: Leture Notes 163signi�antly harder.The later remark is relevant to the reently disovered ollision attaks on MD5 [70℄. While these attaksould be adapted to attak the weak ollision-resistane property of MD5, they do not seem to lead to abreaking of HMAC even when used with MD5.8.8.3 Resistane to known attaksAs shown in [163, 19℄, birthday attaks, that are the basis to �nding ollisions in ryptographi hash funtions,an be applied to attak also keyed MAC shemes based on iterated funtions (inluding also CBC-MAC,and other shemes). These attaks apply to most (or all) of the proposed hash-based onstrutions of MACs.In partiular, they onstitute the best known forgery attaks against the HMAC onstrution. Considerationof these attaks is important sine they strongly improve on naive exhaustive searh attaks. However, theirpratial relevane against these funtions is negligible given the typial hash lengths like 128 or 160. Indeed,these attaks require the olletion of the MAC value (for a given key) on about 2l=2 messages (where l isthe length of the hash output). For values of l � 128 the attak beomes totally infeasible. In ontrast tothe birthday attak on key-less hash funtions, the new attaks require interation with the key owner toprodue the MAC values on a huge number of messages, and then allow for no parallelization. For example,when using MD5 suh an attak would require the authentiation of 264 bloks (or 273 bits) of data usingthe same key. On a 1 Gbit/se ommuniation link, one would need 250,000 years to proess all the datarequired by suh an attak. This is in sharp ontrast to birthday attaks on key-less hash funtions whihallow for far more eÆient and lose-to-realisti attaks [196℄.8.9 Minimizing assumptions for MACsAs with the other primitives of private key ryptography, the existene of seure message authentiationshemes is equivalent to the existene of one-way funtions. That one-way funtions yield message authen-tiation shemes follows from Theorem 5.19 and Theorem 8.6. The other diretion is [110℄. In summary:Theorem 8.23 There exists a seure message authentiation sheme for message spae f0; 1g� if and onlyif there exists a one-way funtion.8.10 Problems and exerisesProblem 8.24 Let F : f0; 1gk � f0; 1gl ! f0; 1gl be a PRF. Reall that the CBC MAC based on F is themessage authentiation shemeMA whose tagging and verifying algorithms are as follows:Algorithm TK(x1 : : : xn)y0 0lFor i = 1; : : : ; n do yi FK(yi�1�xi)Return yn Algorithm VK(x1 : : : xn; �)y0 0lFor i = 1; : : : ; n do yi FK(yi�1�xi)If yn = � then return 1 else return 0Let the message spae be the set of all strings x whose length is a multiple of l bits. (Meaning the number ofmessage bloks n may vary in the above.) Show that the sheme is inseure over this message spae. Namelypresent an adversary A attaking the sheme using time t, making q orale queries, these totalling � bits,and ahieving Advuf-maMA;A = 1, where t; q; � are some small values that you will speify.

C h a p t e r 9Digital signatures

The notion of a digital signature may prove to be one of the most fundamental and useful inventions of modernryptography. A signature sheme provides a way for eah user to sign messages so that the signatures anlater be veri�ed by anyone else. More spei�ally, eah user an reate a mathed pair of private and publikeys so that only he an reate a signature for a message (using his private key), but anyone an verify thesignature for the message (using the signer's publi key). The veri�er an onvine himself that the messageontents have not been altered sine the message was signed. Also, the signer an not later repudiate havingsigned the message, sine no one but the signer possesses his private key.By analogy with the paper world, where one might sign a letter and seal it in an envelope, one an signan eletroni message using one's private key, and then seal the result by enrypting it with the reipient'spubli key. The reipient an perform the inverse operations of opening the letter and verifying the signatureusing his private key and the sender's publi key, respetively. These appliations of publi-key tehnologyto eletroni mail are quite widespread today already.If the diretory of publi keys is aessed over the network, one needs to protet the users from being sentfraudulent messages purporting to be publi keys from the diretory. An elegant solution is the use of aerti�ate { a opy of a user's publi key digitally signed by the publi key diretory manager or othertrusted party. If user A keeps loally a opy of the publi key of the diretory manager, he an validate allthe signed ommuniations from the publi-key diretory and avoid being triked into using fraudulent keys.Moreover, eah user an transmit the erti�ate for his publi key with any message he signs, thus removingthe need for a entral diretory and allowing one to verify signed messages with no information other thanthe diretory manager's publi key. Some of the protool issues involved in suh a network organization, aredisussed in the setion on key distribution in these leture notes.9.1 The Ingredients of Digital SignaturesA digital signature sheme within the publi key framework, is de�ned as a triple of algorithms (G; �; V)suh that� Key generation algorithm G is a probabilisti, polynomial-time algorithm whih on input a seurityparameter 1k, produes pairs (P; S) where P is alled a publi key and S a seret key. (We use thenotation (P; S) 2 G(1k) indiates that the pair (P; S) is produed by the algorithm G.)� Signing algorithm � is a probabilisti polynomial time algorithm whih is given a seurity parameter1k, a seret key S in range G(1k), and a messagem 2 f0; 1gk and produes as output string s whih we164

Cryptography: Leture Notes 165all the signature of m. (We use notation s 2 �(1k; S;m) if the signing algorithm is probabilisti ands = �(1k; S;m) otherwise. As a shorthand when the ontext is lear, the seret key may be omittedand we will write s 2 �(S;m) to mean meaning that s is the signature of message m.)� Veri�ation algorithm V is a probabilisti polynomial time algorithm whih given a publi key P , adigital signature s, and a message m, returns 1 (i.e "true") or 0 (i.e "false") to indiate whether or notthe signature is valid. We require that V (P; s;m) = 1 if s 2 �(m) and 0 otherwise. (We may omit thepubli key and abbreviate V (P; s;m) as V (s;m) to indiate verifying signature s of message m whenthe ontext is lear.)� The �nal harateristi of a digital signature system is its seurity against a probabilisti polynomial-time forger. We delay this de�nition to later.Note that if V is probabilisti, we an relax the requirement on V to aept valid signatures and rejet invalidsignatures with high probability for all messages m, all suÆiently large seurity parameters k, and all pairsof keys (P; S) 2 G(1k). The probability is taken over the oins of V and S. Note also that the message tobe signed may be plain text or enrypted, beause the message spae of the digital signature system an beany subset of f0; 1g�.9.2 Digital Signatures: the Trapdoor Funtion ModelDiÆe and Hellman [68℄ propose that with a publi key ryptosystem (G;E;D) based on the trapdoor funtionmodel, user A an sign any message M by appending as a digital signature D(M) = f�1(M) to M where fis A's trapdoor publi funtion for whih A alone knows the orresponding trapdoor information. Anyonean hek the validity of this signature using A's publi key from the publi diretory, sine E(D(M)) =f�1(f(M)). Note also that this signature beomes invalid if the message is hanged, so that A is protetedagainst modi�ations after he has signed the message, and the person examining the signature an be surethat the message he has reeived that was originally signed by A.Thus, in their original proposal DiÆe and Hellman linked the two tasks of enryption and digital signatures.We, however, separate these two tasks. It turns out that just as some ryptographi shemes are suitedfor enryption but not signatures, many proposals have been made for signature-only shemes whih ahievehigher seurity.The RSA publi-key ryptosystem whih falls in the DiÆe and Hellman paradigm allows one to implementdigital signatures in a straightforward manner. The private exponent d now beomes the signing exponent ,and the signature of a message M i whih falls in the DiÆe and Hellman paradigm s now the quantityMd mod n. Anyone an verify that this signature is valid using the orresponding publi veri�ation exponente by heking the identity M = (Md)e mod n. If this equation holds, then the signatureMd must have beenreated from M by the possessor of the orresponding signing exponent d. (Atually, it is possible that thereverse happened and that the \message" M was omputed from the \signature" Md using the veri�ationequation and the publi exponent e. However, suh a message is likely to be unintelligible. In pratie,this problem is easily avoided by always signing f(M) instead of M , where f is a standard publi one-wayfuntion.)Cast in our notation for digital signature shemes, the DiÆe-Hellman proposal is the following triple ofalgorithms (G; �; V):� Key Generation: G(1k) piks pairs (fi; ti) from F where i 2 I \ f0; 1gk.� Signing Algorithm: �(1k; fi; ti;m) outputs f�1i (m).� Veri�ation Algorithm: V (fi; s;m) outputs 1 if fi(s) = m and 0 otherwise.We will onsider the seurity of this proposal and others. We �rst de�ne seurity for digital signatures.

166 Goldwasser and Bellare9.3 De�ning and Proving Seurity for Signature ShemesA theoretial treatment of digital signatures seurity was started by Goldwasser, Miali and Yao in [103℄and ontinued in [101, 14, 145, 171, 74℄.9.3.1 Attaks Against Digital SignaturesWe distinguish three basi kinds of attaks, listed below in the order of inreasing severity.� Key-Only Attak: In this attak the adversary knows only the publi key of the signer and thereforeonly has the apability of heking the validity of signatures of messages given to him.� Known Signature Attak: The adversary knows the publi key of the signer and has seen mes-sage/signature pairs hosen and produed by the legal signer. In reality, this the minimum an adversaryan do.� Chosen Message Attak: The adversary is allowed to ask the signer to sign a number of messages ofthe adversary's hoie. The hoie of these messages may depend on previously obtained signatures.For example, one may think of a notary publi who signs douments on demand.For a �ner subdivision of the adversary's possible attaks see [101℄.What does it mean to suessfully forge a signature?We distinguish several levels of suess for an adversary, listed below in the order of inreasing suess forthe adversary.� Existential Forgery: The adversary sueeds in forging the signature of one message, not neessarily ofhis hoie.� Seletive Forgery: The adversary sueeds in forging the signature of some message of his hoie.� Universal Forgery: The adversary, although unable to �nd the seret key of the The forger, is able toforge the signature of any message.� Total Break : The adversary an ompute the signer's seret key.Clearly, di�erent levels of seurity may be required for di�erent appliations. Sometimes, it may suÆe toshow that an adversary who is apable of a known signature attak an not sueed in seletive forgery, whilefor other appliations (for example when the signer is a notary-publi or a tax-return preparer) it may berequired that an adversary apable of a hosen signature attak an not sueed even at existential forgerywith non-negligible probability.The seurity that we will aim at, in these notes are that with high probability a polynomial time adversarywould not be able to even existentially forge in the presene of a hosen message attak.We say that a digital signature is seure if an enemy who an use the real signer as \an orale" an notin time polynomial in the size of the publi key forge a signature for any message whose signature was notobtained from the real signer. Formally, let B be a blak box whih maps messages m to valid signatures,i.e , V (P;B(m);m) = 1 for all messages m. Let the forging algorithm F on input the publi key P haveaess to B, denoted as FB(P). The forging algorithm runs in two stages: it �rst launhes a hosen messageattak, and then outputs a \new forgery" whih is de�ned to be any message-signature pair suh that themessage was not signed before and that signature is valid. We require that for all forging algorithms F , for allpolynomials Q, for all suÆiently large k, Prob(V (P; s;m) = 1 : (P; S) R G(1k) ; (m; s) R FB(P)) � 1Q(k) .

Cryptography: Leture Notes 167The probability is taken over the hoie of the keys (P; S) 2 G(1k) , the oin tosses of the forgery algorithmF , and the oins of B.DiÆe and Hellman's original proposal does not meet this strit de�nition of seurity; it is possible to existen-tially forge with just the publi information: Choose an s at random. Apply the publi key to s to produem = f(s). Now s is a valid signature of m.Many digital signature systems have been proposed. For a fairly exhaustive list we refer to the paper [101℄handed out.We examine the seurity of three systems here.9.3.2 The RSA Digital Signature ShemeThe �rst example is based on the RSA ryptosystem.The publi key is a pair of numbers (n; e) where n is the produt of two large primes and e is relativelyprime to �(n), and the seret key is d suh that ed = 1 mod �(n). Signing is to ompute �(m) = mdmodn.Verifying is to raise the signature to the power e and ompare it to the original message.Claim 9.1 RSA is universallly forgable under a hosen-message attak. (alternatively, existentially forgableunder known message attak)Proof: If we are able to produe signatures for two messages, the signature of the the produt of the twomessages is the produt of the signatures. Let m1 and m2 be the two messages. Generate signatures forthese messages with the blak box: �(m1) = m1d mod n, �(m2) = m2d mod n. Now we an produe thesignature for the produt of these two messages: �(m1m2) = (m1m2)d = m1dm2d = �(m1)�(m2) mod nTo produe a signature for a message m, begin by hoosing a random number r 2 2n�. Now de�ne m1 andm2 as follows: m1 = mr mod n, and m2 = r�1 mod n Using the strategy above, we an �nd a signature forthe produt of these messages, whih is the original message m, as follows: m1m2 = (mr)r�1 = m.9.3.3 El Gamal's ShemeThis digital signature system seurity relies on the diÆulty of solving a a problem alled the DiÆe-Hellman-key-exhange (DHKE)problem, whih is related to the disrete log problem. The DHKE problem is on inputa prime p, a generator g, and gy; gx 2 Z�p , ompute output gxy mod p. The best way urrently known tosolve the DHKE is to �rst solve the disrete log problem. Whether omputing a disrete log is as hard asthe DiÆe-Hellman problem is urrently an open question.The following digital signature sheme is probabilisti. A lose variant of it alled DSS has been endorsedas a national standard.Idea of the sheme:� Publi key: A triple (y; p; g), where y = gx mod p, p is prime and g is a generator for Z�p .� Seret key: x suh that y = gx mod p.� Signing: The signature of message m is a pair (r; s) suh that 0 6= r; s 6= p� 1 and gm = yrrs mod p.� Verifying: Chek that gm = yrrs mod p atually holds.In order to generate a pair (r; s) whih onstitutes a signature, the signer begins by hoosing a randomnumber k suh that 0 6= k 6= p�1 and GCD(k; p�1) = 1. Let r = gk(modp). Now we want to ompute an s

168 Goldwasser and Bellaresuh that gm = yrrs = gxr+ksmodp. In terms of the exponents, this relationship is m = xr + ks(modp� 1).Hene s = (m� xr)k�1modp� 1. The signature of m is the pair (r; s).Clearly, If an attaker ould solve the disrete logarithm problem, he ould break the sheme ompletely byomputing the seret key x from the information in the publi �le. Moreover, if an attaker �nds k for onemessage, he an solve the disrete logarithm problem, so the pseudo random number generator employed togenerate k's has to be of superior quality.Claim 9.2 This sheme is existentially forgable in the presene of a known message attak.Exerise.Note on a key exhange protool based on disrete log: It is interesting to note that it is possible for twopeople to exhange a seret key without prior seret meeting using the DL problem whih is not known toyield a trapdoor funtion. This an be done by Persons A and B agree on a prime p and a generator g.Person A hooses a seret number x and sends gx(modp) to B. Person B hooses a seret number y andsends gy(modp) to A. Now eah user an readily ompute gxy(modp); let this be the shared seret key. It isnot known if omputing xy is as diÆult as DLP .9.3.4 Rabin's ShemeRabin [164℄ proposed a method where the signature for a message M was essentially the square root of M ,modulo n, the produt of two large primes. Sine the ability to take square roots is provably equivalentto the ability to fator n, an adversary should not be able to forge any signatures unless he an fator n.For our purpose let's onsider the variant of it when n = pq and p = q = 3 mod 4, so that the signature isuniquely determined.This argument assumes that the adversary only has aess to the publi key ontaining the modulus nof the signer. An enemy may break this sheme with an ative attak by asking the real signer to signM = x2 mod n, where x has been hosen randomly. If the signer agrees and produes a square root y of M ,there is half a hane that gd(n; x� y) will yield a nontrivial fator of n | the signer has thus betrayed hisown serets! Although Rabin proposed some pratial tehniques for irumventing this problem, they havethe e�et of eliminating the onstrutive redution of fatoring to forgery.Let us look at this in some detail.This digital signature sheme is based on the diÆulty of omputing square roots modulo a ompositenumber.� Publi key: n = pq� Seret key: primes p; q� Signing: s = pm mod n (assume WLOG that all m are squares)� Veri�ation: Chek that s2 = m mod n.Claim 9.3 This system is existentially forgable with key-only attak.Proof: Choose a signature and square it to produe a orresponding message.Claim 9.4 The system is totally breakable in the fae of a hosen message attak.Proof: We know that if we an �nd two distint square roots of a message, we an fator the modulus.Choose a value s and let m = s2. Now s is a valid signature of m. Submit m to the blak box. There is aone in two hane that it will produe the same signature s. If so, repeat this proess. If not, we have bothsquare roots of m and an reover the fators of n.

Cryptography: Leture Notes 169Seurity when \Breaking" is Equivalent to FatoringGiven the inseurity of Rabin's sheme in the fae of a hosen message attak, one might hypothesize thatthere exists no seure digital signature system based on fatoring. That is, a sheme wherein:� \Breaking" the sheme is equivalent to fatoring.� The signature sheme is seure against a hosen message attak.False proof: We assume (1) and show that (2) is impossible. Sine the �rst statement is that "breaking"the sheme is equivalent to fatoring, we know that the following redution must be possible on input of aomposite number n.� Generate a publi key P .� Produe a message m.� Produe a valid signature s 2 �(P;m) using the "breaker" algorithm. (Repeat these three steps up toa polynomial number of times.)� Fator n.Conlude that the system must be inseure in the fae of a hosen message attak, sine we an substitutethe CMA for the "breaker" algorithm in step 3. QEDWhat is wrong with this argument? First, there is only a vague de�nition of the publi information P ;it need not ontain the number n. Seond, the CMA will always produe signatures with respet to �xedpubli information, whereas in the above redution it may be neessary to use di�erent publi informationin every all to the "breaker".9.4 Probabilisti SignaturesProbabilisti tehniques have also been applied to the reation of digital signatures. This approah waspioneered by Goldwasser, Miali, and Yao [103℄, who presented signature shemes based on the diÆulty offatoring and on the diÆulty of inverting the RSA funtion for whih it is provably hard for the adversaryto existentially forge using a known signature attak.Goldwasser, Miali, and Rivest [101℄ have strengthened this result by proposing a signature sheme whih isnot existentially forgable under a hosen message attak. Their sheme is based on the diÆulty of fatoring,and more generally on the existene of law-free trapdoor permutations (that is, pairs f0; f1 of trapdoorpermutations de�ned on a ommon domain for whih it is hard to �nd x; y suh that f0(x) = f1(y)).The sheme, as originally desribed,although attrative in theory, is quite ineÆient. However, it an bemodi�ed to allow more ompat signatures, to make no use of memory between signatures other than for thepubli and seret keys, and even to remove the need of making random hoies for every new signature. Inpartiular, Goldreih [90℄ has made suggestions that make the fatoring-based version of this sheme morepratial while preserving its seurity properties.Bellare and Miali in [14℄ have shown a digital signature sheme whose seurity an be based on the existeneof any trapdoor permutation (a weaker requirement than law-freeness). Then Naor and Yung [145℄ haveshown how, starting with any one-way permutation, to design a digital signature sheme whih is seureagainst existential forgery by a hosen signature attak. Finally, Rompel [171℄ has shown how to sign givenany one-way funtion. These works build on an early idea due to Lamport on how to sign a single bit in[125℄. The idea is as follows. If f is a one-way funtion, and Alie has published the two numbers f(x0) = y0and f(x1) = y1, then she an sign the message 0 by releasing x0 and she an similarly sign the message 1

170 Goldwasser and Bellareby releasing the message x1. Merkle [139℄ introdued some extensions of this basi idea, involving buildinga tree of authentiated values whose root is stored in the publi key of the signer.We now proeed to desribe in detail some of these theoretial developments.9.4.1 Claw-free Trap-door PermutationsWe introdue the notion of law-free trap-door permutations and show how to onstrut a signature shemeassuming the existene of a law-free pair of permutations.De�nition 9.5 [f-law℄ Let f0, f1 be permutation over a ommon domain D. We say that (x; y; z) is f-lawif f0(x) = f1(y) = z.De�nition 9.6 [A family of law-free permutations℄ A family F = ff0;i; f1;i : Di ! Digi2I is alled afamily of law-free trap-door permutations if:1. There exists an algorithm G suh that G(1k) outputs two pairs (f0; t0), (f1; t1) where where ti is thetrapdoor information for fi.2. There exists PPT an algorithm that given fi and x 2 Di omputes fi(x).3. 8 (inverting algorithm) I , there exists some negligible funtion �I suh that for all suÆiently large k,Prob(f0(x) = f1(y) = z : ((f0; t0); (f1; t1)) R G(1k) ; (x; y; z) R I(f0; f1)) < �I(k)The following observation shows that the existene of a pair of trap-door permutations does not immediatelyimply the existene of a law-free permutation. For example, de�ne a family of (\RSA") permutations byf0;n(x) � x3 mod n f1;n(x) � x5 mod n(gd(x; n) = 1, and gd(15;�(n)) = 1). Sine the two funtions ommute, it is easy to reate a law byhoosing w at random and de�ning x = f1;n(w); y = f0;n(w), andz = f0;n(x) = f1;n(y) = w15 mod nIn general, the following question isOpen Problem 9.7 Does the existene of a family of trap-door permutations imply the existene of afamily of law-free trap-door permutations ?The onverse of the above is learly true: Given a law-free permutations generator, it is easy to generatea trap-door permutation. If ff0; f1g is a pair of law-free permutations over a ommon domain, that is,it is omputationally infeasible to �nd a triple x; y; z suh that f0(x) = f1(y) = z, then (f0; f�10) is trap-door. (Otherwise, give the inverting algorithm I , z = f1(y); z is also distributed uniformly over D, so withnon-negligible probability, I an produe x = f�10 (z). Therefore (x; y; z) is a law, ontradition.)9.4.2 Example: Claw-free permutations exists if fatoring is hardLet n = pq, where p and q are primes (p; q 2 Hk) and p � 3 mod 8, q � 7 mod 8. Observe that about 1/16of odd prime pairs �t this requirement. Let QRn denote the set of quadrati residues modn.We �rst note that:

Cryptography: Leture Notes 1711. (Jn(�1)) = +1, but �1 62 QRn2. (Jn(2)) = �1, (and 2 62 QRn) .3. x 2 QRn has exatly one square root y 2 QRn (x is a Blum integer), but has four square rooty;�y; w;�w in general. Roots w;�w have Jaobi symbol �1, y and �y have Jaobi symbol +1.We now de�ne a family of pairs of funtions, and prove, assuming the intratability of fatoring, that it is afamily of law-free trap-door permutations over QRn.De�ne, for x 2 QRn: f0;n(x) = x2 mod n f1;n(x) = 4x2 mod nIt follows from the above notes that the funtions f0;n, f1;n are permutations of QRn.Claim: ff0;n, f1;ng is law-free.Proof: Suppose that the pair is not law-free. Assume x; y 2 QRn satisfyx2 � 4y2 mod nThis implies that (x� 2y)(x+ 2y) � 0 mod n. However, heking the Jaobi symbol of both sides we have:(Jn(x)) = +1 (Jn(2y)) = (yn)(2n) = �1 (Jn(�2y)) = (�1n) = �1That is, x is a quadrati residue, but �2y are not. Sine x 6� �2y mod n gd(x � 2y; n) will produe anontrivial fator on n.9.4.3 How to sign one bitWe �rst desribe the basi building blok of the signature sheme: signing one bit.Let D be the ommon domain of the law-free pair ff0; f1g, and assume x is seleted randomly in D.Publi Seretx 2 D; f0; f1 f�10 ; f�11To sign the bit b 2 f0; 1g let s = �(b) = f�1b (x).To verify the signature s, hek that fb(s) = x.Claim 9.8 The above sheme is existentially seured against Chosen Message Attak.Proof: Suppose, by way of ontradition, that the sheme is not seure. That is, 9 a forging algorithmFCMA(P) that an forge the signature (given the publi information); F asks for the signature of b and(8 polynomial Q and in�nitely many k's) an sign b orretly with probability > 1=Q(k). To derive theontradition, we design an algorithm that, given FCMA, an make laws:input: f0, f1.output: x; y; z, suh that f0(x) = f1(y) = z (with probability > 1=Q(k)).

172 Goldwasser and Bellare(1) Selet randomly x 2 D; ip a oin and put in the publi �le: z = foin(x) 2 D; f0; f1. (Note that f0; f1are permutations, so z is uniform in D).(2) Run algorithm FCMA(P):1. If F asks for signature of b = oin, go bak to (1).2. If F asks for signature of b = oin, answer with x = f�1b (foin(x)).(3) By the assumption, F an produe now a signature for b, y = f�1b (foin(x)), i.e. z = fb(x) = fb(y).That is, we have a law:
9.4.4 How to sign a messageAs before, D is the ommon domain of the law-free pair ff0; f1g, and x is seleted randomly in D.Publi Seretx 2 D; f0; f1 f�10 ; f�11For x 2 D, we sign the �rst message m1 by:s1 = �(m1) = f�1m1 (x)and verify by: V (s1;m1) = � 1 if fm1(s1) = x0 otherwisewhere, for m1 = m11m12 : : :m1k: f�1m1 (x) = f�1m1k(: : : (f�1m12 (f�1m11 (x))))fm1(x) = fm11(: : : (fm1k�1(fm1k(x))))Clearly fm is a permutation on D, and is easy to ompute. To sign the next message m2, we apply the newpermutation on the previous signature: s2 = �(m2) = (f�1m2 (s1);m1)and verify by: V (s2;m2) = � 1 if fm2(s2) = s1 and fm1(s1) = x0 otherwiseNotes:1. With this sheme, the length of the signature grows linearly with the number of messages signed sofar.2. It is learly easy to forge signatures for pre�x of a message we have already seen. We therefore assumehere that we pre-proess the messages to be presented in a pre�x-free enoding sheme. (i.e no messagesis a pre�x of another message).

Cryptography: Leture Notes 173Claim: The sheme is not existentially seure with respet to a Known Message Attak.Proof: Assume 9F (H;P) that (8 polynomial Q and suÆiently large k), given the publi information Pand the history H = ((m1; �(m1)); : : : ; (ml; �(ml))), for messages m1;m2; :::;ml seleted by running M(1k),an �nd a message m̂ 6= mi, (1 � i � l), an produe a signature �(m̂) suh thatProbfV (�(m̂); m̂) = 1g > 1Q(k)where the probability is taken over all publi �les and oin tosses of F .We now design an algorithm A that uses F to ome up with a law:input: f0, f1.output: a; b; , suh that f0(a) = f1(b) = (with probability > 1=Q(k)).(1) Choose m1;m2; : : : ;mi 2 M(1k); x 2R D. Let z = fml(: : : (fm1(x))). Let P = ff0; f1; xg be the publi�le. (Notie that z is also seleted uniformly in D).(2) Generate the history H = (m1; fm1(z)); : : : (ml; (fml(: : : (fm1(z)))), Denote m = m1 Æm2 Æ : : : Æml, thestring of all messages generated.(3) Run the forging algorithm F (H;P) to produe (m̂; �(m̂)).(4) With non negligible probability, �(m̂) is a valid signature; that is, "walking bak" with fm̂ from �(m̂),aording to the history it supplies, will get to x, and therefore must meet the path going bak from�(mi) Let l be the loation at whih the two paths meet, that is, m agrees with m̂ on the �rst l � 1bits, and denote w = f�1ml�1(: : : (f�1m0 (z))). Assume, w.l.o.g that the l � th bit of m is 0, the l � th bitof m̂ is 1, and let u; v be the orresponding f�10 (w); f�11 (w). Output (u; v; w).Clearly (u; v; w) is a law. Thus, applying the publi f0; f1 on the output of the forging algorithm F resultsin a law, with non-negligible probability; ontradition.However, this sheme does not seem to be seure against a Chosen Message Attak. At least we do not knowhow to prove that it is. In the next setion we modify it to ahieve this.9.4.5 A seure signature sheme based on law free permutationsLet Df be the ommon domain of the law-free permutations pair Consider the following sheme, for signingmessages mi 2 f0; 1gk where i 2 f1; � � � ; B(k)g and B(k) is a polynomial in k:Choose two pairs of law-free permutations, (f0; f1) and (g0; g1) for whih we know f�10 ; f�11 ; g�10 ; g�11 .ChooseX 2 Df . Let the publi key ontainDf ; X; f0; f1; g0; g1 and let the seret key ontain f�10 ; f�11 ; g�10 ; g�11 .PK SKDf ; X; f0; f1 f�10 ; f�11g0; g1 g�10 ; g�11Let Æ be the onatenation funtion and set the history H1 = ;. To sign mi, for i 2 f1; � � � ; B(k)g:1. Choose Ri 2 Dg uniformly.

174 Goldwasser and Bellare2. Set zi1 = f�1HiÆRi(X).3. Set zi2 = g�1mi (Ri).4. Set signature �(mi) = (zi1; zi2; Hi).5. Set Hi+1 = Hi ÆRi.To verify a message-signature pair (m; s) where s = (z1; z2; H),1. Let R = gm(z2).2. Chek that fHÆR(z1) = X .If so, then the signature is valid and the veri�ation funtion V (m; s) = 1. Otherwise, V (m; s) = 0. Thissheme takes advantage of the fat that a new random element zi1 an be used in plae of X for eah messageso that the forger is unable to gain information by requesting signatures for a polynomial number of messages.It is lear that the signing and veri�ation proedures an be performed in polynomial time as required. Thefollowing theorem also shows that it is seure:Theorem 9.9 The law-free permutation signature sheme is existentially seure against CMA if law-freepermutations exist.Proof: (by ontradition) Suppose not. Then there is a forger FCMA(f0; f1; g0; g1; X) whih onsists of thefollowing two stages:Stage 1: F obtains signatures �(mi) for up to B(k) messages mi of its hoie.Stage 2: F outputs (m̂; ŝ) where ŝ = (ẑ1; ẑ2; Ĥ) suh that m̂ is di�erent than all mi's requested in stage 1and V (m̂; ŝ) = 1.We show that if suh an F did exist, then there would be a PTM A whih would:Input: Uniformly hosen (h0; h1; Dh) law-free suh that h�10 and h�11 are not known.Output: Either a h-law with probability greater than 1Q(k) where Q(k) is a polynomial in k.This is a ontradition by the de�nition of h0 and h1.PTM A is based on the fat that when F is suessful it does one of the following in stage 2:Type 1 forgery: Find a g-lawType 2 forgery: Find a f -lawType 3 forgery: Find f�10 (!) or f�11 (!) for ! = zB(k)1 the last point in the history provided by the signerPTM A onsists of two PTM's A1 and A2 whih are run one after the other. A1 attempts to �nd an h-lawbased on the assumption that F produes a g-law. A2 attempts to �nd a h-law based on the assumptionthat F produes a f -law. Both A1 and A2 will use h0 and h1 in their publi keys. In order to sign a messageusing h0 and h1, these PTM's will ompute v = hi(R) for some R 2 Dh and use R as h�1b (v). Thus, neitherA1 nor A2 will need to invert hb when answering F 's requests. Note that sine hb is a permutation, v willbe random if R is.Desription of A1:

Cryptography: Leture Notes 1751. Choose (f0; f1; Df) law-free suh that we know f�10 and f�11 . Let the publi key ontainDf ; X; f0; f1; g0 =h0; and g1 = h1. Let the seret key ontain f�10 and f�11 .PK SKDf ; X; f0; f1 f�10 ; f�11g0 = h0; g1 = h12. Set history H1 = ; and run F (f0; f1; g0; g1; X). When F asks for the signature of a message mi,(a) Choose zi2 2 Dg at random.(b) Set Ri = gmi(zi2).() Set zi1 = f�1HiÆRi(X).(d) Output (zi1; zi2; Hi).(e) Set Hi+1 = Hi ÆRi.F then outputs (m̂; ŝ) where ŝ = (ẑ1; ẑ2; Ĥ).3. Test to see that V (m̂; ŝ) = 1. If not then A1 fails.4. Let R̂ = gm̂(ẑ2). If R̂ 6= Ri for any i, then A1 fails sine F did not produe a type 1 forgery5. Otherwise, let j be suh that R̂ = Rj . We now have hm̂(ẑ2) = hmj (zj2) = Rj . From this we easilyobtain a h-law.Desription of A2:1. Choose (g0; g1; Dg) law-free suh that we know g�10 and g�11 . Let f0 = h0 and f1 = h1. ChooseR1; R2; � � � ; RB(k) 2 Dg, 2 f0; 1g and z 2 Df uniformly and independently. SetX = fR1ÆR2Æ���ÆRB(k)Æ(z).Let the publi key ontain Df ; X; f0; f1; g0 and g1. Let the seret key ontain g�10 and g�11 .PK SKDf ; X; g0; g1 g�10 ; g�11f0 = h0; f1 = h12. Set history H1 = ; and run F (f0; f1; g0; g1; X). When F asks for signature of message mi,(a) Set zi1 = fRi+1Æ���ÆRB(k)(X).(b) Set zi2 = g�1mi (Ri).() Output (zi1; zi2; Hi).(d) Set Hi+1 = Hi ÆRi.F then outputs (m̂; ŝ) where ŝ = (ẑ1; ẑ2; Ĥ).3. Let R̂ = gm̂(ẑ2).4. There are three possibilities to onsider:F made type 1 forgery: This means Ĥ Æ R̂ = Hi for some i. In this ase A2 fails.

176 Goldwasser and BellareF made type 2 forgery: There is some �rst bit in Ĥ Æ R̂ whih di�ers from A2's �nal history HN . Asa result, Ĥ Æ R̂ = H Æ b Æ Ŝ and HN = H Æ�b ÆS for some b 2 f0; 1g and strings H; Ŝ; S. From thiswe obtain fb(fŜ(ẑ1)) = f�b(fS(zN1)) whih provides A2 with a h-law.F made type 3 forgery: Ĥ Æ R̂ = HN Æ b ÆS for some bit b and string S. Sine the bit d hosen by A2to follow HN if another request were made is random, b will be di�erent from d with probability1/2. In this ase, A2 will have h�10 (h�1HN (X)) and h�11 (h�1HN (X)) providing A2 with a h-law.Suppose that with probability p1 F (f0; f1; g0; g1; X) provides a type 1 forgery, with probability p2 F (f0; f1; g0; g1; X)provides a type 2 forgery, and with probability p3 F (f0; f1; g0; g1; X) provides a type 3 forgery. Sinef0; f1; g0; g1; h0; h1 are hosen uniformly over law-free permutations, A1 will sueed with probability p1and A2 will sueed with probability p2 + p32 . Thus, A1 or A2 will sueed with probability at leastmax(p1; p2 + p32) � 13Q(k) .Notes:1. Unlike the previous sheme, the signature here need not ontain all the previous messages signed bythe sheme; only the elements Ri 2 Dg are attahed to the signature.2. The length of the signature need not be linear with the number of messages signed. It is possibleinstead of linking the Ri together in a linear fashion, to build a tree struture, where R1 authentiatesR2 and R3, and R2 authentiates R4 and R5 and so forth till we onstrut a full binary tree of depthlogarithmi in B(k) where B(k) is a bound on the total number of signatures ever to be signed. Then,relabel the Rj 's in the leafs of this tree as r1; :::; rB(k).In the omputation of the signature of the i-th message, we let zi2 = g�1mi (ri), and let zi1 = f�1ri (R)where R is the father of ri in the tree of authentiated R's. The signature of the ith message needs toontain then all R0s on the path from the leaf ri to the root, whih is only logarithmi in the numberof messages ever to be signed.3. The ost of omputing a f�1m (x) is jmj(ost of omputing f�1). Next we show that for the implemen-tation of law-free funtions based on fatoring, the m fator an be saved.Example: EÆient way to ompute f�1m (z)As we saw in Example 9.4.2, if fatoring is hard, a partiular family of trap-door permutations is law free.Let n = pq, where p and q are primes and p � 3 mod 8, q � 7 mod 8. for x 2 QRn:f0;n(x) = x2 mod n f1;n(x) = 4x2 mod nis this family of law-free trap-door permutations.Notation: We write px = y when that y2 = x and y 2 QRn.To ompute f�1m (z) we �rst ompute (all omputations below are modn):f�100 (z) =ppzf�101 (z) =qpz4 = 1p4ppzf�110 (z) =qp z4 = 1pp4ppzf�111 (z) =q 14p z4Let i(m) be the integer orresponding to the string m reversed. It is easy to see that in the general ase weget: f�1m (z) = (z4i(m)) 12jmjNow, all we need is to ompute the 2jmjth root modn one, and this an be done eÆiently, by raising to apower mod�(n).

Cryptography: Leture Notes 1779.4.6 A seure signature sheme based on trapdoor permutationsThis setion ontains the trapdoor permutation signature sheme. We begin by showing the method forsigning a single bit b:1. Choose a trapdoor permutation f for whih we know the inverse. Choose X0; X1 2 Df uniformly andindependently. Let the publi key ontain f; f(X0); and f(X1). Let the seret key ontain X0 and X1.PK SKf; f(X0); f(X1) X0; X12. The signature of b, �(b) = Xb.To verify (b; s) simply test f(s) = f(Xb).The sheme for signing multiple messages, uses the sheme above as a building blok. The problem withsigning multiple messages is that f annot be reused. Thus, the trapdoor permutation signature sheme gen-erates and signs a new trapdoor permutation for eah message that is signed. The new trapdoor permutationan then be used to sign the next message.Desription of the trapdoor permutation signature sheme:1. Choose a trapdoor permutation f1 for whih we know the inverse. Choose �j0; �j1 2 f0; 1gk for j 2f1; � � � ; kg and �j0 ; �j1 2 f0; 1gk for j 2 f1; � � � ;K(k)g where K(k) is a polynomial in k uniformly andindependently. Let the publi key ontain f1 and all �'s and �'s. Let the seret key ontain f�11 . Lethistory H1 = ;. PK SKf1; �ib; �jb f�11for b 2 f0; 1g; i 2 1; � � � ; k; j 2 1; � � � ;K(k)To sign message mi = m1m2 � � �mk:2. Set AUTH�;fimi = (f�1i (�1m1); f�1i (�2m2); � � � ; f�11 (�kmk)). AUTH�;fimi is the signature of mi using fi andthe �'s.3. Choose a new trapdoor funtion fi+1 suh that we know f�1i+1.4. Set AUTH�;fifi+1 = (f�1i (�1fi+1;1); (f�1i (�2fi+1;2)); � � � ; (f�1i (�Kfi+1;k(k))))where fi+1 = fi+1;1 Æ fi+1;2 Æ � � � Æ fi+1;K(k) is the binary representation of fi+1.5. The signature of mi is �(mi) = (AUTH�;fimi ; AUTH�;fifi+1 ; Hi). AUTH�;fifi+1 is the signature of fi+1 usingfi and �'s.6. Set Hi+1 = Hi Æ (AUTH�;fimi ; AUTH�;fifi+1).Note: We assume that to desribe fi+1, K(k) bits are suÆient.Theorem 9.10 The trapdoor permutation signature sheme is existentially seure against CMA if trapdoorpermutations exist.

178 Goldwasser and BellareProof: (by ontradition) Suppose not. Then there is a forger F whih an request messages of its hoieand then forge a message not yet requested with probability at least 1Q(k) where Q(k) is a polynomial in k.We show that if suh an F did exist, we ould �nd a PTM A0 whih would:Input: Trapdoor funtion h for whih inverse is unknown and ! 2 f0; 1gk.Output: h�1(!) with probability at least 1Q0(k) where Q0(k) is a polynomial in k. Probability is taken overh's, !'s, oins of A0.The onstrution of A0 is as follows:1. A0 will attempt to use h as one of its trapdoor permutations in answering a signature request by F .Sine A0 does not know h�1, it generates an appropriate set of �'s and �'s as follows: Randomly anduniformly hoose jb ; Æjb 2 f0; 1gk for all b 2 f0; 1g and j 2 f1; � � � ; kg. Let �jb = h(jb) and �jb = h(Æjb)for the same range of b and j. Choose n 2 f1; � � � ; B(k)g uniformly. For the �rst phase, A0 will atvery muh like a trapdoor permutation signature sheme with one exeption. When it is time for A0to hoose its one way permutation fn, it will hoose h. If A0 were to leave the �'s and �'s unhangedat this point, it would be able to sign F 's request for mn though it does not know h�1. However A0does hange one of the �'s or �'s, as follows:2. Randomly hoose one of the �'s or �'s and set it equal to the input !. Let the publi key ontain f1(this is h if n = 1), the �'s and �'s:3. Run F using the urrent sheme. Note that with probability at least 1B(k) , F will make at least nmessage requests. Note also that when F does request a signature for message mn, A0 will be able tosign mn with probability 1/2. This is beause with probability 1/2 A0 will not have to alulate (usingh) the inverse of the � (or �) whih was set to !.4. With probability 1Q(k) , F will suessfully output a good forgery (m̂; ŝ). In order for ŝ to be a goodforgery it must not only be veri�able, but it must diverge from the history of requests made to A0.With probability at least 1B(k) the forger will hoose to diverge from the history preisely at request n.Thus, F will use h as its trapdoor permutation.5. If this is the ase, the probability is 12(k+K(k)) that the forger will invert the � (or �) whih was set to!.6. If so, A0 outputs h�1(!).The probability that A0 sueeds is therefore at least 1Q0(k) = 14(k+K(k))B2(k) and sine 4(k +K(k))B2(k) isa polynomial in k we have a ontradition.9.5 Conrete seurity and Pratial RSA based signaturesIn pratie, the most widely employed paradigm for signing with RSA is \hash then derypt:" First \hash"the message into a domain point of RSA and then derypt (ie. exponentiate with the RSA deryptionexponent). The attration of this paradigm is lear: signing takes just one RSA deryption, and veri�ationjust one RSA enryption. Furthermore it is simple to implement. Thus, in partiular, this is the basis ofseveral existing standards.In this setion we analyze this paradigm. We will see that, unfortunately, the seurity of the standardizedshemes annot be justi�ed under standard assumptions about RSA, even assuming the underlying hashfuntions are ideal. Shemes with better justi�ed seurity would be reommended.

