
Chapter 9

Computational Number Theory

9.1 The basic groups

We let Z = {. . . ,−2,−1, 0, 1, 2, . . .} denote the set of integers. We let Z+ = {1, 2, . . .} denote the
set of positive integers and N = {0, 1, 2, . . .} the set of non-negative integers.

9.1.1 Integers mod N

If a, b are integers, not both zero, then their greatest common divisor, denoted gcd(a, b), is the
largest integer d such that d divides a and d divides b. If gcd(a, b) = 1 then we say that a and b
are relatively prime. If a, N are integers with N > 0 then there are unique integers r, q such that
a = Nq + r and 0 ≤ r < N . We call r the remainder upon division of a by N , and denote it by
a mod N . We note that the operation a mod N is defined for both negative and non-negative values
of a, but only for positive values of N . (When a is negative, the quotient q will also be negative,
but the remainder r must always be in the indicated range 0 ≤ r < N .) If a, b are any integers
and N is a positive integer, we write a ≡ b (mod N) if a mod N = b mod N . We associate to any
positive integer N the following two sets:

ZN = {0, 1, . . . , N − 1}

Z∗

N = { i ∈ Z : 1 ≤ i ≤ N − 1 and gcd(i, N) = 1 }

The first set is called the set of integers mod N . Its size is N , and it contains exactly the integers
that are possible values of a mod N as a ranges over Z. We define the Euler Phi (or totient)
function ϕ: Z+ → N by ϕ(N) = |Z∗

N | for all N ∈ Z+. That is, ϕ(N) is the size of the set Z∗

N .

9.1.2 Groups

Let G be a non-empty set, and let · be a binary operation on G. This means that for every two
points a, b ∈ G, a value a · b is defined.

Definition 9.1 Let G be a non-empty set and let · denote a binary operation on G. We say that
G is a group if it has the following properties:

1

2 COMPUTATIONAL NUMBER THEORY

1. Closure: For every a, b ∈ G it is the case that a · b is also in G.

2. Associativity: For every a, b, c ∈ G it is the case that (a · b) · c = a · (b · c).

3. Identity: There exists an element 1 ∈ G such that a · 1 = 1 · a = a for all a ∈ G.

4. Invertibility: For every a ∈ G there exists a unique b ∈ G such that a · b = b · a = 1.

The element b in the invertibility condition is referred to as the inverse of the element a, and is
denoted a−1.

We now return to the sets we defined above and remark on their group structure. Let N be a
positive integer. The operation of addition modulo N takes input any two integers a, b and returns
(a + b) mod N . The operation of multiplication modulo N takes input any two integers a, b and
returns ab mod N .

Fact 9.2 Let N be a positive integer. Then ZN is a group under addition modulo N , and Z∗

N is
a group under multiplication modulo N .

In ZN , the identity element is 0 and the inverse of a is −a mod N = N − a. In Z∗

N , the identity
element is 1 and the inverse of a is a b ∈ Z∗

N such that ab ≡ 1 (mod N). In may not be obvious
why such a b even exists, but it does. We do not prove the above fact here.

In any group, we can define an exponentiation operation which associates to any a ∈ G and
any integer i a group element we denote ai, defined as follows. If i = 0 then ai is defined to be 1,
the identity element of the group. If i > 0 then

ai = a · a · · · a
︸ ︷︷ ︸

i

.

If i is negative, then we define ai = (a−1)−i. Put another way, let j = −i, which is positive, and
set

ai = a−1 · a−1 · · · a−1
︸ ︷︷ ︸

j

.

With these definitions in place, we can manipulate exponents in the way in which we are accustomed
with ordinary numbers. Namely, identities such as the following hold for all a ∈ G and all i, j ∈ Z:

ai+j = ai · aj

(ai)j = aij

a−i = (ai)−1

a−i = (a−1)i .

We will use this type of manipulation frequently without explicit explanation.
It is customary in group theory to call the size of a group G its order. That is, the order of a

group G is |G|, the number of elements in it. We will often make use of the following basic fact.
It says that if any group element is raised to the power the order of the group, the result is the
identity element of the group.

Fact 9.3 Let G be a group and let m = |G| be its order. Then am = 1 for all a ∈ G.

This means that computation in the group indices can be done modulo m:

Bellare and Rogaway 3

Proposition 9.4 Let G be a group and let m = |G| be its order. Then ai = ai mod m for all a ∈ G
and all i ∈ Z.

We leave it to the reader to prove that this follows from Fact 9.3.

Example 9.5 Let us work in the group Z∗

21 under the operation of multiplication modulo 21. The
members of this group are 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20, so the order of the group is m = 12.
Suppose we want to compute 586 in this group. Applying the above we have

586 mod 21 = 586 mod 12 mod 21 = 52 mod 21 = 25 mod 21 = 4 .

If G is a group, a set S ⊆ G is called a subgroup if it is a group in its own right, under the same
operation as that under which G is a group. If we already know that G is a group, there is a simple
way to test whether S is a subgroup: it is one if and only if x · y−1 ∈ S for all x, y ∈ S. Here y−1

is the inverse of y in G.

Fact 9.6 Let G be a group and let S be a subgroup of G. Then the order of S divides the order
of G.

9.2 Algorithms

Fig. 9.1 summarizes some basic algorithms involving numbers. These algorithms are used to im-
plement public-key cryptosystems, and thus their running time is an important concern. We begin
with a discussion about the manner in which running time is measured, and then go on to discuss
the algorithms, some very briefly, some in more depth.

9.2.1 Bit operations and binary length

In a course or text on algorithms, we learn to analyze the running time of an algorithm as a function
of the size of its input. The inputs are typically things like graphs, or arrays, and the measure
of input size might be the number of nodes in the graph or the length of the array. Within the
algorithm we often need to perform arithmetic operations, like addition or multiplication of array
indices. We typically assume these have O(1) cost. The reason this assumption is reasonable is
that the numbers in question are small and the cost of manipulating them is negligible compared
to costs proportional to the size of the array or graph on which we are working.

In contrast, the numbers arising in cryptographic algorithms are large, having magnitudes like
2512 or 21024. The arithmetic operations on these numbers are the main cost of the algorithm, and
the costs grow as the numbers get bigger.

The numbers are provided to the algorithm in binary, and the size of the input number is thus
the number of bits in its binary representation. We call this the length, or binary length, of the
number, and we measure the running time of the algorithm as a function of the binary lengths of its
input numbers. In computing the running time, we count the number of bit operations performed.

Let bk−1 . . . b1b0 be the binary representation of a positive integer a, meaning b0, . . . , bk−1 are
bits such that bk−1 = 1 and a = 2k−1bk−1 + 2k−2bk−2 + · · ·+ 21b1 + 20b0. Then the binary length
of a is k, and is denoted |a|. Notice that |a| = k if and only if 2k−1 ≤ a < 2k. If a is negative, we
let |a| = | − a|, and assume that an additional bit or two is used to indicate to the algorithm that
the input is negative.

4 COMPUTATIONAL NUMBER THEORY

A
lg

o
r
it

h
m

In
p
u
t

O
u
tp

u
t

R
u
n
n
in

g
T

im
e

IN
T

-D
IV

a
,N

(N
>

0)
(q

,r
)

w
it
h

a
=

N
q

+
r

an
d

0
≤

r
<

N
O

(|
a
|
·
|N
|)

M
O

D
a
,N

(N
>

0)
a

m
o
d

N
O

(|
a
|
·
|N
|)

E
X

T
-G

C
D

a
,b

((
a
,b

)
6=

(0
,0

))
(d

,a
,b

)
w

it
h

d
=

gc
d
(a

,b
)

=
a
a

+
bb

O
(|
a
|
·
|b
|)

M
O

D
-A

D
D

a
,b

,N
(a

,b
∈

Z
N

)
(a

+
b)

m
o
d

N
O

(|
N
|)

M
O

D
-M

U
L
T

a
,b

,N
(a

,b
∈

Z
N

)
a
b

m
o
d

N
O

(|
N
|2

)

M
O

D
-I

N
V

a
,N

(a
∈

Z
∗ N

)
b
∈

Z
∗ N

w
it
h

a
b
≡

1
(m

o
d

N
)

O
(|
N
|2

)

M
O

D
-E

X
P

a
,n

,N
(a
∈

Z
N

)
a

n
m

o
d

N
O

(|
n
|
·|

N
|2

)

E
X

P
G

a
,n

(a
∈

G
)

a
n
∈

G
2|

n
|
G

-o
p
er

at
io

n
s

Figure 9.1: Some basic algorithms and their running time. Unless otherwise indicated, an
input value is an integer and the running time is the number of bit operations. G denotes a group.

9.2.2 Integer division and mod algorithms

We define the integer division function as taking input two integers a, N , with N > 0, and returning
the quotient and remainder obtained by dividing a by N . That is, the function returns (q, r) such

Bellare and Rogaway 5

that a = qN +r with 0 ≤ r < N . We denote by INT-DIV an algorithm implementing this function.
The algorithm uses the standard division method we learned way back in school, which turns out
to run in time proportional to the product of the binary lengths of a and N .

We also want an algorithm that implements the mod function, taking integer inputs a, N with
N > 0 and returning a mod N . This algorithm, denoted MOD, can be implemented simply by
calling INT-DIV(a, N) to get (q, r), and then returning just the remainder r.

9.2.3 Extended GCD algorithm

Suppose a, b are integers, not both 0. A basic fact about the greatest common divisor of a and b is
that it is the smallest positive element of the set

{ aa + bb : a, b ∈ Z }

of all integer linear combinations of a and b. In particular, if d = gcd(a, b) then there exist integers
a, b such that d = aa + bb. (Note that either a or b could be negative.)

Example 9.7 The gcd of 20 and 12 is d = gcd(20, 12) = 4. We note that 4 = 20(2) + (12)(−3), so
in this case a = 2 and b = −3.

Besides the gcd itself, we will find it useful to be able to compute these weights a, b. This
is what the extended-gcd algorithm EXT-GCD does: given a, b as input, it returns (d, a, b) such
that d = gcd(a, b) = aa + bb. The algorithm itself is an extension of Euclid’s classic algorithm for
computing the gcd, and the simplest description is a recursive one. We now provide it, and then
discuss the correctness and running time. The algorithm takes input any integers a, b, not both
zero.

Algorithm EXT-GCD(a, b)
If b = 0 then return (a, 1, 0)
Else

(q, r)← INT-DIV(a, b)
(d, x, y)← EXT-GCD(b, r)
a← y
b← x− qy
Return (d, a, b)

EndIf

The base case is when b = 0. If b = 0 then we know by assumption that a 6= 0, so gcd(a, b) = a, and
since a = a(1)+ b(0), the weights are 1 and 0. If b 6= 0 then we can divide by it, and we divide a by
it to get a quotient q and remainder r. For the recursion, we use the fact that gcd(a, b) = gcd(b, r).
The recursive call thus yields d = gcd(a, b) together with weights x, y such that d = bx+ry. Noting
that a = bq + r we have

d = bx + ry = bx + (a− bq)y = ay + b(x− qy) = aa + bb ,

confirming that the values assigned to a, b are correct.