Cryptography: Leture Notes 179We have already seen that suh shemes do exist. Unfortunately, none of them math the shemes of thehash then derypt paradigm in eÆieny and simpliity. (See Setion 9.5.12 for omparisons). So what anwe do?We present here some shemes that math \hash then derypt" ones in eÆieny but are provably seureassuming we have aess to ideal hash funtions. (As disussed in Setion 7.4.6, this means that formally,the hash funtions are modeled as random orales, and in implementation, the hash funtions are derivedfrom ryptographi hash funtions. This represents a pratial ompromise under whih we an get eÆienywith reasonable seurity assuranes. See [15℄ for a full disussion of this approah.)We present and analyze two shemes. The �rst is the FDH sheme of [15℄. The seond is the PSS of [24℄.Furthermore we present a sheme alled PSS-R whih has the feature of message reovery. This is a usefulway to e�etively shorten signature sizes.Let us now expand on all of the above. We begin by looking at urrent pratie. Then we onsider the fulldomain hash sheme of [15, 24℄ and disuss its seurity. Finally we ome to PSS and PSS-R, and their exatseurity.We present these shemes for RSA. The same an be done for the Rabin sheme.The materiel of this setion is taken largely from [24℄.In order to make this setion self-ontained, we repeat some of the basis of previous parts of this hapter.Still the viewpoint is di�erent, being that of onrete seurity, so the materiel is not entirely redundant.9.5.1 Digital signature shemesIn the publi key setting, the primitive used to provide data integrity is a digital signature sheme. It isjust like a message authentiation sheme exept for an asymmetry in the key struture. The key sk used togenerate tags (in this setting the tags are often alled signatures) is di�erent from the key pk used to verifysignatures. Furthermore pk is publi, in the sense that the adversary knows it too. So while only a signerin possession of the seret key an generate signatures, anyone in possession of the orresponding publi keyan verify the signatures.De�nition 9.11 A digital signature sheme DS = (K;S;V) onsists of three algorithms, as follows:� The key generation algorithm K is a randomized algorithm that returns a pair (pk; sk) of keys, thepubli key and mathing seret key, respetively; we write (pk; sk) R K� The signing algorithm S is a (possibly randomized) algorithm that takes the seret key sk and amessage M to return a tag or signature �; we write � Ssk(M)� The veri�ation algorithm V is a deterministi algorithm that takes the publi key pk, a message M ,and a andidate signature � for M to return a bit; we write d Vpk(M;�).Assoiated to eah publi key pk is a message spae Plaintexts(pk) from whih M is allowed to be drawn.We require that Vpk(M;Ssk(M)) = 1 for all M 2 Plaintexts(pk).Let S be an entity that wants to have a digital signature apability. The �rst step is key generation: S runsK to generate a pair of keys (pk; sk) for itself. The key generation algorithm is run loally by S. S willprodue signatures using sk, and others will verify these signatures using pk. The latter requires that anyonewishing to verify S's signatures must be in possession of this key pk whih S has generated. Furthermore,the veri�er must be assured that the publi key is authenti, meaning really is the key of S and not someoneelse.There are various mehanisms used to ensure that a prospetive veri�er is in possession of an authentipubli key of the signer. These usually go under the name of key management. Very briey, here are a fewoptions. S might \hand" its publi key to the veri�er. More ommonly S registers pk in S's name with

180 Goldwasser and Bellaresome trusted server who ats like a publi phone book, and anyone wishing to obtain S's publi key requestsit of the server by sending the server the name of S and getting bak the publi key. Steps must be taken toensure that this ommuniation too is authentiated, meaning the veri�er is really in ommuniation withthe legitimate server, and that the registration proess itself is authenti.In fat key management is a topi in its own right, and needs an in-depth look. We will address it later. Forthe moment, what is important to grasp is the separation between problems. Namely, the key managementproesses are not part of the digital signature sheme itself. In onstruting and analyzing the seurityof digital signature shemes, we make the assumption that any prospetive veri�er is in possession of anauthenti opy of the publi key of the signer. This assumption is made in what follows.One the key struture is in plae, S an produe a digital signature on some doument M by runningSsk(M) to return a signature �. The pair (M;�) is then the authentiated version of the doument. Uponreeiving a doument M 0 and tag �0 purporting to be from S, a reeiver B veri�es the authentiity of thesignature by using the spei�ed veri�ation proedure, whih depends on the message, signature, and publikey key. Namely he omputes Vpk(M 0; �0), whose value is a bit. If this value is 1, it is read as saying thedata is authenti, and so B aepts it as oming from S. Else it disards the data as unauthenti.A viable sheme of ourse requires some seurity properties. But these are not our onern now. First wewant to pin down what onstitutes a spei�ation of a sheme, so that we know what are the kinds of objetswhose seurity we want to assess.The last part of the de�nition says that tags that were orretly generated will pass the veri�ation test.This simply ensures that authenti data will be aepted by the reeiver.The signature algorithm might be randomized, meaning internally ip oins and use these oins to determineits output. In this ase, there may be many orret tags assoiated to a single message M . The algorithmmight also be stateful, for example making use of a ounter that is maintained by the sender. In that asethe signature algorithm will aess the ounter as a global variable, updating it as neessary.Unlike enryption shemes, whose enryption algorithms must be either randomized or stateful for the shemeto be seure, a deterministi, stateless signature algorithm is not only possible, but ommon.9.5.2 A notion of seurityDigital signatures aim to provide the same seurity property as message authentiation shemes; the onlyhange is the more exible key struture. Aordingly, we an build on our past work in understanding andpinning down a notion of seurity for message authentiation; the one for digital signatures di�ers only inthat the adversary has aess to the publi key.The goal of the adversary F is forgery: It wants to produe doument M and tag � suh that Vpk(M;�) = 1,but M did not originate with the sender S. The adversary is allowed a hosen-message attak in the proessof trying to produe forgeries, and the sheme is seure if even after suh an attak the adversary has lowprobability of produing forgeries.Let DS = (K;S;V) be an arbitrary digital signature sheme. Our goal is to formalize a measure a inseurityagainst forgery under hosen-message attak for this sheme. The adversary's ations are viewed as dividedinto two phases. The �rst is a \learning" phase in whih it is given orale aess to Ssk(�), where (pk; sk)was a priori hosen at random aording to K. It an query this orale up to q times, in any manner itpleases, as long as all the queries are messages in the underlying message spae Plaintexts(pk) assoiatedto this key. One this phase is over, it enters a \forgery" phases, in whih it outputs a pair (M;�) withM 2 Plaintexts(pk). The adversary is delared suessful if Vpk(M;�) = 1 and M was never a query madeby the adversary to the signing orale. Assoiated to any adversary F is thus a suess probability. (Theprobability is over the hoie of keys, any probabilisti hoies that S might make, and the probabilistihoies, if any, that F makes.) The inseurity of the sheme is the suess probability of the \leverest"possible adversary, amongst all adversaries restrited in their resoures to some �xed amount. We hoose asresoures the running time of the adversary, the number of queries it makes, and the total bit-length of allqueries ombined plus the bit-length of the output message M in the forgery.

Cryptography: Leture Notes 181Formally we de�ne the \experiment of running the adversary" F in an attak on digital signature shemeDS = (K;S;V) as the following. Notie that the publi key is provided as an input to F .Experiment Expuf-maDS;FLet (pk; sk) R KLet (M;�) FSsk(�)(pk)If Vpk(M;�) = 1 and M was not a query of F to its oraleThen return 1 else return 0De�nition 9.12 Let DS = (K;S;V) be a digital signature sheme, and let F be an adversary that hasaess to an orale. Let Advuf-maDS;F be the probability that experiment Expuf-maDS;F returns 1. Then for anyt; q; � let Advuf-maDS (t; q; �) = maxF fAdvuf-maDS;F gwhere the maximum is over all F suh that the exeution time of experiment Expuf-maDS;F is at most t, thenumber of orale queries made by F is at most q, and the sum of the lengths of all orale queries plus thelength of the message M in the output forgery is at most � bits.In pratie, the queries orrespond to messages signed by the legitimate sender, and it would make sensethat getting these examples is more expensive than just omputing on one's own. That is, we would expetq to be smaller than t. That is why q; � are resoures separate from t.The RSA trapdoor permutation is widely used as the basis for digital signature shemes. Let us see how.9.5.3 Key generation for RSA systemsWe will onsider various methods for generating digital signatures based on the presumed one-wayness ofthe RSA funtion. While these methods di�er in how the signature and veri�ation algorithms operate,they all use the same standard RSA key setup. Namely the publi key of a user is a RSA modulus N andan enryption exponent e, where N = pq is the produt of two distint primes, eah of length k=2, andgd(e; '(N)) = 1. The orresponding seret is the deryption exponent d where ed � 1 (mod '(N)). Forsignatures it is onvenient to put N into the seret key, viewing it as a pair (N; d), even though N is not, ofourse, really \seret". Here is the key generation algorithm in full:Algorithm KPik at random two distint primes p; q eah k=2 bits longN pq ; e R Z�'(N) ; d e�1 mod '(N)pk (N; e) ; sk (N; d)Return pk; skReall that '(N) = (p � 1)(q � 1) so that having generated p; q, the above key generation algorithm anompute '(N) and thus is able to omplete the rest of the steps whih depend on knowledge of this value.The omputation of d is done using the extended GCD algorithm.Reall that the map RSAN;e(x) = xe mod N is a permutation on Z�N with inverse RSA�1N;d(y) = yd mod N .We will make the well-believed assumption that RSA is one-way.Below we will onsider various signature shemes all of whih use the above key generation algorithm andtry to build in di�erent ways on the one-wayness of RSA in order to seurely sign.9.5.4 Trapdoor signaturesTrapdoor signatures represent the most diret way in whih to attempt to build on the one-wayness of RSAin order to sign. We believe that the signer, being in possession of the seret key N; d, is the only one who

182 Goldwasser and Bellarean ompute the inverse RSA funtion RSA�1N;d; for anyone else, knowing only the publi key N; d, thistask is omputationally infeasible. Aordingly, the signer signs a message by performing on it this \hard"operation. This requires that the message be a member of Z�N , whih, for onveniene, is assumed. It ispossible to verify a signature by performing the \easy" operation of omputing RSAN;e on the laimedsignature and seeing if we get bak the message. More preisely, the sheme DS = (K;S;V) has the abovekey generation algorithm, and the following signing and verifying algorithms:Algorithm SN;d(M)x Md mod NReturn x Algorithm VN;e(M;x)M 0 xe mod NIf M =M 0 then return 1 else return 0The message spae for this publi key is Plaintexts(N; e) = Z�N , meaning the only allowed messages that thesigner an sign are those whih are elements of the group Z�N . In this sheme we have denoted the signatureof M by x.How seure is this sheme? As we said above, the intuition behind it is that the signing operation shouldbe something only the signer an perform, sine omputing RSA�1N;e(M) is hard without knowledge of d.However, what one should remember is that one-wayness is under a very di�erent model and setting thanthat of seurity for signatures. One-wayness tells us that if we selet M at random and then feed it to anadversary (who knows N; e but not d) and ask the latter to �nd x = RSA�1N;e(M), then the adversary willhave a hard time sueeding. But the adversary in a signature sheme is not given a random message M onwhih to forge a signature. Keep in mind that the goal of the adversary is to reate a pair (M;x) suh thatVN;e(M;x) = 1. It does not have to try to imitate the signing algorithm; it must only do something thatsatis�es the veri�ation algorithm. In partiular it is allowed to hooseM rather than having to sign a givenor random M . It is also allowed to obtain a valid signature on any message other than the M it eventuallyoutputs, via the signing orale, orresponding in this ase to having an orale for RSA�1N;e(�). These featuresmake it easy for an adversary to forge signatures.The simplest forgery strategy is simply to hoose the signature �rst, and de�ne the message as a funtion ofit. That is illustrated by the following forger.Forger FSN;e(�)(N; e)x R Z�N ; M xe mod NReturn (M;x)This forger makes no queries of its signing orale, and simply outputs the forgery (M;x) derived as shown. Toompute its suess probability we note that VN;e(M;x) = 1, beause xe mod N = M . So Advuf-maDS;F = 1.This implies Advuf-maDS (t; 0; k) = 1, where t = O(k3) is the time to do an exponentiation modulo N , whihis the omputation time of F , and � = k beause the length of M is k. The values t; q; � here being verysmall, we are saying the sheme is totally inseure.The message M whose signature the above forger managed to forge is random. This is enough to break thesheme as per our de�nition of seurity, beause we made a very strong de�nition of seurity. Atually forthis sheme it is possible to even forge the signature of a given message M , but this time one has to use thesigning orale. The attak relies on the multipliativity of the RSA funtion.Forger FSN;e(�)(N; e)M1 R Z�N � f1;Mg ; M2 MM�11 mod Nx1 SN;e(M1) ; x2 SN;e(M2)x x1x2 mod NReturn (M;x)Given M the forger wants to ompute a valid signature x for M . It reates M1;M2 as shown, and obtainstheir signatures x1; x2. It then sets x = x1x2 mod N . Now the veri�ation algorithm will hek whether

Cryptography: Leture Notes 183xe mod N =M . But note thatxe � (x1x2)e � xe1xe2 �M1M2 �M (mod N) :Here we used the multipliativity of the RSA funtion and the fat that xi is a valid signature of Mi fori = 1; 2. This means that x is a valid signature of M . Sine M1 is hosen to not be 1 or M , the same is trueof M2, and thus M was not an orale query of F . So F sueeds with probability one.These attaks indiate that there is more to signatures than one-wayness of the underlying funtion.9.5.5 The hash-then-invert paradigmReal-world RSA based signature shemes need to surmount the above attaks, and also attend to otherimpratialities of the trapdoor setting. In partiular, messages are not usually group elements; they arepossibly long �les, meaning bit strings of arbitrary lengths. Both issues are typially dealt with by pre-proessing the given message M via a hash funtion Hash to yield a \domain point" y, whih is theninverted under RSA�1N;e to yield the atual signature. The hash funtion Hash: f0; 1g� ! Z�N is publi,meaning its desription is known, and anyone an ompute it. (It may or may not use a key, but if it does,the key is publi.) More preisely the sheme DS = (K;S;V) has the above key generation algorithm, andthe following signing and verifying algorithms:Algorithm SN;d(M)y Hash(M)x yd mod NReturn x Algorithm VN;e(M;x)y Hash(M)y0 xe mod NIf y = y0 then return 1 else return 0Let us see why this might help resolve the weaknesses of trapdoor signatures, and what requirements seurityimposes on the hash funtion.Let us return to the attaks presented on the trapdoor signature sheme above. Begin with the �rst forgerwe presented, who simply set M to xe mod N for some random x 2 Z�N . What is the suess probabilityof this strategy under the hash-then-invert sheme? The forger wins if xe mod N = Hash(M) (rather thanmerely xe mod N = M as before). The hope is that with a \good" hash funtion, it is very unlikely thatxe mod N = Hash(M).Consider now the seond attak we presented above, whih relied on the multipliativity of the RSA funtion.For this attak to work under the hash-then-invert sheme, it would have to be true thatHash(M1) �Hash(M2) � Hash(M) (mod N) : (9.1)Again, with a \good" hash funtion, we would hope that this is unlikely to be true.The hash funtion is thus supposed to \destroy" the algebrai struture that makes attaks like the abovepossible. How we might �nd one that does this is something we have not addressed.While the hash funtion might prevent some attaks that worked on the trapdoor sheme, its use leads to anew line of attak, based on ollisions in the hash funtion. If an adversary an �nd two distint messagesM1;M2 that hash to the same value, meaning Hash(M1) = Hash(M2), then it an easily forge signatures, asfollows:Forger FSN;e(�)(N; e)x1 SN;e(M1)Return (M2; x1)This works beause M1;M2 have the same signature. Namely beause x1 is a valid signature of M1, andbeause M1;M2 have the same hash value, we havexe1 � Hash(M1) � Hash(M2) (mod N) ;

184 Goldwasser and Bellareand this means the veri�ation proedure will aept x1 as a signature of M2. Thus, a neessary requirementon the hash funtion is that it be ollision-resistant, meaning it should be omputationally infeasible to �nddistint values M;M 0 suh that Hash(M) = Hash(M 0).Below we will go on to more onrete instantiations of the hash-then-invert paradigm. But before we dothat, it is important to try to assess what we have done so far. Above, we have pin-pointed some featuresof the hash funtion that are neessary for the seurity of the signature sheme. Collision-resistane is one.The other requirement is not so well formulated, but roughly we want to destroy algebrai struture in suha way that Equation (9.1), for example, should fail with high probability. Classial design fouses on theseattaks and assoiated features of the hash funtion, and aims to implement suitable hash funtions. Butif you have been understanding the approahes and viewpoints we have been endeavoring to develop in thislass and notes, you should have a more ritial perspetive. The key point to note is that what we needis not really to pin-point neessary features of the hash funtion to prevent ertain attaks, but rather topin-point suÆient features of the hash funtion, namely features suÆient to prevent all attaks, even onesthat have not yet been oneived. And we have not done this. Of ourse, pinning down neessary featuresof the hash funtion is useful to gather intuition about what suÆient features might be, but it is only that,and we must be areful to not be sedued into thinking that it is enough, that we have identi�ed all theonerns. Pratie proves this omplaene wrong again and again.How an we hope to do better? Return to the basi philosophy of provable seurity. We want assuranethat the signature sheme is seure under the assumption that its underlying primitives are seure. Thuswe must try to tie the seurity of the signature sheme to the seurity of RSA as a one-way funtion, andsome seurity ondition on the hash funtion. With this in mind, let us proeed to examine some suggestedsolutions.9.5.6 The PKCS #1 shemeRSA orporation has been one of the main soures of software and standards for RSA based ryptography.RSA Labs (now a part of Seurity Dynamis Corporation) has reated a set of standards alled PKCS (PubliKey Cryptography Standards). PKCS #1 is about signature (and enryption) shemes based on the RSAfuntion. This standard is in wide use, and aordingly it will be illustrative to see what they do.The standard uses the hash-then-invert paradigm, instantiatingHash via a partiular hash funtion PKCS-Hash.Before speifying it we need to attend to some implementation issues. So far we have been thinking of thehash funtion as returning a group element, namely a point in the set Z�N . This is neessary beause theoutput of the hash funtion must be something to whih we an apply RSA�1N;e. However, in an implemen-tation, we an only proess bit-strings. So in atuality the hash funtion must return a sequene of bits thatwe an interpret as an element of Z�N . This is not a big deal. The modulus N has length k bits (an examplevalue of k is k = 1024) and Z�N is a subset of f1; : : : ; Ng, onsisting of those elements of f1; : : : ; Ng whihare relatively prime to N . Eah element of Z�N an thus be written as a k-bit string. So if the hash funtionreturns a k-bit string y, we an interpret it as an element of Z�N simply by interpreting it as an integer. Well,almost. There are a ouple of aveats. First, the integer must be relatively prime to N ; seond it must beat most N . The seond an be ensured if the high-order bit of the k-bit string y is 0, meaning as an integery is at most 2k�1 � 1 < N . The �rst we simply don't worry about. The reason is that very few integers inthe range f1; : : : ; Ng are not relatively prime to N . Indeed, the fration of suh integers in f1; : : : ; Ng is atmost N � '(N)N = 1� (p� 1)(q � 1)pq = p+ q � 1pq < 21+k=22k�1 = 4 � 2�k=2 :We used here the fat that jpj = jqj = k=2. Thus with typial modulus sizes like k = 1024, the frationof points non-relatively prime to N is negligible. Not only do we not expet to hit these points by hane,but even the possibility of an adversary doing so on purpose is small beause any suh point is a multipleof either p or q, and taking the gd of suh a point with N would lead to fatoring N , whih is assumedomputationally infeasible.These tehnialities having been dispensed with, let us proeed to desribe the PKCS #1 hash funtion.

Cryptography: Leture Notes 185Reall we have already disussed ollision-resistant hash funtions. Let us �x a funtion h: f0; 1g�! f0; 1glwhere l � 128 and whih is \ollision-resistant" in the sense that nobody knows how to �nd any pair ofdistint points M;M 0 suh that h(M) = h(M 0). Currently the role tends to be played by SHA-1, so thatl = 160. Prior to that it was MD5, whih has l = 128. The RSA PKCS #1 standard de�nesPKCS-Hash(M) = 0x 00 01 FF FF � � � FF FF 00kh(M) :Here k denotes onatenation, and enough FF-bytes are inserted that the length of PKCS-Hash(M) is equalto k bits. Note the the �rst four bits of the hash output are zero, meaning as an integer it is ertainly atmost N , and by the above thus a group element. Also note that PKCS-Hash is ollision-resistant simplybeause h is ollision-resistant, so that it ful�lls the �rst of our neessary onditions.Reall that the signature sheme is exatly that of the hash-then-invert paradigm. For onreteness, let usrewrite the signing and verifying algorithms:Algorithm SN;d(M)y PKCS-Hash(M)x yd mod NReturn x Algorithm VN;e(M;x)y PKCS-Hash(M)y0 xe mod NIf y = y0 then return 1 else return 0Now what about the seurity of this signature sheme? Our �rst onern is the kinds of algebrai attaks wesaw on trapdoor signatures. As disussed in Setion 9.5.5, we would like that relations like Equation (9.1)fail. This we appear to get; it is hard to imagine how PKCS-Hash(M1) �PKCS-Hash(M2) mod N ould havethe spei� struture required to make it look like the PKCS-hash of some message. This isn't a proof thatthe attak is impossible, of ourse, but at least it is not evident.This is the point where our approah departs from the lassial attak-based design one. Under the latter,the above sheme is aeptable beause known attaks fail. But looking deeper there is ause for onern.The approah we want to take is to see how the desired seurity of the signature sheme relates to theassumed or understood seurity of the underlying primitive, in this ase the RSA funtion.We are assuming RSA is one-way, meaning it is omputationally infeasible to ompute RSA�1N;e(y) for arandomly hosen point y 2 Z�N . On the other hand, the points on whih RSA�1N;e is applied in the signaturesheme are those in the range S = f PKCS-Hash(M) : M 2 f0; 1g� g of the PKCS hash funtion. The sizeof S is at most 2l sine h outputs l bits and the other bits of PKCS-Hash(�) are �xed. With SHA-1 thismeans jSj � 2160. This may seem like quite a big set, but within the RSA domain Z�N it is tiny:jSjjZ�N j � 216021023 = 12863 :This is the probability with whih a point hosen randomly from Z�N lands in S. For all pratial purposes,it is zero. So RSA ould very well be one-way and still be easy to invert on S, sine the hane of arandom point landing in S is so tiny. So the seurity of the PKCS sheme annot be guaranteed solely underthe standard one-wayness assumption on RSA. Note this is true no matter how \good" is the underlyinghash funtion h (in this ase SHA-1) whih forms the basis for PKCS-Hash. The problem is the design ofPKCS-Hash itself, in partiular the padding.The seurity of the PKCS signature sheme would require the assumption that RSA is hard to invert onthe set S, a minisule fration of its full range. (And even this would be only a neessary, but not suÆientondition for the seurity of the signature sheme.)Let us try to larify and emphasize the view taken here. We are not saying that we know how to attak thePKCS sheme. But we are saying that an absene of known attaks should not be deemed a good reason tobe satis�ed with the sheme. We an identify \design aws," suh as the way the sheme uses RSA, whihis not in aordane with our understanding of the seurity of RSA as a one-way funtion. And this is ausefor onern.

186 Goldwasser and Bellare9.5.7 The FDH shemeFrom the above we see that if the hash-then-invert paradigm is to yield a signature sheme whose seurityan be based on the one-wayness of the RSA funtion, it must be that the points y on whih RSA�1N;e isapplied in the sheme are random ones. In other words, the output of the hash funtion must always \lookrandom". Yet, even this only highlights a neessary ondition, not (as far as we know) a suÆient one.We now ask ourselves the following question. Suppose we had a \perfet" hash funtion Hash. In thatase, at least, is the hash-then-invert signature sheme seure? To address this we must �rst deide whatis a \perfet" hash funtion. The answer is quite natural: one that is random, namely returns a randomanswer to any query exept for being onsistent with respet to past queries. (We will explain more howthis \random orale" works later, but for the moment let us ontinue.) So our question beomes: in a modelwhere Hash is perfet, an we prove that the signature sheme is seure if RSA is one-way?This is a basi question indeed. If the hash-then-invert paradigm is in any way viable, we really must beable to prove seurity in the ase the hash funtion is perfet. Were it not possible to prove seurity in thismodel it would be extremely inadvisable to adopt the hash-then-invert paradigm; if it doesn't work for aperfet hash funtion, how an we expet it to work in any real world setting?Aordingly, we now fous on this \thought experiment" involving the use of the signature sheme with aperfet hash funtion. It is a thought experiment beause no spei� hash funtion is perfet. Our \hashfuntion" is no longer �xed, it is just a box that ips oins. Yet, this thought experiment has somethingimportant to say about the seurity of our signing paradigm. It is not only a key step in our understandingbut will lead us to better onrete shemes as we will see later.Now let us say more about perfet hash funtions. We assume that Hash returns a random member of Z�Nevery time it is invoked, exept that if twie invoked on the same message, it returns the same thing bothtimes. In other words, it is an instane of a random funtion with domain f0; 1g� and range Z�N . We haveseen suh objets before, when we studied pseudorandomness: remember that we de�ned pseudorandomfuntions by onsidering experiments involving random funtions. So the onept is not new. We all Hasha random orale, and denote it by H in this ontext. It is aessible to all parties, signer, veri�ers andadversary, but as an orale. This means it is only aessible aross a spei�ed interfae. To ompute H(M)a party must make an orale all. This means it outputs M together with some indiation that it wantsH(M) bak, and an appropriate value is returned. Spei�ally it an output a pair (hash;M), the �rstomponent being merely a formal symbol used to indiate that this is a hash-orale query. Having outputthis, the alling algorithm waits for the answer. One the value H(M) is returned, it ontinues its exeution.The best way to think about H is as a dynami proess whih maintains a table of input-output pairs. Everytime a query (hash;M) is made, the proess �rst heks if its table ontains a pair of the form (M; y) forsome y, and if so, returns y. Else it piks a random y in Z�N , puts (M; y) into the table, and returns y asthe answer to the orale query.We onsider the above hash-then-invert signature sheme in the model where the hash funtion Hash is arandom orale H . This is alled the Full Domain Hash (FDH) sheme. This sheme DS = (K;S;V) has theusual RSA key generation algorithm K of Setion 9.5.3. We write the signing and verifying algorithms asfollows: Algorithm SHN;d(M)y H(M)x yd mod NReturn x Algorithm VHN;e(M;x)y H(M)y0 xe mod NIf y = y0 then return 1 else return 0The only hange with respet to the way we wrote the algorithms for the generi hash-then-invert shemeof Setion 9.5.5 is notational: we write H as a supersript to indiate that it is an orale aessible only viathe spei�ed orale interfae. The instrution y H(M) is implemented by making the query (hash;M)and letting y denote the answer returned, as disussed above.We now ask ourselves whether the above signature sheme is seure under the assumption that RSA isone-way. To onsider this question we �rst need to extend our de�nitions to enompass the new model. The

Cryptography: Leture Notes 187key di�erene is the the suess probability of an adversary is taken over the random hoie of H in additionto the random hoies previously onsidered. The forger F as before has aess to a signing orale, but nowalso has aess to H . Furthermore, S itself has aess to H . Let us �rst write the experiment that measuresthe suess of forger F and then disuss it more.Experiment ForgeExpro(DS ; F)Let ((N; e); (N; d)) R KPik H : f0; 1g� ! Z�N at randomLet (M;x) FH;SHN;d(�)(N; e)If VHN;e(M;�) = 1 and M was not a query of F to its signing oraleThen return 1 else return 0The supersript of \ro" to the name of the experiment indiates it is in the random orale model. Foronreteness we have written the experiment spei� to the ase of RSA based shemes suh as FDH-RSA,but it is easily generalized. We begin by piking the RSA publi key (N; e) and seret key (N; d) as per thestandard RSA key generation algorithm. Next a random hash funtion is hosen. This hoie is best thoughtof dynamially as disussed above. Don't think of H as hosen all at one, but rather think of the proessimplementing the table we desribed, so that random hoies are made only at the time the H orale isalled. The forger is given orale aess to H . To model a hosen-message attak it is also given aess to asigning orale SHN;d(�) to whih it an give any messageM and reeive a signature, this being H(M)d mod Nin the ase of FDH-RSA. In order to return a signature, the signing orale itself must invoke the H orale,so that there are two ways in whih the H orale might be invoked: either diretly by F or indiretly, bySHN;d(�) when the latter is invoked by F . After querying its orales some number of times the forger outputsa message M and andidate signature x for it. We say that F is suessful if the veri�ation proess wouldaept M;x, but F never asked the signing orale to sign M . (F is ertainly allowed to make hash queryM , and indeed it is hard to imagine how it might hope to sueed in forgery otherwise, but it is not allowedto make sign query M .)We let Advuf-maDS;F be the probability that experiment ForgeExpro(DS ; F) returns 1. The notation is thesame as we have used before; we will know whether or not we are in the random orale model from thedesription of the sheme. Then for any t; qsig; qhash; � letAdvuf-maDS (t; qsig; qhash; �) = maxF fAdvuf-maDS;F g :The resoures t; qsig; qhash; � are measured in a spei� way as we now desribe. Rather than referring tothe resoures used by the adversary F itself, they measure the resoures used by the entire experiment. We�rst de�ne the exeution time as the time taken by the entire experiment ForgeExpro(DS ; F). This means itinludes the time to ompute answers to orale queries, to generate the keys, and even to verify the forgery.Then t is supposed to upper bound the exeution time plus the size of the ode of F . The number of signqueries made by F must be at most qsig. In ounting hash queries we again look at the entire experimentand ask that the total number of queries to H here be at most qhash. Inluded in the ount are the direthash queries of F , the indiret hash queries made by the signing orale, and even the hash query madeby the veri�ation algorithm in the last step. (The latter means that qhash is always at least the numberof hash queries required for a veri�ation, whih for FDH-RSA is one. In fat for FDH-RSA we will haveqhash � qsig + 1, something to be kept in mind when interpreting later results.) Finally � is the sum of thelengths of all messages in sign queries plus the length of the �nal output message M .In this setting we laim that the FDH-RSA sheme is seure. The following theorem upper bounds itsinseurity solely in terms of the inseurity of RSA as a one-way funtion.Theorem 9.13 [24℄ Let DS be the FDH-RSA sheme with seurity parameter k. Then for any t; qsig; �and any qhash � 1 + qsig we haveAdvuf-maDS (t; qsig; qhash; �) � qhash �AdvowfRSA(t0)where t0 = t+ qhash �O(k3).

188 Goldwasser and BellareThe theorem says that the only way to forge signatures in the FDH-RSA sheme is to try to invert theRSA funtion on random points. There is some loss in seurity: it might be that the hane of breakingthe signature sheme is larger than that of inverting RSA in omparable time, by a fator of the numberof hash queries made in the forging experiment. But we an make AdvowfRSA(t0) small enough that evenqhash �AdvowfRSA(t0) is small, by hoosing a larger modulus size k.One must remember the aveat: this is in a model where the hash funtion is random. Yet, even this tells ussomething, namely that the hash-then-invert paradigm itself is sound, at least for \perfet" hash funtions.This puts us in a better position to explore onrete instantiations of the paradigm.Let us now proeed to the proof of Theorem 9.13. The paradigm is the usual one. Let F be some forgerattaking the FDH-RSA sheme. Assume that the resoure parameters assoiated to it are t; qsig; qhash; �,measured relative to the experiment ForgeExpro(DS ; F) as we disussed above. We will design an inverterI for the RSA funtion suh that AdvowfRSA;I � Advuf-maDS;Fqhash : (9.2)Furthermore I will have running time bounded by the value t0 given in the theorem statement. Now thetheorem follows as usual by some arithmeti and the taking of maximums.Remember that inverter I takes as input (N; e), desribing an instane RSAN;e of the RSA funtion, andalso a point y 2 Z�N . Its job is to try to output RSA�1N;e(y) = yd mod N , the inverse of y under the RSAfuntion, where d is the deryption exponent orresponding to enryption exponent e. Of ourse, neitherd nor the fatorization of N are available to I . The suess of I is measured under a random hoie of(N; e); (N; d) as given by the standard RSA key generation algorithm, and also a random hoie of y fromZ�N . In order to aomplish its task, I will run F as a subroutine, on input publi key N; e, hoping somehowto use F 's ability to forger signatures to �nd RSA�1N;e(y). Before we disuss how I might hope to use theforger to determine the inverse of point y, we need to take a loser look at what it means to run F as asubroutine.Reall that F has aess to two orales, and makes alls to them. At any point in its exeution it mightoutput (hash;M). It will then wait for a return value, whih it interprets as H(M). One this is reeived, itontinues its exeution. Similarly it might output (sign;M) and then wait to reeive a value it interprets asSHN;d(M). Having got this value, it ontinues. The important thing to understand is that F , as an algorithm,merely ommuniates with orales via an interfae. It does not ontrol what these orales return. Youmight think of an orale query like a system all. Think of F as writing an orale query M at some spei�presribed plae in memory. Some proess is expeted to put in another presribed plae a value that F willtake as the answer. F reads what is there, and goes on.When I exeutes F , no orales are atually present. F does not know that. It will at some point make anorale query, assuming the orales are present, say query (hash;M). It then waits for an answer. If I wantsto run F to ompletion, it is up to I to provide some answer to F as the answer to this orale query. F willtake whatever it is given and go on exeuting. If I annot provide an answer, F will not ontinue running;it will just sit there, waiting. We have seen this idea of \simulation" before in several proofs: I is reating a\virtual reality" under whih F an believe itself to be in its usual environment.The strategy of I will be to take advantage of its ontrol over responses to orale queries. It will hoose themin strange ways, not quite the way they were hosen in Experiment ForgeExpro(DS ; F). Sine F is just analgorithm, it proesses whatever it reeives, and eventually will halt with some output, a laimed forgery(M;x). By lever hoies of replies to orale queries, I will ensure that F is fooled into not knowing that itis not really in ForgeExpro(DS ; F), and furthermore x will be the desired inverse of y. Not always, though;I has to be luky. But it will be luky often enough.We begin by onsider the ase of a very simple forger F . It makes no sign queries and exatly one hashquery (hash;M). It then outputs a pair (M;x) as the laimed forgery, the message M being the same in thehash query and the forgery. (In this ase we have qsig = 0 and qhash = 2, the last due to the hash query of Fand the �nal veri�ation query in the experiment.) Now if F is suessful then x is a valid signature of M ,meaning xe � H(M) mod N , or, equivalently, x � H(M)d mod N . Somehow, F has found the inverse ofH(M), the value returned to it as the response to orale query M . Now remember that I 's goal had been to

Cryptography: Leture Notes 189ompute yd mod N where y was its given input. A natural thought suggests itself: If F an invert RSAN;eat H(M), then I will \set" H(M) to y, and thereby obtain the inverse of y under RSAN;e. I an set H(M)in this way beause it ontrols the answers to orale queries. When F makes query (hash;M), the inverter Iwill simply return y as the response. If F then outputs a valid forgery (M;x), we have x = yd mod N , andI an output x, its job done.But why would F return a valid forgery when it got y as its response to hash query M? Maybe it will refusethis, saying it will not work on points supplied by an inverter I . But this will not happen. F is simply analgorithm and works on whatever it is given. What is important is solely the distribution of the response. InExperiment ForgeExpro(DS ; F) the response to (hash;M) is a random element of Z�N . But y has exatly thesame distribution, beause that is how it is hosen in the experiment de�ning the suess of I in breakingRSA as a one-way funtion. So F annot behave any di�erently in this virtual reality than it ould in itsreal world; its probability of returning a valid forgery is still Advuf-maDS;F . Thus for this simple F the suessprobability of the inverter in �nding yd mod N is exatly the same as the suess probability of F in forgingsignatures. Equation (9.2) laims less, so we ertainly satisfy it.However, most forgers will not be so obliging as to make no sign queries, and just one hash query onsistingof the very message in their forgery. I must be able to handle any forger.Inverter I will de�ne a pair of subroutines, H -Sim (alled the hash orale simulator) and S-Sim (alled thesign orale simulator) to play the role of the hash and sign orales respetively. Namely, whenever F makesa query (hash;M) the inverter I will return H -Sim(M) to F as the answer, and whenever F makes a query(sign;M) the inverter I will return S-Sim(M) to F as the answer. (The S-Sim routine will additionallyinvoke H -Sim.) As it exeutes, I will build up various tables (arrays) that \de�ne" H . For j = 1; : : : ; qhash,the j-th string on whih H is alled in the experiment (either diretly due to a hash query by F , indiretlydue to a sign query by F , or due to the �nal veri�ation query) will be reorded as Msg [j℄; the responsereturned by the hash orale simulator to Msg [j℄ is stored as Y [j℄; and if Msg [j℄ is a sign query then theresponse returned to F as the \signature" is X [j℄. Now the question is how I de�nes all these values.Suppose the j-th hash query in the experiment arises indiretly, as a result of a sign query (sign;Msg [j℄) byF . In Experiment ForgeExpro(DS ; F) the forger will be returned H(Msg [j℄)d mod N . If I wants to keepF running it must return something plausible. What ould I do? It ould attempt to diretly mimi thesigning proess, setting Y [j℄ to a random value (remember Y [j℄ plays the role of H(Msg [j℄)) and returning(Y [j℄)d mod N . But it won't be able to ompute the latter sine it is not in possesion of the seret signingexponent d. The trik, instead, is that I �rst piks a valueX [j℄ at random in Z�N and sets Y [j℄ = (X [j℄)e modN . Now it an return X [j℄ as the answer to the sign query, and this answer is aurate in the sense that theveri�ation relation (whih F might hek) holds: we have Y [j℄ � (X [j℄)e mod N .This leaves a ouple of loose ends. One is that we assumed above that I has the liberty of de�ning Y [j℄ atthe point the sign query was made. But perhaps Msg [j℄ = Msg [l℄ for some l < j due to there having beena hash query involving this same message in the past. Then the hash value Y [j℄ is already de�ned, as Y [l℄,and annot be hanged. This an be addressed quite simply however: for any hash query Msg [l℄, the hashsimulator an follow the above strategy of setting the reply Y [l℄ = (X [l℄)e mod N at the time the hash queryis made, meaning it prepares itself ahead of time for the possibility that Msg [l℄ is later a sign query. Maybeit will not be, but nothing is lost.Well, almost. Something is lost, atually. A reader who has managed to stay awake so far may notie thatwe have solved two problems: how to use F to �nd yd mod N where y is the input to I , and how to simulateanswers to sign and hash queries of F , but that these proesses are in onit. The way we got yd mod Nwas by returning y as the answer to query (hash;M) where M is the message in the forgery. However, wedo not know beforehand whih message in a hash query will be the one in the forgery. So it is diÆult toknow how to answer a hash query Msg [j℄; do we return y, or do we return (X [j℄)e mod N for some X [j℄? Ifwe do the �rst, we will not be able to answer a sign query with message Msg [j℄; if we do the seond, and ifMsg [j℄ equals the message in the forgery, we will not �nd the inverse of y. The answer is to take a guess asto whih to do. There is some hane that this guess is right, and I sueeds in that ase.Spei�ally, notie that Msg [qhash℄ = M is the message in the forgery by de�nition sine Msg [qhash℄ is themessage in the �nal veri�ation query. The messageM might our more than one in the list, but it ours

190 Goldwasser and Bellareat least one. Now I will hoose a random i in the range 1 � i � qhash and respond by y to hash query(hash;Msg [i℄). To all other queries j it will respond by �rst piking X [j℄ at random in Z�N and settingH(Msg [j℄) = (X [j℄)e mod N . The forged message M will equal Msg [i℄ with probability at least 1=qhash andthis will imply Equation (9.2). Below we summarize these ideas as a proof of Theorem 9.13.It is tempting from the above desription to suggest that we always hoose i = qhash, sine Msg [qhash℄ =Mby de�nition. Why won't that work? Beause M might also have been equal to Msg [j℄ for some j < qhash,and if we had set i = qhash then at the time we want to return y as the answer to M we �nd we have alreadyde�ned H(M) as something else and it is too late to hange our minds.Proof of Theorem 9.13: Let F be some forger attaking the FDH-RSA sheme, with resoure parameterst; qsig; qhash; �, measured relative to the experiment ForgeExpro(DS ; F) as we disussed above. We will designan inverter I for the RSA funtion suh that Equation (9.2) is true and the running time of I is boundedby the value t0 given in the theorem statement. The theorem follows.We �rst deribe I in terms of two subroutines: a hash orale simulator H -Sim(�) and a sign orale simulatorS-Sim(�). It maintains three tables, Msg , X and Y , eah an array with index in the range from 1 to qhash.It piks a random index i. All these are global variables whih will be used also be the subroutines. Theintended meaning of the array entries is the following, for j = 1; : : : ; qhash{Msg [j℄ { The j-th hash query in the experimentY [j℄ { The reply of the hash orale simulator to the above, meaning the value playing therole of H(Msg [j℄)X [j℄ { For j 6= i, the response to sign query Msg [j℄, meaning it satis�es (X [j℄)e � Y [j℄(mod N). For j = i it is the value y.The ode for the inverter is below.Inverter I(N; e; y)Initialize arrays Msg [1 : : : qhash℄, X [1 : : : qhash℄, Y [1 : : : qhash℄ to emptyj 0 ; i R f1; : : : ; qhashgRun F on input N; eIf F makes orale query (hash;M)then h H -Sim(M) ; return h to F as the answerIf F makes orale query (sign;M)then x S-Sim(M) ; return x to F as the answerUntil F halts with output (M;x)y0 H -Sim(M)Return xThe inverter responds to orale queries by using the appropriate subroutines. One it has the laimed forgery,it makes the orresponding hash query and then returns the signature x.We now desribe the hash orale simulator. It makes referene to the global variables instantiated in in themain ode of I . It takes as argument a value v whih is simply some message whose hash is requested eitherdiretly by F or by the sign simulator below when the latter is invoked by F .We will make use of a subroutine Find that given an array A, a value v and index m, returns 0 if v 62fA[1℄; : : : ; A[m℄g, and else returns the smallest index l suh that v = A[l℄.Subroutine H -Sim(v)l Find(Msg ; v; j) ; j j + 1 ; Msg [j℄ vIf l = 0 then