The running time of this algorithm is O(|a| · |b|), or, put a little more simply, the running time
is quadratic in the length of the longer number. This is not so obvious, and proving it takes some
work. We do not provide this proof here.

6 COMPUTATIONAL NUMBER THEORY

We also want to know an upper bound on the lengths of the weights a, b output by EXT-GCD(a, b).
The running time bound tells us that |a|, |b| = O(|a| · |b|), but this is not good enough for some of
what follows. I would expect that |a|, |b| = O(|a| + |b|). Is this true? If so, can it be proved by
induction based on the recursive algorithm above?

9.2.4 Algorithms for modular addition and multiplication

The next two algorithms in Fig. 9.1 are the ones for modular addition and multiplication. To
compute (a + b) mod N , we first compute c = a + b using the usual algorithm we learned way
back in school, which runs in time linear in the binary representations of the numbers. We might
imagine that it now takes quadratic time to do the mod operation, but in fact if c > N , the mod
operation can be simply executed by subtracting N from c, which takes only linear time, which is
why the algorithm as a whole takes linear time. For multiplication mod N , the process is much
the same. First compute c = ab using the usual algorithm, which is quadratic time. This time we
do the mod by invoking MOD(c, N). (The length of c is the sum of the lengths of a and b, and
so c is not small as in the addition case, so a shortcut to the mod as we saw there does not seem
possible.)

9.2.5 Algorithm for modular inverse

The next algorithm in Fig. 9.1 is for computation of the multiplicative inverse of a in the group Z∗

N .
Namely, on input N > 0 and a ∈ Z∗

N , algorithm MOD-INV returns b such that ab ≡ 1 (mod N).
The method is quite simple:

Algorithm MOD-INV(a, N)
(d, a, N)← EXT-GCD(a, N)
b← a mod N
Return b

Correctness is easy to see. Since a ∈ Z∗

N we know that gcd(a, N) = 1. The EXT-GCD algorithm
thus guarantees that d = 1 and 1 = aa + NN . Since N mod N = 0, we have 1 ≡ aa (mod N),
and thus b = a mod N is the right value to return.

The cost of the first step is O(|a| · |N |). The cost of the second step is O(|a| · |N |). If we
assume that |a| = O(|a|+ |N |) then the overall cost is O(|a| · |N |). See discussion of the EXT-GCD
algorithm regarding this assumption on the length of a.

9.2.6 Exponentiation algorithm

We will be using exponentiation in various different groups, so it is useful to look at it at the group
level. Let G be a group and let a ∈ G. Given an integer n ∈ Z we want to compute the group
element an as defined in Section 9.1.2. The naive method, assuming for simplicity n ≥ 0, is to
execute

y ← 1

For i = 1, . . . , n do y ← y · a EndFor
Return y

Bellare and Rogaway 7

This might at first seem like a satisfactory algorithm, but actually it is very slow. The number of
group operations required is n, and the latter can be as large as the order of the group. Since we
are often looking at groups containing about 2512 elements, exponentiation by this method is not
feasible. In the language of complexity theory, the problem is that we are looking at an exponential
time algorithm. This is because the running time is exponential in the binary length |n| of the input
n. So we seek a better algorithm. We illustrate the idea of fast exponentiation with an example.

Example 9.8 Suppose the binary length of n is 5, meaning the binary representation of n has the
form b4b3b2b1b0. Then

n = 24b4 + 23b3 + 22b2 + 21b1 + 20b0

= 16b4 + 8b3 + 4b2 + 2b1 + b0 .

Our exponentiation algorithm will proceed to compute the values y5, y4, y3, y2, y1, y0 in turn, as
follows:

y5 = 1

y4 = y2
5 · a

b4 = ab4

y3 = y2
4 · a

b3 = a2b4+b3

y2 = y2
3 · a

b2 = a4b4+2b3+b2

y1 = y2
2 · a

b1 = a8b4+4b3+2b2+b1

y0 = y2
1 · a

b0 = a16b4+8b3+4b2+2b1+b0 .

Two group operations are required to compute yi from yi+1, and the number of steps equals the
binary length of n, so the algorithm is fast.

In general, we let bk−1 . . . b1b0 be the binary representation of n, meaning b0, . . . , bk−1 are bits such
that n = 2k−1bk−1 + 2k−2bk−2 + · · · + 21b1 + 20b0. The algorithm proceeds as follows given any
input a ∈ G and n ∈ Z:

Algorithm EXPG(a, n)
If n < 0 then a← a−1 and n← −n EndIf
Let bk−1 . . . b1b0 be the binary representation of n
y ← 1

For i = k − 1 downto 0 do
y ← y2 · abi

End For
Output y

The algorithm uses two group operations per iteration of the loop: one to multiply y by itself,
another to multiply the result by abi . (The computation of abi is without cost, since this is just
a if bi = 1 and 1 if bi = 0.) So its total cost is 2k = 2|n| group operations. (We are ignoring the
cost of the one possible inversion in the case n < 0.) (This is the worst case cost. We observe that
it actually takes |n|+ WH(n) group operations, where WH(n) is the number of ones in the binary
representation of n.)