Cryptography: Leture Notes 191If j = i then Y [j℄ yElse X [j℄ R Z�N ; Y [j℄ (X [j℄)e mod NEnd IfReturn Y [j℄ElseIf j = i then abortElse X [j℄ X [l℄ ; Y [j℄ Y [l℄ ; Return Y [j℄End IfEnd IfThe manner in whih the hash queries are answered enables the following sign simulator.Subroutine S-Sim(M)h H -Sim(M)If j = i then abortElse return X [j℄End IfInverter I might abort exeution due to the \abort" instrution in either subroutine. The �rst suh situationis that the hash orale simulator is unable to return y as the response to the i-th hash query beause thisquery equals a previously replied to query. The seond ase is that F asks for the signature of the messagewhih is the i-th hash query, and I annot provide that sine it is hoping the i-th message is the one in theforgery and has returned y as the hash orale response.Now we need to lower bound the suess probability of I in inverting RSA, namely the quantityAdvowfRSA;I = P h xe � y (mod N) : ((N; e); (N; d)) R K ; y R Z�N ; x I(N; e; y) i :There are a few observations involved in verifying the bound laimed in Equation (9.2). First that the \view"of F at any time at whih I has not aborted is the \same" as in Experiment ForgeExpro(DS ; F). This meansthat the answers being returned to F by I are distributed exatly as they would be in the real experiment.Seond, F gets no information about the value i that I hooses at random. Now remember that the last hashsimulator query made by I is the messageM in the forgery, so M is ertainly in the array Msg at the end ofthe exeution of I . Let l = Find(Msg ;M; qhash) be the �rst index at whih M ours, meaning Msg [l℄ =Mbut no previous message is M . The random hoie of i then means that there is a 1=qhash hane that i = l,whih in turn means that Y [i℄ = y and the hash orale simulator won't abort. If x is a orret signature ofM we will have xe � Y [i℄ (mod N) beause Y [i℄ is H(M) from the point of view of F . So I is suessfulwhenever this happens.9.5.8 PSS0: A seurity improvementThe FDH-RSA signature sheme has the attrative seurity attribute of possessing a proof of seurity underthe assumption thatRSA is a one-way funtion, albeit in the random orale model. However the quantitativeseurity as given by Theorem 9.13 ould be better. The theorem leaves open the possibility that one ouldforge signatures with a probability that is qhash times the probability of being able to invert theRSA funtionat a random point, the two ations being measured with regard to adversaries with omparable exeutiontime. Sine qhash ould be quite large, say 260, there is an appreiable loss in seurity here. We now present asheme in whih the seurity relation is muh tighter: the probability of signature forgery is not appreiablyhigher than that of being able to invert RSA in omparable time.The sheme is alled PSS0, for \probabilisti signature sheme, version 0", to emphasize a key aspet of it,namely that it is randomized: the signing algorithm piks a new random value eah time it is invoked and

192 Goldwasser and Bellareuses that to ompute signatures. The sheme DS = (K;S;V) has the usual RSA key generation algorithm Kof Setion 9.5.3. Like FDH-RSA it makes use of a publi hash funtion H : f0; 1g� ! Z�N whih is modeledas a random orale. Additonally it has a parameter s whih is the length of the random value hosen by thesigning algorithm. We write the signing and verifying algorithms as follows:Algorithm SHN;d(M)r R f0; 1gsy H(rkM)x yd mod NReturn (r; x) Algorithm VHN;e(M;�)Parse � as (r; x) where jrj = sy H(rkM)If xe mod N = yThen return 1 else return 0Obvious \range heks" are for simpliity not written expliitly in the veri�ation ode; for example in areal implementation the latter should hek that 1 � x < N and gd(x;N) = 1.This sheme may still be viewed as being in the \hash-then-invert" paradigm, exept that the hash israndomized via a value hosen by the signing algorithm. If you twie sign the same message, you are likelyto get di�erent signatures. Notie that random value r must be inluded in the signature sine otherwiseit would not be possible to verify the signature. Thus unlike the previous shemes, the signature is not amember of Z�N ; it is a pair one of whose omponents is an s-bit string and the other is a member of Z�N .The length of the signature is s+ k bits, somewhat longer than signatures for deterministi hash-then-invertsignature shemes. It will usually suÆe to set l to, say, 160, and given that k ould be 1024, the lengthinrease may be tolerable.The suess probability of a forger F attaking DS is measured in the random orale model, via experimentForgeExpro(DS ; F). Namely the experiment is the same experiment as in the FDH-RSA ase; only thesheme DS we plug in is now the one above. Aordingly we have the inseurity funtion assoiated to thesheme. Now we an summarize the seurity property of the PSS0 sheme.Theorem 9.14 [24℄ Let DS be the PSS0 sheme with seurity parameters k and s. Then for any t; qsig; �and any qhash � 1 + qsig we haveAdvuf-maDS (t; qsig; qhash; �) � AdvowfRSA(t0) + (qhash � 1) � qsig2swhere t0 = t+ qhash �O(k3).Say qhash = 260 and qsig = 240. With l = 160 the additive term above is about 2�60, whih is very small. Sofor all pratial purposes the additive term an be negleted and the seurity of the PSS0 signature shemeis tightly related to that of RSA.We proeed to the proof of Theorem 9.14. Given a foger F attaking DS in the random orale model, withresoures t; qsig; qhash; �, we onstrut an inverter I for RSA suh thatAdvowfRSA;I � Advuf-maDS;F � (qhash � 1) � qsig2s : (9.3)Furthermore I will have running time bounded by the value t0 given in the theorem statement. Now thetheorem follows as usual by some arithmeti and the taking of maximums.The design of I follows the same framework used in the proof of Theorem 9.13. Namely I , on input N; e; y,will exeute F on input N; e, and answer F 's orale queries so that F an omplete its exeution. From theforgery, I will somehow �nd yd mod N . I will respond to hash orale queries of F via a subroutine H -Simalled the hash orale simulator, and will respond to sign queries of F via a subroutine S-Sim alled thesign orale simulator. A large part of the design is the design of these subroutines. To get some intuition itis helpful to step bak to the proof of Theorem 9.13.We see that in that proof, the multipliative fator of qhash in Equation (9.2) ame from I 's guessing atrandom a value i 2 f1; : : : ; qhashg, and hoping that i = Find(Msg ;M; qhash) where M is the message in the

Cryptography: Leture Notes 193forgery. That is, it must guess the time at whih the message in the forgery is �rst queried of the hash orale.The best we an say about the hane of getting this guess right is that it is at least 1=qhash. However ifwe now want I 's probability of suess to be as in Equation (9.3), we annot a�ord to guess the time atwhih the forgery message is queried of the hash orale. Yet, we ertainly don't know this time in advane.Somehow, I has to be able to take advantage of the forgery to return yd mod N nonetheless.A simple idea that omes to mind is to return y as the answer to all hash queries. Then ertainly a forgeryon a queried message yields the desired value yd mod N . Consider this strategy for FDH. In that ase, twoproblems arise. First, these answers would then not be random and indpendent, as required for answers tohash queries. Seond, if a message in a hash query is later a sign query, I would have no way to answer thesign query. (Remember that I omputed its reply to hash query Msg [j℄ for j 6= i as (X [j℄)e mod N exatlyin order to be able to later return X [j℄ if Msg [j℄ showed up as a sign query. But there is a onit here: Ian either do this, or return y, but not both. It has to hoose, and in FDH ase it hooses at random.)The �rst problem is atually easily settled by a small algebrai trik, exploiting what is alled the self-reduibility of RSA. When I wants to return y as an answer to a hash orale query Msg [j℄, it piks a randomX [j℄ in Z�N and returns Y [j℄ = y �(X [j℄)e mod N . The value X [j℄ is hosen randomly and independently eahtime. Now the fat that RSAN;e is a permutation means that all the di�erent Y [j℄ values are randomly andindependently distributed. Furthermore, suppose (M; (r; x)) is a forgery for whih hash orale query rkMhas been made and got the reponse Y [l℄ = y � (X [l℄)e mod N . Then we have (x � X [l℄�1)e � y (mod N),and thus the inverse of y is x �X [l℄�1 mod N .The seond problem however, annot be resolved for FDH. That is exatly why PSS0 pre-pends the randomvalue r to the message before hashing. This e�etively \separates" the two kinds of hash queries: the diretqueries of F to the hash orale, and the indiret queries to the hash orale arising from the sign orale. Thediret hash orale queries have the form rkM for some l-bit string r and some message M . The sign queryis just a message M . To answer it, a value r is �rst hosen at random. But then the value rkM has lowprobability of having been a previous hash query. So at the time any new diret hash query is made, I anassume it will never be an indiret hash query, and thus reply via the above trik.Here now is the full proof.Proof of Theorem 9.13: Let F be some forger attaking the PSS0 sheme, with resoure parameterst; qsig; qhash; �, measured relative to the experiment ForgeExpro(DS ; F) as we disussed above. We will designan inverter I for the RSA funtion suh that Equation (9.3) is true and the running time of I is boundedby the value t0 given in the theorem statement. The theorem follows.We �rst deribe I in terms of two subroutines: a hash orale simulator H -Sim(�) and a sign orale simulatorS-Sim(�). It maintains four tables, R, V , X and Y , eah an array with index in the range from 1 to qhash.All these are global variables whih will be used also be the subroutines. The intended meaning of the arrayentries is the following, for j = 1; : : : ; qhash{V [j℄ { The j-th hash query in the experiment, having the form R[j℄kMsg [j℄R[j℄ { The �rst l-bits of V [j℄Y [j℄ { The value playing the role of H(V [j℄), hosen either by the hash simulator or thesign simulatorX [j℄ { If V [j℄ is a diret hash orale query of F this satis�es Y [j℄�X [j℄�e � y (mod N). IfV [j℄ is an indiret hash orale query this satis�es X [j℄e � Y [j℄ (mod N), meaningit is a signature of Msg [j℄.Note that we don't atually need to store the array Msg ; it is only referred to above in the explanation ofterms.We will make use of a subroutine Find that given an array A, a value v and index m, returns 0 if v 62fA[1℄; : : : ; A[m℄g, and else returns the smallest index l suh that v = A[l℄.

194 Goldwasser and BellareInverter I(N; e; y)Initialize arrays R[1 : : : qhash℄, V [1 : : : qhash℄, X [1 : : : qhash℄, Y [1 : : : qhash℄, to emptyj 0Run F on input N; eIf F makes orale query (hash; v)then h H -Sim(v) ; return h to F as the answerIf F makes orale query (sign;M)then � S-Sim(M) ; return � to F as the answerUntil F halts with output (M; (r; x))y H -Sim(rkM) ; l Find (V; rkM; qhash)w x �X [l℄�1 mod N ; Return wWe now desribe the hash orale simulator. It makes referene to the global variables instantiated in in themain ode of I . It takes as argument a value v whih is assumed to be at least s bits long, meaning of theform rkM for some s bit strong r. (There is no need to onsider hash queries not of this form sine they arenot relevant to the signature sheme.)Subroutine H -Sim(v)Parse v as rkM where jrj = sl Find(V; v; j) ; j j + 1 ; R[j℄ r ; V [j℄ vIf l = 0 thenX [j℄ R Z�N ; Y [j℄ y � (X [j℄)e mod N ; Return Y [j℄ElseX [j℄ X [l℄ ; Y [j℄ Y [l℄ ; Return Y [j℄End IfEvery string v queried of the hash orale is put by this routine into a table V , so that V [j℄ is the j-th hashorale query in the exeution of F . The following sign simulator does not invoke the hash simulator, but ifneessary �lls in the neessary tables itself.Subroutine S-Sim(M)r R f0; 1gsl Find(R; r; j)If l 6= 0 then abortElsej j + 1 ; R[j℄ r ; V [j℄ rkM ; X [j℄ R Z�N ; Y [j℄ (X [j℄)e mod NReturn X [j℄End IfNow we need to lower bound the suess probability of I in inverting RSA, namely the quantityAdvowfRSA;I = P h xe � y (mod N) : ((N; e); (N; d)) R K ; y R Z�N ; x I(N; e; y) i :Inverter I might abort exeution due to the \abort" instrution in the sign orale simulator. This happensif the random value r hosen in the sign orale simulator is already present in the set fR[1℄; : : : ; R[j℄g. Thisset has size at most qhash � 1 at the time of an sign query, so the probability that r falls in it is at most(qhash�1)=2s. The sign orale simulator is invoked at most qsig times, so the probability of abortion at sometime in the exeution of I is at most (qhash � 1)qsig=2s.The \view" of F at any time at whih I has not aborted is the \same" as the view of F in ExperimentForgeExpro(DS ; F). This means that the answers being returned to F by I are distributed exatly as they

Cryptography: Leture Notes 195M rXXXXXXXXX ���������
?w r� g2(w)0 g1(w)�?�?h g1- 6g2Figure 9.1: PSS: Components of image y = 0kwkr�kg2(w) are darkened. The signature of M is yd mod N .would be in the real experiment. Now remember that the last hash simulator query made by I is rkM whereM is the message in the forgery, so rkM is ertainly in the array V at the end of the exeution of I . Sol = Find(V; rkM; qhash) 6= 0. We know that rkM was not put in V by the sign simulator, beause F is notallowed to have made sign query M . This means the hash orale simulator has been invoked on rkM . Thismeans that Y [l℄ = y � (X [l℄)e mod N beause that is the way the hash orale simulator hooses its replies.The orretness of the forgery means that xe � H(rkM) (mod N), and the role of the H value here isplayed by Y [l℄, so we get xe � Y [l℄ � y �X [l℄ (mod N). Solving this gives (x � X [l℄�1)e mod N = y, andthus the inverter is orret in returning x �X [l℄�1 mod N .9.5.9 The Probabilisti Signature Sheme { PSSPSS0 obtained improved seurity over FDH-RSA but at the ost of an inrease in signature size. The shemepresented here redues the signature size, so that it has both high seurity and the same signature size asFDH-RSA. This is the probabilisti signature sheme (PSS) of [24℄.Signature sheme PSS[k0; k1℄ = (K;SignPSS ;VerifyPSS) is parameterized by k0 and k1, whih are numbersbetween 1 and k satisfying k0 + k1 � k � 1. To be onrete, the reader may like to imagine k = 1024,k0 = k1 = 128. The sheme has the usual RSA key generation algorithm K of Setion 9.5.3. The signingand verifying algorithms make use of two hash funtions. The �rst, h, alled the ompressor, maps ash: f0; 1g� ! f0; 1gk1 and the seond, g, alled the generator, maps as g: f0; 1gk1 ! f0; 1gk�k1�1. (Theanalysis assumes these to be ideal. In pratie they an be implemented in simple ways out of ryptographihash funtions like MD5, as disussed in Appendix 9.5.11.) Let g1 be the funtion whih on input w 2 f0; 1gk1returns the �rst k0 bits of g(w), and let g2 be the funtion whih on input w 2 f0; 1gk1 returns the remainingk � k0 � k1 � 1 bits of g(w). We now desribe how to sign and verify. Refer to Figure 9.1 for a piture. Wewrite the signing and verifying algorithms as follows:Algorithm SignPSSg;hN;d(M)r R f0; 1gk0 ; w h(Mkr)r� g1(w)�ry 0kwkr�kg2(w)x yd mod NReturn x

Algorithm VerifyPSS g;hN;e(M;x)y xe mod NParse y as bkwkr�k wherejbj = 1, jwj = k1, jr�j = k0r r��g1(w)If (h(Mkr) = w and g2(w) = and b = 0)Then return 1 else return 0Obvious \range heks" are for simpliity not written expliitly in the veri�ation ode; for example in areal implementation the latter should hek that 1 � x < N and gd(x;N) = 1.The step r R f0; 1gk0 indiates that the signer piks at random a seed r of k0 bits. He then onatenates thisseed to the messageM , e�etively \randomizing" the message, and hashes this down, via the \ompressing"funtion, to a k1 bit string w. Then the generator g is applied to w to yield a k0 bit string r� = g1(w) and

196 Goldwasser and Bellarea k � k0 � k1 � 1 bit string g2(w). The �rst is used to \mask" the k0-bit seed r, resulting in the maskedseed r�. Now wkr� is pre-pended with a 0 bit and appended with g2(w) to reate the image point y whihis derypted under the RSA funtion to de�ne the signature. (The 0-bit is to guarantee that y is in Z�N .)Notie that a new seed is hosen for eah message. In partiular, a given message has many possiblesignatures, depending on the value of r hosen by the signer.Given (M;x), the veri�er �rst omputes y = xe mod N and reovers r�; w; r. These are used to hek thaty was orretly onstruted, and the veri�er only aepts if all the heks sueed.Note the eÆieny of the sheme is as laimed. Signing takes one appliation of h, one appliation of g,and one RSA deryption, while veri�ation takes one appliation of h, one appliation of g, and one RSAenryption.The following theorem proves the seurity of the PSS based on the one-wayness of RSA. The relation betweenthe two seurities is pretty muh the same as that for PSS0 that we saw in Theorem 9.14, meaning essentiallytight, and muh tighter than the one we saw for the FDH sheme. This time however it was ahieved withoutinrease in signature size.Theorem 9.15 [24℄ Let DS be the PSS sheme with seurity parameters k0 and k1. Then for any t; qsig; �and any qhash � 1 + qsig we haveAdvuf-maDS (t; qsig; qhash; �) � AdvowfRSA(t0) + [3(qhash � 1)2℄ � (2�k0 + 2�k1) ;where t0 = t+ qhash � k0 � O(k3).The proof is in [24℄. It extends the proof of Theorem 9.14 given above.9.5.10 Signing with Message Reovery { PSS-RMessage reovery. In a standard signature sheme the signer transmits the message M in the lear,attahing to it the signature x. In a sheme whih provides message reovery, only an \enhaned signature"� is transmitted. The goal is to save on the bandwidth for a signed message: we want the length of thisenhaned signature to be smaller than jM j+ jxj. (In partiular, when M is short, we would like the lengthof � to be k, the signature length.) The veri�er reovers the message M from the enhaned signature andheks authentiity at the same time.We aomplish this by \folding" part of the message into the signature in suh a way that it is \reoverable"by the veri�er. When the length n of M is small, we an in fat fold the entire message into the signature,so that only a k bit quantity is transmitted. In the sheme below, if the seurity parameter is k = 1024, wean fold up to 767 message bits into the signature.Definition. Formally, the key generation and signing algorithms are as before, but V is replaed by Reover ,whih takes pk and x and returns Reoverpk(x) 2 f0; 1g� [fREJECTg. The distinguished point REJECT isused to indiate that the reipient rejeted the signature; a return value of M 2 f0; 1g� indiates that theveri�er aepts the messageM as authenti. The formulation of seurity is the same exept for what it meansfor the forger to be suessful : it should provide an x suh that Reoverpk(x) =M 2 f0; 1g�, where M wasnot a previous signing query. We demand that if x is produed via x Ssk(M) then Reoverpk(x) =M .A simple variant of PSS ahieves message reovery. We now desribe that sheme and its seurity.The sheme. The sheme PSS-R[k0; k1℄ = (K;SignPSSR;RePSSR) is parameterized by k0 and k1, asbefore. The key generation algorithm is K, the same as before. As with PSS, the signing and verifyingalgorithms depend on hash funtions h: f0; 1g� ! f0; 1gk1 and g: f0; 1gk1 ! f0; 1gk�k1�1, and we use thesame g1 and g2 notation. For simpliity of expliation, we assume that the messages to be signed have lengthn = k � k0 � k1 � 1. (Suggested hoies of parameters are k = 1024, k0 = k1 = 128 and n = 767.) In thisase, we produe \enhaned signatures" of only k bits from whih the veri�er an reover the n-bit message

Cryptography: Leture Notes 197M rXXXXXXXXX ���������
?w r� M�0 g1(w)�?�?h g1-? 6g2g2(w) -�6Figure 9.2: PSS-R: Components of image y = 0kwkr�kM� are darkened.and simultaneously hek authentiity. Signature generation and veri�ation proeed as follows. Refer toFigure 9.2 for a piture.Algorithm SignPSSRg;hN;d(M)r R f0; 1gk0 ; w h(Mkr)r� g1(w)�rM� g2(w)�My 0kwkr�kM�x yd mod NReturn x

Algorithm RePSSRg;hN;e(x)y xe mod NParse y as bkwkr�kM� wherejbj = 1, jwj = k1, jr�j = k0r r��g1(w)M M��g2(w)If (h(Mkr) = w and b = 0)Then return M else return REJECTThe di�erene in SignPSSR with respet to SignPSS is that the last part of y is not g2(w). Instead, g2(w)is used to \mask" the message, and the masked message M� is the last part of the image point y.The above is easily adapted to handle messages of arbitrary length. A fully-spei�ed sheme would use aboutminfk; n+ k0 + k1 + 16g bits.Seurity. The seurity of PSS-R is the same as for PSS.Theorem 9.16 [24℄ Let DS be the PSS with reovery sheme with seurity parameters k0 and k1. Thenfor any t; qsig; � and any qhash � 1 + qsig we haveAdvuf-maDS (t; qsig; qhash; �) � AdvowfRSA(t0) + [3(qhash � 1)2℄ � (2�k0 + 2�k1) ;where t0 = t+ qhash � k0 � O(k3).The proof of this theorem is very similar to that of Theorem 9.15.9.5.11 How to implement the hash funtionsIn the PSS we need a onrete hash funtion h with output length some given number k1. Typially we willonstrut h from some ryptographi hash funtion H suh as H = MD5 or H = SHA-1. Ways to do thishave been disussed before in [15, 23℄. For ompleteness we quikly summarize some of these possibilities.The simplest is to de�ne h(x) as the appropriate-length pre�x ofH(onst:h0i:x)kH(onst:h1i:x)kH(onst:h2i:x)k � � � :The onstant onst should be unique to h; to make another hash funtion, g, simply selet a di�erentonstant.

198 Goldwasser and Bellare9.5.12 Comparison with other shemesWe have already disussed the PKCS standards [173, 174℄ and the ISO standard [1℄ and seen that theirseurity annot be justi�ed based on the assumption that RSA is trapdoor one-way. Other standards, suhas [9℄, are similar to [173℄, and the same statement applies.The shemes we disuss in the remainder of this setion do not use the hash-then-derypt paradigm.Signature shemes whose seurity an be provably based on the RSA assumption inlude [101, 14, 145,171, 74℄. The major plus of these works is that they do not use an ideal hash funtion (random orale)model| the provable seurity is in the standard sense. On the other hand, the seurity redutions are quiteloose for eah of those shemes. On the eÆieny front, the eÆieny of the shemes of [101, 14, 145, 171℄is too poor to seriously onsider them for pratie. The Dwork-Naor sheme [74℄, on the other hand, isomputationally quite eÆient, taking two to six RSA omputations, although there is some storage overheadand the signatures are longer than a single RSA modulus. This sheme is the best urrent hoie if one iswilling to allow some extra omputation and storage, and one wants well-justi�ed seurity without assumingan ideal hash funtion.Bak among signature shemes whih assume an ideal hash, a great many have been proposed, based on thehardness of fatoring or other assumptions. Most of these shemes are derived from identi�ation shemes,as was �rst done by [79℄. Some of these methods are provable (in the ideal hash model), some not. In someof the proven shemes exat seurity is analyzed; usually it is not. In no ase that we know of is the seuritytight. The eÆieny varies. The omputational requirements are often lower than a hash-then-derypt RSAsignature, although key sizes are typially larger.Finally we note related new work. Pointheval and Stern [159℄ onsider the provable seurity of signaturesin the random orale model and show that a modi�ed version of the El Gamal sheme [85℄, as well as theShnorr [178℄ sheme, an be proven seure. (And the sheme of [79℄ an be proven seure against attaksin whih there are no signature queries.) But they don't onsider exat seurity. An interesting question isto onsider, and possibly improve, the exat seurity of their redutions (making, if neessary, modi�ationsto the shemes).More reently, some quite simple RSA based signature shemes have appeared that have a proof of seuritybased on a stronger and less standard assumption about RSA, but whih do not rely on random orales[87, 61℄.9.6 Threshold Signature ShemesUsing a threshold signature sheme, digital signatures an be produed by a group of players rather than byone party. In ontrast to the regular signature shemes where the signer is a single entity whih holds theseret key, in threshold signature shemes the seret key is shared by a group of n players. In order to produea valid signature on a given message m, individual players produe their partial signatures on that message,and then ombine them into a full signature on m. A distributed signature sheme ahieves threshold t < n,if no oalition of t (or less) players an produe a new valid signature, even after the system has produedmany signatures on di�erent messages. A signature resulting from a threshold signature sheme is the sameas if it was produed by a single signer possessing the full seret signature key. In partiular, the validity ofthis signature an be veri�ed by anyone who has the orresponding unique publi veri�ation key. In otherwords, the fat that the signature was produed in a distributed fashion is transparent to the reipient ofthe signature.Threshold signatures are motivated both by the need that arises in some organizations to have a group ofemployees agree on a given message (or a doument) before signing it, as well as by the need to protetsignature keys from the attak of internal and external adversaries. The latter beomes inreasingly impor-tant with the atual deployment of publi key systems in pratie. The signing power of some entities, (e.g.,a government ageny, a bank, a erti�ation authority) inevitably invites attakers to try and \steal" thispower. The goal of a threshold signature sheme is twofold: To inrease the availability of the signing ageny,

Cryptography: Leture Notes 199and at the same time to inrease the protetion against forgery by making it harder for the adversary to learnthe seret signature key. Notie that in partiular, the threshold approah rules out the naive solution basedon traditional seret sharing (see Chapter 11), where the seret key is shared in a group but reonstruted bya single player eah time that a signature is to be produed. Suh protool would ontradit the requirementthat no t (or less) players an ever produe a new valid signature. In threshold shemes, multiple signaturesare produed without an exposure or an expliit reonstrution of the seret key.Threshold signatures are part of a general approah known as threshold ryptography. This approah hasreeived onsiderable attention in the literature; we refer the reader to [66℄ for a survey of the work in thisarea. Partiular examples of solutions to threshold signatures shemes an be found in [65, 177℄ for RSAand in [105℄ for ElGamal-type of signatures.A threshold signature sheme is alled robust if not only t or less players annot produe a valid signature,but also annot prevent the remaining players from omputing a signature on their own. A robust shemebasially foils possible denial of servie attaks on the part of orrupted servers. The solutions mentinedabove are not robust. In this hapter we will onentrate on robust shemes. We will not go into tehnialdetails. The goal of this setion is to present the reader with the relevant notions and point to the souresin the literature.In the following we will refer to the signing servers with the letters P1; : : : ; Pn.9.6.1 Key Generation for a Threshold ShemeThe task of generating a key for a threshold signature sheme is more ompliated than when we are in thepresene of a single signer. Indeed we must generate a publi key PK whose mathing seret key SK isshared in some form among the servers P1; : : : ; Pn.A way of doing this is to have some trusted dealer who generates a key pair (PK;SK) for the given signaturesheme, makes PK publi and shares SK among the Pi's using a seret sharing protool (see Chapter 11.)However notie that suh a key generation mehanisms ontradits the requirement that no single entityshould be able to sign, as now the dealer knows the seret key SK and he is able to sign on his own. Thisis why people have been trying to avoid the use of suh a dealer during the key generation phase.For the ase of disrete-log based signature shemes, this quest has been suessful. Robust thresholdsignature shemes for the El Gamal, Shnorr and DSS signature shemes (see [85, 178, 81℄) an be found in[49, 153, 89℄, all using underlying results of Feldman and Pedersen [78, 154, 155℄.Yet, in some ases the dealer solution is the best we an do. For example, if the underlying signature shemeis RSA, then we do not know how to generate a key in a shared form without the use of a dealer.9.6.2 The Signature ProtoolOne the key is generated and in some way shared among the servers P1; : : : ; Pn we need a signature protool.The idea is that on input a message M , the servers will engage in some form of ommuniation that willallow them to ompute a signature � for M , without revealing the seret key. Suh protool should not leakany information beyond suh signature �. Also in order to obtain the robustness property, suh protoolsshould orretly ompute the signature even if up to t servers Pi's are orrupted and behave in any wayduring the protool. If possible the omputation required by a server Pi to sign in this distributed mannershould be omparable to the e�ort required if Pi were signing on his own. Interation should be redued toa minimumFor El Gamal-like shemes robust threshold signature shemes an be found in [49, 153℄. The spei� aseof DSS turned out to be very diÆult to handle. The best solution is in [89℄.RSA turned out to be even less amenable to the onstrution of robust shemes. A somewhat ineÆientsolution (requires muh more omputation and a lot of interation between servers) an be found in [82℄. Avery eÆient and non-interative solution was independently proposed in [88℄.

C h a p t e r 10Key distribution

We have looked extensively at enryption and data authentiation and seen lots of ways to design shemes forthese tasks. We must now address one of the assumptions underlying these shemes. This is the assumptionthat the parties have available ertain kinds of keys.This hapter examines various methods for key distribution and key management. A good deal of our e�ortwill be expended in understanding the most important pratial problem in the area, namely session keydistribution.Let us begin with the lassi seret key exhange protool of DiÆe and Hellman.10.1 DiÆe Hellman seret key exhangeSuppose Alie and Bob have no keys (shared or publi), and want to ome up with a joint key whih theywould use for private key ryptography. The DiÆe-Hellman (DH) seret key exhange (SKE) protool [68℄enables them to do just this.10.1.1 The protoolWe �x a prime p and a generator g 2 Z�p . These are publi, and known not only to all parties but also tothe adversary E.A piks x 2 Zp�1 at random and lets X = gx mod p. She sends X to BB piks y 2 Zp�1 at random and lets Y = gy mod p. He sends Y to A.Now notie that Xy = (gx)y = gxy = (gy)x = Y x ;the operations being in the group Z�p . Let's all this ommon quantity K. The ruial fat is that bothparties an ompute it! Namely A omputes Y x, whih is K, and B omputes Xy, whih is also K, and nowthey have a shared key. 200

Cryptography: Leture Notes 20110.1.2 Seurity against eavesdropping: The DH problemIs this seure? Consider an adversary that is sitting on the wire and sees the ows that go by. She wants toompute K. What she sees is X and Y . But she knows neither x nor y. How ould she get K? The naturalattak is to �nd either x or y (either will do!) from whih she an easily ompute K. However, notie thatomputing x given X is just the disrete logarithm problem in Z�p , whih is widely believed to be intratable(for suitable hoies of the prime p). Similarly for omputing y from Y . Aordingly, we would be justi�edin having some on�dene that this attak would fail.A number of issues now arise. The �rst is that omputing disrete logarithms is not the only possibleattak to try to reover K from X;Y . Perhaps there are others. To examine this issue, let us formulate theomputational problem the adversary is trying to solve. It is the following:The DH Problem: Given gx and gy for x; y hosen at random from Zp�1, ompute gxy.Thus the question is how hard is this problem? We saw that if the disrete logarithm problem in Z�p is easythen so is the DH problem; ie. if we an ompute disrete logs we an solve the DH problem. Is the onversetrue? That is, if we an solve the DH problem, an we ompute disrete logarithms? This remains an openquestion. To date it seems possible that there is some lever approah to solving the DH problem withoutomputing disrete logarithms. However, no suh approah has been found. The best known algorithm forthe DH problem is to ompute the disrete logarithm of either X or Y . This has lead ryptographers tobelieve that the DH problem, although not known to be equivalent to the disrete logarithm one, is still aomputationally hard problem, and that as a result the DH seret key exhange is seure in the sense thata omputationally bounded adversary an't ompute the key K shared by the parties.The DH Assumption: The DH problem is omputationally intratable.These days the size of the prime p is reommended to be at least 512 bits and preferably 1024. As we havealready seen, in order to make sure the disrete logarithm problem modulo p is intratable, p � 1 shouldhave at least one large fator. In pratie we often take p = 2q + 1 for some large prime q.The relationship between the DH problem and the disrete logarithm problem is the subjet of muh inves-tigation. See for example Maurer [135℄.10.1.3 The DH ryptosystemThe DH seret key exhange gives rise to a very onvenient publi key ryptosystem. A party A will hooseas its seret key a random point x 2 Zp�1, and let X = gx be its publi key. Now if party B wants toprivately send A a message M , it would proeed as follows.First, the parties agree on a private key ryptosystem (E ;D) (f. Chapter 6). For onreteness assume it is aDES based ryptosystem, so that it needs a 56 bit key. Now B piks y at random from Zp�1 and omputesthe DH key K = Xy = gxy. From this, he extrats a 56 bit key a for the private key ryptosystem aordingto some �xed onvention, for example by letting a be the �rst 56 bits of K. He now enrypts the plaintextM under a using the private key ryptosystem to get the iphertext C = Ea(M), and transmits the pair(Y;C) where Y = gy.A reeives (Y;C). Using her seret key x she an ompute the DH key K = Y x = gxy, and thus reover a.Now she an derypt the iphertext C aording to the private key ryptosystem, via M = Da(C), and thusreover the plaintext M .Intuitively, the seurity would lie in the fat that the adversary is unable to ompute K and hene a. This,however, is not quite right, and brings us to the issue of the bit seurity of the DH key.

202 Goldwasser and Bellare10.1.4 Bit seurity of the DH keyAbove the �rst 56 bits of the key K = gxy is used as the key to a private key ryptosystem. What we know(are willing to assume) is that given gx; gy the adversary annot reover K. This is not enough to make theusage of K as the key to the private key ryptosystem seure. What if the adversary were able to reover the�rst 56 bits of K, but not all of K? Then ertainly the above ryptosystem would be inseure. Yet, havingthe �rst 56 bits of K may not enable one to �nd K, so that we have not ontradited the DH assumption.This is an issue we have seen before in many ontexts, for example with one-way funtions and with enryp-tion. It is the problem of partial information. If f is one-way it means given f(x) I an't �nd x; it doesn'tmean I an't �nd some bits of x. Similarly, here, that we an't ompute K doesn't mean we an't omputesome bits of K.Indeed, it turns out that omputing the last bit (ie. LSB) of K = gxy given gx; gy is easy. To date theredo not seem to be other detetable losses of partial information. Nonetheless it would be unwise to just usesome subset of bits of the DH key as the key to a private key ryptosystem. Assuming that these bits areseure is a muh stronger assumption than the DH assumption.So what ould we do? In pratie, we might hash the DH key K to get a symmetri key a. For example,applying a ryptographi hash funtion like SHA-1 to K yields 160 bits that might have better \randomness"properties than the DH key. Now use the �rst 56 bits of this if you need a DES key.However, while the above may be a good heuristi in pratie, it an't be validated without very strongassumptions on the randomness properties of the hash funtion. One possibility that an be validated is toextrat hard bits from the DH key via an analogue of Theorem 2.49. Namely, let r be a random string oflength jpj and let b be the dot produt of K and r. Then prediting b given gx; gy is infeasible if omputingK = gxy given gx; gy is infeasible. The drawbak of this approah is that one gets very few bits. To get 56bits one would need to exhange several DH keys and get a few bits from eah.We saw in Chapter 2 that for ertain one way funtions we an present hardore prediates, the preditionof whih an be redued to the problem of inverting the funtion itself. A theorem like that for the DH keywould be nie, and would indiate how to extrat bits to use for a symmetri key. Reently results of thiskind have been proved by Boneh and Venkatesan [42℄.10.1.5 The lak of authentiityAt �rst glane, the DH seret key exhange might appear to solve in one stroke the entire problem of gettingkeys to do ryptography. If A wants to share a key with B, they an just do a DH key exhange to get one,and then use private key ryptography.Don't do it. The problem is authentiity. The seurity of the DH key is against a passive adversary, oreavesdropper. It is assumed that the adversary will reover the transmitted data but not try to injet dataon the line. In pratie, of ourse, this is an untenable assumption. It is quite easy to injet messages onnetworks, and hakers an mount ative attaks.What damage an this do? Here is what the adversary does. She alls up B and simply plays the role of A.That is, she laims to be A, who is someone with whom B would like to share a key, and then exeutes theDH protool like A would. Namely she piks x at random and sends X = gx to B. B returns Y = gy andnow B and the adversary share the key K = gxy. But B thinks the key is shared with A. He might enrypton�dential data using K, and then the adversary would reover this data.Thus in the realisti model of an ative adversary, the DH key exhange is of no diret use. The real problemis to exhange a key in an authentiated manner. It is this that we now turn to.However, we remark that while the DH key exhange is not a solution, by itself, to the key distributionproblem in the presene of an ative adversary, it is a useful tool. We will see how to use it in onjuntionwith other tools we will develop to add to session key distribution protools nie features like \forwardserey."

Cryptography: Leture Notes 20310.2 Session key distributionAssume now we are in the presene of an ative adversary. The adversary an injet messages on the lineand alter messages sent by legitimate parties, in addition to eavesdropping on their ommuniations. Wewant to get shared keys.A little thought will make it lear that if the legitimate parties have no information the adversary does notknow, it will not be possible for them to exhange a key the adversary does not know. This is beause theadversary an just impersonate one party to another, like in the attak on DH above. Thus, in order toget o� the ground, the legitimate parties need an \information advantage." This is some information, pre-distributed over a trusted hannel, whih the adversary does not know, and whih enables them to seurelyexhange keys in the future.We now disuss various ways to realize this information advantage, and the session key distribution problemsto whih they give rise. Then we explain the problem in more depth. We largely follow [16, 17℄.10.2.1 Trust models and key distribution problemsWhat forms might the information advantage take? There are various di�erent trust models and orrespond-ing key distribution problems.The three party modelThis model seems to have been �rst mentioned by Needham and Shroeder [148℄. It has sine been popu-larized largely by the Kerberos system [193℄.In this model there is a trusted party alled the authentiation server , and denoted S. Eah party A in thesystem has a key KA whih it shares with the server. This is a private key between these two parties, notknown to any other party. When two parties A;B, sharing, respetively, keys KA and KB with S, wantto engage in a ommuniation session, a three party protool will be exeuted, involving A;B and S. Theresult will be to issue a ommon key K to A and B. They an then use this key to enrypt or authentiatethe data they send eah other.The distributed key is supposed to be a seure session key. When the parties have ompleted their ommu-niation session, they will disard the key K. If later they should desire another ommuniation session, thethree party protool will be re-exeuted to get a new, fresh session key.What kinds of seurity properties should this distributed session key have? We will look at this question indepth later. It is an important issue, sine, as we will see, session key distribution protools must resist avariety of novel attaks.The two party asymmetri modelWhen publi key ryptography an be used, the authentiation server's ative role an be eliminated. Inthis trust model, the assumption is that A has the publi key pkB of B, and B has the publi key pkA ofA. These keys are assumed authenti. That is, A is assured the key he holds is really the publi key of Band not someone else, and analogously for B.1Now, suppose A and B want to engage in a seure ommuniation session. The problem we want to onsideris how they an get a shared, private and authenti session key based on the publi keys, via a two partyprotool.1 How is this situation arrived at? That isn't a problem we really want to disuss yet: it falls under the issue of keymanagement and will be disussed later. But, briey, what we will have is trusted servers whih provide publi, erti�eddiretories of users and their publi keys. The server maintains for eah user identity a publi key, and provides this uponrequest to any other user, with a signature of the server that serves as a erti�ate of authentiity. Barring this diretoryservie, however, the server plays no ative role.

204 Goldwasser and BellareQuestions pertaining to what exatly is the problem, and why, may arise here. We already know that wean authentiate and enrypt data with publi keys. That is, the parties already have the means to seureommuniation. So why do they need a shared session key?There are several reasons. One is that private key ryptography, at least under urrent tehnology, isonsiderable more eÆient than publi key ryptography. The seond, however, probably more important,is that it is onvenient to have session keys. They allow one to assoiate a key uniquely to a session. Thisis an advantage for the following reasons.Keys atually used to enrypt or authentiate data get greater exposure. They are used by appliations inways that may not be known, or ontrollable, beforehand. In partiular, an appliation might mis-use akey, or expose it. This might (or might not) ompromise the urrent session, but we would not like it toompromise the long lived seret key and thus other uses and sessions. Similarly, the long lived seret keyof a user A (namely the seret key skA orresponding to her publi key pkA) may be stored in protetedhardware and aessed only via a speial interfae, while the session key lies on a more exposed mahine.The two party symmetri modelProbably the simplest model is of two parties who already share a long lived key. Eah time they wish toengage in a ommuniation session they will run a protool to derive a session key.Again, the motivation is the onveniene and seurity advantages of session keys. We stress the main one.A host of appliations might be run by the users, all wanting keys for one reason or another. We don't wantto make assumptions about how they use the key. Some might use it in ways that are seure for their ownpurposes but ompromise the key globally. In order for this not to a�et the global seurity, we assign eahrun of eah appliation a separate session key.10.2.2 History of session key distributionAlthough session key distribution is an old problem, it is only reently that a ryptographially soundtreatment of it, in the \provable seurity" or \redutionist" tradition that these leture notes are desribing,has emerged [16, 17℄. Via this approah we now have models in whih to disuss and prove orret protools,and several protools proven seure under standard ryptographi assumptions.The history prior to this was troubled. Session key distribution is an area in whih a large number of papersare published, proposing protools to solve the problem. However, many of them are later broken, or su�erfrom disernible design aws.The problem is deeptively simple. It is easy to propose protools in whih subtle seurity problems lateremerge.In the three party ase, Needham and Shroeder [148℄ desribe a number of andidate protools. Theyhad prophetially ended their paper with a warning on this approah, saying that \protools suh as thosedeveloped here are prone to extremely subtle errors that are unlikely to be deteted in normal operations.The need for tehniques to verify the orretness of suh protools is great : : :". Evidene of the authors'laim ame unexpetedly when a bug was pointed out in their own \Protool 1" (Denning and Sao, [64℄).2Many related protools were eventually to su�er the same fate.As a result of a long history of suh attaks there is �nally a general onsensus that session key distributionis not a goal adequately addressed by giving a protool for whih the authors an �nd no attaks.A large body of work, beginning with Burrows, Abadi and Needham [45℄, aims to improve on this situation viathe use of speial-purpose logis. The aim is to demonstrate a lak of \reasoning problems" in a protool beinganalyzed. The tehnique has helped to �nd errors in various protools, but a proof that a protool is \logiallyorret" does not imply that it is is right (one its abstrat ryptographi operations are instantiated). Indeed2 Insofar as there were no formal statements of what this protool was supposed to do, it is not entirely fair to all it buggy;but the authors themselves regarded the protool as having a problem worthy of �xing [149℄.