We will typically use this algorithm when the group G is Z∗

N and the group operation is multi-
plication modulo N , for some positive integer N . We have denoted this algorithm by MOD-EXP in

8 COMPUTATIONAL NUMBER THEORY

Fig. 9.1. (The input a is not required to be relatively prime to N even though it usually will be, so
is listed as coming from ZN .) In that case, each group operation is implemented via MOD-MULT
and takes O(|N |2) time, so the running time of the algorithm is O(|n| · |N |2). Since n is usually
in ZN , this comes to O(|N |3). The salient fact to remember is that modular exponentiation is a
cubic time algorithm.

9.3 Cyclic groups and generators

Let G be a group, let 1 denote its identity element, and let m = |G| be the order of G. If g ∈ G
is any member of the group, the order of g is defined to be the least positive integer n such that
gn = 1. We let

〈g〉 = { gi : i ∈ Zn } = {g0, g1, . . . , gn−1}

denote the set of group elements generated by g. A fact we do not prove, but is easy to verify, is
that this set is a subgroup of G. The order of this subgroup (which, by definition, is its size) is just
the order of g. Fact 9.6 tells us that the order n of g divides the order m of the group. An element
g of the group is called a generator of G if 〈g〉 = G, or, equivalently, if its order is m. If g is a
generator of G then for every a ∈ G there is a unique integer i ∈ Zm such that gi = a. This i is
called the discrete logarithm of a to base g, and we denote it by DLogG,g(a). Thus, DLogG,g(·) is
a function that maps G to Zm, and moreover this function is a bijection, meaning one-to-one and
onto. The function of Zm to G defined by i 7→ gi is called the discrete exponentiation function,
and the discrete logarithm function is the inverse of the discrete exponentiation function.

Example 9.9 Let p = 11, which is prime. Then Z∗

11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} has order p− 1 =
10. Let us find the subgroups generated by group elements 2 and 5. We raise them to the powers
i = 0, . . . , 9. We get:

i 0 1 2 3 4 5 6 7 8 9

2i mod 11 1 2 4 8 5 10 9 7 3 6

5i mod 11 1 5 3 4 9 1 5 3 4 9

Looking at which elements appear in the row corresponding to 2 and 5, respectively, we can deter-
mine the subgroups these group elements generate:

〈2〉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

〈5〉 = {1, 3, 4, 5, 9} .

Since 〈2〉 equals Z∗

11, the element 2 is a generator. Since a generator exists, Z∗

11 is cyclic. On the
other hand, 〈5〉 6= Z∗

11, so 5 is not a generator. The order of 2 is 10, while the order of 5 is 5.
Note that these orders divide the order 10 of the group. The table also enables us to determine the
discrete logarithms to base 2 of the different group elements:

a 1 2 3 4 5 6 7 8 9 10

DLogZ
∗

11
,2(a) 0 1 8 2 4 9 7 3 6 5

Later we will see a way of identifying all the generators given that we know one of them.

The discrete exponentiation function is conjectured to be one-way (meaning the discrete loga-
rithm function is hard to compute) for some cyclic groups G. Due to this fact we often seek cyclic

Bellare and Rogaway 9

groups for cryptographic usage. Here are three sources of such groups. We will not prove any of
the facts below; their proofs can be found in books on algebra.

Fact 9.10 Let p be a prime. Then the group Z∗

p is cyclic.

The operation here is multiplication modulo p, and the size of this group is ϕ(p) = p − 1. This is
the most common choice of group in cryptography.

Fact 9.11 Let G be a group and let m = |G| be its order. If m is a prime number, then G is
cyclic.

In other words, any group having a prime number of elements is cyclic. Note that it is not for this
reason that Fact 9.10 is true, since the order of Z∗

p (where p is prime) is p−1, which is even if p ≥ 3
and 1 if p = 2, and is thus never a prime number.

The following is worth knowing if you have some acquaintance with finite fields. Recall that
a field is a set F equipped with two operations, an addition and a multiplication. The identity
element of the addition is denoted 0. When this is removed from the field, what remains is a group
under multiplication. This group is always cyclic.

Fact 9.12 Let F be a finite field, and let F ∗ = F − {0}. Then F ∗ is a cyclic group under the
multiplication operation of F .

A finite field of order m exists if and only if m = pn for some prime p and integer n ≥ 1. The finite
field of order p is exactly Zp, so the case n = 1 of Fact 9.12 implies Fact 9.10. Another interesting
special case of Fact 9.12 is when the order of the field is 2n, meaning p = 2, yielding a cyclic group
of order 2n − 1.

When we want to use a cyclic group G in cryptography, we will often want to find a generator
for it. The process used is to pick group elements in some appropriate way, and then test each
chosen element to see whether it is a generator. One thus has to solve two problems. One is how to
test whether a given group element is a generator, and the other is what process to use to choose
the candidate generators to be tested.

Let m = |G| and let 1 be the identity element of G. The obvious way to test whether a given
g ∈ G is a generator is to compute the values g1, g2, g3, . . . , stopping at the first j such that gj = 1.
If j = m then g is a generator. This test however can require up to m group operations, which is
not efficient, given that the groups of interest are large, so we need better tests.

The obvious way to choose candidate generators is to cycle through the entire group in some
way, testing each element in turn. Even with a fast test, this can take a long time, since the group
is large. So we would also like better ways of picking candidates.

We address these problems in turn. Let us first look at testing whether a given g ∈ G is a
generator. One sees quickly that computing all powers of g as in g1, g2, g3, . . . is not necessary. For
example if we computed g8 and found that this is not 1, then we know that g4 6= 1 and g2 6= 1

and g 6= 1. More generally, if we know that gj 6= 1 then we know that gi 6= 1 for all i dividing j.
This tells us that it is better to first compute high powers of g, and use that to cut down the space
of exponents that need further testing. The following Proposition pinpoints the optimal way to do
this. It identifies a set of exponents m1, . . . , mn such that one need only test whether gmi 6= 1 for
i = 1, . . . , n. As we will argue later, this set is quite small.

10 COMPUTATIONAL NUMBER THEORY

Proposition 9.13 Let G be a cyclic group and let m = |G| be the size of G. Let pα1

1 · · · p
αn
n be

the prime factorization of m and let mi = m/pi for i = 1, . . . , n. Let g ∈ G. Then g is a generator
of G if and only if

For all i = 1, . . . , n: gmi 6= 1 , (9.1)

where 1 is the identity element of G.

Proof of Proposition 9.13: First suppose that g is a generator of G. Then we know that the
smallest positive integer j such that gj = 1 is j = m. Since 0 < mi < m, it must be that gmi 6= 1

for all i = 1, . . . , m.

Conversely, suppose g satisfies the condition of Equation (9.1). We want to show that g is a
generator. Let j be the order of g, meaning the smallest positive integer such that gj = 1. Then we
know that j must divide the order m of the group, meaning m = dj for some integer d ≥ 1. This
implies that j = pβ1

1 · · · p
βn
n for some integers β1, . . . , βn satisfying 0 ≤ βi ≤ αi for all i = 1, . . . , n.

If j < m then there must be some i such that βi < αi, and in that case j divides mi, which in turn
implies gmi = 1 (because gj = 1). So the assumption that Equation (9.1) is true implies that j
cannot be strictly less than m, so the only possibility is j = m, meaning g is a generator.

The number n of terms in the prime factorization of m cannot be more than lg(m), the binary
logarithm of m. (This is because pi ≥ 2 and αi ≥ 1 for all i = 1, . . . , n.) So, for example, if the
group has size about 2512, then at most 512 tests are needed. So testing is quite efficient. One
should note however that it requires knowing the prime factorization of m.

Let us now consider the second problem we discussed above, namely how to choose candidate
group elements for testing. There seems little reason to think that trying all group elements in turn
will yield a generator in a reasonable amount of time. Instead, we consider picking group elements
at random, and then testing them. The probability of success in any trial is |Gen(G)|/|G|. So the
expected number of trials before we find a generator is |G|/|Gen(G)|. To estimate the efficacy of this
method, we thus need to know the number of generators in the group. The following Proposition
gives a characterization of the generator set which in turn tells us its size.

Proposition 9.14 Let G be a cyclic group of order m, and let g be a generator of G. Then
Gen(G) = { gi ∈ G : i ∈ Z∗

m } and |Gen(G)| = ϕ(m).

That is, having fixed one generator g, a group element h is a generator if and only if its discrete
logarithm to base g is relatively prime to the order m of the group. As a consequence, the number
of generators is the number of integers in the range 1, . . . , m− 1 that are relatively prime to m.

Proof of Proposition 9.14: Given that Gen(G) = { gi ∈ G : i ∈ Z∗

m }, the claim about its size
follows easily:

|Gen(G)| =
∣
∣
∣{ gi ∈ G : i ∈ Z∗

m }
∣
∣
∣ = |Z∗

m| = ϕ(m) .

We now prove that Gen(G) = { gi ∈ G : i ∈ Z∗

m }. First, we show that if i ∈ Z∗

m then gi ∈ Gen(G).
Second, we show that if i ∈ Zm − Z∗

m then gi 6∈ Gen(G).

So first suppose i ∈ Z∗

m, and let h = gi. We want to show that h is a generator of G. It suffices to
show that the only possible value of j ∈ Zm such that hj = 1 is j = 0, so let us now show this. Let
j ∈ Zm be such that hj = 1. Since h = gi we have

1 = hj = gij mod m .

Bellare and Rogaway 11

Since g is a generator, it must be that ij ≡ 0 (mod m), meaning m divides ij. But i ∈ Z∗

m so
gcd(i, m) = 1. So it must be that m divides j. But j ∈ Zm and the only member of this set
divisible by m is 0, so j = 0 as desired.

Next, suppose i ∈ Zm−Z∗

m and let h = gi. To show that h is not a generator it suffices to show that
there is some non-zero j ∈ Zm such that hj = 1. Let d = gcd(i, m). Our assumption i ∈ Zm − Z∗

m

implies that d > 1. Let j = m/d, which is a non-zero integer in Zm because d > 1. Then the
following shows that hj = 1, completing the proof:

hj = gij = gi·m/d = gm·i/d = (gm)i/d = 1i/d = 1.

We used here the fact that d divides i and that gm = 1.

Example 9.15 Let us determine all the generators of the group Z∗

11. Let us first use Proposition 9.13.
The size of Z∗

11 is m = ϕ(11) = 10, and the prime factorization of 10 is 21 · 51. Thus, the test for
whether a given a ∈ Z∗

11 is a generator is that a2 6≡ 1 (mod 11) and a5 6≡ 1 (mod 11). Let us
compute a2 mod 11 and a5 mod 11 for all group elements a. We get:

a 1 2 3 4 5 6 7 8 9 10

a2 mod 11 1 4 9 5 3 3 5 9 4 1

a5 mod 11 1 10 1 1 1 10 10 10 1 10

The generators are those a for which the corresponding column has no entry equal to 1, meaning
in both rows, the entry for this column is different from 1. So

Gen(Z∗

11) = {2, 6, 7, 8} .

Now, let us use Proposition 9.14 and double-check that we get the same thing. We saw in
Example 9.9 that 2 was a generator of Z∗

11. As per Proposition 9.14, the set of generators is

Gen(Z∗

11) = { 2i mod 11 : i ∈ Z∗

10 } .