Cryptography: Leture Notes 205it is easy to ome up with onrete protools whih are logially orret but blatantly inseure.Examining the work on the session key distribution problem, one �nds that the bulk of it is divored frombasi ryptographi priniples. For example one �nd over and over again a onfusion between data enryptionand data authentiation. The most prevalent problem is a lak of spei�ation of what exatly is the problemthat one is trying to solve. There is no model of adversarial apabilities, or de�nition of seurity.Inuential works in this area were Bird et. al. [31℄ and DiÆe et. al. [69℄. In partiular the former pointedto new lasses of attaks, alled \interleaving attaks," whih they used to break existing protools, andthey suggested a protool (2PP) defeated by none of the interleaving attaks they onsidered. Buildingon this, Bellare and Rogaway provide a model and a de�nition of seurity for two party symmetri sessionkey distribution [16℄ and for three party session key distribution [17℄, just like we have for primitives likeenryption and signatures. Based on this they derive protools whose seurity an be proven based onstandard ryptographi assumptions. It turns out the protools are eÆient too.Now other well justi�ed protools are also emerging. For example, the SKEME protool of Krawzyk [121℄is an elegant and multi-purpose two party session key distribution protool direted at ful�lling the keydistribution needs of Internet seurity protools. Even more reently, a proven-seure protool for sessionkey distribution in smart ards was developed by Shoup and Rubin [189℄.10.2.3 An informal desription of the problemWe normally think of a party in a protool as being devoted to that protool alone; it is not doing doing otherthings alongside. The main element of novelty in session key distribution is that parties may simultaneouslymaintain multiple sessions. A party has multiple instanes. It is these instanes that are the logial endpointsof a session, not the party itself.We let fP1; : : : ; PNg denote the parties in the distributed system. As disussed above, a given pair ofplayers, Pi and Pj may simultaneously maintain multiple sessions (eah with its own session key). Thus itis not really Pi and Pj whih form the logial endpoints of a seure session; instead, it is an instane �si;jof Pi and an instane �tj;i of Pj . We emphasize instanes as a entral aspet of the session key distributionproblem, and one of the things that makes session key distribution di�erent from many other problems.It is the goal of a session-key distribution protool to provide �si;j and �tj;i with a session key �s;ti;j to protettheir session. Instanes �si;j and �tj;i must ome up with this key without knowledge of s, t, or whateverother instanes may urrently exist in the distributed system.An ative adversary attaks the network. She ontrols all the ommuniation among the players: she andeliver messages out of order and to unintended reipients, onot messages entirely of her own hoosing,and start up entirely new instanes of players. Furthermore, she an mount various attaks on session keyswhih we will disuss.10.2.4 Issues in seurityUltimately, what we want to say is that the adversary annot ompromise a session key exhanged betweena pair of instanes of the legitimate parties. We must worry about two (related) issues: authentiation, andkey serey. The �rst means, roughly, that when an instane of i aepts B then it must have been \talkingto" an instane of j. The seond, roughly, means that if �si;j and �tj;i share a session key then this key mustbe seure.It is an important requirement on session keys that the key of one session be independent of another. Thisis beause we annot make assumptions about how a session key will be used in an appliation. It mightend up exposing it, and we want this not to ompromise other session keys. We model this in a worst aseway by allowing the adversary to expose session keys at will. Then we will say that a key shared betweenpartners who are unexposed must remain seure even if keys of other sessions are exposed.One of the most important issues is what is meant by seurity of the key. The way it has traditionally been

206 Goldwasser and Bellareviewed is that the key is seure if the adversary annot ompute it. We have by now, however, seen timeand again, in a variety of settings, that this is not the right notion of serey. We must also prevent partialinformation from leaking. (Examples of why this is important for session keys are easy to �nd, analogous tothe many examples we have seen previously illustrating this issue.) Aordingly, the de�nitions ask that asession key be unpreditable in the sense of a probabilistially enrypted message.We note that insuÆient protetion of the session key is a aw that is present in all session key distributionprotools of whih we are aware barring those of [16, 17℄. In fat, this inseurity is often built in by a desireto have a property that is alled \key on�rmation." In order to \on�rm" that it has reeived the sessionkey, one party might enrypt a �xed message with it, and its ability to do so orretly is read by the otherparty as evidene that it has the right session key. But this reveals partial information about the key. Itmight seem un-important, but one an �nd examples of usages of the session key whih are rendered inseureby this kind of key on�rmation. In fat \key on�rmation," if needed at all, an be ahieved in other ways.10.2.5 Entity authentiation versus key distributionThe goal of the key distributions we are onsidering is for the parties to simultaneously authentiate oneanother and ome into possession of a seure, shared session key. There are several ways one might interpretthe notion of authentiation.The literature has onsidered two ways. The �rst is authentiation in a very strong sense, onsidered in [16℄for the two party ase. This has been relaxed to a weaker notion in [17℄, onsidered for the three party ase.The weaker notion for the two party ase is still under researh and development.Whih to prefer depends on the setting. The approah we will follow here is to follow the existing literature.Namely we will onsider the stronger notion for the two party setting, and the weaker one for the three partysetting. It may perhaps be more orret to use the weaker notion throughout, and in a future version ofthese notes we would hope to do so; the situation at present is simply that the formalizations of the weakernotion for the two party ase have not yet appeared.10.3 Authentiated key exhangesWe begin by looking at the two party ase, both symmetri and asymmetri. We look at providing authentiexhange of a session key, meaning the parties want to authentiate one another and simultaneously omeinto possession of a shared seret session key. The formal model, and the de�nition of what onstitutes aseure authentiated session key distribution protool, are provided in [16℄. Here we will only desribe someprotools.First however let us note some onventions. We assume the parties want to ome into possession of a l-bit, random shared seret key, eg. l = 56. (More generally we ould distribute a key from some arbitrarysamplable distribution, but for simpliity let's stik to what is after all the most ommon ase.) The sessionkey will be denoted by �.Whenever a party A sends a ow to another party B, it is understood that her identity A aompanies theow, so that B knows who the ow purports to ome from. (This has nothing to do with ryptography orseurity: it is just a servie of the ommuniation medium. Note this identity is not seured: the adversaryan hange it. If the parties want the laim seured, it is their responsibility to use ryptography to thisend, and will see how they do this.)10.3.1 The symmetri aseLet K be the (long-lived) key shared between the parties. We �x a private key enryption sheme (E ;D)and a private key message authentiation sheme (T ;V). The key K is divided into two parts, Ke andKm, the �rst to be used for enryption and the seond for message authentiation. The protool, alled

Cryptography: Leture Notes 207Authentiated Key Exhange Protool 1, is depited in Figure 10.1, and a more omplete desription of theows follows.
A RA - BRBkEKe(�)kTKm(BkAkRAkRBkEKe(�))� TKm(AkRB) -Figure 10.1: Protool AKEP1: Session key distribution in symmetri setting.Here is a more omplete desription of the ows:(1) A piks at random a string RA and sends it to B(2) B piks at random a string RB . She also piks at random an l-bit session key �. She enrypts it underKe to produe the iphertext C = EKe(�). She now omputes the tag � = TKm(BkAkRAkRBkC). Shesends RB ; C; � to A.(3) A veri�es that VKm(BkAkRAkRBkC; �) = 1. If this is the ase she omputes the tag TKm(AkRB) andsends it to B. She also derypts C via � = DKe(C) to reover the session key.(4) B veri�es the last tag and aepts (outputting session key �) if the last tag was valid.Remark 10.1 Notie that both enryption and message authentiation are used. As we mentioned above,one of the ommonly found fallaies in session key distribution protools is to try to use enryption to provideauthentiation. One should really use a message authentiation ode.Remark 10.2 It is important that the enryption sheme (E ;D) used above be seure in the sense wehave disussed in Chapter 6. Reall in partiular this means it is probabilisti. A single plaintext hasmany possible iphertexts, depending on the probabilisti hoies made by the enryption algorithms. Theseprobabilisti hoies are made by S when the latter enrypts the session key, independently for the twoenryptions it performs. This is a ruial element in the seurity of the session key.These remarks apply also to the protools that follow, appropriately modi�ed, of ourse, to reet a hangein setting. We will not repeat the remarks.10.3.2 The asymmetri aseWe will be using publi key ryptography. Spei�ally, we will be using both publi key enryption anddigital signatures.Fix a publi key enryption sheme, and let E ;D denote, respetively, the enryption and the deryptionalgorithms for this sheme. The former takes a publi enryption key pke and message to return a iphertext,and the latter takes the seret deryption key ske and iphertext to return the plaintext. This sheme shouldbe seure in the sense we have disussed in Chapter 7.

208 Goldwasser and BellareFix a digital signature sheme, and let S;V denote, respetively, the signature and veri�ation algorithmsfor this sheme. The former takes a seret signing key skd and message to return a signature, and the lattertakes the publi veri�ation key pkd, message, and andidate signature to return an indiation of whetheror not the signature is valid. This sheme should be seure in the sense we have disussed in Chapter 9.Every user I in the system has a publi key pkI whih is in fat a pair of publi keys, pkI = (pkeI ; pkdI),one for the enryption sheme and the other for the signature sheme. These keys are known to all otherusers and the adversary. However, the user keeps privately the orresponding seret keys. Namely he holdsskI = (skeI ; skdI) and nobody else knows these keys.Reall the model is that A has B's publi key pkB and B has A's publi key pkA. The protool for theparties to get a joint, shared seret key � is depited in Figure 10.2, and a more omplete explanation follows.
A RA - BRBkEpkeA(�)kSskdB (BkAkRAkRBkEpkeA(�))� SskdA(AkRB) -Figure 10.2: Protool for exhange of symmetri key in asymmetri setting.Here is a more omplete desription of the ows:(1) A piks at random a string RA and sends it to B(2) B piks at random a string RB . She also piks at random an l-bit session key �. She enrypts itunder A's publi key pkeA to produe the iphertext C = EpkeA(�). She now omputes the signature� = SskdB (AkRAkRBkC), under her seret signing key skdB . She sends RB ; C; � to A.(3) A veri�es that VpkdB (AkRAkRBkC; �) = 1. If this is the ase she omputes the signature SskdA(RB) andsends it to B. She also derypts C via � = DskeA(C) to reover the session key.(4) B veri�es the last signature and aepts (outputting session key �) if the last signature was valid.10.4 Three party session key distributionFix a private key enryption sheme (E ;D) whih is seure in the sense disussed in Chapter 6. Also �xa message authentiation sheme (T ;V) whih is seure in the sense disussed in Chapter 8. The key KIshared between the server S and party I is a pair (KeI ;KmI) of keys, one a key for the enryption shemeand the other a key for the message authentiation sheme. We now onsider parties A;B, whose keys KAand KB , respetively have this form. A terse representation of the protool of [17℄ is is given in Figure 10.3,and a more omplete explanation follows.Here now is a more omplete desription of the ows and aompanying omputations:(1) In Step 1, party A hooses a random hallenge RA and sends it to B.

Cryptography: Leture Notes 209Flow 1. A! B: RAFlow 2. B ! S: RAkRBFlow 3A. S ! A: EKeA(�) k TKmA (AkBkRAkEKeA(�))Flow 3B. S ! B: EKeB (�) k TKmB (AkBkRBkEKeB(�))Figure 10.3: Three party session key distribution protool.(2) In Step 2, party B hooses a random hallenge RB and sends RAkRB to S.(3) In Step 3, S piks a random l-bit session key � whih he will distribute. Then S enrypts this sessionkey under eah of the parties' shared keys. Namely he omputes the iphertexts �A = EKeA(�) and�B = EKeB(�). Then S omputes �A = TKmA (AkBkRAk�A) and �B = TKmB (AkBkRBk�B). In ow 3A(resp. 3B) S sends A (resp. B) the message �Ak�A (resp. �Bk�B).(4) In Step 4A (resp. 4B) Party A (resp. B) reeives a message �0Ak�0A (resp. �0Bk�0B) and aepts, withsession key DKeA(�0A) (resp. DKeB (�0B)), if and only if VKmA (AkBkRAk�0A; �0A) = 1 (resp. VKmB (AkBkRBk�0B ; �0A) = 1).Remark 10.3 This protool has four ows. Typially, the three party key distribution protools you willsee in the literature have �ve. In fat, four suÆes.10.5 Forward sereyForward serey is an extra seurity property that a session key an have and whih seems very desirable.Consider, for onreteness, the protool of Figure 10.2 for exhange of a symmetri key in the asymmetrisetting. Suppose A and B have run this protool and exhanged a session key �, and used it to enryptdata. Suppose the adversary reorded the transript of this exhange. This means she has in her possessionC = EpkeA(�), the enrypted session key, and also any iphertexts enrypted under � that the parties mayhave transmitted, all them C1; C2; : : :. Sine the session key distribution protool is seure, the informationshe has doesn't give her anything; ertainly she does not learn the session key �.Now that session is over. But now suppose, for some reason, the long lived key of A is exposed. Meaningthe adversary, somehow, gets hold of skA = (skeA; skdA).Certainly, the adversary an ompromise all future sessions of A. Yet in pratie we would expet that Awould soon realize her seret information is lost and revoke her publi key pkA = (pkeA; pkdA) to mitigatethe damage. However, there is another issue. The adversary now has ske and an derypt the iphertext Cto get �. Using this, she an derypt C1; C2; : : : and thereby read the on�dential data that the parties sentin the past session.This does not ontradit the seurity of the basi session key distribution protool whih assumed that theadversary does not gain aess to the long-lived keys. But we might ask for a new and stronger property.Namely that even if the adversary got the long-lived keys, at least past sessions would not be ompromised.This is alled forward serey.Forward serey an be aomplished via the DiÆe-Hellman key exhange with whih we began this hapter.Let us give a protool. We do so in the asymmetri, two party setting; analogous protools an be givenin the other settings. The protool we give is an extension of the STS protool of [69℄. It is depited inFigure 10.4 and a more omplete explanation follows.

210 Goldwasser and Bellare
A gx - BgykSskdB (BkAkgxkgy)� SskdA(Akgy) -Figure 10.4: Protool for exhange of symmetri key with forward serey.Here is a more omplete desription of the ows:(1) A piks at random a string x, omputes X = gx, and sends it to B(2) B piks at random a string y and lets Y = gy. She now omputes the signature � = SskdB (AkXkY),under her seret signing key skdB . She sends Y; � to A.(3) A veri�es that VpkdB (AkXkY; �) = 1. If this is the ase she omputes the signature SskdA(Y) and sendsit to B. She also derypts outputs the DH key gxy = Y x as the session key.(4) B veri�es the last signature and aepts (outputting session key gxy = Xy) if the last signature wasvalid.The use of the DH seret key exhange protool here is intriguing. Is that the only way to get forwardserey? It turns out it is. Bellare and Rogaway have noted that seret key exhange is not only suÆientbut also neessary for the forward serey property [22℄.As we noted in Setion 10.1.4, the DH key is not by itself a good key beause we annot guarantee bitseurity. Aordingly, the session key in the above should atually be set to, say, H(gxy) rather than gxyitself, for a \good" hash funtion H .

C h a p t e r 11Protools

Classial ryptography is onerned with the problem of seurity ommuniation between users by providingprivay and authentiity. The need for an underlying infrastruture for key management leads naturally intothe topi of key distribution. For many years this is all there was to ryptography.One of the major ontributions of modern ryptography has been the development of advaned protools.These protools enable users to eletronially solve many real world problems, play games, and aomplishall kinds of intriguing and very general distributed tasks. Amongst these are zero-knowledge proofs, seuredistributed omputing, and voting protools. The goal of this hapter is to give a brief introdution to thisarea.11.1 Some two party protoolsWe make referene to some number theoreti fats in Setion C.6.11.1.1 Oblivious transferThis protool was invented by M. Rabin [166℄.An oblivious transfer is an unusual protool wherein Alie transfers a seret bit m to Alie in suh a waythat the bit is transferred to Bob with probability 1=2;Bob knows when he gets the bit, but Alie doesn'tknow whether it was transferred or not.This strange-sounding protool has a number of useful appliations (see, for example [166, 29℄). In fat,Kilian has shown [119℄ that the ability to perform oblivious transfers is a suÆiently strong primitive toenable any two-party protool to be performed.The following implementation for oblivious transfer has been proposed in the literature (related ideas dueto Rabin and Blum.)(1) Alie piks two primes p; q at random and multiplies them to produe the modulus N = pq. Sheenrypts the message m under this modulus in some standard way, having the property that if youknow p; q then you an derypt, else you an't. She sends N and the iphertext C to Bob.(2) Bob piks a 2 Z�N at random and sends w = a2 mod N to Alie.(3) Alie omputes the four square roots x;�x; y;�y of w, piks one at random and sends it bak to Bob211

212 Goldwasser and Bellare(4) If Bob got bak the root whih is not �a he an fator N and reover m. Else he an't.And Alie doesn't know whih happened sine a was random.It is fairly lear that there is no way for A to heat in this protool, sine A does not know whih square rootof z B knows, as x was hosen at random. On �rst sight it looks like B annot get anything either, sinehe only obtains a square root of a random square. However, a formal proof of this fat is not known. It isnot lear whether B an heat or not. For example, if B hooses a partiular value of z instead of hoosingx at random and setting z = x2 (mod n), then this may lead to an advantage in fatoring n. It is oneiv-able, for example, that knowing a square root of (n-1)/2 mod n (or some other speial value) ould allowB to fator n. Thus ondition ii) is satis�ed, but we an't prove whether or not the �rst ondition is satis�ed.If we had a method by whih B ould prove to A that he indeed followed the protool and hoose x atrandom without revealing what x is, the protool ould be modi�ed to provably work. We will see in a latersetion on zero-knowledge proofs on how suh proofs an be done.There is another form of OT alled 1 out of 2 OT. Here Alie has two serets, m0 and m1. Bob has aseletion bit . At the end of the protool, Bob gets b and Alie still does not know . See [77℄.11.1.2 Simultaneous ontrat signingAlie and Bob want to sign the ontrat, but only if the other person does as well. That is, neither wantsto be left in the position of being the only one who signs. Thus, if Alie signs �rst, she is worried Bob willthen not sign, and vie versa. (Maybe easier to think of having two ontrats, the �rst promising somethingto Alie, the seond to Bob. It is a trade. Obviously, eah wants the other one to sign.) This problem wasproposed in [77℄.One approah is that Alie signs the �rst letter of her name and sends the ontrat to Bob. He does likewise,and sends it bak. And so on. Assume their names have the same length. Then this makes some progresstowards a solution. Of ourse the problem is the person who must go last an stop. But you an make thisa negligible di�erene. For example, not a letter at a time, but a few millimeters of the letter at a time. Noparty is ever muh ahead of the other. If at some point they both stop, they both are at about the samepoint.Eletronially, we are exhanging strings, whih are digital signatures of the ontrat. Alie has signed it toprodue �A and Bob has signed it to produe �B . Now they exhange these strings a bit at a time, eahtime sending one more bit.There is a problem with this. What if one person does not send the signature, but just some garbage string?The other will not know until the end. Even, Goldreih and Lempel [77℄ show how oblivious transfer an beused to �x this.Alie reates LA whih is the signature of the ontrat together with the phrase \this is my signature of theleft half of the ontrat." Similarly she reates RA whih is the signature of the ontrat together with thephrase \this is my signature of the right half of the ontrat." Similarly, Bob reates LB and RB .Also Alie piks two DES keys,KLA andKRA , and enrypts L;R respetively to produe CLA and CRA . Similarlyfor Bob, replaing As by Bs.The ontrat is onsidered signed if you have both halves of the other person's signature.All the iphertexts are sent to the other party.Alie 1 out of two OTs (KLA;KRA) to Bob with the latter hoosing a random seletion bit, and vie versa.Say Bob gets KLA and Alie gets KRB .Alie and Bob send eah the �rst bits of both DES keys. Keep repeating until all bits of all keys are sent.In this phase, if a party athes a mistake in the bits orresponding to the key it already has, it aborts, elseit ontinues.

Cryptography: Leture Notes 21311.1.3 Bit CommitmentBob wants Alie to ommit to some value, say a bid, so that she an't hange this at a later time as afuntion of other things. On the other hand, Alie does not want Bob to know, at this time, what is thevalue she is ommitting to, but will open it up later, at the right time.Alie makes up an \eletroni safe." She has a key to it. She puts the value in the safe and sends the safeto Bob. The latter an't open it to extrat the ontents. This is a ommittal. Later, Alie will deommitby sending the key. Now Bob an open it. What must be true is that Alie an't produe a safe having twokeys, suh that either open it, and when you look inside, you see di�erent values.One way to implement this is via ollision-free hashing. To ommit to x Alie sends yH(x). From this Boban't �gure out x, sine H is one-way. To deommit, Alie sends x and Bob heks that H(x) = y. ButAlie an't �nd x0 6= x suh that H(x0) = y, so an't heat.This however has poor bit seurity. You an �x it with hardore bits.Another way is to use quadrati residues. First, we �x a partiular number y 2 Z�N whih is known to bea non-residue. Commit to a 0 by sending a random square mod N , namely x2, and to a 1 by sending arandom non-square mod N , in the form yx2. The QRA says Bob an't tell whih is whih. To deommit,reveal x in either ase.Notie the QR ommitment sheme is seure even against a sender who has unbounded omputing power.But not the reeiver.Can you do the opposite? Yes, use disrete logarithms. Let p be a known prime, g 2 Z�p a known generatorof Z�p , and s 2 Z�p a known element of unknown disrete logarithm, namely logg(s) is not known. Committo 0 by piking x at random and sending y = gx; to a 1 by sending sgx. Notie that to the reeiver, eah isa random element of the range. But what if the sender ould reate a y that ould be opened both ways? Itwould have the disrete logarithm of s.Commitment shemes are useful for lots of things. In partiular, ZK proofs, but also oin ipping.11.1.4 Coin ipping in a wellBlum [36℄ has proposed the problem of oin ipping over the telephone. Alie and Bob want a fair, ommon,oin. They want to take a random hoie, but neither should be able to ditate it. Heads Alie wins, andtails Bob wins.What if Bob says, \I'll ip the oin and send you the value." No good. Bob will just ip to win. They mustboth inuene the value.Here is a thought. Alie piks a random bit a and sends it to Bob, and Bob piks a random bit b and send itto Alie, and the value of the oin is a�b. The problem is who goes �rst. If Alie goes �rst, Bob will hooseb to make the oin whatever he wants. Not fair.So what Alie does is �rst ommit to her oin. She sends y = Committ(a) to Bob. Now Bob an't make ba funtion of a. He sends bak b, in the lear. Alie may want to make a a funtion of b, but it is too latesine a is ommitted to. She deommits, and the oin is a�b.11.1.5 Oblivious iruit evaluationAlie and Bob want to know whih of them is older. But neither wants to reveal their age. (Whih meansthey also don't want the reveal the age di�erene, sine from this and their own age, eah gets the other'sage too!) They just want a single bit to pop out, pointing to the older one.Sometimes alled the Millionaires problem, with the values being the earning of eah millionaire.In general, the problem is that Alie has an input xA and Bob has an input xB and they want to omputef(xA; xB) where f is some known funtion, for example f(xA; xB) = 1 if xA � xB and 0 otherwise. They

214 Goldwasser and Bellarewant to ompute it obliviously, so that at the end of the game they both have the value v = f(xA; xB) butneither knows anything else.There are protools for this task, and they are quite omplex. We refer the reader to [10, 43℄11.1.6 Simultaneous Seret Exhange ProtoolThis has been studied in [37, 198, 132, 203℄.The protool given here is an example of a protool that seems to work at �rst glane, but is in atualityopen to heating for similar reasons that the above oblivious transfer protool was open to heating. Theommon input onsists of 1k; � 2 EnA(sA); � 2 EnB (sB); nA, and nB , where nA and nB are eah produts oftwo equal size primes ongruent to 3 mod 4; EnA (EnB) are the same enryption as in the oblivious transferprotool above with respet to nA (nB respetively). A's private input has in it the prime fatorizationnA = pAqA of nA and B's ontains the same for nB . What we want is for A and B to be able to �gureout sB and sA at the \same time". We assume equal omputing power and knowledge of algorithms. Thesuggested protool of Blum [37℄ follows .Step 1: A piks a1; a2; :::; aK at random in Z�nB and then omputes bi = a2i (mod nB) for 1 � i � k. B piksw1; w2; :::; wk at random in ZnB and then omputes xi = wi� (mod nA) for 1 � i � k.Step 2: A sends all the bi's to B and B sends all the xi's to A.Step 3: For eah xi A omputes yi and zi suh that y2i = z2i = xi (mod nA) but yi 6= �zi mod nB . (Note:either yi or zi equals �wi.) For eah bi, B omputes i and di with similar restritions. (Note: either i ordi equal �ai.Step 4: While 1 � j � k A sends B the jth signi�ant bit of yi and zi for 1 � i � k. B sends A the jthsigni�ant bit of i and di for 1 � i � k.Step 5: After ompleting the above loop, A (and B) �gure out the fatorization of nB (and nA) with theinformation obtained in Step 4. (A omputes gd(i � di; nB) for eah i and B omputes gd (yi � zi; nA)for eah i. Using this information, they �gure out sB and sA by derypting � and �.Why are k numbers hosen rather that just one? This is to prevent the following type of heating on theA and B's behalf. Suppose only one x was sent to A. A ould �gure out y and z and then send the jthsigni�ant bits of y and a junk string to B in Step 4, hoping that y = �w and A will not notie that junkis being sent. If y = �w then B has no way of knowing that A is heating until the last step, at whihtime A has all the information he needs to �nd sB , but B has not gained any new information to �nd sA.So A an heat with a 50% hane of suess. If, on the other hand, k di�erent x's are sent to A, A hasan exponentially vanishing hane of suessfully heating in this fashion. Namely Prob(yi = �wi8i) � (12)k.Unfortunately, Shamir, and H�astad pointed out a way to suessfully heat at this protool. If, instead ofhoosing the wi's at random, A hooses w1 at random, sets x1 = w21 (mod nB), and then sets xi = x1=2i�1(mod nB), then after one iteration of Step 4, A has all of the information that he needs to fator nB by theredution of [102℄. So, a seemingly good protool fails, sine B has no way to hek whether A hose the xisat random independently from eah as spei�ed in the protool or not. Note: that this problem is similarto the problem whih arose in the oblivious transfer protool and an be orreted if A and B ould hekthat eah other was following the protool.

Cryptography: Leture Notes 21511.2 Zero-Knowledge ProtoolsThe previous setions listed a number of ryptographi protool appliations and some problems they su�erfrom. In this setion we review the theory that has been developed to prove that these protools are seure,and to design protools that are \provably seure by onstrution". The key idea is to redue the generalproblem of two-party protools to a simpler problem: How an A prove to B that x is in a language L sothat no more knowledge than x 2 L is revealed. If this ould be done for any L 2 NP A ould prove to Bthat he followed the protool steps. We proeed to de�ne the loose terms \interative proof" (or \proof bya protool") and \zero knowledge".11.2.1 Interative Proof-Systems(IP)Before de�ning notion of interative proof-systems, we de�ne the notion of interative Turing mahine.De�nition 11.1 An interative Turing mahine (ITM) is a Turing mahine with a read-only input tape, aread-only random tape, a read/write worktape, a read-only ommuniation tape, a write-only ommuniationtape, and a write-only output tape. The random tape ontains an in�nite sequene of bits whih an bethought of as the outome of unbiased oin tosses, this tape an be sanned only from left to right. Wesay that an interative mahine ips a oin to mean that it reads the next bit from its random tape. Theontents of the write-only ommuniation tape an be thought of as messages sent by the mahine; whilethe ontents of the read-only ommuniation tape an be thought of as messages reeived by the mahine.De�nition 11.2 An interative protool is an ordered pair of ITMs (A;B) whih share the same input tape;B's write-only ommuniation tape is A's read-only ommuniation tape and vie versa. The mahinestake turns in being ative with B being ative �rst. During its ative stage, the mahine �rst performssome internal omputation based on the ontents of its tapes, and seond writes a string on its write-onlyommuniation tape. The ith message of A(B) is the string A(B) writes on its write-only ommuniationtape in ith stage. At this point, the mahine is deativated and the other mahine beomes ative, unless theprotool has terminated. Either mahine an terminate the protool, by not sending any message in its ativestage. Mahine B aepts (or rejets) the input by entering an aept (or rejet) state and terminating theprotool. The �rst member of the pair, A, is a omputationally unbounded Turing mahine. The omputationtime of mahine B is de�ned as the sum of B's omputation time during its ative stages, and it is boundedby a polynomial in the length of the input string.De�nition 11.3 Let L 2 f0; 1g� We say thatL has an interative proof-system if 9 ITM V s:t.1. 9 ITM P s:t (P; V) is an interative protool and 8x 2 L s:t jxj is suÆiently large the prob(V aepts) >23 (when probabilities are taken over oin tosses of V and P).2. 8 ITM P s:t (P; V) is an interative protool 8x =2 L s:t. jxj is suÆiently large Prob(V aepts) > 13(when probabilities are taken over oin tosses of V and P 's).Note that it does not suÆe to require that the veri�er annot be fooled by the predetermined prover (suha mild ondition would have presupposed that the \prover" is a trusted orale). NP is a speial ase ofinterative proofs, where the interation is trivial and the veri�er tosses no oins.We say that (P; V) (for whih ondition 1 holds) is an interative proof-system for L.De�ne IP = fL j L has interative proofg .

216 Goldwasser and Bellare11.2.2 ExamplesNotationThroughout the leture notes, whenever an interative protool is demonstrated, we let B �! A : denote anative stage of mahine B, in the end of whih B sends A a message. Similarly, A �! B : denotes an ativestage of mahine A.Example 1: (From Number Theory)Let Z�n = fx < n; ; (x; n) = 1gQR = f(x; n) j x < n; (x; n) and 9y s:t y2 � x mod ngQNR = f(x; n) j x < n; (x; n) and 9=y s:t y2 � x mod ngWe demonstrate an interative proof-system for QNR.On input (x; n) to interative protool (A;B):B �! A : B sends to A the list w1 � � �wk where k =j n j andwi = � z2i mod n if bi = 1x � z2i mod n if bi = 0where B seleted zi 2 Z�n; bi 2 f0; 1g at random.A �! B : A sends to B the list 1 � � � k s:t:i = � 1 if wi is a quadrati residue mod n0 otherwiseB aepts i� 81�i�k; i = biB interprets bi = i as evidene that (x; n) 2 QRN ;while bi 6= i leads him to rejet.We laim that (A;B) is an interative proof-system for QNR. If (x; n) 2 QNR, then wi is a quadratiresidue modn i� bi = 1. Thus, the all powerful A an easily ompute whether wi is a quadrati residuemodn or not, ompute i orretly and make B aept with probability 1. If (x; n) =2 QNR and (x; n) 2 QRthen wi is a random quadrati residue modn regardless of whether bi = 0 or 1. Thus, the probability thatA (no matter how powerful he is) an send i s:t i = bi, is bounded by 12 for eah i and probability that Baepts is at most (12)k.Example 2: (From Graph Theory)To illustrate the de�nition of an interative proof, we present an interative proof forGraph Non-Isomorphism.The input is a pair of graphs G1 and G2, and one is required to prove that there exists no 1-1 edge-invariantmapping of the verties of the �rst graph to the verties of the seond graph. (A mapping � from the vertiesof G1 to the verties G2 is edge-invariant if the nodes v and u are adjaent in G1 i� the nodes �(v) and �(u)are adjaent in G2.) It is interesting to note that no short NP-proofs are known for this problem; namelyGraph Non-isomorphism is not known to be in NP.The interative proof (A;B) on input (G1; G2) proeeds as follows:B �! A : B hooses at random one of the two input graphs, G�iwhere �i 2 f1; 2g. B reates a random isomorphi opy of G�i and sends it to A. (This is repeated k times,for 1 � i � k, with independent random hoies.)A �! B : A sends B �i 2 f1; 2g for all 1 � i � k.B aepts i� �i = �i for all 1 � i � k.B interprets �i = �i as evidene that the graphs are not isomorphi; while �i 6= �i leads him to rejet.

Cryptography: Leture Notes 217If the two graphs are not isomorphi, the prover has no diÆulty to always answer orretly (i.e., a � equalto �), and the veri�er will aept. If the two graphs are isomorphi, it is impossible to distinguish a randomisomorphi opy of the �rst from a random isomorphi opy of the seond, and the probability that theprover answers orretly to one \query" is at most 12 . The probability that the prover answers orretly allk queries is � (12)k.11.2.3 Zero-KnowledgeNow that we have extended the notion of what is an eÆient proof-system, we address the question of howmuh \knowledge" need to be transferred in order to onvine a polynomial-time bounded veri�er, of thetruth of a proposition. What do we mean by \knowledge"? For example, onsider SAT, the NP -ompletelanguage of satis�able sentenes of propositional alulus. The most obvious proof-system is one in whihon logial formula F the prover gives the veri�er a satisfying assignment I , whih the veri�er an hek inpolynomial time. If �nding this assignment I by himself would take the veri�er more than polynomial time(whih is the ase if P 6= NP), we say that the veri�er gains additional knowledge to the mere fat thatF 2 SAT .Goldwasser, Miali and Rako� [99℄ make this notion preise. They all an interative proof-system forlanguage L zero-knowledge if 8x 2 L whatever the veri�er an ompute after partiipating in the interationwith the prover, ould have been omputed in polynomial time on the input x alone by a probabilistipolynomial time Turing mahine.We give the tehnial de�nition of zero-knowledge proof-systems and its variants in setion 11.2.4, and brieymention a few interesting results shown in this area.11.2.4 De�nitionsLet (A;B) be an interative protool. Let view be a random variable denoting the veri�er view during theprotool on input x. Namely, for �xed sequene of oin tosses for A and B, view is the sequenes of messagesexhanged between veri�er and prover, in addition to the string of oin tosses that the veri�er used. Thestring h denotes any private input that the veri�er may have with the only restrition that its length isbounded by a polynomial in the length of the ommon input. (view is distributed over both A's and B'soin tosses).We say that (A;B) is perfet zero-knowledge for L if there exists a probabilisti, polynomial time Turingmahine M s:t 8x 2 L, for all a > 0, for all strings h suh that jhj < jxja, the random variable M(x; h) andview are identially distributed. (M(x; h) is distributed over the oin tosses of M on inputs x and h).We say that (A;B) is statistially zero-knowledge for L if there exists a probabilisti polynomial time Turingmahine M s:t 8x 2 L, for all a > 0, for all strings h suh that jhj < jxja,X� jprob(M(x; h) = �)� prob(view = �)j < 1jxjfor all onstants > 0 and suÆiently large jxj.Intuitively the way to think of statistially zero-knowledge protools, is that an in�nite power \examiner"who is given only polynomially large samples of fM(x; h)jM 's oin tosses g and fview jA's and B's ointossesg an't tell the two sets apart.Finally, we say that a protool (A;B) is omputationally zero-knowledge if a probabilisti polynomial timebounded \examiner" given a polynomial number of samples from the above sets an not tell them apart.Formally,We say that (A;B) is omputationally zero-knowledge for L if 9 probabilisti, polynomial time Turing mahineM s:t 8 polynomial size iruit families C = fCjxjg;8 onstants a; d > 0, for all suÆiently large jxj s.t x 2 L,and for all strings h suh that jhj < jxja,

218 Goldwasser and Bellare
prob(Cjxj(�) = 1j� random in M(x; h))� prob(Cjxj(�) = 1j� random in view(x))j < 1jxjdWe say that L has (omputational/statistial/perfet) zero-knowledge proof-system if1. 9 interative proof-system (A;B) for L.2. 8 ITM's B0, interative protool (A;B0) is (omputational/statistial/perfet) zero-knowledge for L.Clearly,the last de�nition is the most general of the three. We thus letKC[0℄ = fLjL has omputational zero-knowledge proof-systemg.11.2.5 If there exists one way funtions, then NP is in KC[0℄By far, the most important result obtained about zero-knowledge is by Goldreih, Miali and Wigderson[95℄. They show the following result.Theorem[95℄: if there exist (non-unifrom) polynomial-time indistinguishable enryption sheme then everyNP language has a omputational zero-knowledge interative proof-system.The non uniformity ondition is neessary for tehnial reasons (i.e the enryption sheme should be seureagainst non-uniform adversary. see setion 3.7). The latest assumption under whih suh enryption shemeexists is the existene of one-way funtions (with respet to non-uniform adversary) by results of Imagliazzo-Levin-Luby and Naor.The proof outline is to show a zero-knowledge proof system for an NP-omplete language, graph threeolorability. We outline the protool here. Suppose the prover wish to onvine the veri�er that a ertaininput graph is three-olorable, without revealing to the veri�er the oloring that the prover knows. Theprover an do so in a sequene of jEj2 stages, eah of whih goes as follows.� The prover swiths the three olors at random (e.g., swithing all red nodes to blue, all blue nodes toyellow, and all yellow nodes to red).� The prover enrypts the olor of eah node, using a di�erent probabilisti enryption sheme for eahnode, and show the veri�er all these enryptions, together with the orrespondene indiating whihiphertext goes with whih vertex.� The veri�er selets an edge of the graph at random.� The prover reveals the deryptions of the olors of the two nodes that are inident to this edge byrevealing the orresponding deryption keys.� The veri�er on�rms that the deryptions are proper, and that the two endpoints of the edge areolored with two di�erent but legal olors.(any private probabilisti enryption sheme whih is polynomial time indistinguishable will work here) Ifthe graph is indeed three-olorable (and the prover know the oloring), then the veri�er will never detetany edge being inorretly labeled. However, if the graph is not three-olorable, then there is a hane ofat least jEj�1 on eah stage that the prover will be aught trying to fool the veri�er. The hane that theprover ould fool the veri�er for jEj2 stages without being aught is exponentially small.Note that the history of our ommuniations|in the ase that the graph is three-olorable|onsists of theonatenation of the messages sent during eah stage. It is possible to prove (on the assumption that seureenryption is possible) that the probability distribution de�ned over these histories by our set of possibleinterations is indistinguishable in polynomial time from a distribution that the veri�er an reate on thesehistories by itself, without the provers partiipation. This fat means that the veri�er gains zero (additional)knowledge from the protool, other than the fat that the graph is three-olorable.The proof that graph three-olorability has suh a zero-knowledge interative proof system an be used toprove that every language in NP has suh a zero-knowledge proof system.

Cryptography: Leture Notes 21911.2.6 Appliations to User Identi�ationZero knowledge proofs provide a revolutionary new way to realize passwords [100, 79℄. The idea is for everyuser to store a statement of a theorem in his publily readable diretory, the proof of whih only he knows.Upon login, the user engages in a zero-knowledge proof of the orretness of the theorem. If the proof isonvining, aess permission is granted. This guarantees that even an adversary who overhears the zero-knowledge proof an not learn enough to gain unauthorized aess. This is a novel property whih an notbe ahieved with traditional password mehanisms. Fiat and Shamir [79℄ have developed variations on someof the previously proposed zero-knowledge protools [100℄ whih are quite eÆient and partiularly usefulfor user identi�ation and passwords.11.3 Multi Party protoolsIn a typial multi-party protool problem, a number of parties wish to oordinate their ativities to ahievesome goal, even though some (suÆiently small) subset of them may have been orrupted by an adversary.The protool should guarantee that the \good" parties are able to ahieve the goal even though the orruptedparties send misleading information or otherwise maliiously misbehave in an attempt to prevent the goodparties from sueeding.11.3.1 Seret sharingSeret Sharing protools were invented independently by Blakley and Shamir [33, 181℄. In the multi-partysetting, seret sharing is a fundamental protool and tool.The basi idea is protetion of privay of information by distribution. Say you have a key to an importantsystem. You are afraid you might loose it, so you want to give it to someone else. But no single person anbe trusted with the key. Not just beause that person may beome untrustworthy, but beause the plaethey keep the key may be ompromised. So the key is shared amongst a bunh of people.Let's all the key the seret s. A way to share it amongst �ve people is split it up as s = s1�� � � �s5 andgive si to person i. No one person an �gure out s. Even more, no four people an to it: it takes all �ve. Ifthey all get together they an reover s. (One that is done, they may disard it, ie it may be a one timekey! Beause now everyone knows it.)We all si a share. Who reates the shares? The original holder of s. Sometimes it is one of the n players,sometimes not. We all this person the dealer.Notie that si must be given privately to the i-th player. If other players see it, then, of ourse, this doesn'twork.We may want something more exible. Say we have n people. We want that any t+ 1 of them an reoverthe seret but no t of them an �nd out anything about it, for some parameter t. For example, say n = 5and t = 2. Any three of your friends an open your system, but no two of them an. This is better sineabove if one of them looses their share, the system an't be opened.Shamir's idea is to use polynomials [181℄. Let F be a �nite �eld, like Z�p . A degree t polynomial is of theform f(x) = a0 + a1x + � � � + atxt for oeÆients a0; : : : ; at 2 F . It has t + 1 terms, not t! One more termthan the degree. Polynomials have the following nie properties:Interpolation: Given t+1 points on the polynomial, namely (x1; y1); : : : ; (xt+1; yt+1) where x1; : : : ; xt=1are distint and yi = f(xi), it is possible to �nd a0; : : : ; at. The algorithm to do this is alled interpo-lation. You an �nd it in many books.Serey: Given any t points on the polynomial, namely (x1; y1); : : : ; (xt; yt) where x1; : : : ; xt are distintand yi = f(xi), one an't �gure out anything about a0. More preisely, for any value v, the number ofpolynomials satisfying these t onstraints does not depend on v. (In fat there is exatly one of them.)