This is because the size of the group is m = 10. Now, Z∗

10 = {1, 3, 7, 9}. The values of 2i mod 11
as i ranges over this set can be obtained from the table in Example 9.9 where we computed all the
powers of 2. So

{ 2i mod 11 : i ∈ Z∗

10 } = {21 mod 11, 23 mod 11, 27 mod 11, 29 mod 11}

= {2, 6, 7, 8} .

This is the same set we obtained above via Proposition 9.13. If we try to find a generator by picking
group elements at random and then testing using Proposition 9.13, each trial has probability of
success ϕ(10)/10 = 4/10, so we would expect to find a generator in 10/4 trials. We can optimize
slightly by noting that 1 and −1 can never be generators, and thus we only need pick candidates
randomly from Z∗

11−{1, 10}. In that case, each trial has probability of success ϕ(10)/8 = 4/8 = 1/2,
so we would expect to find a generator in 2 trials.

When we want to work in a cyclic group in cryptography, the most common choice is to work
over Z∗

p for a suitable prime p. The algorithm for finding a generator would be to repeat the process
of picking a random group element and testing it, halting when a generator is found. In order to
make this possible we choose p in such a way that the prime factorization of the order p − 1 of

12 COMPUTATIONAL NUMBER THEORY

Z∗

p is known. In order to make the testing fast, we choose p so that p − 1 has few prime factors.
Accordingly, it is common to choose p to equal 2q + 1 for some prime q. In this case, the prime
factorization of p−1 is 21q1, so we need raise a candidate to only two powers to test whether or not
it is a generator. In choosing candidates, we optimize slightly by noting that 1 and −1 are never
generators, and accordingly pick the candidates from Z∗

p − {1, p− 1} rather than from Z∗

p. So the
algorithm is as follows:

Algorithm FIND-GEN(p)
q ← (p− 1)/2
found← 0
While (found 6= 1) do

g $← Z∗

p − {1, p− 1}

If (g2 mod p 6= 1) and (gq mod p 6= 1) then found← 1
EndWhile
Return g

Proposition 9.13 tells us that the group element g returned by this algorithm is always a generator
of Z∗

p. By Proposition 9.14, the probability that an iteration of the algorithm is successful in finding
a generator is

|Gen(Z∗

p)|

|Z∗

p| − 2
=

ϕ(p− 1)

p− 3
=

ϕ(2q)

2q − 2
=

q − 1

2q − 2
=

1

2
.

Thus the expected number of iterations of the while loop is 2. Above, we used that fact that
ϕ(2q) = q − 1 which is true because q is prime.

9.4 Squares and non-squares

An element a of a group G is called a square, or quadratic residue if it has a square root, meaning
there is some b ∈ G such that b2 = a in G. We let

QR(G) = { g ∈ G : g is quadratic residue in G }

denote the set of all squares in the group G. We leave to the reader to check that this set is a
subgroup of G.

We are mostly interested in the case where the group G is Z∗

N for some integer N . An integer a
is called a square mod N or quadratic residue mod N if a mod N is a member of QR(Z∗

N). If b2 ≡ a
(mod N) then b is called a square-root of a mod N . An integer a is called a non-square mod N or
quadratic non-residue mod N if a mod N is a member of Z∗

N −QR(Z∗

N). We will begin by looking
at the case where N = p is a prime. In this case we define a function Jp: Z→ {−1, 1} by

Jp(a) =







1 if a is a square mod p

0 if a mod p = 0

−1 otherwise.

for all a ∈ Z. We call Jp(a) the Legendre symbol of a. Thus, the Legendre symbol is simply a
compact notation for telling us whether or not its argument is a square modulo p.

Before we move to developing the theory, it may be useful to look at an example.

Bellare and Rogaway 13

Example 9.16 Let p = 11, which is prime. Then Z∗

11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} has order p−1 =
10. A simple way to determine QR(Z∗

11) is to square all the group elements in turn:

a 1 2 3 4 5 6 7 8 9 10

a2 mod 11 1 4 9 5 3 3 5 9 4 1

The squares are exactly those elements that appear in the second row, so

QR(Z∗

11) = {1, 3, 4, 5, 9} .

The number of squares is 5, which we notice equals (p− 1)/2. This is not a coincidence, as we will
see. Also notice that each square has exactly two different square roots. (The square roots of 1 are
1 and 10; the square roots of 3 are 5 and 6; the square roots of 4 are 2 and 9; the square roots of 5
are 4 and 7; the square roots of 9 are 3 and 8.)

Since 11 is prime, we know that Z∗

11 is cyclic, and as we saw in Example 9.9, 2 is a generator.
(As a side remark, we note that a generator must be a non-square. Indeed, if a = b2 is a square,
then a5 = b10 = 1 modulo 11 because 10 is the order of the group. So aj = 1 modulo 11 for
some positive j < 10, which means a is not a generator. However, not all non-squares need be
generators.) Below, we reproduce from that example the table of discrete logarithms of the group
elements. We also add below it a row providing the Legendre symbols, which we know because,
above, we identified the squares. We get:

a 1 2 3 4 5 6 7 8 9 10

DLogZ
∗

11
,2(a) 0 1 8 2 4 9 7 3 6 5

J11(a) 1 −1 1 1 1 −1 −1 −1 1 −1

We observe that the Legendre symbol of a is 1 if its discrete logarithm is even, and −1 if the discrete
logarithm is odd, meaning the squares are exactly those group elements whose discrete logarithm
is even. It turns out that this fact is true regardless of the choice of generator.