220 Goldwasser and BellareThese makes them a tool for seret sharing. Assoiate to eah player i a point xi 2 F , these points being alldistint. (So jF j � n). To share seret s, the dealer piks a1; : : : ; at at random, sets a0 = s and forms thepolynomial f(x) = a0 + a1x + � � �+ atxt. Now he omputes si = f(xi) and sends this privately to player i.Now if t+ 1 players get together they an �gure out f and hene s; any set of at most t players an't �gureout anything about s.11.3.2 Veri�able Seret SharingShamir's sheme su�ers from two problems. If the dealer of the seret is dishonest, he an give piees whihwhen put together do not uniquely de�ne a seret. Seondly, if some of the players are dishonest, at thereonstrution stage they may provide other players with di�erent piees than they reeived and again ausean inorret seret to be reonstruted.Chor, Goldwasser, Miali, and Awerbuh [55℄ have observed the above problems and showed how to ahieveseret sharing based on the intratability of fatoring whih does not su�er from the above problems. Theyall the new protool veri�able seret sharing sine now every party an verify that the piee of the serethe reeived is indeed a proper piee. Their protool tolerated up to O(logn) olluders. Benaloh [26℄, andothers [95, 78℄ showed how to ahieve veri�able seret sharing if any one-way funtion exists whih toleratesa minority of olluders. In [25℄ it has been reently shown how to ahieve veri�able seret sharing againsta third of olluders using error orreting odes, without making ryptographi assumptions. This wasimproved to a minority of olluders in [167℄.11.3.3 Anonymous TransationsChaum has advoated the use of anonymous transations as a way of proteting individuals from the main-tenane by \Big Brother" of a database listing all their transations, and proposes using digital pseudonymsto do so. Using pseudonyms, individuals an enter into eletroni transations with assurane that thetransations an not be later traed to the individual. However, sine the individual is anonymous, the otherparty may wish assurane that the individual is authorized to enter into the transation, or is able to pay.[50, 53℄.11.3.4 Multiparty Ping-Pong ProtoolsOne way of demonstrating that a ryptographi protool is seure is to show that the primitive operationsthat eah party performs an not be omposed to reveal any seret information.Consider a simple example due to Dolev and Yao [73℄ involving the use of publi keys. Alie sends a messageM to Bob, enrypting it with his publi key, so that the iphertext C is EB(M) where EB is Bob's publienryption key. Then Bob \ehos" the message bak to Alie, enrypting it with Alie's publi key, so thatthe iphertext returned is C 0 = EA(M). This ompletes the desription of the protool.Is this seure? Sine the messageM is enrypted on both trips, it is learly infeasible for a passive eavesdrop-per to learn M . However, an ative eavesdropper X an defeat this protool. Here's how: the eavesdropperX overhears the previous onversation, and reords the iphertext C = EB(M). Later, X starts up a on-versation with Bob using this protool, and sends Bob the enrypted message EB(M) that he has reorded.Now Bob dutifully returns to X the iphertext EX(M), whih gives X the message M he desires!The moral is that an adversary may be able to \ut and paste" various piees of the protool together tobreak the system, where eah \piee" is an elementary transation performed by a legitimate party duringthe protool, or a step that the adversary an perform himself.It is sometimes possible to prove that a protool is invulnerable to this style of attak. Dolev and Yao[73℄ pioneered this style of proof; additional work was performed by Dolev, Even, and Karp [72℄, Yao [202℄,and Even and Goldreih [76℄. In other ases a modi�ation of the protool an eliminate or alleviate the

Cryptography: Leture Notes 221danger; see [168℄ as an example of this approah against the danger of an adversary \inserting himself intothe middle" of a publi-key exhange protool.11.3.5 Multiparty Protools When Most Parties are HonestGoldreih, Miali, and Wigderson [95℄ have shown how to \ompile" a protool designed for honest partiesinto one whih will still work orretly even if some number less than half of the players try to \heat".While the protool for the honest parties may involve the dislosure of serets, at the end of the ompiledprotool none of the parties know any more than what they knew originally, plus whatever information isdislosed as the \oÆial output" of the protool. Their ompiler orretness and privay is based on theexistene of trapdoor funtions.Ben-Or, Goldwasser and Wigderson [25℄ and Chaum, Cr�epeau, and Damg_ard [51℄ go one step further. Theyassume seret ommuniation between pairs of users as a primitive. Making no intratability assumption,they show a \ompiler" whih, given a desription (e.g., a polynomial time algorithm or iruit) of any polyno-mial time funtion f , produes a protool whih always omputes the funtion orretly and guarantees thatno additional information to the funtion value is leaked to dishonest players . The \ompiler" withstands upto 1=3 of the parties ating dishonestly in a manner direted by a worst-ase unbounded-omputation-timeadversary.These \master theorems" promise to be very powerful tool in the future design of seure protools.11.4 Eletroni EletionsEletroni Eletions an be onsidered the typial example of seure multiparty omputations. The generalinstane of suh a problem is that there are m people, eah of them with their own private input xi and wewant to ompute the result of a n-ary funtion f over suh values, without revealing them.In the ase of eletroni eletions the parties are the voters, their input a binary value, the funtion beingomputed is just a simple sum and the result is the tally.In general, these are the properties that we would like our Eletion Protools to have:1. Only authorized voters an vote.2. No one an vote more than one.3. Serey of votes is maintained.4. No one an dupliate anyone else's vote.5. The tally is omputed orretly.6. Anybody should be able to hek 5.7. The protool should be fault-tolerant, meaning it should be able to work even in the presene of anumber of \bad" parties.8. It should be impossible to oere a voter into revealing how she voted (e.g. vote-buying)Usually in in eletion protools it is not desirable to involve all the voters Vi in the omputation proess. Sowe assume that there are n government enters C1; : : : ; Cn whose task is to ollet votes and ompute thetally.

222 Goldwasser and Bellare11.4.1 The Merritt Eletion ProtoolConsider the following sheme by Mihael Merritt [140℄.Eah enter Ci publishes a publi key Ei and keeps seret the orresponding seret key. In order to ast hervote vj , eah voter Vj hooses a random number sj and omputes,E1(E2(: : : En(vj ; sj))) = yn+1;j (11.1)(The need for the seond index n+ 1 will beome lear in a minute, for now it is just irrelevant.)Now we have the values y's posted. In order from enter Cn to enter C1, eah enter Ci does the following.For eah yi+1;j , Ci hooses a random value ri;j and broadasts yi;j0 = Ei(yi+1;j ; j). The new index j0 isomputed by taking a random permutation �i of the integers [1::n℄. That is j0 = �i(j). Ci keeps thepermutation seret.At the end we have y1;j = E1(E2(: : : En(yn+1;j ; rn;j) : : : r2;j)r1;j)At this point, the veri�ation yle begins. It onsists of two rounds of deryption in the order C1 �!C2 : : : �! Cn.The derypted values are posted and the tally omputed by taking the sums of the votes vj 's.(1) and (2) are learly satis�ed. (3) is satis�ed, as even if the votes are revealed, what is kept hidden is theonnetion between the vote and the voter who asted it. Indeed in order to reonstrut suh link we need toknow all the permutations �i. (4) is not satis�ed as voter V1 an easily opy voter V2, by for example astingthe same enrypted string. (5) and (6) are satis�ed using the random strings: during the �rst deryptionrounds eah enter heks that his random strings appear in the derypted values, making sure that all hisiphertexts are being ounted. Also at the end of the seond deryption round eah voter looks for herstring sj to make sure her vote is being ounted (hoosing a large enough spae for the random string shouldeliminate the risk of dupliates.) Notie that in order to verify the orretness of the eletion we need theooperation of all the voters (a negative feature espeially in large protools.)(7) requires a longer disussion. If we are onerned about the serey of the votes being lost beause ofparties going \bad", then the protool is ideal. Indeed even if n� 1 of the enters ooperate, they will notbe able to learn who asted what vote. Indeed they need to know all the permutations �i. However evenif one of the government agenies fails, by for example rashing, the entire system falls apart. The wholeeletion needs to be repeated.(8) is not satis�ed. Indeed the voter an be fored to reveal both vj and sj and she tries to lie about thevote she will be disovered sine the delared values will not math the iphertext yn+1;j .11.4.2 A fault-tolerant Eletion ProtoolIn this setion we desribe a protool whih has the following features� satis�es (4), meaning it will be impossible to opy other people vote (the protool before did not)� Does not require the ooperation of eah voter to publily verify the tally (better solution to (6) thanthe above)� introdues fault-tolerane: we �x a threshold t and we assume that if there are less than t \bad" entersthe protool will orretly ompute the tally and the serey of eah vote will be preserved (bettersolution to (7) than the above.)This protool is still suseptible to oerion (requirement (8)). We will disuss this point at the end.The ideas behind this approah are due to Josh Benaloh [28℄. The protool desribed in the following setionis the most eÆient one in the literature due to Cramer, Franklin, Shoemakers and Yung [60℄.

Cryptography: Leture Notes 223Homomorphi CommitmentsLet B be a ommitment sheme (a one-way funtion basially.)We say that a ommitment sheme B is (+;�)-homomorphi ifB(X + Y) = B(X)�B(Y)One possible example of suh ommitment is the following (invented by Pedersen [155℄):Disrete-Log based Homomorphi Commitment: Let p be a prime of the form p = kq+1 and let g; hbe two elements in the subgroup of order q. We assume nobody knows the disrete log in base g of h. Toommit to a number m in [1::q℄: Ba(m) = ga hm (11.2)for a randomly hosen a modulo q. To open the ommitment a and m must be revealed.Notie that this is a (+;�)-homomorphi ommitment as:Ba1(m1)Ba2(m2) = ga1hm1ga2hm2 = ga1+a2hm1+m2 = Ba1+a2(m1 +m2)For now on let E be an (+;�)-homomorphi ommitment sheme.11.4.3 The protoolFor ease of presentation we will show the protool in two version. First we assume that there is only oneenter. Then we show how to generalize the ideas to the ase of many enters.Vote Casting { 1 enterAssume for now that there is only one enter C and let E be his enryption funtion.Assuming the votes are either -1 or 1, eah voter Vj enrypts his vote vj by omputing and posting Baj (vj)for a randomly hosen aj . Vj also sends the values aj and vj to C enrypted.The voter now must prove that the vote is orret (i.e. it's the enryption of a -1 or of a 1.) He does this byperforming a zero-knowledge proof of validity.For the disrete-log based homomorphi ommitment sheme desribed above, here is a very eÆient protool.Let us drop the index j for simpliity.For v = 1:1. The voter V hooses at random a; r1; d1; w2 modulo q. He posts Ba(v) = gah and also posts �1 =gr1(Ba(v)h)�d1 , �2 = gw2 .2. The enter C sends a random hallenge modulo q3. The voter V responds as follows: V omputes d2 = � d1 and r2 = w2 + ad2 and posts d1; d2; r1; r24. The enter C heks that� d1 + d2 = � gr1 = �1(Ba(v)h)d1� gr2 = �2(Ba(v)=h)d2For v = �1:

224 Goldwasser and Bellare1. The voter V hooses at random a; r2; d2; w1 modulo q. He posts Ba(v) = ga=h and also posts �1 = gw1 ,�2 = gr2(Ba(v)=h)�d22. The enter C sends a random hallenge modulo q3. The voter V responds as follows: V omputes d1 = � d2 and r1 = w1 + ad1 and posts d1; d2; r1; r24. The enter C heks that� d1 + d2 = � gr1 = �1(Ba(v)h)d1� gr2 = �2(Ba(v)=h)d2For now on we will refer to the above protool as Proof(Ba(v)).Tally Computation { 1 enterAt the end of the previous phase we were left with Baj (vj) for eah voter Vj . The enter reveals the tallyT =Pj vj and also the value A =Pj aj . Everybody an hek that the tally is orret by performing thefollowing operation: BA(T) =Yj Baj (vj)whih should be true for the orret tally, beause of the homomorphi property of B.The 1-enter version of the protool however has the drawbak that this enter learns everybody's vote.Vote Casting { n entersAssume n enters C1; : : : ; Cn and let Ei be the enryption funtion of Ci.In this ase voter Vj enrypts the vote vj in the following manner. First he ommits to the vote by postingBj = Baj (vj)for a randomly hosen aj modulo q. He also proves that this is a orret vote by performing Proof(Baj (vj)).Then he shares the values aj and vj among the enters using Shamir's (t; n) threshold seret sharing. Thatis, he hooses random polynomials Hj(X) and Aj(X) of degree t suh that Hj(0) = vj and Aj(0) = aj . LetRj(X) = vj + r1;jX + : : :+ rt;jXtSj(X) = aj + s1;jX + : : :+ st;jXtThe oeÆients are all modulo q.Now the voter sends the value ui;j = Rj(i) and wi;j = Sj(i) to the enter Ci (enrypted with Ei.)Finally he ommits to the oeÆients of the polynomial Hj by postingB`;j = Bs`;j (r`;j)The enters perform the following hek gwi;jhui;j = Bj tỲ=1(B`;j)i` (11.3)to make sure that the shares he reeived enrypted are orret.

Cryptography: Leture Notes 225Tally ounting { n entersEah enter Ci posts the partial sums: Ti =Xj ui;jthis is the sum of the shares of the votes reeived by eah player.Ai =Xj wi;jthis is the sum of the shares of the random string aj used to ommit to the vote by eah player.Anybody an hek that the enter is revealing the right stu� by using the homomorphi property of theommitment sheme B. Indeed it must hold thatgAihTi = mYj=1 Bj tỲ=1(B`;j)j`! (11.4)Noties that the orret Ti's are shares of the tally T in a (t; n) Shamir's seret sharing sheme. So it isenough to take t+ 1 of them to interpolate the tally.Notie: Equations (11.3) and (11.4) are valid only under the assumption that nobody knows the disretelog in base g of h. Indeed who knows some value an open the ommitment B in both ways and so revealinorret values that satis�es suh equations.Analysis: Let's go through the properties one by one. (1) and (2) are learly satis�ed. (3) is satis�edassuming that at most t enters an ooperate to learn the vote. If t+1 enters ooperate, then the privayof the votes is lost. (4) is true for the following reason: assume that V1 is trying to opy the ation of V2.When it omes to the point of proving the orretness of the vote (i.e. perform Proof(B)), V1 will probablyreeive a di�erent hallenge than V2. He will not be able to answer it and he will be eliminated from theeletion. (5) is true under the disrete-log assumption (see note above.) (6) is true as anybody an hekon the the ZK proofs and Equations (11.3) and (11.4). (7) is true as we need only t + 1 good enters toreonstrut the tally.It is easy to see that beause we need t + 1 good enters and at most t enters an be bad, the maximumnumber of orrupted enters being tolerated by the protool is n2 � 1.(8) is not satis�ed. This is beause somebody ould be oered into revealing both a and v when postingthe ommitment Ba(v).11.4.4 UnoeribilityThe problem of oerion of voters is probably the most ompliated one. What exatly does it mean? Inhow many ways an a oerer, try to fore a voter to ast a given vote.Let's try to simplify the problem. We will onsider two possible kinds of oerer. One who ontats thevoter before the eletion starts and one who ontats the voter after the eletion is onluded.The \before" oerer has a greater power. He an tell the voter what vote to ast and also what randomnessto use during the protool. This basially would amount to �x the behavior of the voter during the protool.If the voter does not obey, it will be easy for the oerer to detet suh ourrene. There have been somesolutions proposed to this problem that use some form of physial assumption. For example one ould allowthe voter to exhange a limited number of bits over a seure hannel with the voting enters [27, 175℄.This would hopefully prevent the oerer from notiing that the voter is not following his instrutions. Orone ould fore the voter to use some tamper-proof devie that enrypts messages for him, hoosing therandomness. This would prevent the oerer from foring the user to use some �xed oin tosses as the userhas no ontrol on what oins the tamper-proof devie is going to generate.

226 Goldwasser and BellareThe \after" oerer has a smaller power. He an only go to the voter and ask to see the vote v and therandomness � used by the voter during the protool. Maybe there ould be a way for the voter to onstrutdi�erent v0 and �0 that \math" his exeution of the protool. This is not possible in the protool above(unless the voter solves the disrete log problem.) Reently however a protool for this purpose has beenproposed by Canetti and Gennaro [47℄. They use a new tool alled deniable enryption (invented by Canetti,Dwork, Naor and Ostrovsky [46℄), whih is a new form of publi key probabilisti enryption E with thefollowing property.Let m be the message and r the oin tosses of the sender. The sender omputes the iphertext = Er(m).After if somebody approahes him and asks for the value of m, the sender will be able to produe m0 and r0suh that Er0(m0) = .11.5 Digital CashThe primary means of making monetary transations on the Internet today is by sending redit ard infor-mation or establishing an aount with a vendor ahead of time.The major opposition to redit ard based Internet shopping is that it is not anonymous. Indeed it issuseptible to monitoring, sine the identity of the ustomer is established every time he/she makes apurhase. In real life we have the alternative to use ash whenever we want to buy something withoutestablishing our identity. The term digital ash desribes ryptographi tehniques and protools that aimto rereate the onept of ash-based shopping over the Internet.First we will desribe a general approah to digital ash based on publi-key ryptography. This approahwas originally suggested by David Chaum [50℄. Shemes based on suh approah ahieve the anonymityproperty.11.5.1 Required properties for Digital CashThe properties that one would like to have from Digital Cash shemes, are at least the following:� forgery is hard� dupliation should be either prevented or deteted� preserve ustomers' anonymity� minimize on-line operations on large database11.5.2 A First-Try ProtoolA Digital Cash sheme onsists usually of three protools. The withdrawal protool whih allows a Usertoobtain a digital oin from the Bank. A payment protool during whih the Userbuys goods from a Vendorinexhange of the digital oin. And �nally a deposit protool where the Vendorgives bak the oin to theBankto be redited on his/her aount.In the protool below we assume that the Bankhas a seret key SKB to sign messages and that the orre-sponding publi key PKB is known to everybody else. With the notation fMgSK we denote the messageM together with its signature under key SK.Let's look at this possible digital ash protool.Withdrawal Protool:1. Usertells Bankshe would like to withdraw $100.

Cryptography: Leture Notes 2272. Bankreturns a $100 bill whih looks like this:fI am a $100 bill, #4527)gSKBand withdraws $100 from Useraount3. Userheks the signature and if it is valid aepts the billPayment Protool:1. The Userpays the Vendorwith the bill.2. The Vendorheks the signature and if it's valid aepts the bill.Deposit Protool:1. The Vendorgives the bill to the Bank2. The Bankheks the signature and if it's valid, redits the Vendor's aount.Given some suitable assumption on the seurity of the signature sheme, it is lear that it is impossibleto forge digital oins. However it is very easy to dupliate and double-spend the same digital oin severaltimes. It is also leat that anonymity is not preserved as the Bankan link the name of the Userwith theserial number appearing on the bill and know where the Userspent the oin.11.5.3 Blind signaturesLet's try to solve the anonymity problem �rst. This approah involves |em blind signatures. The userpresents the bank with a bill inside a ontainer. The bank signs the bill without seeing the ontents of thebill. This way, the bank annot determine the soure of a bill when a merhant presents it for deposit.A useful analogy: The user overs a hek with a piee of arbon paper and then seals both of them insidean envelope. The user gives the envelope to the bank. The bank then signs the outside of the envelope witha ball-point pen and returns the envelope to the user (without opening it - autally the bank is unable toopen the envelope in the digital version). The user then removes the signed hek from the envelope and anspend it. The bank has never seen what it signed, so it annot assoiate it with the user when it is returnedto be deposited, but it an verify the signature on the hek and thus guarantee the validity of the hek.There is, of ourse, a problem with this: The bank an be fooled into signing phony bills. For example,a user ould tell the bank he's making a $1 withdrawal and then present a $100 bill to be signed. The bankwill, unknowingly, sign the $100 bill and allow the user to heat the bank out of $99. We will deal with thisproblem later, for now let us show how to onstrut blind signatures.11.5.4 RSA blind signaturesReall the RSA signature sheme: if M is the message to be signed, then its signature is s = Me�1 mod nwhere n and e are publily known values. The seret information that the bank possesses is the inverse ofe mod �(n), whih we will denote by d. The signature an be veri�ed by alulating se mod n and verifyingthat it is equal to M mod n.In the ase of blind signatures, the Userwants the Bankto provide him with s, without revealing M to thebank. Here is a possible anonymous withdrawal protool. Let M be a $100 bill.Withdrawal Protool:1. Userhooses some random number, r mod n.

228 Goldwasser and Bellare2. Useralulates M 0 =M � re mod n.3. Usergives the BankM .4. The Bankreturns a signature for M 0, say s0 = (M 0)d mod n. Note thats0 = (M 0)d =Md � (re)d =Md � r5. The Bankdebits the Useraount for $100.6. Sine the Userknows r, he an divide s0 by r to obtains =MdThe payment and deposit protool remain the same as above. This solves the problem of preserving theUseranonymity, as when the oin omes bak to the Bankthere is no link between it and the Userit was issuedto.We still have two problems.1. The bank an still be fooled into signing something that it shouldn't (like a $100 bill that it thinks isa $1 bill)2. Coins an still be dupliated and double-spent11.5.5 Fixing the dollar amountOne possible solution to the above problem is to have only one denomination (per publi key, for example.)That is the Bankwould have several publi keys PK1B; : : : and the signature using PKiB would be validonly on bills of i dollars.Another possibility is to use a \ut and hoose" proedure:1. Usermakes up 100 $20 bills2. blinds them all3. gives them to the Bank4. The Bankpiks one to sign (at random), and requires that the Userunblind all of the rest (by revealingthe r's). Before the signature is returned, the Bankensures that all of the bills that were unblindedwere orret.This way the Userhas only 1100 probability of heating. Of ourse, one ould set up the protool to reate ansmaller heating hane (by requiring that the user provided more blinded messages, for example).So, now we have a protool that satis�es the anonymity requirement and an provide suÆiently smallpossibilities for heating. We still have to deal with the double-spending problem.11.5.6 On-line digital ashIn the on-line version of digital ash shemes, one requires the Bankto reord all of the bills it reeives in adatabase. During the payment protool the Vendorwould transmit the bill to the Bankand ask if the bill wasalready reeived. If this is the �rst time the bill is being used then the Vendoraepts it, otherwise he willrejet it.

Cryptography: Leture Notes 229Although this is a simple solution it inurs in a high ommuniation overhead as now the payment protoollooks a lot like a redit ard transation, when the Vendorawaits for authorization to �nish the trade. Alsothe size of the database to be managed by the Bankould be problemati.Notie that we are preventing double-spending this way. We are going to show now a way to detet double-spending whih does not require on-line veri�ation.11.5.7 O�-line digital ashThe idea behind o�-line digital ash is the following. During the payment protool the Useris fored to writea \random identity string", or RIS, on the bill.The RIS must have the following properties:� must be di�erent for every payment of the oin.� only the Useran reate a valid RIS.� two di�erent RIS on the same oin should allow the Bankto retrieve the Username.If the Bankreeives two idential bills with di�erent RIS values, then the Userhas heated and the bank anidentify him. If the Bankreeives two idential bills with the same RIS values, then the Vendorhas heated.The above idea appeared �rst in [52℄.Here is a possible solution. Let H to be a one-way hash funtion.Withdrawal Protool:1. The Userprepares 100 bills of $20 whih look like this:Mi = (I'm $20 bill, #4527i,yi;1; y0i;1; yi;2; y0i;2; : : : ; yi;K ; y0i;K)where yi;j = H(xi;j), y0i;j = H(x0i;j), where xi;j and x0i;j are randomly hosen under the ondition thatxi;j � x0i;j = Username 8i; j2. The Userblinds all the Mi to random messages M 0i (using the blinding protool outlined above) andsends them to the Bank.3. The Bankasks the Userto unblind 99 of the 100 blinded bills.4. When the Userunblinds them, he also reveals the appropriate xi;j and x0i;j .5. The Bankheks not only that the bills are indeed $20 bills, but also that yi;j = H(xi;j), y0i;j = H(x0i;j)and xi;j � x0i;j = Username, for the unblinded bills.6. The Bankreturns a signature on the only blind message (say M 017)7. The Userretrieves the signature s17 on M17.From now on let us drop the index i = 17 for simpliity. The payment protool is modi�ed to fore theUserto produe a RIS on the oin. The RIS is going to be one of xj or x0j for eah j = 1; : : : ;K. Whih oneis going to be depends on a random hallenge from the Vendor.Payment Protool:1. The Usergives M; s to the Vendor.

230 Goldwasser and Bellare2. The Vendorheks the Banksignature on the bill and if it is valid, answers with a random bit string oflength K, b1 : : : bK .3. If bj = 0 Userreveals xj , otherwise he reveals x0j4. The Vendorheks that yj = H(xj) or y0j = H(x0j), whihever is the ase. If the above equalities hold,he aepts the bill.Notie that the above properties or RIS are satis�ed. Indeed the probability that in a di�erent payment thesame RIS is produed is 2�K sine the Vendorhooses the \hallenge" at random. Only the Useran produea valid RIS sine the funtion H is one-way. Finally two di�erent RIS on the same oin leak the name ofthe User, as if two RIS are di�erent there must be an index j for whih we have both xj and x0j .Deposit Protool:1. The Vendorbrings the oin M; s;RIS bak to the Bank.2. The Bankveri�es the signature and hek if the oin M; s has already been returned to the Bank3. If the oin is already in the database, the Bankompares the RIS's of the two oins. If the RIS aredi�erent then the Userdouble-spent the oin, otherwise it is the Vendorwho is trying to deposit the ointwie.

Bibliography

[1℄ ISO/IEC 9796. Information tehnology seurity tehniques { digital signature sheme giving messagereovery, 1991. International Organization for Standards.[2℄ L. M. Adleman. On breaking generalized knapsak publi key ryptosystems. In Pro. 15th ACMSymp. on Theory of Computing, pages 402{412, Boston, 1983. ACM.[3℄ L. M. Adleman. Fatoring numbers using singular integers. Tehnial Report TR 90-20, U.S.C.Computer Siene Department, September 1990.[4℄ L. M. Adleman and M. A. Huang. Reognizing primes in random polynomial time. In Pro. 19th ACMSymp. on Theory of Computing, pages 462{469, New York City, 1987. ACM.[5℄ L. M. Adleman, C. Pomerane, and R. S. Rumely. On distinguishing prime numbers from ompositenumbers. Ann. Math., 117:173{206, 1983.[6℄ W. B. Alexi, B. Chor, O. Goldreih, and C. P. Shnorr. RSA/Rabin funtions: ertain parts are ashard as the whole. SIAM J. Computing, 17(2):194{209, April 1988.[7℄ D. Angluin. Leture notes on the omplexity of some problems in number theory. Tehnial ReportTR-243, Yale University Computer Siene Department, August 1982.[8℄ Eri Bah. How to generate fatored random numbers. SIAM J. Computing, 17(2):179{193, April1988.[9℄ D. Balenson. RFC 1423: Privay Enhanement for Internet Eletroni Mail: Part III { Algorithms,Modes, and Identi�ers. Internet Ativities Board, February 1993.[10℄ D. Beaver. EÆient multiparty protools using iruit randomization. In J. Feigenbaum, editor, Pro.CRYPTO 91, pages 420{432. Springer, 1992. Leture Notes in Computer Siene No. 576.[11℄ M. Bellare, R. Gu�erin, and P. Rogaway. XOR MACs: New methods for message authentiation using�nite pseudorandom funtions. In Don Coppersmith, editor, Pro. CRYPTO 95, pages 15{28. Springer,1995. Leture Notes in Computer Siene No. 963.[12℄ M. Bellare, J. Kilian, and P. Rogaway. The seurity of ipher blok haining. In Yvo G. Desmedt,editor, Proeedings of Crypto 94, volume 839 of Leture Notes in Computer Siene, pages 341{358.Springer-Verlag, 1994. Full version to appear in J. Computer and System Sienes, available viahttp://www-se.usd.edu/users/mihir. 231

232 Goldwasser and Bellare[13℄ M. Bellare, J. Kilian, and P. Rogaway. The seurity of the ipher blok haining message authentiationode. Journal of Computer and System Sienes, 61(3):362{399, Deember 2000.[14℄ M. Bellare and S. Miali. How to sign given any trapdoor permutation. Journal of the ACM, 39(1):214{233, January 1992.[15℄ M. Bellare and P. Rogaway. Random orales are pratial: A paradigm for designing eÆient protools.In First ACM Conferene on Computer and Communiations Seurity, pages 62{73, Fairfax, 1993.ACM.[16℄ M. Bellare and P. Rogaway. Entity authentiation and key distribution. In Douglas R. Stinson, editor,Pro. CRYPTO 93, pages 232{249. Springer, 1994. Leture Notes in Computer Siene No. 773.[17℄ M. Bellare and P. Rogaway. Provably seure session key distribution{ the three party ase. In Pro.27th ACM Symp. on Theory of Computing, pages 57{66, Las Vegas, 1995. ACM.[18℄ Mihir Bellare, Ran Canetti, and Hugo Krawzyk. Keying hash funtions for message authentiation. InProeedings of Crypto 96, volume 1109 of Leture Notes in Computer Siene. Springer-Verlag, 1996.[19℄ Mihir Bellare, Ran Canetti, and Hugo Krawzyk. Pseudorandom funtions revisited: The asadeonstrution and its onrete seurity. In Pro. 37th IEEE Symp. on Foundations of Comp. Siene.IEEE, 1996.[20℄ Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A onrete seurity treatment of sym-metri enryption: Analysis of the DES modes of operation. In Pro. 38th IEEE Symp. on Foundationsof Comp. Siene. IEEE, 1997.[21℄ Mihir Bellare, Anand Desai, David Pointheval, and Phillip Rogaway. Relations among notions ofseurity for publi-key enryption shemes. In Proeedings of Crypto 98, volume 1462 of Leture Notesin Computer Siene. Springer-Verlag, 1998.[22℄ Mihir Bellare and Phillip Rogaway. Distributing keys with perfet forward serey. Manusript, 1994.[23℄ Mihir Bellare and Phillip Rogaway. Optimal asymmetri enryption. In Proeedings of EURO-CRYPT'94, volume 950 of Leture Notes in Computer Siene. Springer-Verlag, 1994.[24℄ Mihir Bellare and Phillip Rogaway. The exat seurity of digital signatures: How to sign with RSAand Rabin. In Proeedings of EUROCRYPT'96, volume 1070 of Leture Notes in Computer Siene.Springer-Verlag, 1996.[25℄ M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for fault-tolerant distributedomputing. In Pro. 20th ACM Symp. on Theory of Computing, pages 1{10, Chiago, 1988. ACM.[26℄ J. Benaloh. Seret sharing homomorphisms: Keeping shares of a seret sharing. In A. M. Odlyzko,editor, Pro. CRYPTO 86. Springer, 1987. Leture Notes in Computer Siene No. 263.[27℄ J. Benaloh and D. Tuinstra. Reeipt-free seret ballot eletions. In 26th ACM Symposium on Theoryof Computing, pages 544{553, 1994.[28℄ Josh Benaloh. Veri�able seret ballot eletions. Tehnial Report TR{561, Yale Department of Com-puter Siene, September 1987.[29℄ R. Berger, R. Peralta, and T. Tedrik. A provably seure oblivious transfer protool. In T. Beth,N. Cot, and I. Ingemarsson, editors, Pro. EUROCRYPT 84, pages 379{386. Springer-Verlag, 1985.Leture Notes in Computer Siene No. 209.[30℄ D. Bernstein. How to streth random funtions: the seurity of proteted ounter sums. Journal ofCryptology, 12(3):185{192, 1999.

Cryptography: Leture Notes 233[31℄ R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung. Systemati designof two-party authentiation protools. In J. Feigenbaum, editor, Pro. CRYPTO 91, pages 44{61.Springer, 1992. Leture Notes in Computer Siene No. 576.[32℄ John Blak, Shai Halevi, Hugo Krawzyk, Ted Krovetz, and Phillip Rogaway. UMAC: fast and seuremessage authentiation. In Proeedings of CRYPTO'99, Leture Notes in Computer Siene. Springer-Verlag, 1999.[33℄ G. R. Blakley. Safeguarding ryptographi keys. In Pro. AFIPS 1979 National Computer Conferene,pages 313{317. AFIPS, 1979.[34℄ D. Bleihenbaher. A hosen iphertext attak against protools based on the RSA enryption standardpks #1. In Proeedings of Crypto 98, volume 1462 of Leture Notes in Computer Siene. Springer-Verlag, 1998.[35℄ L. Blum, M. Blum, and M. Shub. A simple unpreditable pseudo-random number generator. SIAM J.Computing, 15(2):364{383, May 1986.[36℄ M. Blum. Coin ipping by telephone. In Pro. IEEE Spring COMPCOM, pages 133{137. IEEE, 1982.[37℄ M. Blum. How to exhange (seret) keys. Trans. Computer Systems, 1:175{193, May 1983. (Previouslypublished in ACM STOC '83 proeedings, pages 440{447.).[38℄ M. Blum. Independent unbiased oin ips from a orrelated biased soure: A �nite state Markovhain. In Pro. 25th IEEE Symp. on Foundations of Comp. Siene, pages 425{433, Singer Island,1984. IEEE.[39℄ M. Blum and S. Goldwasser. An eÆient probabilisti publi-key enryption sheme whih hides allpartial information. In G. R. Blakley and D. C. Chaum, editors, Pro. CRYPTO 84, pages 289{302.Springer, 1985. Leture Notes in Computer Siene No. 196.[40℄ M. Blum and S. Miali. How to generate ryptographially strong sequenes of pseudo-random bits.SIAM J. Computing, 13(4):850{863, November 1984.[41℄ M. Blum, A. De Santis, S. Miali, and G. Persiano. Noninterative zero-knowledge. SIAM J. Com-puting, 20(6):1084{1118, Deember 1991.[42℄ D. Boneh and R. Venkatesan. Hardness of omputing the most signi�ant bits of seret keys inDiÆe-Hellman and related shemes. In Proeedings of CRYPTO'96, Leture Notes in Computer Si-ene. Springer-Verlag, 1996.[43℄ Gilles Brassard and Claude Cr�epeau. Zero-knowledge simulation of boolean iruits. In A.M. Odlyzko,editor, Pro. CRYPTO 86, pages 223{233. Springer-Verlag, 1987. Leture Notes in Computer SieneNo. 263.[44℄ E. F. Brikell. Solving low density knapsaks. In D. Chaum, editor, Pro. CRYPTO 83, pages 25{37,New York, 1984. Plenum Press.[45℄ Mihael Burrows, Martin Abadi, and Roger Needham. A logi of authentiation. ACM Transationson Computer Systems, 8(1):18{36, February 1990.[46℄ Ran Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable enryption. In Pro. CRYPTO 97,Leture Notes in Computer Siene. Springer-Verlag, 1997.[47℄ Ran Canetti and R. Gennaro. Inoerible multiparty omputation. In Pro. 37th IEEE Symp. onFoundations of Comp. Siene, 1996.[48℄ E.R. Can�eld, P. Erd�os, and C. Pomerane. On a problem of Oppenheim onerning `FatorisatioNumerorum'. J. Number Theory, 17:1{28, 1983.

234 Goldwasser and Bellare[49℄ M. Cereedo, T. Matsumoto, and H. Imai. EÆient and seure multiparty generation of digital sig-natures based on disrete logarithm. IEICE Trans. on Fund. Eletr. Comm. and Comp. Si., E76{A(4):532{545, 1993.[50℄ D. Chaum. Untraeable eletroni mail, return addresses, and digital pseudonyms. Communiationsof the ACM, 24:84{88, February 1981.[51℄ D. Chaum, C. Cr�epeau, and I. Damg�ard. Multiparty unonditionally seure protools. In Carl Pomer-ane, editor, Pro. CRYPTO 87, pages 462{462. Springer-Verlag, 1988. Leture Notes in ComputerSiene No. 293.[52℄ D. Chaum, A. Fiat, and M. Naor. Untraeable eletroni ash. In S. Goldwasser, editor, Pro. CRYPTO88, pages 319{327. Springer-Verlag, 1988. Leture Notes in Computer Siene No. 403.[53℄ D. L. Chaum. Veri�ation by anonymous monitors. In Allen Gersho, editor, Advanes in Cryptology:A Report on CRYPTO 81, pages 138{139. U.C. Santa Barbara Dept. of Ele. and Computer Eng.,1982. Teh Report 82-04.[54℄ B. Chor and O. Goldreih. Unbiased bits from soures of weak randomness and probabilisti ommu-niation omplexity. SIAM J. Computing, 17(2):230{261, April 1988.[55℄ B. Chor, S. Goldwasser, S. Miali, and B. Awerbuh. Veri�able seret sharing and ahieving simul-taneity in the presene of faults. In Pro. 26th IEEE Symp. on Foundations of Comp. Siene, pages383{395, Portland, 1985. IEEE.[56℄ B. Chor and R. L. Rivest. A knapsak type publi-key ryptosystem based on arithmeti in �nite�elds. IEEE Trans. Inform. Theory, 34(5):901{909, September 1988.[57℄ D. Coppersmith. Evaluating logarithms inGF (2n). In Pro. 16th ACM Symp. on Theory of Computing,pages 201{207, Washington, D.C., 1984. ACM.[58℄ D. Coppersmith, M. K. Franklin, J. Patarin, and M. K. Reiter. Low-exponent RSA with relatedmessages. In Ueli Maurer, editor, Advanes in Cryptology - EuroCrypt '96, pages 1{9, Berlin, 1996.Springer-Verlag. Leture Notes in Computer Siene Volume 1070.[59℄ Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introdution to Algorithms. MITPress/MGraw-Hill, 1990.[60℄ R. Cramer, M. Franklin, B. Shoenmakers, and M. Yung. Multi-authority seret-ballot eletions withlinear work. In EUROCRYPT'96, volume 1070 of Leture Notes in Computer Siene, pages 72{83.Springer-Verlag, 1996.[61℄ R. Cramer and V. Shoup. Signature shemes based on the strong RSA assumption. Theory of Cryp-tography Library Reord 99-01, 1999.[62℄ J. Daemen and V. Rijmen. Aes proposal: Rijndael, 2000.[63℄ I. Damg�ard. A design priniple for hash funtions. In G. Brassard, editor, Pro. CRYPTO 89, pages416{427. Springer-Verlag, 1990. Leture Notes in Computer Siene No. 435.[64℄ D. Denning and G. Sao. Timestamps in key distribution protools. Communiations of the ACM,24(8):533{536, 1981.[65℄ Y. Desmedt and Y. Frankel. Shared generation of authentiators and signatures. In J. Feigenbaum,editor, Pro. CRYPTO 91, pages 457{469. Springer, 1992. Leture Notes in Computer Siene No.576.[66℄ Yvo G. Desmedt. Threshold ryptography. European Transations on Teleommuniations, 5(4):449{457, July 1994.

Cryptography: Leture Notes 235[67℄ W. DiÆe and M. E. Hellman. Multiuser ryptographi tehniques. In Pro. AFIPS 1976 NationalComputer Conferene, pages 109{112, Montvale, N.J., 1976. AFIPS.[68℄ W. DiÆe and M. E. Hellman. New diretions in ryptography. IEEE Trans. Inform. Theory, IT-22:644{654, November 1976.[69℄ Whit�eld DiÆe, Paul C. Van Oorshot, and Mihael J. Wiener. Authentiation and authentiated keyexhanges. Designs, Codes, and Cryptography, 2(2):107{125, June 1992.[70℄ H. Dobbertin. MD5 is not ollision-free. Manusript, 1996.[71℄ D. Dolev, C. Dwork, and M. Naor. Non-malleable ryptography. In Pro. 23rd ACM Symp. on Theoryof Computing, pages 542{552. ACM, 1991.[72℄ D. Dolev, S. Even, and R. M. Karp. On the seurity of ping-pong protools. In R. L. Rivest, A. Sherman,and D. Chaum, editors, Pro. CRYPTO 82, pages 177{186, New York, 1983. Plenum Press.[73℄ D. Dolev and A. C. Yao. On the seurity of publi key protools. In Pro. 22nd IEEE Symp. onFoundations of Comp. Siene, pages 350{357, Nashville, 1981. IEEE.[74℄ C. Dwork and M. Naor. An eÆient existentially unforgeable signature sheme and its appliations.In Yvo G. Desmedt, editor, Pro. CRYPTO 94, pages 234{246. Springer, 1994. Leture Notes inComputer Siene No. 839.[75℄ P. Elias. The eÆient onstrution of an unbiased random sequene. Ann. Math. Statist., 43(3):865{870, 1972.[76℄ S. Even and O. Goldreih. On the seurity of multi-party ping-pong protools. In Pro. 24th IEEESymp. on Foundations of Comp. Siene, pages 34{39, Tuson, 1983. IEEE.[77℄ S. Even, O. Goldreih, and A. Lempel. A randomized protool for signing ontrats. Communiationsof the ACM, 28:637{647, 1985.[78℄ P. Feldman. A pratial sheme for non-interative veri�able seret sharing. In Pro. 28th IEEE Symp.on Foundations of Comp. Siene, pages 427{438, Los Angeles, 1987. IEEE.[79℄ A. Fiat and A. Shamir. How to prove yourself: pratial solutions to identi�ation and signatureproblems. In A. M. Odlyzko, editor, Pro. CRYPTO 86, pages 186{194. Springer, 1987. Leture Notesin Computer Siene No. 263.[80℄ R. Fishlin and C. Shnorr. Stronger seurity proofs for RSA and Rabin bits. In EUROCRYPT'97,volume 1223 of Leture Notes in Computer Siene, pages 267{279. Springer-Verlag, 1997.[81℄ National Institute for Standards and Tehnology. A proposed federal information proessing standardfor digital signature standard (DSS). Tehnial Report FIPS PUB XX, National Institute for Standardsand Tehnology, August 1991. DRAFT.[82℄ Y. Frankel, P. Gemmell, and M. Yung. Witness-based ryptographi program heking and robustfuntion sharing. In 28th ACM Symposium on Theory of Computing, 1996.[83℄ A. M. Frieze, J. Hastad, R. Kannan, J. C. Lagarias, and A. Shamir. Reonstruting trunated integervariables satisfying linear ongruenes. SIAM J. Computing, 17(2):262{280, April 1988.[84℄ E. Fujisaki, T. Okamoto, D. Pointheval, and J. Stern. RSA-OAEP is seure under the RSA assump-tion. In CRYPTO'01, Leture Notes in Computer Siene. Springer-Verlag, 2001.[85℄ T. El Gamal. A publi key ryptosystem and a signature sheme based on disrete logarithms. IEEETrans. Inform. Theory, 31:469{472, 1985.[86℄ M. Garey and D. S. Johnson. Computers and Intratability: A Guide to the Theory of NP-Completeness. Freeman, 1979.

236 Goldwasser and Bellare[87℄ R. Gennaro, S. Halevi, and T. Rabin. Seure hash-and-sign signatures without the random orale. InEUROCRYPT'99, Leture Notes in Computer Siene. Springer-Verlag, 1999.[88℄ R. Gennaro, S. Jareki, Hugo Krawzyk, and T. Rabin. Robust and eÆient sharing of rsa funtions.In CRYPTO'96, volume 1109 of Leture Notes in Computer Siene. Springer-Verlag, 1996.[89℄ R. Gennaro, S. Jareki, Hugo Krawzyk, and T. Rabin. Robust threshold dss signatures. In EU-ROCRYPT'96, volume 1070 of Leture Notes in Computer Siene, pages 354{371. Springer-Verlag,1996.[90℄ O. Goldreih. Two remarks onerning the Goldwasser-Miali-Rivest signature sheme. TehnialReport MIT/LCS/TM-315, MIT Laboratory for Computer Siene, September 1986.[91℄ O. Goldreih. A uniform omplexity treatment of enryption and zero-knowledge. Journal of Cryptol-ogy, 6(1):21{53, 1993.[92℄ O. Goldreih, S. Goldwasser, and S. Miali. How to onstrut random funtions. Journal of the ACM,33(4):792{807, Otober 1984.[93℄ O. Goldreih, S. Goldwasser, and S. Miali. On the ryptographi appliations of random funtions. InG. R. Blakley and D. C. Chaum, editors, Pro. CRYPTO 84, pages 276{288. Springer, 1985. LetureNotes in Computer Siene No. 196.[94℄ O. Goldreih and L. Levin. A hard-ore prediate for all one-way funtions. In 21st ACM Symposiumon Theory of Computing, 1989.[95℄ O. Goldreih, S. Miali, and A. Wigderson. Proofs that yield nothing but their validity and a method-ology of ryptographi protool design. In Pro. 27th IEEE Symp. on Foundations of Comp. Siene,pages 174{187, Toronto, 1986. IEEE.[96℄ S. Goldwasser and J. Kilian. Almost all primes an be quikly erti�ed. In Pro. 18th ACM Symp. onTheory of Computing, pages 316{329, Berkeley, 1986. ACM.[97℄ S. Goldwasser and S. Miali. Probabilisti enryption and how to play mental poker keeping seret allpartial information. In Pro. 14th ACM Symp. on Theory of Computing, pages 365{377, San Franiso,1982. ACM.[98℄ S. Goldwasser and S. Miali. Probabilisti enryption. JCSS, 28(2):270{299, April 1984.[99℄ S. Goldwasser, S. Miali, and C. Rako�. The knowledge omplexity of interative proof-systems. InPro. 17th ACM Symp. on Theory of Computing, pages 291{304, Providene, 1985. ACM.[100℄ S. Goldwasser, S. Miali, and C. Rako�. The knowledge omplexity of interative proof-systems.SIAM. J. Computing, 18(1):186{208, February 1989.[101℄ S. Goldwasser, S. Miali, and Ronald L. Rivest. A digital signature sheme seure against adaptivehosen-message attaks. SIAM J. Computing, 17(2):281{308, April 1988.[102℄ S. Goldwasser, S. Miali, and P. Tong. Why and how to establish a private ode on a publi network.In Pro. 23rd IEEE Symp. on Foundations of Comp. Siene, pages 134{144, Chiago, 1982. IEEE.[103℄ S. Goldwasser, S. Miali, and A. Yao. Strong signature shemes. In Pro. 15th ACM Symp. on Theoryof Computing, pages 431{439, Boston, 1983. ACM.[104℄ S. W. Golomb. Shift Register Sequenes. Aegean Park Press, Laguna Hills, 1982. Revised edition.[105℄ L. Harn. Group{oriented (t; n) threshold digital signature sheme and digital multisignature. IEEPro. Comput. Digit. Teh., 141(5):307{313, 1994.[106℄ J. Hastad. Solving simultaneous modular equations of low degree. SIAM J. Computing, 17(2):336{341,April 1988.

Cryptography: Leture Notes 237[107℄ J. H�astad. Pseudo-random generators under uniform assumptions. In 22nd ACM Symposium onTheory of Computing, 1990.[108℄ J. Hastad, A.W. Shrift, and A. Shamir. The disrete logarithm modulo a omposite hides o(n) bits.Journal of Computer and Systems Sienes, 47:376{404, 1993.[109℄ Johan H�astad, Russell Impagliazzo, Leonid Levin, and Mihael Luby. A pseudorandom generator fromany one-way funtion. SIAM Journal on Computing, 28(4):1364{1396, 1999.[110℄ R. Impagliazzo and M. Luby. One-way funtions are essential for omplexity based ryptography. InPro. 30th IEEE Symp. on Foundations of Comp. Siene, 1989.[111℄ Russell Impagliazzo, Leonid A. Levin, and Mihael Luby. Pseudo-random generation from one-wayfuntions. In Pro. 21st ACM Symp. on Theory of Computing, pages 12{24, Seattle, 1989. ACM.[112℄ ISO. Data ryptographi tehniques { data integrity mehanism using a ryptographi hek funtionemploying a blok ipher algorithm. ISO/IEC 9797, 1989.[113℄ D. Johnson, A. Lee, W. Martin, S. Matyas, and J. Wilkins. Hybrid key distribution sheme giving keyreord reovery. IBM Tehnial Dislosure Bulletin, 37(2A):5{16, February 1994. See also U.S. Patent5,142,578.[114℄ D. Johnson and M. Matyas. Asymmetri enryption: Evolution and enhanements. RSA Labs Cryp-tobytes, 2(1), Spring 1996.[115℄ B. Kaliski and M. Robshaw. Message authentiation with MD5. CryptoBytes, 1(1):5{8, Spring 1995.[116℄ B. S. Kaliski, Jr. A pseudo-random bit generator based on ellipti logarithms. In A.M. Odlyzko, editor,Pro. CRYPTO 86, pages 84{103. Springer-Verlag, 1987. Leture Notes in Computer Siene No. 263.[117℄ B. S. Kaliski, Jr. Ellipti Curves and Cryptography: A Pseudorandom Bit Generator and Other Tools.PhD thesis, MIT EECS Dept., January 1988. Published as MIT LCS Tehnial Report MIT/LCS/TR-411 (Jan. 1988).[118℄ R. Kannan, A. Lenstra, and L. Lov�asz. Polynomial fatorization and non-randomness of bits of alge-brai and some transendental numbers. In Pro. 16th ACM Symp. on Theory of Computing, pages191{200, Washington, D.C., 1984. ACM.[119℄ J. Kilian. Founding ryptography on oblivious transfer. In Pro. 20th ACM Symp. on Theory ofComputing, pages 20{31, Chiago, 1988. ACM.[120℄ Donald E. Knuth. Seminumerial Algorithms, volume 2 of The Art of Computer Programming.Addison-Wesley, 1969. Seond edition, 1981.[121℄ Hugo Krawzyk. Skeme: A versatile seure key exhange mehanism for internet. In Proeedings ofthe Symposium on Network and Distributed System Seurity, 1996.[122℄ Hugo Krawzyk, Mihir Bellare, and Ran Canetti. Hma: Keyed-hashing for message authentiation,February 1997. Internet RFC 2104.[123℄ J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems. In Pro. 24th IEEESymp. on Foundations of Comp. Siene, pages 1{10, Tuson, 1983. IEEE.[124℄ X. Lai and J. Massey. A proposal for a new blok enryption standard. In I.B. Damg�ard, editor, Pro.EUROCRYPT 90, pages 389{404. Springer-Verlag, 1990. Leture Notes in Computer Siene No. 473.[125℄ L. Lamport. Construting digital signatures from a one-way funtion. Tehnial Report CSL-98, SRIInternational, Otober 1979.

238 Goldwasser and Bellare[126℄ A. K. Lenstra and H. W. Lenstra, Jr. Algorithms in number theory. In Jan van Leeuwen, editor,Handbook of Theoretial Computer Siene (Volume A: Algorithms and Complexity), hapter 12, pages673{715. Elsevier and MIT Press, 1990.[127℄ A. K. Lenstra, H. W. Lenstra, Jr., and L. Lov�asz. Fatoring polynomials with rational oeÆients.Mathematishe Ann., 261:513{534, 1982.[128℄ A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard. The number �eld sieve. In Pro.22nd ACM Symp. on Theory of Computing, pages 564{572, Baltimore, Maryland, 1990. ACM.[129℄ H. W. Lenstra, Jr. Fatoring integers with ellipti urves. Annals of Mathematis, 126:649{673, 1987.[130℄ R. Lipton. How to heat at mental poker. In Pro. AMS Short Course on Cryptography, 1981.[131℄ D. L. Long and A. Wigderson. The disrete logarithm problem hides O(logn) bits. SIAM J. Computing,17(2):363{372, April 1988.[132℄ M. Luby, S. Miali, and C. Rako�. How to simultaneously exhange a seret bit by ipping a symmet-rially biased oin. In Pro. 24th IEEE Symp. on Foundations of Comp. Siene, pages 11{22, Tuson,1983. IEEE.[133℄ M. Luby and C. Rako�. How to onstrut pseudorandom permutations and pseudorandom funtions.SIAM J. Computing, 17(2):373{386, April 1988.[134℄ Maurie P. Luby and C. Rako�. A study of password seurity. In Carl Pomerane, editor, Pro.CRYPTO 87, pages 392{397. Springer-Verlag, 1988. Leture Notes in Computer Siene No. 293.[135℄ Ueli M. Maurer. Towards the equivalene of breaking the DiÆe-Hellman protool and omputingdisrete algorithms. In Yvo G. Desmedt, editor, Pro. CRYPTO 94, pages 271{281. Springer, 1994.Leture Notes in Computer Siene No. 839.[136℄ R. J. MEliee. A Publi-Key System Based on Algebrai Coding Theory, pages 114{116. Jet PropulsionLab, 1978. DSN Progress Report 44.[137℄ R. Merkle and M. Hellman. Hiding information and signatures in trapdoor knapsaks. IEEE Trans.Inform. Theory, IT-24:525{530, September 1978.[138℄ Ralph C. Merkle. A erti�ed digital signature. In G. Brassard, editor, Pro. CRYPTO 89, pages218{238. Springer-Verlag, 1990. Leture Notes in Computer Siene No. 435.[139℄ Ralph Charles Merkle. Serey, authentiation, and publi key systems. Tehnial report, StanfordUniversity, Jun 1979.[140℄ M. Merritt. Cryptographi Protools. PhD thesis, Georgia Institute of Tehnology, February 1983.[141℄ S. Miali, C. Rako�, and R. H. Sloan. The notion of seurity for probabilisti ryptosystems. SIAMJ. Computing, 17(2):412{426, April 1988.[142℄ Gary L. Miller. Riemann's hypothesis and tests for primality. JCSS, 13(3):300{317, 1976.[143℄ M. Naor and O. Reingold. Synthesizers and their appliation to the parallel onstrution of pseudo-random funtions. In Pro. 36th IEEE Symp. on Foundations of Comp. Siene. IEEE, 1995.[144℄ M. Naor and O. Reingold. Number-theoreti onstrutions of eÆient pseudo-random funtions. InPro. 38th IEEE Symp. on Foundations of Comp. Siene. IEEE, 1997.[145℄ M. Naor and M. Yung. Universal one-way hash funtions and their ryptographi appliations. InPro. 21st ACM Symp. on Theory of Computing, pages 33{43, Seattle, 1989. ACM.[146℄ M. Naor and M. Yung. Publi-key ryptosystems provably seure against hosen iphertext attak.In Pro. of the Twenty-Seond Annual ACM Symposium on Theory of Computing, pages 427{437,Baltimore, Maryland, 1990. ACM.

Cryptography: Leture Notes 239[147℄ National Institute of Standards and Tehnology (NIST). FIPS Publiation 46: Announing the DataEnryption Standard, January 1977. Originally issued by National Bureau of Standards.[148℄ R. M. Needham and M. D. Shroeder. Using enryption for authentiation in large networks of om-puters. Communiations of the ACM, 21(12):993{999, Deember 1978.[149℄ R. M. Needham and M. D. Shroeder. Authentiation revisited. Operating Systems Review, 21(1):7,January 1987.[150℄ I. Niven and H. S. Zukerman. An Introdution to the Theory of Numbers. Wiley, 1972.[151℄ A. M. Odlyzko. Cryptanalyti attaks on the multipliative knapsak sheme and on Shamir's fastsignature sheme. IEEE Trans. Inform. Theory, IT-30:594{601, July 1984.[152℄ A. M. Odlyzko. Disrete logarithms in �nite �elds and their ryptographi signi�ane. In T. Beth,N. Cot, and I. Ingemarsson, editors, Pro. EUROCRYPT 84, pages 224{314, Paris, 1985. Springer.Leture Notes in Computer Siene No. 209.[153℄ C. Park and K. Kurosawa. New elgamal type threshold signature sheme. IEICE Trans. on Fund.Eletr. Comm. and Comp. Si., E79{A(1):86{93, 1996.[154℄ T. Pedersen. Distributed provers with appliations to undeniable signatures. In EuroCrypt'91, 1991.[155℄ T.P. Pedersen. Non-interative and information-theoreti seure veri�able seret sharing. In J. Feigen-baum, editor, Pro. CRYPTO 91, pages 129{140. Springer, 1992. Leture Notes in Computer SieneNo. 576.[156℄ E. Petrank and C. Rako�. Cb ma for real-time data soures. Manusript, 1997.[157℄ J. Plumstead. Inferring a sequene generated by a linear ongruene. In Pro. 23rd IEEE Symp. onFoundations of Comp. Siene, pages 153{159, Chiago, 1982. IEEE.[158℄ S. C. Pohlig and M. E. Hellman. An improved algorithm for omputing logarithms over GF (p) andits ryptographi signi�ane. IEEE Trans. Inform. Theory, IT-24:106{110, January 1978.[159℄ D. Pointheval and J. Stern. Seurity proofs for signatures. In Proeedings of EUROCRYPT'96, volume1070 of Leture Notes in Computer Siene, pages 387{398. Springer-Verlag, 1996.[160℄ J. M. Pollard. Theorems on fatorization and primality testing. Pro. Cambridge Philosophial Soiety,76:521{528, 1974.[161℄ V. Pratt. Every prime has a suint erti�ate. SIAM J. Comput., 4:214{220, 1975.[162℄ B. Preneel and P.C. van Oorshot. On the seurity of two MAC algorithms. In Proeedings of EURO-CRYPT'96, volume 1070 of Leture Notes in Computer Siene, pages 19{32. Springer-Verlag, 1996.[163℄ Bart Preneel and Paul C. van Oorshot. MDx-MAC and building fast MACs from hash funtions. InDon Coppersmith, editor, Pro. CRYPTO 94, pages 1{14. Springer, 1995. Leture Notes in ComputerSiene No. 963.[164℄ M. Rabin. Digitalized signatures as intratable as fatorization. Tehnial Report MIT/LCS/TR-212,MIT Laboratory for Computer Siene, January 1979.[165℄ M. Rabin. Probabilisti algorithms for testing primality. J. Number Theory, 12:128{138, 1980.[166℄ M. Rabin. How to exhange serets by oblivious transfer. Tehnial Report TR-81, Harvard AikenComputation Laboratory, 1981.[167℄ T. Rabin and M. Ben-Or. Veri�able seret sharing and multiparty protools with honest majority. In21st ACM Symposium on Theory of Computing, pages 73{85, 1989.

240 Goldwasser and Bellare[168℄ R. L. Rivest and A. Shamir. How to expose an eavesdropper. Communiations of the ACM, 27:393{395,April 1984.[169℄ Ronald L. Rivest. The MD5 message-digest algorithm. Internet Request for Comments, April 1992.RFC 1321.[170℄ Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signaturesand publi-key ryptosystems. Communiations of the ACM, 21(2):120{126, 1978.[171℄ John Rompel. One-way funtions are neessary and suÆient for seure signatures. In Pro. 22ndACM Symp. on Theory of Computing, pages 387{394, Baltimore, Maryland, 1990. ACM.[172℄ J. Rosser and L. Shoen�eld. Approximate formulas for some funtions of prime numbers. Illinois J.Math., 6:64{94, 1962.[173℄ RSA Data Seurity, In. PKCS #1: RSA Enryption Standard, June 1991. Version 1.4.[174℄ RSA Data Seurity, In. PKCS #7: Cryptographi Message Syntax Standard, June 1991. Version 1.4.[175℄ K. Sako and J. Kilian. Reeipt-free mix-type voting shemes. a pratial implementation of a vot-ing booth. In EUROCRYPT'95, volume 921 of Leture Notes in Computer Siene, pages 393{403.Springer-Verlag, 1995.[176℄ M. Santha and U. V. Vazirani. Generating quasi-random sequenes from slightly-random soures. InPro. 25th IEEE Symp. on Foundations of Comp. Siene, pages 434{440, Singer Island, 1984. IEEE.[177℄ Alredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to share a funtion seurely. InPro. 26th ACM Symp. on Theory of Computing, pages 522{533, Montreal, Canada, 1994. ACM.[178℄ C. P. Shnorr. EÆient signature generation by smart ards. Journal of Cryptology, 4:161{174, 1991.[179℄ R. J. Shoof. Ellipti urves over �nite �elds and the omputation of square roots mod p. Math. Comp.,44:483{494, 1985.[180℄ R. Shroeppel and A. Shamir. A TS2 = O(2n) time/spae tradeo� for ertain NP-omplete problems.In Pro. 20th IEEE Symp. on Foundations of Comp. Siene, pages 328{336, San Juan, Puerto Rio,1979. IEEE.[181℄ A. Shamir. How to share a seret. Communiations of the ACM, 22:612{613, November 1979.[182℄ A. Shamir. On the ryptoomplexity of knapsak shemes. In Pro. 11th ACM Symp. on Theory ofComputing, pages 118{129, Atlanta, 1979. ACM.[183℄ A. Shamir. On the generation of ryptographially strong pseudo-random sequenes. In Pro. ICALP,pages 544{550. Springer, 1981.[184℄ A. Shamir. A polynomial-time algorithm for breaking the basi Merkle-Hellman ryptosystem. InPro. 23rd IEEE Symp. on Foundations of Comp. Siene, pages 145{152, Chiago, 1982. IEEE.[185℄ A. Shamir, R. L. Rivest, and L. M. Adleman. Mental poker. In D. Klarner, editor, The MathematialGardner, pages 37{43. Wadsworth, Belmont, California, 1981.[186℄ C. E. Shannon. A mathematial theory of ommuniation. Bell Sys. Teh. J., 27:623{656, 1948.[187℄ C. E. Shannon. Communiation theory of serey systems. Bell Sys. Teh. J., 28:657{715, 1949.[188℄ V. Shoup. Oaep reonsidered. In CRYPTO'01, Leture Notes in Computer Siene. Springer-Verlag,2001.[189℄ V. Shoup and A. Rubin. Session key distribution for smart ards. In U. Maurer, editor, Pro. CRYPTO96. Springer-Verlag, 1996. Leture Notes in Computer Siene No. 1070.

Cryptography: Leture Notes 241[190℄ R.D. Silverman. The multiple polynomial quadrati sieve. Mathematis of Computation, 48:329{339,1987.[191℄ R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM J. Computing, 6:84{85, 1977.[192℄ William Stallings. Network and Internetwork Seurity Priniples and Pratie. Prentie Hall, 1995.[193℄ J.G. Steiner, B.C. Neuman, and J.I. Shiller. Kerberos: an authentiation servie for open networksystems. In Usenix Conferene Proeedings, pages 191{202, Dallas, Texas, February 1988.[194℄ Joseph D. Touh. Performane analysis of MD5. Proeedings SIGCOMM, 25(4):77{86, Otober 1995.Also at ftp://ftp.isi.edu/pub/hp-papers/touh/sigomm95.ps.Z.[195℄ Gene Tsudik. Message authentiation with one-way hash funtions. ACM SIGCOMM, ComputerCommuniation Review, 22(5):29{38, Otober 1992.[196℄ P. van Oorshot and M. Wiener. Parallel ollision searh with appliations to hash funtions anddisrete logarithms. In Proeedings of the 2nd ACM Conf. Computer and Communiations Seurity,November 1994.[197℄ U. V. Vazirani. Towards a strong ommuniation omplexity theory, or generating quasi-randomsequenes from two ommuniating slightly-random soures. In Pro. 17th ACM Symp. on Theory ofComputing, pages 366{378, Providene, 1985. ACM.[198℄ U. V. Vazirani and V. V. Vazirani. Trapdoor pseudo-random number generators, with appliations toprotool design. In Pro. 24th IEEE Symp. on Foundations of Comp. Siene, pages 23{30, Tuson,1983. IEEE.[199℄ Umesh V. Vazirani and Vijay V. Vazirani. RSA bits are 732 + � seure. In D. Chaum, editor, Pro.CRYPTO 83, pages 369{375, New York, 1984. Plenum Press.[200℄ J. von Neumann. Various tehniques for use in onnetion with random digits. In von Neumann'sColleted Works, volume 5, pages 768{770. Pergamon, 1963.[201℄ A. C. Yao. Theory and appliation of trapdoor funtions. In Pro. 23rd IEEE Symp. on Foundationsof Comp. Siene, pages 80{91, Chiago, 1982. IEEE.[202℄ A.C. Yao. Protools for seure omputations. In Pro. 23rd IEEE Symp. on Foundations of Comp.Siene, pages 160{164, Chiago, 1982. IEEE.[203℄ A.C. Yao. How to generate and exhange serets. In Pro. 27th IEEE Symp. on Foundations of Comp.Siene, pages 162{167, Toronto, 1986. IEEE.

C h a p t e r ASome probabilisti fats

A.1 The birthday problemSome of our estimates in Chapters 6, 8 and 5 require preise bounds on the birthday probabilities, whihfor ompleteness we derive here, following [12℄.The setting is that we have q balls. View them as numbered, 1; : : : ; q. We also have N bins, where N � q.We throw the balls at random into the bins, one by one, beginning with ball 1. At random means that eahball is equally likely to land in any of the N bins, and the probabilities for all the balls are independent. Aollision is said to our if some bin ends up ontaining at least two balls. We are interested in C(N; q), theprobability of a ollision.The birthday phenomenon takes its name from the ase when N = 365, whene we are asking what isthe hane that, in a group of q people, there are two people with the same birthday, assuming birthdaysare randomly and independently distributed over the 365 days of the year. It turns out that when q hitsp365 � 19:1 the hane of a ollision is already quite high; for example at q = 20 the hane of a ollisionis at least 0:328.The birthday phenomenon an seem surprising when �rst heard; that's why it is alled a paradox. Thereason it is true is that the ollision probability C(N; q) grows roughly proportional to q2=N . This is thefat to remember. The following gives a more exat rendering, providing both upper and lower bounds onthis probability.Proposition A.1 Let C(N; q) denote the probability of at least one ollision when we throw q � 1 balls atrandom into N � q bukets. Then C(N; q) � q(q � 1)2N :Also C(N; q) � 1� e�q(q�1)=2N ;and for 1 � q � p2N C(N; q) � 0:3 � q(q � 1)N :242

Cryptography: Leture Notes 243In the proof we will �nd the following inequalities useful to make estimates.Proposition A.2 For any real number x 2 [0; 1℄|�1� 1e� � x � 1� e�x � x :Proof of Proposition A.1: Let Ci be the event that the i-th ball ollides with one of the previous ones.Then P [Ci℄ is at most (i � 1)=N , sine when the i-th ball is thrown in, there are at most i � 1 di�erentoupied slots and the i-th ball is equally likely to land in any of them. NowC(N; q) = P [C1 _ C2 _ � � � _ Cq ℄� P [C1℄ +P [C2℄ + � � �+P [Cq ℄� 0N + 1N + � � �+ q � 1N= q(q � 1)2N :This proves the upper bound. For the lower bound we let Di be the event that there is no ollision afterhaving thrown in the i-th ball. If there is no ollision after throwing in i balls then they must all be oupyingdi�erent slots, so the probability of no ollision upon throwing in the (i + 1)-st ball is exatly (N � i)=N .That is, P [Di+1 j Di℄ = N � iN = 1� iN :Also note P [D1℄ = 1. The probability of no ollision at the end of the game an now be omputed via1� C(N; q) = P [Dq ℄= P [Dq j Dq�1℄ �P [Dq�1℄... ...= q�1Yi=1P [Di+1 j Di℄= q�1Yi=1 �1� iN� :Note that i=N � 1. So we an use the inequality 1� x � e�x for eah term of the above expression. Thismeans the above is not more thanq�1Yi=1 e�i=N = e�1=N�2=N�����(q�1)=N = e�q(q�1)=2N :Putting all this together we get C(N; q) � 1� e�q(q�1)=2N ;whih is the seond inequality in Proposition A.1. To get the last one, we need to make some more estimates.We know q(q � 1)=2N � 1 beause q � p2N , so we an use the inequality 1� e�x � (1� e�1)x to getC(N; q) � �1� 1e� � q(q � 1)2N :A omputation of the onstant here ompletes the proof.

C h a p t e r BSome omplexity theory bakground

As of today, we do not even know how to prove a linear lower bound on the time required to solve an NP-omplete problem. Thus, in our development of a theory of ryptography in the presene of a omputationallybounded adversary we must resort to making assumptions about the existene of hard problems. In fat, animportant urrent researh topi in ryptography (on whih muh progress has been made in reent years)is to �nd the minimal assumptions required to prove the existene of \seure" ryptosystems.Our assumptions should enable us to quikly generate instanes of problems whih are hard to solve foranyone other than the person who generated the instane. For example, it should be easy for the sender ofa message to generate a iphertext whih is hard to derypt for any adversary (naturally, in this example,it should also be easy for the intended reipient of the message to derypt the iphertext). To formallydesribe our assumptions (the existene of one way funtions and trapdoor funtion) we �rst need to reallsome omplexity theory de�nitions.B.1 Complexity Classes and Standard De�nitionsB.1.1 Complexity Class PA language L is in P if and only if there exists a Turing mahine M(x) and a polynomial funtion Q(y) suhthat on input string x1. x 2 L i� M aepts x (denoted by M(x)).2. M terminates after at most Q(jxj) steps.The lass of languages P is lassially onsidered to be those languages whih are `easily omputable'. Wewill use this term to refer to these languages and the term `eÆient algorithm' to refer to a polynomial timeTuring mahine.B.1.2 Complexity Class NPA language L is in NP if and only if there exists a Turing mahine M(x; y) and polynomials p and l suhthat on input string x 244

Cryptography: Leture Notes 2451. x 2 L) 9y with jyj � l(jxj) suh that M(x; y) aepts and M terminates after at most p(jxj) steps.2. x 62 L) 8y with jyj � l(jxj), M(x; y) rejets.Note that this is equivalent to the (perhaps more familiar) de�nition of L 2 NP if there exists a non-deterministi polynomial time Turing mahine M whih aepts x if and only if x 2 L. The string y aboveorresponds to the guess of the non-determinsti Turing mahine.B.1.3 Complexity Class BPPA language L is in BPP if and only if there exists a Turing mahine M(x; y) and polynomials p and l suhthat on input string x1. x 2 L) Prjyj<l(jxj)[M(x; y)aepts℄ � 23 .2. x 62 L) Prjyj<l(jxj)[M(x; y)aepts℄ � 13 .3. M(x; y) always terminates after at most p(jxj) steps.As an exerise, you may try to show that if the onstants 23 and 13 are replaed by 12 + 1p(jxj) and 12 � 1p(jxj)where p is any �xed polynomial then the lass BPP remains the same.Hint: Simply run the mahine M(x; y) on \many" y's and aept if and only if the majority of the runsaept. The magnitude of \many" depends on the polynomial p.We know that P � NP and P � BPP. We do not know if these ontainments are strit although it is oftenonjetured to be the ase. An example of a language known to be in BPP but not known to be in P is thelanguage of all prime integers (that is, primality testing). It is not known whether BPP is a subset of NP.B.2 Probabilisti AlgorithmsThe lass BPP ould be alternatively de�ned using probabilisti Turing mahines (probabilisti algorithms).A probabilisti polynomial time Turing mahine M is a Turing mahine whih an ip oins as an additionalprimitive step, and on input string x runs for at most a polynomial in jxj steps. We ould have de�ned BPPby saying that a language L is in BPP if there exists a probabilisti polynomial time Turing mahine M(x)suh that when x 2 L, the probability (over the oin tosses of the mahine) that M(x) aepts is greaterthan 23 and when x =2 L the probability (over the oin tosses of the mahine) that M(x) rejets is greaterthan 23 . The string y in the previous de�nition orresponds to the sequene of oin ips made by the mahineM on input x.From now on we will onsider probabilisti polynomial time Turing mahines as \eÆient algorithms" (ex-tending the term previously used for deterministi polynomial time Turing mahines). We also all the lassof languages in BPP \easily omputable". Note the di�erene between a non-deterministi Turing mahineand a probabilisti Turing mahine. A non-deterministi mahine is not something we ould implement inpratie (as there may be only one good guess y whih will make us aept). A probabilisti mahine issomething we ould implement in pratie by ipping oins to yield the string y (assuming of ourse thatthere is a soure of oin ips in nature). Some notation is useful when talking about probabilisti Turingmahines.B.2.1 Notation For Probabilisti Turing MahinesLet M denote a probabilisti Turing mahine (PTM). M(x) will denote a probability spae of the outomeofM during its run on x. The statement z 2M(x) indiates that z was output byM when running on input

246 Goldwasser and Bellarex. Pr[M(x) = z℄ is the probability of z being the output of M on input x (where the probability is takenover the possible internal oin tosses made by M during its exeution). M(x; y) will denote the outome ofM on input x when internal oin tosses are y.B.2.2 Di�erent Types of Probabilisti AlgorithmsMonte Carlo algorithms and Las Vegas algorithms are two di�erent types of probabilisti algorithms. Thedi�erene between these two types is that a Monte Carlo algorithm always terminates within a polynomialnumber of steps but its output is only orret with high probability whereas a Las Vegas algorithm terminateswithin an expeted polynomial number of steps and its output is always orret. Formally, we de�ne thesealgorithms as follows.De�nition B.1 A Monte Carlo algorithm is a probabilisti algorithm M for whih there exists a polynomialP suh that for all x, M terminates within P (jxj) steps on input x. Further,Pr[M(x) is orret ℄ > 23(where the probability is taken over the oin tosses of M).A Las Vegas algorithm is a probabilisti algorithm M for whih there exists a polynomial p suh that for allx, E(running time) = 1Xt=1 t � Pr[M(x) takes exatly t steps℄ < p(jxj). Further, the output of M(x) is alwaysorret.All Las Vegas algorithms an be onverted to Monte Carlo algorithms but it is unknown whether all MonteCarlo algorithms an be onverted to Las Vegas algorithms. Some examples of Monte Carlo algorithms areprimality tests suh as Solovay Strassen (see [191℄) or Miller-Rabin (see [165℄) and testing the equivalene ofmultivariate polynomials and some examples of Las Vegas algorithms are omputing square roots modulo aprime p, omputing square roots modulo a omposite n (if the fators of n are known) and primality testsbased on ellipti urves (see [4℄ or [96℄).B.2.3 Non-Uniform Polynomial TimeAn important onept is that of polynomial time algorithms whih an behave di�erently for inputs ofdi�erent size, and may even be polynomial in the size of the input (rather than onstant as in the traditionalde�nition of a Turing mahine).De�nition B.2 A non-uniform algorithm A is an in�nite sequene of algorithms fMig (one for eah inputsize i) suh that on input x, Mjxj(x) is run. We say that A(x) aepts if and only if Mjxj(x) aepts. Wesay that A is a polynomial time non-uniform algorithm if there exist polynomials P and Q suh that Mjxj(x)terminates within P (jxj) steps and the size of the desription of Mi (aording to some standard enodingof all algorithms) is bounded by Q(jij).De�nition B.3 We say that a language L is in P=poly if 9 a polynomial time non-uniform algorithmA = fMig suh that x 2 L i� Mjxj(x) aepts.There are several relationships known about P=poly. It is lear that P � P=poly and it has been shown byAdleman that BPP � P=poly.We will use the term `eÆient non-uniform algorithm' to refer to a non-uniform polynomial time algorithmand the term `eÆiently non-uniform omputable' to refer to languages in the lass P=poly.

Cryptography: Leture Notes 247B.3 AdversariesWe will model the omputational power of the adversary in two ways. The �rst is the (uniform) adversary(we will usually drop the \uniform" when referring to it). A uniform adversary is any polynomial timeprobabilisti algorithm. A non-uniform adversary is any non-uniform polynomial time algorithm. Thus,the adversary an use di�erent algorithms for di�erent sized inputs. Clearly, the non-uniform adversary isstronger than the uniform one. Thus to prove that \something" is \seure" even in presene of a non-uniformadversary is a better result than only proving it is seure in presene of a uniform adversary.B.3.1 Assumptions To Be MadeThe weakest assumption that must be made for ryptography in the presene of a uniform adversary is thatP 6= NP. Namely, 9L 2 NP suh that L 62 P. Unfortunately, this is not enough as we assumed that ouradversaries an use probabilisti polynomial time algorithms. So we further assume that BPP 6= NP. Is thatsuÆient? Well, we atually need that it would be hard for an adversary to rak our systems most of thetime. It is not suÆient that our adversary an not rak the system one in a while. Assuming that BPP 6=NP only means that there exists a language in L 2 NP suh that every uniform adversary makes (with highprobability) the wrong deision about in�nitely many inputs x when deiding whether x 2 L. These wrongdeisions, although in�nite in number, may our very infrequently (suh as one for eah input size).We thus need yet a stronger assumption whih will guarantee the following. There exists a language L 2NP suh that for every suÆiently large input size n, every uniform adversary makes (with high probability)the wrong deision on many inputs x of length n when deiding whether x is in L. Moreover, we want itto be possible, for every input size n, to generate input x of length n suh that with high probability everyuniform adversary will make the wrong deision on x.The assumption that will guarantee the above is the existene of (uniform) one way funtions. The assump-tion that would guarantee the above in the presene of non-uniform adversary is the existene non-uniformone way funtions. For de�nitions, properties, and possible examples of one-way funtions see Chapter 2.B.4 Some Inequalities From Probability TheoryProposition B.4 [Markov's Inequality℄ If Z is a random variable that takes only non-negative values, thenfor any value a > 0, Pr[Z � a℄ � E[Z℄a .Proposition B.5 [Weak Law of Large Numbers℄ Let z1; : : : ; zn be independent 0-1 random variables (Bernoullirandom variables) with mean �. Then Pr[jPni=1 zin � �j < �℄ > 1� Æ provided that n > 14�2Æ .

C h a p t e r CSome number theory bakground

Many important onstrutions of ryptographi primitives are based on problems from number theory whihseem to be omputationally intratable. The most well-known of these problems is that of fatoring ompositeintegers. In order to work with these problems, we need to develop some basi materiel on number theoryand number theoreti algorithms. Aordingly, we provide here a mini-ourse on this subjet. The materielhere will be used later when we disuss andidate example one-way and trapdoor funtions.There are many soures for information on number theory in the literatures. For example try Angluin'snotes [7℄ and Chapter 33 of Cormen, Leiserson and Rivest [59℄.C.1 Groups: BasisA group is a set G together with some operation, whih we denote �. It takes pairs of elements to anotherelement, namely a � b is the result of � applied to a; b. A group has the following properties:(1) If a; b 2 G so is a � b(2) The operation is assoiative: (a � b) � = a � (b �)(3) There is an identity element I suh that I � a = a � I = a for all a 2 G(4) Every a 2 G has an inverse, denoted a�1, suh that a � a�1 = a�1 � a = I .We will enounter this kind of struture a lot. First reall Z;N and R. Now, for example:Integers under addition: I = 0; a�1 = �a.Real numbers under multipliation: I = 1; a�1 = 1=a.What about N under addition? Not a group!What about Z under multipliation? Not a group!Notation: am is a multiplied by itself m times. Et. Namely, notation is what you expet. What is a�m?It is (a�1)m. Note that it \works" like it should.These groups are all in�nite. We are usually interested in �nite ones. In suh a ase:Def: We all jGj the order of G. 248

Cryptography: Leture Notes 249Fat C.1 Let m = jGj. Then am = I for any a 2 G.We will use this later.a � b (mod n) means that if we divide a by n then the remainder is b. (In C, this is a%n = b).An important set is the set of integers modulo an integer n. This is Zn = f0; : : : ; n� 1g. We will see it is agroup under addition modulo n. Another related important set is Z�n = fm : 1 � m � n and gd(m;n) = 1g,the set of integers less than n whih are relatively prime to n. We will see this is a group under multipliationmodulo n. We let �(n) = jZ�nj. This is the Euler totient funtion.A subset S � G is alled a sub-group if it is a group in its own right, under the operation making G a group.In partiular if x; y 2 S so is xy and x�1, and 1 2 S.Fat C.2 Suppose S is a subgroup of G. Then jSj divides jGj.C.2 Arithmati of numbers: +, *, GCDComplexity of algorithms operating of a number a is measured in terms of the size (length) of a, whih isjaj � lg(a). How long do basi operations take? In terms of the number of bits k in the number:Addition is linear time. Ie. two k-bit numbers an be added in O(k) time.Multipliation of a and b takes O(jaj � jbj) bit operations. Namely it is an O(k2) algorithm.Division of a by b (integer division: we get bak the quotient and remainder) takes time O((1 + jqj)jbj)where q is the quotient obtained. Thus this too is a quadrati time algorithm.Eulid's algorithm an be used to ompute GCDs in polynomial time. The way it works is to repeatedly usethe identity gd(a; b) = gd(b; a mod b). For examples, see page 10 of [7℄.What is the running time? Eah division stage takes quadrati time and we have k stages, whih would sayit is a O(k3) algorithm. But see Problem 33-2, page 850, of [59℄. This yields the following:Theorem C.3 Eulid's algorithm an be implemented to use only O(jaj � jbj) bit operations to omputegd(a; b). That is, for k-bit numbers we get a O(k2) algorithm.Fat C.4 gd(a; b) = 1 if and only if there exist integers u; v suh that 1 = au+ bv.The Extended Eulid Algorithm is given a; b and it returns not only d = gd(a; b) but integers u; v suh thatd = au+ bv. It is very similar to Eulid's algorithm. We an keep trak of some extra information at eahstep. See page 11 of [7℄.C.3 Modular operations and groupsC.3.1 Simple operationsNow we go to modular operations, whih are the main ones we are interested inAddition is now the following: Given a; b; n with a; b 2 Zn ompute a + b mod n. This is still lineartime. Ie. two k-bit numbers an be added in O(k) time. Why? You an't go muh over N . If you do,just subtrat n. That too is linear time.Taking a mod n means divide a by n and take remainder. Thus, it takes quadrati time.