As we saw in the above example, the fact that Z∗

p is cyclic is useful in understanding the
structure of the subgroup of quadratic residues QR(Z∗

p). The following Proposition summarizes
some important elements of this connection.

Proposition 9.17 Let p ≥ 3 be a prime and let g be a generator of Z∗

p. Then

QR(Z∗

p) = { gi : i ∈ Zp−1 and i is even } , (9.2)

and the number of squares mod p is
∣
∣
∣QR(Z∗

p)
∣
∣
∣ =

p− 1

2
.

Furthermore, every square mod p has exactly two different square roots mod p.

Proof of Proposition 9.17: Let

E = { gi : i ∈ Zp−1 and i is even } .

We will prove that E = QR(Z∗

p) by showing first that E ⊆ QR(Z∗

p) and second that QR(Z∗

p) ⊆ E.

To show that E ⊆ QR(Z∗

p), let a ∈ E. We will show that a ∈ QR(Z∗

p). Let i = DLogZ∗

p,g(a). Since

14 COMPUTATIONAL NUMBER THEORY

a ∈ E we know that i is even. Let j = i/2 and note that j ∈ Zp−1. Clearly

(gj)2 ≡ g2j mod p−1 ≡ g2j ≡ gi (mod p) ,

so gj is a square root of a = gi. So a is a square.

To show that QR(Z∗

p) ⊆ E, let b be any element of Z∗

p. We will show that b2 ∈ E. Let j =
DLogZ∗

p,g(b). Then

b2 ≡ (gj)2 ≡ g2j mod p−1 ≡ g2j (mod p) ,

the last equivalence being true because the order of the group Z∗

p is p− 1. This shows that b2 ∈ E.

The number of even integers in Zp−1 is exactly (p− 1)/2 since p− 1 is even. The claim about the
size of QR(Z∗

p) thus follows from Equation (9.2). It remains to justify the claim that every square
mod p has exactly two square roots mod p. This can be seen by a counting argument, as follows.

Suppose a is a square mod p. Let i = DLogZ∗

p,g(a). We know from the above that i is even. Let

x = i/2 and let y = x + (p− 1)/2 mod (p− 1). Then gx is a square root of a. Furthermore

(gy)2 ≡ g2y ≡ g2x+(p−1) ≡ g2xgp−1 ≡ a · 1 ≡ a (mod p) ,

so gy is also a square root of a. Since i is an even number in Zp−1 and p−1 is even, it must be that
0 ≤ x < (p − 1)/2. It follows that (p − 1)/2 ≤ y < p − 1. Thus x 6= y. This means that a has as
least two square roots. This is true for each of the (p− 1)/2 squares mod p. So the only possibility
is that each of these squares has exactly two square roots.

Suppose we are interested in knowing whether or not a given a ∈ Z∗

p is a square mod p, meaning
we want to know the value of the Legendre symbol Jp(a). Proposition 9.17 tells us that

Jp(a) = (−1)
DLog

Z
∗

p,g(a)
,

where g is any generator of Z∗

p. This however is not very useful in computing Jp(a), because it
requires knowing the discrete logarithm of a, which is hard to compute. The following Proposition
says that the Legendre symbols of a modulo an odd prime p can be obtained by raising a to the
power (p− 1)/2, and helps us compute the Legendre symbol.

Proposition 9.18 Let p ≥ 3 be a prime. Then

Jp(a) ≡ a
p−1

2 (mod p)

for any a ∈ Z∗

p.

Now one can determine whether or not a is a square mod p by running the algorithm MOD-EXP
on inputs a, (p− 1)/2, p. If the algorithm returns 1 then a is a square mod p, and if it returns p− 1
(which is the same as −1 mod p) then a is a non-square mod p. Thus, the Legendre symbol can be
computed in time cubic in the length of p.

Towards the proof of Proposition 9.18, we begin with the following lemma which is often useful
in its own right.

Lemma 9.19 Let p ≥ 3 be a prime. Then

g
p−1

2 ≡ −1 (mod p)

for any generator g of Z∗

p.

Bellare and Rogaway 15

Proof of Lemma 9.19: We begin by observing that 1 and −1 are both square roots of 1 mod
p, and are distinct. (It is clear that squaring either of these yields 1, so they are square roots of 1.
They are distinct because −1 equals p−1 mod p, and p−1 6= 1 because p ≥ 3.) By Proposition 9.17,
these are the only square roots of 1. Now let

b = g
p−1

2 mod p .

Then b2 ≡ 1 (mod p), so b is a square root of 1. By the above b can only be 1 or −1. However,
since g is a generator, b cannot be 1. (The smallest positive value of i such that gi is 1 mod p is
i = p− 1.) So the only choice is that b ≡ −1 (mod p), as claimed.

Proof of Proposition 9.18: By definition of the Legendre symbol, we need to show that

a
p−1

2 ≡







1 (mod p) if a is a square mod p

−1 (mod p) otherwise.

Let g be a generator of Z∗

p and let i = DLogZ∗

p,g(a). We consider separately the cases of a being a
square and a being a non-square.

Suppose a is a square mod p. Then Proposition 9.17 tells us that i is even. In that case

a
p−1

2 ≡ (gi)
p−1

2 ≡ gi· p−1

2 ≡ (gp−1)i/2 ≡ 1 (mod p) ,

as desired.

Now suppose a is a non-square mod p. Then Proposition 9.17 tells us that i is odd. In that case

a
p−1

2 ≡ (gi)
p−1

2 ≡ gi· p−1

2 ≡ g(i−1)· p−1

2
+ p−1

2 ≡ (gp−1)(i−1)/2 · g
p−1

2 ≡ g
p−1

2 (mod p) .