250 Goldwasser and BellareMultipliation of a and b modulo n: First multiply them, whih takes O(jaj � jbj) bit operations. Thendivide by n and take the remainder. We saw latter too was quadrati. So the whole thing is quadrati.Zn is a group under addition modulo N . This means you an add two elements and get bak an element ofthe set, and also subtration is possible. Under addition, things work like you expet.We now move to Z�n. We are interested in the multipliation operation here. We want to see that it is agroup, in the sense that you an multiply and divide. We already saw how to multiply.Theorem C.5 There is a O(k2) algorithm whih given a; n with a 2 Z�n outputs b 2 Z�n satisfying ab � 1(mod n), where k = jnj.See page 12 of [7℄. The algorithms uses the extended Eulid. We know that 1 = gd(a; n). Hene it an�nd integers u; v suh that 1 = au + nv. Take this modulo n and we get au � 1 (mod n). So an setb = u mod n. Why is this an element of Z�n? Claim that gd(u; n) = 1. Why? By Fat C.4, whih says that1 = au+ nv means gd(u; n) = 1.The b found in the theorem an be shown to be unique. Hene:Notation: The b found in the theorem is denoted a�1.C.3.2 The main groups: Zn and Z�nTheorem C.6 For any positive integer n, Z�n forms a group under multipliation modulo n.This means that a; b 2 Z�n implies ab mod n is in Z�n, something one an verify without too muh diÆulty.It also means we an multiply and divide. We have an identity (namely 1) and a anellation law.Notation: We typially stop writing modn everywere real quik. It should just be understood.The way to think about Z�n is like the real numbers. You an manipulate things like you are used to. Thefollowing is a orollary of Fat C.1.Theorem C.7 For any a 2 Z�n it is the ase that a�(n) = 1.Corollary C.8 (Fermat's little theorem) If p is prime then ap�1 � 1 (mod p) for any a 2 f1; : : : ; p� 1g.Why? Beause �(p) = p� 1.C.3.3 ExponentiationThis is the most basi operation for publi key ryptography. The operation is just that given a; n;m wherea 2 Zn and m is an integer, omputes am mod n.Example C.9 Compute 221 mod 22. Naive way: use 21 multipliations. What's the problem with this? Itis an exponential time algorithm. Beause we want time poly(k) where k = jnj. So we do it by repeatedsquaring: 21 � 222 � 424 � 1628 � 14216 � 20

Cryptography: Leture Notes 251Now 221 = 216+4+1 = 216 � 24 � 21 = 20 � 16 � 2 � 10 mod 21.This is the repeated squaring algorithm for exponentiation. It takes ubi time.Theorem C.10 There is an algorithm whih given a; n;m with a;m 2 Zn outputs am mod n in time O(k3)where k = jnj. More preisely, the algorithm uses at most 2k modular multipliations of k-bit numbers.Algorithm looks at binary expansion of m. In example above we have 21 = 10101. What we did is olletall the powers of two orresponding to the ones and multiply them.4 3 2 1 0a16 a8 a4 a2 a11 0 1 0 1Exponentiate(a; n;m)Let bk�1:::b1b0 be the binary representation of mLet x0 = aLet y = 1For i = 0; : : : ; k � 1 doIf bi = 1 let y = y � xi mod nLet xi+1 = x2i mod nOutput yC.4 Chinese remaindersLet m = m1m2. Suppose y 2 Zm. Consider the numbersa1 = y mod m1 2 Zm1a2 = y mod m2 2 Zm2The hinese remainder theorem onsiders the question of reombining a1; a2 bak to get y. It says there isa unique way to do this under some onditions, and under these onditions says how.Example C.11 m = 6 = 3 � 2 0! (0; 0)1! (1; 1)2! (2; 0)3! (0; 1)4! (1; 0)5! (2; 1)Example C.12 m = 4 = 2 � 2 0! (0; 0)1! (1; 1)2! (0; 0)3! (1; 1)The di�erene here is that in the �rst example, the assoiation is unique, in the seond it is not. It turnsout uniqueness happens when the m1;m2 are relatively prime. Here is a simple form of the theorem.

252 Goldwasser and BellareTheorem C.13 [Chinese Remainder Theorem℄ Let m1;m2; : : : ;mk be pairwise relatively prime integers.That is, gd(mi;mj) = 1 for 1 � i < j � k. Let ai 2 Zmi for 1 � i � k and set m = m1m2 � � �mk. Thenthere exists a unique y 2 Zm suh that y � ai mod mi for i = 1 : : : k. Furthermore there is an O(k2) timealgorithm to ompute y given a1; a2;m1;m2, where k = max(jm1j; jm2j).Proof: For eah i, let ni = � mmi� 2 Z. By hypothesis, gd(mi; ni) = 1 and hene 9bi 2 Zmi suh thatnibi � 1 mod mi. Let i = bini. Then i = � 1 mod mi0 mod mj for j 6= i .Set y = kXi=1 iai mod m. Then y � ai mod mi for eah i.Further, if y0 � ai mod mi for eah i then y0 � y mod mi for eah i and sine the mi's are pairwise relativelyprime it follows that y � y0 mod m, proving uniqueness.Remark C.14 The integers i appearing in the above proof will be referred to as the Chinese RemainderTheorem oeÆients. Note that the proof yields a polynomial time algorithm for �nding y beause theelements bi 2 Zmi an be determined by using the Eulidean algorithm and the only other operationsinvolved are division, multipliation, and addition.A more general form of the Chinese Remainder Theorem is the following result.Theorem C.15 Let ai 2 Zmi for 1 � i � k. A neessary and suÆient ondition that the system ofongruenes x � ai mod mi for 1 � i � k be solvable is that gd(mi;mj)j(ai � aj) for 1 � i < j � k. If asolution exists then it is unique modulo lm(m1;m2; : : : ;mk).Solution Of The Quadrati Congruene a � x2 mod n When a 2 Zn.First observe that for p an odd prime and a 2 Z�p2 so that a � x2 mod p for some x 2 Z�p there are exatly twosolutions to a � x2 mod p beause x and �x are two distint solutions modulo p and if y2 � a � x2 mod pthen pj[(x � y)(x + y)℄ =) pj(x � y) or pj(x + y) so that y � �x mod p. (Note that x 6� �x mod p forotherwise, 2x � 0 mod p) pjx as p is odd.) Thus, for a 2 Z�p, a � x2 mod p has either 0 or 2 solutions.Next onsider the ongruene a � x2 mod p1p2 where p1 and p2 are distint odd primes. This has a solutionif and only if both a � x2 mod p1 and a � x2 mod p2 have solutions. Note that for eah pair (x1; x2) suhthat a � x21 mod p1 and a � x22 mod p2 we an ombine x1 and x2 by using the Chinese Remainder Theoremto produe a solution y to a � x2 mod p1p2 suh that y � x1 mod p1 and y � x2 mod p2. Hene, theongruene a � x2 mod p1p2 has either 0 or 4 solutions.More generally, if p1; p2; : : : ; pk are distint odd primes then the ongruene a � x2 mod p�11 p�22 : : : p�kk haseither 0 or 2k solutions. Again, these solutions an be found by applying the Chinese Remainder Theoremto solutions of a � x2 mod p�ii . Furthermore, for a prime p a solution to the ongruene a � x2 mod pk anbe found by �rst �nding a solution x0 to a � x2 mod p by using algorithm A of Lemma 2.39 and viewingit as an approximation of the desired square root. Then the approximation is improved by the iterationxj � 12 (xj�1 + axj�1) mod p2j for j � 1.Claim C.16 For eah integer j � 0, a � x2j mod p2j . Proof: The laim is ertainly true for j = 0. Supposethat for j > 0, a � x2j mod p2j .Then xj � ax�1j � 0 mod p2j) (xj � ax�1j)2 � 0 mod p2j+1 .

Cryptography: Leture Notes 253Expanding and adding 4a to both sides gives x2j+2a+a2x�2j � 4a mod p2j+1 and therefore, �12 (xj + axj)�2 �a mod p2j+1 or x2j+1 � a mod p2j+1 .Hene, the laim follows by indution.From the laim, it follows that after dlog ke iterations we will obtain a solution to a � x2 mod pk.C.5 Primitive elements and Z�pC.5.1 De�nitionsLet G be a group. Let a 2 G. Look at the powers of a, namely a0; a1; a2; : : : ;. We lethai = f ai : i � 0 g :Let m = jGj be the order of G. We know that a0 is the identity, all it 1, and am = 1 also. So the sequenerepeats after m steps, ie. am+1 = a, et. But it ould repeat before too. Let's look at an example.Example C.17 Z�9 = f1; 2; 4; 5; 7; 8g. Size �(9) = 6. Then:h1i = f1gh2i = f1; 2; 4; 8; 7; 5gh4i = f1; 4; 7gh5i = f1; 5; 7; 8; 4; 2gWhat we see is that sometimes we get everything, sometimes we don't. It might wrap around early.Fat C.18 hai is a subgroup of G, alled the subgroup generated by a.Let t = jhaij. Then we know that t divides m. And we know that in fat hai = fa0; a1; : : : ; at�1g. That is,these are the distint elements. All others are repeats.De�nition C.19 The order of an element a is the least positive integer t suh that at = 1. That is,order(a) = jhaij.Computation in the indies an be done modulo t. That is, ai = ai mod t. This is beause at = a0 = 1.What's the inverse of ai? Think what it \should" be: a�i. Does this make sense? Well, think of it as (a�1)i.This is orret. On the other hand, what is it as member of the subgroup? It must be aj for some j. Wellj = t� i. In partiular, inverses are pretty easy to ompute if you are given the index.Similarly, like for real numbers, multipliation in the base orresponds to addition in the exponent. Namelyai+j = ai � aj . Et.De�nition C.20 An element g 2 G is said to be a primitive element, or generator, of G if the powers of ggenerate G. That is, hgi = G is the whole group G. A group G is alled yli if it has a primitive element.Note this means that for any y 2 G there is a unique i 2 f0; : : : ;m� 1g suh that gi = y, where m = jGj.Notation: This unique i is denoted logg(y) and alled the disrete logarithm of x to base g.

254 Goldwasser and BellareConsider the following problem. Given g; y, �gure out logg(y). How ould we do it? One way is to gothrough all i = 0; : : : ;m � 1 and for eah i ompute gi and hek whether gi = y. But this proess takesexponential time.It turns out that omputing disrete logarithms is hard for many groups. Namely, there is no knownpolynomial time algorithm. In partiular it is true for Z�p where p is a prime.C.5.2 The group Z�pFat C.21 [7, Setion 9℄ The group Z�p is yli.Remark C.22 What is the order of Z�p? It is �(p), the number of positive integers below p whih arerelatively prime to p. Sine p is prime this is p� 1. Note the order is not prime! In partiular, it is even (forp � 3).A one-way funtion: Let p be prime and let g 2 Z�p be a generator. Then the funtion fp;g: Zp ! Z�p de�nedby x 7! gxis onjetured to be one-way as long as some tehnial onditions hold on p. That is, there is no eÆientalgorithm to invert it, for large enough values of the parameters. See Chapter 2.Homomorphi properties: A useful property of the funtion fp;g is that ga+b = ga � gb.Now, how an we use this funtion? Well, �rst we have to set it up. This requires two things. First that wean �nd primes; seond that we an �nd generators.C.5.3 Finding generatorsWe begin with the seond. We have to look inside Z�p and �nd a generator. How? Even if we have aandidate, how do we test it? The ondition is that hgi = G whih would take jGj steps to hek.In fat, �nding a generator given p is in general a hard problem. In fat even heking that g is a generatorgiven p; g is a hard problem. But what we an exploit is that p = 2q + 1 with q prime. Note that the orderof the group Z�p is p� 1 = 2q.Fat C.23 Say p = 2q + 1 is prime where q is prime. Then g 2 Z�p is a generator of Z�p i� gq 6= 1 andg2 6= 1.In other words, testing whether g is a generator is easy given q. Now, given p = 2q + 1, how do we �nd agenerator?Fat C.24 If g is a generator and i is not divisible by q or 2 then gi is a generator.Proof: giq = gq+(i�1)q = gq � (g2q)(i�1)=2 = gq � 1 = gq whih is not 1 beause g is not a generator. Similarlylet i = r + jq and we have g2i = g2r � g2jq = g2r. But 2r < 2q sine r < q so g2r 6= 1.So how many generators are there in Z�p? All things of form gi with i not divisible by 2 or q and i = 1; : : : ; 2q.Namely all i in Z�2q. So there are �(2q) = q � 1 of them.So how do we �nd a generator? Pik g 2 Z�p at random, and hek that gq 6= 1 and g2 6= 1. If it fails, tryagain, up to some number of times. What's the probability of failure? In one try it is (q+1)=2q so in l triesit is �q + 12q �lwhih is rougly 2�l beause q is very large.

Cryptography: Leture Notes 255C.6 Quadrati residuesAn element x 2 Z�N is a square, or quadrati residue, if it has a square root, namely there is a y 2 Z�N suhthat y2 � x mod N . If not, it is a non-square or non-quadrati-residue. Note a number may have lots ofsquare roots.It is easy to ompute square roots modulo a prime. It is also easy modulo a omposite whose primefatorization you know, via Chinese remainders. (In both ases, you an ompute all the roots.) But it ishard modulo a omposite of unknown fatorization. In fat omputing square roots is equivalent to fatoring.Also, it is hard to deide quadrati residuosity modulo a omposite.Fat C.25 If N is the produt of two primes, every square w 2 Z�N has exatly four square roots, x;�x andy;�y for some x; y 2 Z�N . If you have two square roots x; y suh that x 6= �y, then you an easily fator N .The �rst fat is basi number theory. The seond is seen like this. Say x > y are the roots. Considerx2 � y2 = (x � y)(x + y) � 0 mod N . Let a = x � y and b = x + y mod N . So N divides ab. So p dividesab. Sine p is prime, this means either p divides a or p divides b. Sine 1 � a; b < N this means eithergd(a;N) = p or gd(b;N) = p. We an ompute the gds and hek whether we get a divisor of N .C.7 Jaobi SymbolWe previously de�ned the Legendre symbol to indiate the quadrati harater of a 2 Z�p where p is a prime.Spei�ally, for a prime p and a 2 ZpJp(a) = 8<: 1 if a is a square in Z�p0 if a = 0�1 if a is not a square in Z�pFor omposite integers, this de�nition is extended, as follows, giving the Jaobi Symbol. Let n = Qki=1 pi�ibe the prime fatorization of n. For a 2 Zn de�neJn(a) = kYi=1Jpi(a)�i :However, the Jaobi Symbol does not generalize the Legendre Symbol in the respet of indiating thequadrati harater of a 2 Z�n when n is omposite. For example, J9(2) = J3(2)J3(2) = 1, although theequation x2 � 2 mod 9 has no solution.The Jaobi Symbol also satis�es identities similar to those satis�ed by the Legendre Symbol. We list thesehere. For proofs of these refer to [150℄.1. If a � b mod n then Jn(a) = Jn(b).2. Jn(1) = 1.3. Jn(�1) = (�1)n�12 .4. Jn(ab) = Jn(a)Jn(b).5. Jn(2) = (�1)n2�18 .6. If m and n are relatively prime odd integers then Jn(m) = (�1)n�12 m�12 Jm(n).

256 Goldwasser and BellareUsing these identities, the Jaobi Symbol Jn(a) where a 2 Zn an be alulated in polynomial time evenwithout knowing the fatorization of n. Reall that to alulate the Legendre Symbol in polynomial timewe an all upon Euler's Theorem; namely, for a 2 Z�p, where p is prime, we have Jp(a) � a p�12 mod p.However, for a omposite integer n it is not neessarily true that Jn(a) � an�12 mod n for a 2 Z�n. In fat,this statement is true for at most half of the elements in Z�n. From this result, we an derive a Monte Carloprimality test as we shall see later.C.8 RSAHere we have a omposite modulus N = pq produt of two distint primes p and q of roughly equal length.Let k = jN j; this is about 1024, say. It is generally believed that suh a number is hard to fator.Reall that �(N) = jZ�N j is the Euler Phi funtion. Note that �(N) = (p� 1)(q� 1). (To be relatively primeto N , a number must be divisible neither by p nor by q. Eliminating multiples of either yields this. Note weuse here that p 6= q.)Now let e be suh that gd(e; �(N)) = 1. That is, e 2 Z��(N). The RSA funtion is de�ned byf : Z�N ! Z�Nx 7! xe mod N :We know that Z��(N) is a group. So e has an inverse d 2 Z��(N). Sine d is an inverse of e it satis�esed � 1 (mod �(N))Now let x 2 Z�N be arbitrary and look at the following omputation:(xe)d mod N = xed mod �(N) mod N = x1 mod N = x :In other words, the funtion y 7! yd is an inverse of f . That is, f�1(y) = yd mod N .Can we �nd d? Easy: omputing inverses an be done in quadrati time, as we already say, using theextended GCD algorithm! But note a ruial thing. We are working modulo �(N). So �nding d this wayrequires that we know �(N). But the latter involves knowing p; q.It seems to be the ase that given only N and e it is hard to �nd d. Certainly we agreed it is hard to �ndp; q; but even more, it seems hard to �nd d. This yields the onjeture that RSA de�nes a trapdoor one-waypermutation. Namely given N; e de�ning f , x 7! f(x) is easy; y 7! f�1(y) is hard; but f�1 is easy given p; q(or d). Note that this trapdoorness is a property the disrete logarithm problem did not have.Computation of f is alled enryption, and omputation of f�1 is alled deryption.Both enryption and deryption are exponentiations, whih a priori are ubi in k time operations. However,one often hooses e to be small, so enryption is faster. In hardware, RSA is about 1000 times slower thanDES; in software it is about 100 times slower, this with small enryption exponent.Formally, RSA de�nes a family of trapdoor permutations. The family is indexed by a seurity parameter kwhih is the size of the modulus. The RSA generator is an algorithm G whih on input 1k piks two distint,random (k=2)-bit primes p; q, multiplies them to produe N = pq, and also omputes e; d. It outputs N; eas the desription of f and N; d as the desription of f�1. See Chapter 2.RSA provides the ability to do publi key ryptography.C.9 Primality TestingFor many ryptographi purposes, We need to �nd primes. There is no known polynomial time algorithmto test primality of a given integer n. What we use are probabilisti, polynomial time (PPT) algorithms.

Cryptography: Leture Notes 257We will �rst show that the problem of deiding whether an integer is prime is in NP. Then we will disuss theSolovay-Strassen and Miller-Rabin probabilisti primality tests whih eÆiently �nd proofs of ompositeness.Finally, we will give a primality test due to Goldwasser and Kilian whih uses ellipti urves and whiheÆiently �nds a proof of primality.C.9.1 PRIMES 2 NPWe will �rst present two algorithms for testing primality, both of whih are ineÆient beause they requirefatoring as a subroutine. However, either algorithm an be used to show that the problem of deidingwhether an integer is prime is in NP. In fat, the seond algorithm that is presented further demonstratesthat deiding primality is in UP\oUP. Here UP denotes the lass of languages L aepted by a polynomialtime nondeterministi Turing mahine having a unique aepting path for eah x 2 L.De�nition C.26 Let PRIMES = fp : p is a prime integerg.C.9.2 Pratt's Primality TestPratt's primality testing algorithm is based on the following result.Proposition C.27 For an integer n > 1, the following statements are equivalent.1. jZ�nj = n� 1.2. The integer n is prime.3. There is an element g 2 Z�n suh that gn�1 � 1 mod n and for every prime divisor q of n � 1,g n�1q 6� 1 mod n.Pratt's algorithm runs as follows on input a prime p and outputs a proof (or erti�ate) that p is indeedprime.1. Find an element g 2 Z�p whose order is p� 1.2. Determine the prime fatorization kYi=1 q�ii of p� 1.3. Prove that p is prime by proving that g is a generator of Z�p. Spei�ally, hek that gp�1 � 1 mod pand for eah prime qi hek that g p�1qi 6� 1 mod p.4. Reursively show that qi is prime for 1 � i � k.Note that if p is a prime, then Z�p has '(p � 1) =
(plog log p) generators (see [172℄). Thus, in order to�nd a generator g by simply hoosing elements of Z�p at random, we expet to have to hoose O(log log p)andidates for g. If we �nd a generator g of Z�p and if we an fator p�1 and reursively prove that the primefators of p � 1 are indeed primes then we have obtained a proof of the primality of p. Unfortunately, it isnot known how to eÆiently fator p�1 for general p. Pratt's primality testing algorithm does demonstrate,however, that PRIMES 2 NP beause both the generator g in step 1 and the required fatorization in step 2an be guessed. Moreover, the fat that the fatorization is orret an be veri�ed in polynomial time andthe primality of eah qi an be veri�ed reursively by the algorithm. Note also, as Pratt showed in [161℄ bya simple indutive argument, that the total number of primes involved is O(log p). Thus, verifying a Pratterti�ate requires O(log2 p) modular multipliations with moduli at most p.

258 Goldwasser and BellareC.9.3 Probabilisti Primality TestsC.9.4 Solovay-Strassen Primality TestWe an derive a Monte Carlo primality test. This algorithm, whih we state next, is due to Solovay andStrassen (see [191℄).The Solovay-Strassen primality test runs as follows on input an odd integer n and an integer k, indiatingthe desired reliability.1. Test if n = be for integers b; e > 1; if so, output omposite and terminate.2. Randomly hoose a1; a2; : : : ; ak 2 f1; 2; : : : ; n� 1g.3. If gd(ai; n) 6= 1 for any 1 � i � k then output omposite and terminate.4. Calulate �i = an�12i mod n and �i = Jn(ai).5. If for any 1 � i � k, �i 6= �i mod n then output omposite. If for all 1 � i � k, �i = �i mod n thenoutput probably prime.Sine the alulations involved in the Solovay-Strassen primality test are all polynomial time omputable(verify that this statement is indeed true for step 1), it is lear that the algorithm runs in time polynomialin logn and k. The following result guarantees that if n is omposite then in step 5 of the algorithm,Pr[�i = �i mod n℄ � 12 and thus, Pr[�i = �i mod n for 1 � i � k℄ � � 12�k.Proposition C.28 Let n be an odd omposite integer whih is not a perfet square and letG = fa 2 Z�n suh that Jn(a) � an�12 mod ng. Then jGj � 12 jZ�nj.Proof: Sine G is a subgroup of Z�n it suÆes to show that G 6= Z�n.Sine n is omposite and not a perfet square, it has a nontrivial fatorization n = rp� where p is prime, �is odd, and gd(r; p) = 1.Suppose that an�12 � Jn(a) mod n for all a 2 Z�n. Thenan�12 � �1 mod n for all a 2 Z�n: (C.1)We �rst show that in fat an�12 � 1 mod n for all suh a. If not, then there is an a 2 Z�n with an�12 ��1 mod n. By the Chinese Remainder Theorem there is a unique element b 2 Zn suh that b � 1 mod rand b � a mod p�. Then b 2 Z�n and bn�12 � 1 mod r and bn�12 � �1 mod p� ontraditing equation (C:1).Therefore, Jn(a) = 1 for all a 2 Z�n.However, by the Chinese Remainder Theorem, there is a unique element a 2 Zrp suh that a � 1 mod rand a � z mod p where z is one of the p�12 quadrati nonresidues modulo p. Then a 2 Z�n and thus,Jn(a) = Jr(1)Jp(z)� = �1 beause � is odd. This is a ontradition.Note that if we reah step 5 of the Solovay-Strassen algorithm then n is not a perfet square and eahai 2 Z�n beause the algorithm heks for perfet powers in step 1 and omputes gd(ai; n) in step 3. Thus,the hypotheses of Proposition C.28 are satis�ed and for eah 1 � i � k, Pr[�i = �i mod n℄ � 12 .Remark The assertion in Proposition C.28 is in fat true even if n is a perfet square. The proof of themore general statement is very similar to the proof of Proposition C.28. For details refer to [7℄.

Cryptography: Leture Notes 259Finally, it follows from Proposition C.28 that the Solovay-Strassen algorithm runs orretly with high prob-ability. Spei�ally,Pr[Solovay-Strassen outputs probably prime j n is omposite℄ � (12)kand Pr[Solovay-Strassen outputs probably prime j n is prime℄ = 1:C.9.5 Miller-Rabin Primality TestFermat's Little Theorem states that for a prime p and a 2 Z�p, ap�1 � 1 mod p. This suggests that perhapsa possible way to test if n is prime might be to hek, for instane, if 2n�1 � 1 mod n. Unfortunately,there are omposite integers n (alled base-2 pseudoprimes) for whih 2n�1 � 1 mod n. For example,2340 � 1 mod 341 and yet 341 = 11 �31. In fat, replaing 2 in the above exponentiation by a random a 2 Z�nwould not help for some values of n beause there are omposite integers n (alled Carmihael numbers) forwhih an�1 � 1 mod n for all a 2 Z�n. 561, 1105, and 1729 are the �rst three Carmihael numbers.The Miller-Rabin primality test overomes the problems of the simple suggestions just mentioned by hoosingseveral random a 2 Z�n for whih an�1 mod n will be alulated by repeated squaring. While omputingeah modular exponentiation, it heks whether some power of a is a nontrivial square root of 1 modulo n(that is, a root of 1 not ongruent to �1 modulo n). If so, the algorithm has determined n to be omposite.The quality of this test relies on Proposition C.30 whih Rabin proved in [165℄. For a simpler proof whihonly yields jfb : Wn(b) holds gj � 12 (n�1) (but is nevertheless suÆient for the purposes of the Miller-Rabinalgorithm) see Chapter 33, pages 842-843 of [59℄.De�nition C.29 Let n be an odd positive integer. Denote the following ondition on an integer b by Wn(b):1. 1 � b < n and2. (i) bn�1 6� 1 mod n or(ii) there is an integer i suh that 2i j (n� 1) and b(n�1)=2i 6� �1 mod n but �b(n�1)=2i�2 � 1 mod n.An integer b for whih Wn(b) holds will be alled a witness to the ompositeness of n.Remark Rabin originally de�ned the ondition Wn(b) to hold if 1 � b < n and either bn�1 6� 1 mod nor for some integer i suh that 2i j (n � 1), 1 < gd(b(n�1)=2i � 1; n) < n. In [165℄ Rabin proves that thetwo de�nitions for Wn(b) are equivalent. This ondition was in fat �rst onsidered by Miller (see [142℄),who used it to give a nonprobabilisti test for primality assuming the orretness of the extended Riemannhypothesis. Rabin's results, however, do not require any unproven assumptions.Proposition C.30 If n is an odd omposite integer then jfb : Wn(b) holdsgj � 34 (n� 1).The Miller-Rabin algorithm runs as follows on input an odd integer n and an integer k, indiating the desiredreliability.1. Randomly hoose b1; b2; : : : ; bk 2 f1; 2; : : : ; n� 1g.2. Let n� 1 = 2lm where m is odd.3. For 1 � i � k ompute bmi mod n by repeated squaring.4. Compute b2jmi mod n for j = 1; 2; : : : ; l. If for some j, b2j�1mi 6� �1 mod n but b2jmi � 1 mod n thenWn(bi) holds.

260 Goldwasser and Bellare5. If bn�1i 6� 1 mod n then Wn(bi) holds.6. If for any 1 � i � k, Wn(bi) holds then output omposite. If for all 1 � i � k, Wn(bi) does not holdthen output probably prime.Proposition C.30 shows that the Miller-Rabin algorithm runs orretly with high probability. Spei�ally,Pr[Miller-Rabin outputs probably prime j n is omposite℄ � (14)kand Pr[Miller-Rabin outputs probably prime j n is prime℄ = 1:Furthermore, Miller-Rabin runs in time polynomial in logn and k as all the omputations involved an beperformed in polynomial time.C.9.6 Polynomial Time Proofs Of PrimalityEah of the two algorithms disussed in the previous setion su�ers from the de�ieny that whenever thealgorithm indiates that the input n is prime, then it is prime with high probability, but no ertainty isprovided. (In other words, the algorithms are Monte Carlo algorithms for testing primality.) However, wheneither algorithm outputs that the input n is omposite then it has determined that n is indeed omposite.Thus, the Solovay-Strassen and Miller-Rabin algorithms an be viewed as ompositeness provers. In thissetion we will disuss a primality test whih yields in expeted polynomial time a short (veri�able indeterministi polynomial time) proof that a prime input is indeed prime. Therefore, for a general integralinput we an run suh a primality prover in parallel with a ompositeness prover and one of the two willeventually terminate either yielding a proof that the input is prime or a proof that the input is omposite.This will provide us with a Las Vegas algorithm for determining whether an integer is prime or omposite.C.9.7 An Algorithm Whih Works For Some PrimesSuppose that we ould �nd a prime divisor q of p� 1 suh that q > pp. Then the following algorithm anbe used to prove the primality of p.1. Determine a prime divisor q of p� 1 for whih q > pp.2. Randomly hoose a 2 Z�p � f1g.3. If 1 < gd(a� 1; p) < p then output that p is omposite.4. Chek that aq � 1 mod p.5. Reursively prove that q is prime.The orretness of this algorithm follows from the next result.Claim C.31 If q >pp is a prime and for some a 2 Z�p gd(a�1; p) = 1 and aq � 1 mod p then p is a prime.Proof: Suppose p is not prime. Then there is a prime d � pp suh that d j p and therefore, by thehypothesis, a 6� 1 mod d and aq � 1 mod d. Thus, in Z�d, ord(a) j q. But q is prime and a does not haveorder 1. Hene, q = ord(a) � jZ�dj = d� 1 < pp and this ontradits the assumption that q > pp.Note that if p is prime then in step 4, the ondition aq � 1 mod p will be veri�ed with probability at leastq�1p�2 > 1pp (sine q > pp). However, in order for the algorithm to sueed, there must exist a prime divisor

Cryptography: Leture Notes 261q of p � 1 suh that q > pp, and this must our at every level of the reursion. Namely, there must bea sequene of primes q = q0; q1; : : : ; qk, where qk is small enough to identify as a known prime, suh thatqi j (qi�1 � 1) and qi > pqi�1 for i = 1; : : : ; k and this is very unlikely.This obstale an be overome by working with ellipti urves modulo primes p instead of Z�p. This will allowus to randomly generate for any prime modulus, ellipti groups of varying orders. In the following setions,we will exploit this additional freedom in a manner similar to Lenstra's ellipti urve fatoring algorithm.C.9.8 Goldwasser-Kilian Primality TestThe Goldwasser-Kilian primality test is based on properties of ellipti urves. The idea of the algorithm issimilar to the primality test presented in Setion C.9.7, exept that we work with ellipti urves Ea;b(Zp)instead of Z�p. By varying a and b we will be able to �nd an ellipti urve whih exhibits ertain desiredproperties.The Goldwasser-Kilian algorithm runs as follows on input a prime integer p 6= 2; 3 of length l and outputs aproof that p is prime.1. Randomly hoose a; b 2 Zp, rejeting hoies for whih gd(4a3 + 27b2; p) 6= 1.2. Compute jEa;b(Zp)j using the polynomial time algorithm due to Shoof (see [179℄).3. Use a probabilisti pseudo-primality test (suh as Solovay-Strassen or Miller-Rabin) to determine ifjEa;b(Zp)j is of the form q where 1 < � O(log2 p) and q is a probable prime. If jEa;b(Zp)j is not ofthis form then repeat from step 1.4. Selet a point M = (x; y) on Ea;b(Zp) by hoosing x 2 Zp at random and taking y to be the squareroot of x3 + ax + b, if one exists. If x3 + ax + b is a quadrati nonresidue modulo p then repeat theseletion proess.5. Compute q �M .(i) If q �M = O output (a; b; q;M). Then, if q > 2l(1log logl) , [5℄), reursively prove that q is prime(spei�ally, repeat from step 1 with p replaed by q). Otherwise, use the deterministi test dueto Adleman, Pomerane, and Rumely (see [5℄) to show that q is prime and terminate.(ii) If q �M 6= O then repeat from step 4.Remark The test mentioned in step 5i is urrently the best deterministi algorithm for deiding whetheran input is prime or omposite. It terminates within (logn)O(log log log n) steps on input n.C.9.9 Corretness Of The Goldwasser-Kilian AlgorithmNote �rst that as we saw in Setion C.9.3, the probability of making a mistake at step 3 an be madeexponentially small. The orretness of the Goldwasser-Kilian algorithm follows from Theorem C.32. Thisresult is analogous to Claim C.31.Theorem C.32 Let n > 1 be an integer with gd(n; 6) = 1. Let Ea;b(Zn) be an ellipti urve modulo nand let M 6= O be a point on Ea;b(Zn). If there is a prime integer q suh that q > (n1=4+1)2 and q �M = Othen n is prime.

262 Goldwasser and BellareProof: Suppose that n were omposite. Then there is a prime divisor p of n suh that p < pn.Let ordE(M) denote the order of the point M on the ellipti urve E. If q �M = O then q �Mp = Op. Thus,ordEp(Mp) j q.However, ordEp(Mp) � jEa;b(Zp)j � p+ 1 + 2pp (by Hasse's Inequality)< n1=2 + 1+ 2n1=4< qand sine q is prime, we have that ordEp(Mp) = 1. Therefore, Mp = Op whih implies that M = O, aontradition.Theorem C.33 By using the sequene of quadruples output by the Goldwasser-Kilian algorithm, we anverify in time O(log4 p) that p is indeed prime.Proof: Let p0 = p. The sequene of quadruples output by the algorithm will be of the form (a1; b1; p1;M1); (a2; b2; p2;M2); : : : ; (ak; bk; pk;Mk)where gd(4a3i + 27b2i ; pi�1) 6= 1, Mi 6= O is a point on Eai;bi(Zpi�1), pi > p1=2i�1 + 1+ 2p1=4i�1, and pi �Mi = Ofor 1 � i � k. These fats an all be veri�ed in O(log3 p) time for eah value of i. By Theorem C.32 itfollows that pi prime) pi�1 prime for 1 � i � k. Further, note that in step 3 of the algorithm, � 2 andhene, pi � pi�1+2ppi�12 . Therefore, the size of k will be O(log p) giving a total of O(log4 p) steps. Finally,pk an be veri�ed to be prime in O(log p) time due to its small size.C.9.10 Expeted Running Time Of Goldwasser-KilianThe algorithm due to Shoof omputes jEa;b(Zp)j in O(log9 p) time. Then to hek that jEa;b(Zp)j = qwhere 1 < � O(log2 p) and q is prime requires a total of O(log6 p) steps if we use Solovay-Strassen orMiller-Rabin with enough iterations to make the probability of making a mistake exponentially small (thealgorithm may have to be run for eah possible value of and eah run of the algorithm requires O(log4 p)steps).Next, seleting the point M = (x; y) requires hoosing an expeted number of at most 2pjEa;b(Zp)j�1 � 2 valuesfor x before �nding one for whih x3 + ax+ b is a quadrati residue modulo p. Note that the omputationof square roots modulo a prime p (to �nd y) an be done in O(log4 p) expeted time. Sine jEa;b(Zp)j = qwhere q is prime, Ea;b(Zp) is isomorphi to Z1q � Z2 where = 12 and 2j1. Therefore, Ea;b(Zp) hasat least q � 1 points of order q and hene with probability at least q�1q � 1 , the point M seleted in step 4will have order q. Thus, the expeted number of points that must be examined before �nding a point M oforder q will be = O(log2 p). Further, the omputation of q �M requires O(log p) additions, using repeateddoubling and so an be done in O(log3 p) time. Therefore, dealing with steps 4 and 5 requires O(log5 p)expeted time.As remarked previously, the reursion depth is O(log p). Therefore, the only remaining onsideration is todetermine how often an ellipti urve Ea;b(Zp) has to be seleted before jEa;b(Zp)j = q where = O(log2 p)and q is prime. By the result of Lenstra onerning the distribution of jEa;b(Zp)j in (p+1�pp; p+1+pp)(see [126℄) this is O(pp log pjSj�2) where S is the set of integers in (p + 1 �pp; p + 1 +pp) of the desired formq. Note that jSj � �(p+1+pp2)� �(p+1�pp2) beause S ontains those integers in (p+ 1�pp; p+ 1 +pp)whih are twie a prime. Therefore, if one assumes that the asymptoti distribution of primes holds in smallintervals, then the expeted number of ellipti urves that must be onsidered is O(log2 p). However, thereis only evidene to assume the following onjeture onerning the number of primes in small intervals.

Cryptography: Leture Notes 263Conjeture C.34 There is a positive onstant s suh that for all x 2 R�2, the number of primes betweenx and x+p2x is
� pxlogs x�.Under this assumption, the Goldwasser-Kilian algorithm proves the primality of p in O((log p)11+s) expetedtime.C.9.11 Expeted Running Time On Nearly All PrimesAlthough the analysis presented in Setion C.9.10 relies on the unproven result stated in Conjeture C.34, atheorem due to Heath-Brown onerning the density of primes in small intervals an be used to show that thefration of primes of length l for whih the Goldwasser-Kilian algorithm runs in expeted time polynomialin l is at least 1�O(2�l 1log log l). The Heath-Brown result is the following.Theorem C.35 Let #p[a; b℄ denote the number of primes x satisfying a � x � b.Let i(a; b) = � 1 if #p[a; b℄ � b�a2blog a0 otherwise : Then there exists a positive onstant � suh thatXx�a�2x i(a; a+pa) � x 56 log� x.Using this theorem, Goldwasser and Kilian were able to prove in [96℄ that their algorithm terminates inexpeted time O(l12) on at least a 1� O(2l 1log log l) fration of those primes of length l. In [4℄ Adleman andHuang showed, by a more areful analysis of the Goldwasser-Kilian algorithm, that in fat the fration ofprimes of length l for whih Goldwasser-Kilian may not terminate in expeted polynomial time is stritlyexponentially vanishing. Further, they proposed a new algorithm for proving primality based on hyperelliptiurves whih they showed will terminate in exponential polynomial time on all prime inputs. Thus, the goalof obtaining a Las Vegas algorithm has been �nally ahieved.C.10 Fatoring AlgorithmsIn this leture we disuss some general properties of ellipti urves and present Lenstra's ellipti urvefatoring algorithm whih uses ellipti urves over Zn to fator integers.Pollard's p� 1 MethodWe begin by introduing a predeessor of the ellipti urve fatoring algorithm whih uses ideas analogousto those used in the ellipti urve fatoring algorithm. This algorithm, known as Pollard's p � 1 method,appears in [160℄. Let n be the omposite number that we wish to split. Pollard's algorithm uses the ideathat if we an �nd integers e and a suh that ae � 1 mod p and ae 6� 1 mod q for some prime fators p andq of n then, sine p j (ae � 1) and q 6 j (ae � 1), gd(ae � 1; n) will be a nontrivial fator of n divisible by pbut not by q.The algorithm proeeds as follows on input n.1. Choose an integer e that is a multiple of all integers less than some bound B. For example, e mightbe the least ommon multiple of all integers � B. To simplify this, we might even let e = Q�(B)i=1 p�iiwhere p1; p2; : : : ; p�(B) are the primes � B and �i is hosen minimally so that p�ii � pn > minpjn fp�1g.2. Choose a random integer a between 2 and n� 2.

264 Goldwasser and Bellare3. Compute ae mod n by repeated squaring.4. Compute d = gd(ae � 1; n) by the Eulidean algorithm. If 1 < d < n output the nontrivial fator d.Otherwise, repeat from step 2 with a new hoie for a.To explain when this algorithm works, assume that the integer e is divisible by every integer � B and thatp is a prime divisor of n suh that p� 1 is the produt of prime powers � B. Then e = m(p � 1) for someinteger m and hene ae = �a(p�1)�m � 1m = 1 mod p. Therefore, p j gd(ae � 1; n) and the only way thatwe ould fail to obtain a nontrivial fator of n in step 4 is if ae � 1 mod n. In other words, we ould onlyfail here if for every prime fator q of n the order of a mod q divides e and this is unlikely.Unfortunately, it is not true that for general n there is a prime divisor p of n for whih p� 1 is divisible byno prime power larger than B for a bound B of small size. If p� 1 has a large prime power divisor for eahprime divisor p of n, then Pollard's p�1 method will work only for a large hoie of the bound B and so willbe ineÆient beause the algorithm runs in essentially O(B) time. For example, if n is the produt of twodi�erent primes p and q where jpj � jqj are primes and p� 1 and q � 1 are O(pn)-smooth then the methodwill likely require a bound B of size O(pn).Reiterating, the problem is that given input n = Q pi�i where the pi's are the distint prime fators of n,we are restrited by the possibility that none of the integers pi � 1 are suÆiently smooth. However, wean ameliorate this restrition by working with the group of points de�ned over ellipti urves. For eahprime p we will obtain a large olletion of groups whose orders essentially vary \uniformly" over the interval(p + 1 � pp; p + 1 + pp). By varying the groups involved we an hope to always �nd one whose order issmooth. We will then show how to take advantage of suh a olletion of groups to obtain a fatorization ofn.C.11 Ellipti CurvesDe�nition C.36 An ellipti urve over a �eld F is the set of points (x; y) with x, y 2 F satisfying theWeierstrass equation y2 = x3 + ax + b where a; b 2 F and 4a3 + 27b2 6= 0 together with a speial point Oalled the point at in�nity. We shall denote this set of points by Ea;b(F).Remark The ondition 4a3 + 27b2 6= 0 ensures that the urve is nonsingular. That is, when the �eld F isR, the tangent at every point on the urve is uniquely de�ned.Let P , Q be two points on an ellipti urve Ea;b(F). We an de�ne the negative of P and the sum P +Qon the ellipti urve Ea;b(F) aording to the following rules.1. If P is the point at in�nity O then we de�ne �P to be O.Otherwise, if P = (x; y) then �P = (x;�y).2. O + P = P +O = P .3. Let P;Q 6= O and suppose that P = (x1; y1), Q = (x2; y2).(i) If P = �Q (that is, x1 = x2 and y1 = �y2) then we de�ne P +Q = O(ii) Otherwise, let � = y1 � y2x1 � x2 if P 6= Q (C.2)or � = 3x21 + ay1 + y2 if P = Q (C.3)

Cryptography: Leture Notes 265That is, if the �eld F = R, � is the slope of the line de�ned by P and Q,if P 6= Q, or the slope of the tangent at P , if P = Q.Then P +Q = R where R = (x3; y3) with x3 = �2 � (x1 + x2) andy3 = �(x1 � x3)� y1.It an be shown that this de�nition of addition on the ellipti urve is assoiative and always de�ned, andthus it imposes an additive abelian group struture on the set Ea;b(F) with O serving as the additive identityof the group. We will be interested in F = Zp where p 6= 2; 3 is a prime. In this ase, addition in Ea;b(Zp)an be omputed in time polynomial in jpj as equations (C:2) and (C:3) involve only additions, subtrations,and divisions modulo p. Note that to ompute z�1 mod p where z 2 Z�p we an use the extended Eulideanalgorithm to ompute an integer t suh that tz � 1 mod p and then set z�1 = t mod p.To illustrate negation and addition, onsider the ellipti urve y2 = x3 � x over R as shown in Figure C.1.Figure C.1: Addition on the ellipti urve y2 = x3 � x.The graph is symmetri about the x-axis so that the point P is on the urve if and only if �P is on theurve. Also, if the line l through two points P;Q 6= O on the urve E(R) is not vertial then there is exatlyone more point where this line intersets the urve. To see this, let P = (x1; y1), Q = (x2; y2) and lety = �x+ � be the equation of the line through P and Q where � = y1�y2x1�x2 if P 6= Q or � = 3x21+ay1+y2 if P = Qand � = y1 � �x1. Note that in the ase where P = Q, we take l to be the tangent at P in aordane withthe rules of addition on the urve E(R). A point (x; �x + �) on the line l lies on the ellipti urve if andonly if (�x + �)2 = x3 + ax + b. Thus, there is one intersetion point for eah root of the ubi equationx3 � (�x + �)2 + ax+ b = 0. The numbers x1 and x2 are roots of this equation beause (x1; �x1 + �) and(x2; �x2+�) are, respetively, the points P and Q on the urve. Hene, the equation must have a third rootx3 where x1 + x2 + x3 = �2. This leads to the expression for x3 mentioned in the rules of addition for theurve E(R). Thus, geometrially, the operation of addition on E(R) orresponds to drawing the line throughP and Q, letting the third interept of the line with the urve be �R = (x; y) and taking R = (x;�y) to bethe sum P +Q.C.11.1 Ellipti Curves Over ZnLenstra's ellipti urve fatoring algorithm works with ellipti urves Ea;b(Zn) de�ned over the ring Zn wheren is an odd, omposite integer. The nonsingularity ondition 4a3+27b2 6= 0 is replaed by gd(4a3+27b2; n) =1. The negation and addition rules are given as was done for ellipti urves over �elds. However, the additionof two points involves a division (refer to equations (C:2) and (C:3) in the rules for arithmeti on elliptiurves given at the beginning of this setion) whih is not always de�ned over the ring Zn. For addition to bede�ned the denominators in these equations must be prime to n. Consequently, Ea;b(Zn) is not neessarilya group. Nevertheless, we may de�ne a method for omputing multiples e � P of a point P 2 Ea;b(Zn) asfollows.1. Let a0 + a12 + � � �+ am�12m�1 be the binary expansion of e. Let j = 0, S = 0.2. If aj = 1 then S S + 2jP . If this sum is not de�ned (namely, the division in equation (C:2) orequation (C:3) has failed) then output unde�ned and terminate.3. j j + 1. If j = m then output S as the de�ned value for e � P and terminate.4. Calulate 2jP := 2j�1P +2j�1P . If this sum is not de�ned then output that e �P annot be alulatedand terminate. Otherwise, repeat from step 2.

266 Goldwasser and BellareThe ellipti urve algorithm will use1 this method whih will be referred to as repeated doubling. Note thatif the repeated doubling method is unable to alulate a given multiple e � P and outputs unde�ned thenwe have enountered points Q1 = (x1; y1) and Q2 = (x2; y2) on Ea;b(Zn) suh that Q1 + Q2 is not de�nedmodulo n (the division in equation (C:2) or equation (C:3) has failed) and hene, either gd(x1 � x2; n) orgd(y1 + y2; n) is a nontrivial fator of n.Next, we state some fats onerning the relationship between ellipti urves de�ned over Zn and elliptiurves de�ned over Zp when p is a prime divisor of n. Let a; b 2 Zn be suh that gd(4a3 + 27b2; n) = 1.Let p be a prime divisor of n and let ap = a mod p, bp = b mod p.Fat C.37 Eap;bp(Zp) is an additive abelian group.Further, given P = (x; y) 2 Ea;b(Zn), de�ne Pp = (x mod p; y mod p). Pp is a point on the ellipti urveEap;bp(Zp).Fat C.38 Let P and Q be two points on Ea;b(Zn) and let p be a prime divisor of n. If P + Q is de�nedmodulo n then Pp+Qp is de�ned on Ea;b(Zp) and Pp+Qp = (P +Q)p. Moreover, if P 6= �Q then the sumP +Q is unde�ned modulo n if and only if there is some prime divisor q of n suh that the points Pq andQq add up to the point at in�nity O on Eaq;bq (Zq) (equivalently, Pq = �Qq on Eaq ;bq (Zq)).C.11.2 Fatoring Using Ellipti CurvesThe main idea in Lenstra's ellipti urve fatoring algorithm is to �nd points P and Q in Ea;b(Zn) suh thatP +Q is not de�ned in Ea;b(Zn). We will assume throughout that n has no fators of 2 or 3 beause thesean be divided out before the algorithm ommenes.The algorithm runs as follows on input n.1. Generate an ellipti urve Ea;b(Zn) and a point P = (x; y) on Ea;b(Zn) by randomly seleting x, y anda in Zn and setting b = y2 � x3 � ax mod n.2. Compute gd(4a3 + 27b2; n). If 1 < gd(4a3 + 27b2; n) < n then we have found a divisor of n andwe stop. If gd(4a3 + 27b2; n) = 1 then 4a3 + 27b2 6� 0 mod p for every prime divisor p of n andhene Ea;b is an ellipti urve over Zp for eah prime divisor p of n and we may proeed. But ifgd(4a3 + 27b2; n) = n then we must generate another ellipti urve Ea;b.3. Set e = Q�(B)i=1 p�ii where p1; p2; : : : ; p�(B) are the primes � B and �i is hosen maximally so thatp�ii � C. B and C are bounds that will be determined later so as to optimize the running time andensure that the algorithm will most likely sueed.4. Compute e � P in Ea;b(Zn) by repeated doubling. Every time before adding two intermediate pointsP1 = (x1; y1) and P2 = (x2; y2) hek if gd(x1 � x2; n) or gd(y1 + y2; n) is a nontrivial fator of n. Ifso, output the fator and stop. Otherwise, repeat from step 1.An ellipti urve Ea;b(Zn) will lead to a nontrivial fatorization of n if for some prime fators p and q ofn, e � Pp = O on Eap;bp(Zp) but Pq does not have order dividing e on Eaq;bq (Zq). Notie the analogy herebetween Lenstra's ellipti urve algorithm and Pollard's p � 1 algorithm. In Pollard's algorithm we seekprime divisors p and q of n suh that e is a multiple of the order of a 2 Z�p but not a multiple of the orderof a 2 Z�q . Similarly, in Lenstra's algorithm we seek prime divisors p and q of n suh that e is a multipleof the order of Pp 2 Eap;bp(Zp) but not a multiple of the order of Pq 2 Eaq ;bq (Zq). However, there is a key1This statement is inorret and will soon be orreted in these notes. For the method used in the algorithm, see setion 2.3of [129℄

Cryptography: Leture Notes 267di�erene in versatility between the two algorithms. In Pollard's algorithm, the groups Z�p where p rangesover the prime divisors of n are �xed so that if none of these groups have order dividing e then the methodfails. In Lenstra's ellipti urve algorithm the groups Eap;bp(Zp) an be varied by varying a and b. Hene,if for every prime divisor p of n, jEap;bp(Zp)j 6 j e, then we may still proeed by simply working over anotherellipti urve; that is, hoosing new values for a and b.C.11.3 Corretness of Lenstra's AlgorithmSuppose that there are prime divisors p and q of n suh that e is a multiple of jEap;bp(Zp)j but in Eaq ;bq (Zq),Pq does not have order dividing e. Then e �Pp = O in Eap;bp(Zp) but e �Pq 6= O in Eaq ;bq (Zq) and thus thereexists an intermediate addition of two points P1 = (x1; y1) and P2 = (x2; y2) in the alulation of e � P suhthat x1 � x2 mod p but x1 6� x2 mod q if P1 6= P2or y1 � �y2 mod p but y1 6� �y2 mod q if P1 = P2:Hene, either gd(x1 � x2; n) or gd(y1 + y2; n) is a nontrivial fator of n. The points P1, and P2 will beenountered when (P1)p + (P2)p = O in Eap;bp(Zp) but (P1)q + (P2)q 6= O in Eaq ;bq (Zq).C.11.4 Running Time AnalysisThe time needed to perform a single addition on an ellipti urve an be taken to be M(n) = O(log2 n) ifone uses the Eulidean algorithm. Consequently, sine the omputation of e � P uses repeated doubling, thetime required to proess a given ellipti urve is O((log e)(M(n)). Reall that e =Q�(B)i=1 p�ii where p�ii � C.Then e � C�(B) and therefore, log e � �(B) logC. Now, let p be the smallest prime divisor of n and onsiderthe hoie B = L�(p) = exp[�(log p)1=2(log log p)1=2℄ where � will be optimized. ThenlogB = �(log p)1=2(log log p)1=2 = e[log �+ 12 (log log p)+ 12 (log log log p)℄and thus �(B) � BlogB � O �e[�(log p)1=2(log log p)1=2� 12 (log log p)℄� � O(L�(p)):Hene, the time required for eah iteration of the algorithm is O(L�(p)M(n)(logC)). In hoosing C, notethat we would like e to be a multiple of jEap;bp(Zp)j for some prime divisor p of n and thus it is suÆientto take C = jEap;bp(Zp)j where p is some prime divisor of n, provided that jEap;bp(Zp)j is B-smooth. Thevalue of p is unknown, but if p is the smallest prime divisor of n then p < pn. We also know by Hasse'sInequality (see, for example, page 131 of [190℄) that p + 1 � 2pp < jEap;bp(Zp)j < p + 1 + 2pp and thusjEap;bp(Zp)j < pn+ 1 + 2 4pn. Hene, it is safe to take C = pn+ 1 + 2 4pn.The only remaining onsideration is to determine the expeted number of ellipti urves that must beexamined before we obtain a fatorization of n and this part of the analysis relies on the following result dueto Lenstra whih appears as Proposition 2.7 in [129℄.Proposition C.39 Let S = fs 2 Z : js � (p + 1)j < pp and s is L(p)�-smoothg. Let n be a ompositeinteger that has at least two distinet prime divisors exeeding 3. ThenPr[Lenstra's algorithm fators n℄ �
� jSj � 22pp �� 1log p�(where the probability is taken over x, y, and a in Zn).

268 Goldwasser and BellareIn other words, the proposition asserts that the probability that a random triple (x; y; a) leads to a fator-ization of n is essentially the probability that a random integer in the interval (p + 1�pp; p + 1 +pp) isL(p)�-smooth; the latter probability being jSj2bpp+1 .Reall that we dealt earlier with the smoothness of integers less than some bound and saw that a theoremdue to Can�eld, Erd�os and Pomerane (see [48℄) implies thatPr[m � x is L(x)�-smooth℄ = L� 12� (x):However, as we have just seen, we require here the unproven onjeture that the same result is valid if m isa random integer in the small interval (p+ 1�pp; p+ 1 +pp); spei�ally, thatPr[m 2 (p+ 1�pp; p+ 1 +pp) is L(p)�-smooth℄ = L� 12� (p):Consequently, the lower bound on the probability of suess in Proposition C.39 an be made expliit. Hene,we have Pr[Lenstra's algorithm fators n℄ �
�L� 12� (p)� 1log p:Therefore, we expet to have to try L 12� (p)(log p) ellipti urves before enountering one of L�(p)-smoothorder. Thus, the total running time required is expeted to be O(L 12� (p)(log p)L�(p)M(n)(logC)) =O(L�+ 12� (p)(log4 n)). This ahieves a minimum of O(Lp2(p)(log4 n)) when � = 1p2 .Remark In step 3 of Lenstra's algorithm a minor pratial problem arises with the hoie of B = L�(p)beause the smallest prime divisor p of n is not known before the algorithm begins. This problem an beresolved by taking B = L�(v) and performing the algorithm for a gradually inreasing sequene of values forv while fatorization ontinues to be unsuessful and delaring failure if v eventually exeeds pn beausethe smallest prime divisor of n is less than pn.

C h a p t e r DAbout PGP

PGP is a free software pakage that performs ryptographi tasks in assoiation with email systems. In thisshort appendix we will review some of its features. For a omplete desription of its funtioning readers arereferred to Chapter 9 in [192℄.D.1 AuthentiationPGP performs authentiation of messages using a hash-and-sign paradigm. That is given a message M , theproess is as following:� The message is timestamped, i.e. date and time are appended to it;� it is then hashed using MD5 (see [169℄);� the resulting 128-bit digest is signed with the sender private key using RSA [170℄;� The signature is prepended to the message.D.2 PrivayPGP uses a hybrid system to ensure privay. That is eah message is enrypted using a fast symmetrienryption sheme under a one-time key. Suh key is enrypted with the reeiver publi-key and senttogether with the enrypted message.In detail, assume A wants to send an enrypted message to B.� A ompresses the message using the ZIP ompression pakage; let M be the resulting ompressedmessage.� A generates a 128-bit random key k;� The message M is enrypted under k using the symmetri enryption sheme IDEA (see [124℄ orChapter 7 of [192℄); let C be the orresponding iphertext;� k is enrypted under B's publi key using RSA; let be the orresponding iphertext.269

270 Goldwasser and Bellare� The pair (; C) is sent to B.If both authentiation and privay are required, the message is �rst signed, then ompressed and thenenrypted.D.3 Key SizePGP allows for three key sizes for RSA� Casual 384 bits� Commerial 512 bits� Military 1024 bitsD.4 E-mail ompatibilitySine e-mail systems allow only the transmission of ASCII haraters, PGP needs to reovert eventualenrypted parts of the message (a signature or the whole iphertext) bak to ASCII.In order to do that PGP applies the radix-64 onversion to bring bak a binary stream into the ASCII har-ater set. This onversion expands the message by 33%. However beause of the original ZIP ompression,the resulting iphertext is still one-third smaller than the original message.In ase the resulting iphertext is still longer than the limit on some e-mail systems, PGP breaks into pieesand send the messages separately.D.5 One-time IDEA keys generationNotie that PGP does not have session keys, indeed eah message is enrypted under a key k generated adho for that message.The generation of suh key is done using a pseudo-random number generator that uses IDEA as a buildingblok. The seed is derived from the keystrokes of the user. That is, form the atual keys being typed andthe time intervals between them.D.6 Publi-Key ManagementSuppose you think that PK is the publi key of user B, while instead it is C who knows the orrespondingseret key SK.This an reate two major problems:1. C an read enrypted messages that A thinks she is sending to B2. C an have A aept messages as oming from B.The problem of establishing trust in the onnetion between a publi-key and its owner is at the heart ofpubli-key systems, no just of PGP.There are various ways of solving this problem:

Cryptography: Leture Notes 271� Physial exhange B ould give the key to A in person, stored in a oppy disk.� Veri�ation A ould all B on the phone and verify the key with him� Certi�ation Authorithy There ould be a trusted enter AUTH that signs publi keys for the users,establishing the onnetion between the key and the ID of the user (suh a signature is usually referredto as a erti�ate.)Only the last one seems reasonable and it appears to be the way people are atually implementing publikey systems in real life.PGP does not use any of the above systems, but it rather uses a deentralized trust system. Users reiproallyertify eah other's keys and one trusts a key to the extent that he/she trusts the user who ertify it for it.Details an be found in [192℄

C h a p t e r EProblems

This hapter ontains some problems for you to look at.E.1 Seret Key EnryptionE.1.1 DESLet �m be the bitwise omplement of the string m. Let DESK(m) denote the enryption of m under DESusing key K. It is not hard to see that if = DESK(m)then � = DES �K(�m)We know that a brute{fore attak on DES requires searhing a spae of 256 keys. This means that we haveto perform that many DES enryptions in order to �nd the key, in the worst ase.1. Under known plaintext attak (i.e., you are given a single pair (m;) where = DESK(m)) do theequations above hange the number of DES enryption you perform in a brute{fore attak to reoverK?2. What is the answer to the above question in the ase of hosen plaintext attak (i.e., when you areallowed to hoose many m's for whih you get the pair (m;) with = DESK(m))?E.1.2 Error Corretion in DES iphertextsSuppose that n plaintext bloks x1,: : :,xn are enrypted using DES produing iphertexts y1; : : : ; yn. Supposethat one iphertext blok, say yi, is transmitted inorretly (i.e. some 1's are hanged into 0's and vieversa.)How many plaintext bloks will be derypted inorretly if the ECB mode was used for enryption? Whatif CBC is used?E.1.3 Brute fore searh in CBC modeA brute-fore key searh for a known-plaintext attak for DES in the ECB mode is straightforward: giventhe 64-bit plaintext and the 64 bit iphertext, try all of the possible 256 keys until one is found that generates272

Cryptography: Leture Notes 273the known iphertext from the known plaintext. The situation is more omplex for the CBC mode, whihinludes the use of a 64-bit IV. This seems to introdue an additional 64 bits of unerntainty.1. Suggest strategies for known-plaintext attak on the CBC mode that are of the same order of magnitudeof e�ort as the ECB attak.2. Now onsider a iphertext only attak. For ECB mode the strategy is to try to derypt the giveniphertext with all possible 256 keys and test eah result to see if it appears to be a syntatiallyorret plaintext. Will this strategy work for the CBC mode? If so, explain. If not, desribe an attakstrategy for the CBC mode and estimate its level of e�ort.E.1.4 E-mailEletroni mail systems di�er in the way in whih multiple reipients are handled. In some systems theoriginating mail handler makes all the neessary opies, and these are sent out independently. An alterantiveapproah is to determine the route for eah destination �rst. Then a single message is sent out on a ommonportion of the route and opies are made when the routes diverge (this system is known as mail-bagging.)1. Leaving aside seurity onsiderations, disuss the relative advantages and disadvantages of the twomethods.2. Disuss the seurity requirements and impliations of the two methodsE.2 PasswordsThe framework of (a simpli�ed version of) the Unix password sheme is this. We �x some funtionh: f0; 1gk ! f0; 1gL. The user hooses a k-bit password, and the system stores the value y = h(K) inthe password �le. When the user logs in he must supply K. The system then omputes h(K) and delaresyou authenti if this value equals y.We assume the attaker has aess to the password �le and hene to y. The intuition is that it is omputa-tionally infeasible to reover K from y. Thus h must be hosen to make this true.The spei� hoie of h made by Unix is h(K) = DESK(0) where \0" represents the 64 bit string of all zeros.Thus k = 56 and L = 64.In this problem you will analyze the generi sheme and the partiular DES based instantiation. The goalis to see how, given a sheme like this, to use the models we have developed in lass, in partiular to thinkof DES as a pseudorandom funtion family.To model the sheme, let F : f0; 1gk � f0; 1gl ! f0; 1gL be a pseudorandom funtion family, having somegiven inseurity funtion AdvprfF (�; �), and with L > k. We let TF denote the time to ompute F . (Namelythe time, given K;x, to ompute FK(x).) See below for the de�nition of a one-way funtion, whih we willrefer to now.(a) De�ne h: f0; 1gk ! f0; 1gL by h(K) = FK(0), where \0" represents the l-bit string of all zeros. Provethat h is a one-way funtion with Advowf(h; t) � 2 �AdvprfF (t0; 1) ;where t0 = t+O(l + L+ k + TF).Hints: Assume you are given an inverter I for h, and onstrut a distinguisher D suh thatAdvprfF (D) � 12 �Advowfh;I :Use this to derive the laimed result.

274 Goldwasser and Bellare(b) Can you think of possible threats or weaknesses that might arise in a real world usage of suh a sheme,but are not overed by our model? Can you think of how to protet against them? Do you think thisis a good password sheme \in pratie"?We now provide the de�nition of seurity for a one-way funtion to be used above.Let h: f0; 1gk ! f0; 1gL be a funtion. It is one-way, if, intuitively speaking, it is hard, given y, to ompute apoint x0 suh that h(x0) = y, when y was hosen by drawing x at random from f0; 1gk and setting y = h(x).In formalizing this, we say an inverter for h is an algorithm I that given a point y 2 f0; 1gL tries to omputethis x0. We let Advowfh;I = P h h(x0) = y : x R f0; 1gk ; y h(x) ; x0 I(y) ibe the probability that the inverter is suessful, taken over a random hoie of x and any oins the invertermight toss. We let Advowfh (t0) = maxI fAdvowfh;I g ;where the maximum is over all inverters I that run in time at most t0.E.3 Number TheoryE.3.1 Number Theory FatsProve the following fats:1. If k is the number of distint prime fators of n then the equation x2 = 1 mod n has 2k distintsolutions in Z�n. Hint: use Chinese Remainder Theorem2. If p is prime and x 2 Z�p then (xp) = x p�123. g is a generator of Z�p for a prime p, i� gp�1 = 1 mod p and gq 6= 1 mod p for all q prime divisors ofp� 1E.3.2 Relationship between problemsLet n be the produt of two primes n = pq. Desribe reduibilities between the following problems (e.g. ifwe an fator we an invert RSA.) Don't prove anything formally, just state the result.� omputing �(n)� fatoring n� omputing QRn(a) for some a 2 Z�n� omputing square roots modulo n� omputing k-th roots modulo n, where gd(k; �(n)) = 1E.3.3 Probabilisti Primality TestLet SQRT (p; a) denote an expeted polynomial time algorithm that on input p; a outputs x suh thatx2 = a mod p if a is a quadrati residue modulo p. Consider the following probabilisti primality test, whihtakes as an input an odd integer p > 1 and outputs \omposite" or \prime".1. Test if there exist b; > 1 suh that p = b. If so output \omposite"

Cryptography: Leture Notes 2752. Choose i 2 Z�p at random and set y = i23. Compute x = SQRT (p; y)4. If x = i mod p or x = �i mod p output \prime", otherwise output \omposite"(A) Does the above primality test always terminate in expeted polynomial time? Prove your answer.(B) What is the probability that the above algorithm makes an error if p is prime?(C) What is the probability that the above algorithm makes an error if p is omposite?E.4 Publi Key EnryptionE.4.1 Simple RSA questionSuppose that we have a set of blok enoded with the RSA algorithm and we don't have the private key.Assume n = pq; e is the publi key. Suppose also someone tells us they know one of the plaintext bloks hasa ommon fator with n. Does this help us in any way?E.4.2 Another simple RSA questionIn the RSA publi-key enyption sheme eah user has a publi key n; e and a private key d. Suppose Bobleaks his private key. Rather than generating a new modulus, he deides to generate a new pair e0; d0. Is thisa good idea?E.4.3 Protool Failure involving RSARemember that an RSA publi{key is a pair (n; e) where n is the produt of two primes.RSA(n;e)(m) = me mod nAssume that three users in a network Alie, Bob and Carl use RSA publi{keys (nA; 3), (nB ; 3) and (nC ; 3)respetively. Suppose David wants to send the same message m to the three of them. So David omputesyA = m3 mod nA , yB = m3 mod nB , yC = m3 mod nCand sends the iphertext to the relative user.Show how an eavesdropper Eve an now ompute the message m even without knowing any of the seretkeys of Alie, Bob and Carl.E.4.4 RSA for paranoidsThe best fatoring algorithm known to date (the number �eld sieve) runs ineO(log1=3 n log log2=3 n)That is, the running time does not depend on the size of the smallest fator, but rather in the size of thewhole omposite number.The above observation seem to suggest that in order to preserve the seurity of RSA, it may not be neessaryto inrease the size of both prime fators, but only of one of them.

276 Goldwasser and BellareShamir suggested the follwong version of RSA that he alled unbalaned RSA (also known as RSA forparanoids). Choose the RSA modulus n to be 5,000 bits long, the produt of a 500-bits prime p and a4,500-bit prime q. Sine usually RSA is usually used just to exhange DES keys we an assume that themessages being enrypted are smaller than p.(A) How would you hoose the publi exponent e? Is 3 a good hoie?One the publi exponent e is hosen, one omputes d = e�1 mod �(n) and keep it seret. The problem withsuh a big modulus n, is that derypting a iphertext = me mod n may take a long time (sine one has toompute d mod n.) But sine we know that m < p we an just use the Chinese Remainder Theorem andompute m1 = d mod p = m. Shamir laimed that this variant of RSA ahieves better seurity against theadvanes of fatoring, without losing in eÆieny.(B) Show how with a single hosen message attak (i.e. obtaining the deryption of a message of yourhoie) you an ompletely break the unbalaned RSA sheme, by fatoring n.E.4.5 Hardness of DiÆe-HellmanReall the DiÆe-Hellman key exhange protool. p is a prime and g a generator of Z�p . Alie's seret key isa random a < p and her publi key is ga mod p. Similarly Bob's seret key is a random b < p and his publikey is gb mod p. Their ommon key is gab.In this problem we will prove that if the DiÆe-Hellman key exhange protool is seure for a small frationof the values (a; b), then it is seure for almost all values (a; b).Assume that there is a ppt algorithm A thatProb[A(ga; gb) = gab℄ > 12 + �(where the probability is taken over the hoies of (a; b) and the internal oin tosses of A)Your task is to prove that for any Æ < 1 there exists a ppt algorithm B suh that for all (a; b)Prob[B(ga; gb) = gab℄ > 1� Æ(where the probability is now taken only over the oin tosses of B)E.4.6 Bit ommitmentConsider the following \real life" situation. Alie and Bob are playing \Guess the bit I am thinking". Aliethinks a bit b = 0; 1 and Bob tries to guess it. Bob delares his guess and Alie tells him if the guess is rightor not.However Bob is losing all the time so he suspets that Alie is heating. She hears Bob's guess and shedelares she was thinking the opposite bit. So Bob requires Alie to write down the bit in a piee of paper,seal it in an envelope and plae the envelope on the table. At this point Alie is ommitted to the bit.However Bob has no information about what the bit is.Our goal is to ahieve this bit ommitment without envelopes. Consider the following method. Alie andBob together hoose a prime p and a generator g of Z�p . When Alie wants to ommit to a bit b she hoosea random x 2 Z�p suh that lsb(x) = b and she publishes y = gx mod p. Is this a good bit ommitment? Doyou have a better suggestion?E.4.7 Perfet Forward SereySuppose two parties, Alie and Bob, want to ommuniate privately. They both hold publi keys in thetraditional DiÆe-Hellman model.

Cryptography: Leture Notes 277An eavesdropper Eve stores all the enrypted messages between them and one day she manages to breakinto Alie and Bob's omputer and �nd their seret keys, orrespondent to their publi keys.Show how using only publi{key ryptography we an ahieve perfet forward serey, i.e., Eve will not beable to gain any knowledge about the messages Alie and Bob exhanged before the dislosure of the seretkeys.E.4.8 Plaintext-awareness and non-malleabilityWe say that an enryption sheme is plaintext{aware if it is impossible to produe a valid iphertext withoutknowing the orresponding plaintext.Usually plaintext-aware enryption shemes are implemented by adding some redundany to the plaintext.Deryption of a iphertext results either in a valid message or in a ag indiating non{validity (if theredundany is not of the orret form.) Corret deryption onvines the reeiver that the sender knows theplaintext that was enrypted.The onept of plaintext{awareness is related to the onept of malleability. We say that an enryptionsheme E is non{malleable if it given a iphertext = E(m) it is impossible to produe a valid iphertext 0of a related message m0.Compare the two de�nitions and tell us if one implies the other.E.4.9 Probabilisti EnryptionAssume that you have a messagem that you want to enrypt in a probabilisti way. For eah of the followingmethods, tell us if you think it is a good or a bad method.1. Fix p a large prime and let g be a generator. For eah bit bi in m, hoose at random xi 2 Zp�1suh that lsb(xi) = bi (lsb(x) = least signi�ant bit of x.) The iphertext is the onatenation of theyi = gxi mod p. What about if you use x suh that msb(xi) = bi?2. Choose an RSA publi key n; e suh that jnj > 2jmj. Pad m with random bits to get it to the samelength of n. Let m0 be the padded plaintext. Enrypt = me mod n.3. Choose an RSA publi key n; e. Assume that jmj is smaller than log logn (you an always break themessage in bloks of that size.) Pad m with random bits to get it to the same length of n. Let m0 bethe padded plaintext. Enrypt = me mod n.4. Choose two large primes p; q = 3 mod 4. Let n = pq. For eah bit bi in m, hoose at random xi 2 Z�nand set yi = x2i mod n if bi = 0 or yi = �x2i mod n if bi = 1. The iphertext is the onatenation ofthe yi's.E.5 Seret Key SystemsE.5.1 Simultaneous enryption and authentiationLet (E ;D) be a symmetri enryption sheme (f. Chapter 6and MAC a message authentiation ode(f. Chapter 8). Suppose Alie and Bob share two keys K1 and K2 for privay and authentiation re-spetively. They want to exhange messages M in a private and authentiated way. Consider sending eahof the following as a means to this end:1. M;MACK2(EK1(M))2. EK1(M;MACK2(M))

278 Goldwasser and Bellare3. EK1(M);MACK2(M)4. EK1(M); EK1(MACK2(M))5. EK1(M);MACK2(EK1(M))6. EK1(M;A) where A enodes the identity of Alie. Bob derypts the iphertext and heks that theseond half of the plaintext is AFor eah say if it seure or not and briey justify your answer.E.6 Hash FuntionsE.6.1 Birthday ParadoxLet H be a hash funtion that outputs m-bit values. Assume that H behaves as a random orale, i.e. foreah string s, H(s) is uniformly and independently distributed between 0 and 2m � 1.Consider the following brute{fore searh for a ollision: try all possible s1; s2; : : : until a ollision is found.(That is, keep hashing until some string yields the same hash value as a previously hashed string.)Prove that the expeted number of hashing performed is approximately 2m2 .E.6.2 Hash funtions from DESIn this problem we will onsider two proposals to onstrut hash funtions from symmetri blok enryptionshemes as DES.Let E denote a symmetri blok enryption sheme. Let Ek(M) denote the enryption of the 1{blok messageM under key k. Let M =M0 ÆM1 ÆM2 Æ : : : ÆMn denote a message of n+ 1 bloks.The �rst proposed hash funtion h1 works as follows: let H0 =M0 and then de�neHi = EMi(Hi�1)�Hi�1 for i = 1; : : : ; n:The value of the hash funtion is de�ned as h1(M) = HnThe seond proposed hash funtion h2 is similar. Again H0 =M0 and thenHi = EHi�1 (Mi)�Mi for i = 1; : : : ; n:The value of the hash funtion is de�ned as h2(M) = HnFor both proposals, show how to �nd ollisions if the enryption sheme E is hosen to be DES.E.6.3 Hash funtions from RSAConsider the followng hash funtion H . Fix an RSA key n; e and denote with RSAn;e(m) = me mod n. Letthe message to be hashed be m = m1 : : :mk. Denote with h1 = m1 and for i > 1,hi = RSAn;e(hi�1)�miThen H(m) = hn. Show how to �nd a ollision.

Cryptography: Leture Notes 279E.7 Pseudo-randomnessE.7.1 Extending PRGsSuppose you are given a PRG G whih strethes a k bit seed into a 2k bit pseudorandom sequene. Wewould like to onstrut a PRG G0 whih strethes a k bit seed into a 3k bit pseudorandom sequene.Let G1(s) denote the �rst k bits of the string G(s) and let G2(s) the last k bits (that is G(s) = G1(s):G2(s)where a:b denotes the onatenation of strings a and b.)Consider the two onstrutions1. G0(s) = G1(s):G(G1(s))2. G00(s) = G1(s):G(G2(s))For eah onstrution say whether it works or not and justify your answer. That is, if the answer is noprovide a simple statistial test that distinguishes the output of, say, G0 from a random 3k string. If theanswer is yes prove it.E.7.2 From PRG to PRFLet us reall the onstrution of PRFs from PRGs we saw in lass. Let G be a length-doubling PRG, fromseed of length k to sequenes of length 2k.Let G0(x) denote the �rst k bits of G(x) and G1(x) the last k bits. In other words G0(x) Æ G1(x) = G(x)and jG0(x)j = jG1(x)j.For any bit string z reursively de�ne G0Æz(x) ÆG1Æz(x) = G(Gz(x)) with jG0Æz(x)j = jG1Æz j.The PRF family we onstruted in lass was de�ned as F = ffig. fi(x) = Gx(i). Suppose instead that wede�ned fi(x) = Gi(x). Would that be a PRF family?E.8 Digital SignaturesE.8.1 Table of ForgeryFor both RSA and ElGamal say if the sheme is1. universally forgeable2. seletively forgeable3. existentially forgeableand if it is under whih kind of attak.E.8.2 ElGamalSuppose Bob is using the ElGamal signature sheme. Bob signs two messages m1 and m2 with signatures(r; s1) and (r; s2) (the same value of r ours in both signatures.) Suppose also that gd(s1 � s2; p� 1) = 1.1. Show how k an be omputed eÆiently given this information2. Show how the signature sheme an subsequently be broken

280 Goldwasser and BellareE.8.3 Suggested signature shemeConsider the following disrete log based signature sheme. Let p be a large prime and g a generator. Theprivate key is x < p. The publi key is y = gx mod p.To sign a message M , alulate the hash h = H(M). If gd(h; p� 1) is di�erent than 1 then append h to Mand hash again. Repeat this until gd(h; p� 1) = 1. Then solve for Z inZh = X mod (p� 1)The signature of the message is s = gZ mod p. To verify the signature, a user heks that sh = Y mod p.1. Show that valid signatures are always aepted2. Is the sheme seure?E.8.4 Ong-Shnorr-ShamirOng, Shnorr and Shamir suggested the following signature sheme.Let n be a large integer (it is not neessary to know the fatorization of n.) Then hoose k 2 Z�n. Leth = �k�2 mod n = �(k�1)2 mod nThe publi key is (n; h), the seret key is k.To sign a message M , generate a random number r, suh that r and n are relatively prime. Then alulateS1 = M=r + r2 mod nS2 = k2 (M=r � r)The pair (S1; S2) is the signature.To verify the signature, hek that M = S21 + hS22mod1. Prove that reonstruting the private key, from the publi key is equivalent to fator n.2. Is that enough to say that the sheme is seure?E.9 ProtoolsE.9.1 Unonditionally Seure Seret SharingConsider a generi Seret Sharing sheme. A dealer D wants to share a seret s between n trustees so thatno t of them have any information about s, but t + 1 an reonstrut the seret. Let si be the share oftrustee Ti. Let v denote the number of possible values that s might have, and let w denote the number ofdi�erent possible share values that a given trustee might reeive, as s is varied. (Let's assume that w is thesame for eah trustee.)Argue that w � v for any Seret Sharing Sheme. (It then follows that the number of bits needed to representa share an not be smaller than the number of bits needed to represent the seret itself.)Hint: Use the fat that t players have NO information about the seret|no matter what t values they havereeived, any value of s is possible.

Cryptography: Leture Notes 281E.9.2 Seret Sharing with heatersDishonest trustees an prevent the reonstrution of the seret by ontributing bad shares ŝi 6= si. Using theryptographi tools you have seen so far in the lass show how to prevent this denial of servie attak.E.9.3 Zero{Knowledge proof for disrete logarithmsLet p be a prime and g a generator modulo p. Given y = gx Alie laims she knows the disrete logarithmx of y. She wants to onvine Bob of this fat but she does not want to reveal x to him. How an she dothat? (Give a zero-knowledge protool for this problem.)E.9.4 Oblivious TransferAn oblivious transfer protool is a ommuniation protool between Alie and Bob. Alie runs it on input avalue s. At the end of the protool either Bob learns s or he has no information about it. Alie has no ideawhih event ourred.An 1-2 oblivious transfer protool is a ommuniation protool between Alie and Bob. Alie runs it oninout two values s0 and s1. Bob runs it on input a bit b. At the end of the protool, Bob learns sb but hasno information about s1�b. Alie has no information about b.Show that given an oblivious transfer protool as a blak box, one an design a 1-2 oblivious transfer protool.E.9.5 Eletroni CashReal-life ash has two main properties:� It is anonymous: meaning when you use ash to buy something your identity is not revealed, omparewith redit ards where your identity and spending habits are dislosed� It is transferable: that is the vendor who reeives ash from you an in turn use it to buy somethingelse. He would not have this possibility if you had payed with a non-transferable hek.The eletroni ash proposals we saw in lass are all \non{transferable". that is the user gets a oin fromthe bank, spends it, and the vendor must return the oin to the bank in order to get redit. As suh theyreally behave as anonymous non-transferable heks. In this problem we are going to modify suh proposalsin order to ahieve transferability.The proposal we saw in lass an be abstrated as follows: we have three agents: the Bank, the Userand theVendor.The Bankhas a pair of keys (S; P). A signature with S is a oin worth a �xed amount (say $1.). It is possibleto make blind signatures, meaning the Usergets a signature S(m) on a message m, but the Bankgets noinformation about m.Withdrawal protool1. The Userhooses a message m2. The Bankblindly signs m and withdraws $1 from User's aount.3. The Userreovers S(m). The oin is the pair (m;S(m)).Payment Protool1. The Usergives the oin (m;S(m)) to the Vendor.

282 Goldwasser and Bellare2. The Vendorveri�es the Banksignature and sends a random hallenge to the User.3. The Userreplies with an answer r4. the Vendorveri�es that the answer is orret.The hallenge{response protool is needed in order to detet double{spending. Indeed the system is on-struted in suh a way that if the Useranswers two di�erent hallenges on the same oin (meaning he's tryingto spend the oin twie) his identity will be revealed to the Bankwhen the two oins return to the bank. Thisis why the whole history of the payment protool must be presented to the Bankwhen the Vendordepositsthe oin.Deposit protool1. The Vendorsends m;S(m); ; r to the Bank2. The Bankveri�es it and add $1 to the Vendor's aount.3. The Banksearhes its database to see if the oin was deposited already and if it was reonstrut theidentity of the double{spender User.In order to make the whole sheme transferrable we give the bank a di�erent pair of keys (S;P). It is stillpossible to make blind signatures with S. However messages signed with S have no value. We will all thempseudo-oins. When people open an aount with the Bank, they get a lot of these anonymous pseudo{oinsby running the withdrawal protool with S as the signature key.Suppose now the Vendorreeived a payed oin m;S(m); ; r and instead of depositing it wants to use it tobuy something from OtherVendor. What she ould do is the following:Transfer protool1. The Vendorsends m;S(m); ; r and a pseudo{oin m0;S(m0) to OtherVendor2. OtherVendorveri�es all signatures and the pair (; r). Then sends a random hallenge 0 for the pseudo{oin.3. Vendorreplies with r04. OtherVendorheks the answer.Notie however that Vendoran still double{spend the oinm;S(m); ; r if she uses two di�erent pseudo{oinsto transfer it to two di�ernt people. Indeed sine she will never answer two di�erent hallenges on the samepseudo{oin, her identity will never be revealed. The problem is that there is no link between the real oinand the pseudo-oin used during the transfer protool. If we ould fore Vendorto use only one pseudo{oinfor eah real oin she wants to transfer then the problem would be solved.Show how to ahieve the above goal. You will need to modify both the payment and the transfer protool.Hint: If Vendorwants to transfer the true oin she is reeiving during the payment protool, she must be foredthen to reate a link between the true oin and the pseudo{oin she will use for the transfer later. Notiethat Vendorhooses at random, maybe an be hosen in some di�erent way?E.9.6 Atomiity of withdrawal protoolReall the protool that allows a Userto withdraw a oin of $1 from the Bank. Let (n; 3) be the RSA publikey of the Bank.1. The Userprepares 100 messages m1; : : : ;m100 whih are all $1 oins. The Userblinds them, that is shehooses at random r1; : : : ; r100 and omputes wi = r3imi. The Usersends w1; : : : ; w100 to the Bank.

Cryptography: Leture Notes 2832. The Bankhooses at random 99 of the blindings and asks the Userto open them. That the Bankhoosesi1; : : : ; i99 and sends it to the User.3. The Useropens the required blindings by revealing ri1 ; : : : ; ri99 .4. The Bankheks that the blindings are onstruted orretly and then �nally signs the unopenedblinding. W.l.o.g. assume this to be the �rst one. So the Banksigns w1 by sending to the Userw 131 =r1m 1315. The Userdivides this signature by r1 and gets a signature on m1 whih is a valid oin.Notie that the Userhas a probability of 1=100 to suesfully heat.Suppose now that the protool is not atomi. That is the ommuniation line may go down at the end ofeah step between the Bankand the User. What protool should be followed for eah step if the line goesdown at the end of that step in order to prevent abuse or fraud by either party?E.9.7 Blinding with ElGamal/DSSIn lass we saw a way to blind messages for signatures using RSA. In this problem we ask you to onstrutblind signatures for a variation of the ElGamal signature sheme.The ElGamal-like signature we will onsider is as follows. Let p be a large prime, q a large prime dividingp� 1, g an element of order q in Z�p , x the seret key of the Bankand y = gx the orresponding publi key.Let H be a ollision-free hash funtion.When the Bankwants to sign a message m she omputesa = gk mod pfor a random k and = H(m; a)and �nally b = k+ xa mod qThe signature of the message m is sig(m) = (a; b). Given the triple (m; a; b) the veri�ation is performed byomputing = H(m; a) and heking that gb = ayaSo the withdrawal protool ould be as following:1. The Usertells the bank she wants a $1 oin.2. The Bankreplies with 100 values ai = gki for random ki.3. The Usersends bak i = H(mi; ai) where mi are all $1 oins.4. The Bankasks the user to open 99 of those.5. The Userreveals 99 of the mi's.6. The Bankreplies with bi = kii + xai mod (p� 1) for the unopened index iHowever this is not anonymous sine the Bankan reognize the Userwhen the oin omes bak. In order tomake the protool really anonymous, the Userhas to hange the value of \hallenge" i omputed at step3. This modi�ation will allow him to ompute a di�erent signature on mi on her own whih will not bereognizable to the Bankwhen the oin omes bak. During the protool the Bankwill hek as usual thatthis modi�ation has been performed orretly by asking the Userto open 99 random blindings.