However Lemma 9.19 tells us that the last quantity is −1 modulo p, as desired.

The following Proposition says that ab mod p is a square if and only if either both a and b are
squares, or if both are non-squares. But if one is a square and the other is not, then ab mod p is
a non-square. This can be proved by using either Proposition 9.17 or Proposition 9.18. We use
the latter in the proof. You might try, as an exercise, to reprove the result using Proposition 9.17
instead.

Proposition 9.20 Let p ≥ 3 be prime. Then

Jp(ab mod p) = Jp(a) · Jp(b)

for all a, b ∈ Z∗

p.

Proof of Proposition 9.20: Using Proposition 9.18 we get

Jp(ab mod p) ≡ (ab)
p−1

2 ≡ a
p−1

2 b
p−1

2 ≡ Jp(a) · Jp(b) (mod p) .

The two quantities we are considering both being either 1 or −1, and equal modulo p, must then
be actually equal.

A quantity of cryptographic interest is the Diffie-Hellman (DH) key. Having fixed a cyclic group
G and generator g for it, the DH key associated to elements X = gx and Y = gy of the group is
the group element gxy. The following Proposition tells us that the DH key is a square if either X
or Y is a square, and otherwise is a non-square.

16 COMPUTATIONAL NUMBER THEORY

Proposition 9.21 Let p ≥ 3 be a prime and let g be a generator of Z∗

p. Then

Jp(g
xy mod p) = 1 if and only if Jp(g

x mod p) = 1 or Jp(g
y mod p) = 1 ,

for all x, y ∈ Zp−1.

Proof of Proposition 9.21: By Proposition 9.17, it suffices to show that

xy mod (p− 1) is even if and only if x is even or y is even .

But since p − 1 is even, xy mod (p − 1) is even exactly when xy is even, and clearly xy is even
exactly if either x or y is even.

With a cyclic group G and generator g of G fixed, we will be interested in the distribution of the
DH key gxy in G, under random choices of x, y from Zm, where m = |G|. One might at first think
that in this case the DH key is a random group element. The following proposition tells us that
in the group Z∗

p of integers modulo a prime, this is certainly not true. The DH key is significantly
more likely to be a square than a non-square, and in particular is thus not even almost uniformly
distributed over the group.

Proposition 9.22 Let p ≥ 3 be a prime and let g be a generator of Z∗

p. Then

Pr
[

x $← Zp−1 ; y $← Zp−1 : Jp(g
xy) = 1

]

equals 3/4.

Proof of Proposition 9.22: By Proposition 9.22 we need only show that

Pr
[

x $← Zp−1 ; y $← Zp−1 : Jp(g
x) = 1 or Jp(g

y) = 1
]

equals 3/4. The probability in question is 1− α where

α = Pr
[

x $← Zp−1 ; y $← Zp−1 : Jp(g
x) = −1 and Jp(g

y) = −1
]

= Pr
[

x $← Zp−1 : Jp(g
x) = −1

]

· Pr
[

y $← Zp−1 : Jp(g
y) = −1

]

=
|QR(Z∗

p)|

|Z∗

p|
·
|QR(Z∗

p)|

|Z∗

p|

=
(p− 1)/2

p− 1
·
(p− 1)/2

p− 1

=
1

2
·
1

2

=
1

4
.

Thus 1−α = 3/4 as desired. Here we used Proposition 9.17 which told us that |QR(Z∗

p)| = (p−1)/2.

The above Propositions, combined with Proposition 9.18 (which tells us that quadratic residu-
osity modulo a prime can be efficiently tested), will later lead us to pinpoint weaknesses in certain
cryptographic schemes in Z∗

p.

Bellare and Rogaway 17

9.5 Groups of prime order

A group of prime order is a group G whose order m = |G| is a prime number. Such a group is
always cyclic. These groups turn out to be quite useful in cryptography, so let us take a brief look
at them and some of their properties.

An element h of a group G is called non-trivial if it is not equal to the identity element of the
group.

Proposition 9.23 Suppose G is a group of order q where q is a prime, and h is any non-trivial
member of G. Then h is a generator of G.

Proof of Proposition 9.23: It suffices to show that the order of h is q. We know that the
order of any group element must divide the order of the group. Since the group has prime order
q, the only possible values for the order of h are 1 and q. But h does not have order 1 since it is
non-trivial, so it must have order q.

A common way to obtain a group of prime order for cryptographic schemes is as a subgroup of a
group of integers modulo a prime. We pick a prime p having the property that q = (p−1)/2 is also
prime. It turns out that the subgroup of quadratic residues modulo p then has order q, and hence
is a group of prime order. The following proposition summarizes the facts for future reference.

Proposition 9.24 Let q ≥ 3 be a prime such that p = 2q + 1 is also prime. Then QR(Z∗

p) is a
group of prime order q. Furthermore, if g is any generator of Z∗

p, then g2 mod p is a generator of
QR(Z∗

p).

Note that the operation under which QR(Z∗

p) is a group is multiplication modulo p, the same
operation under which Z∗

p is a group.

Proof of Proposition 9.24: We know that QR(Z∗

p) is a subgroup, hence a group in its own
right. Proposition 9.17 tells us that |QR(Z∗

p)| is (p−1)/2, which equals q in this case. Now let g be
a generator of Z∗

p and let h = g2 mod p. We want to show that h is a generator of QR(Z∗

p). As per
Proposition 9.23, we need only show that h is non-trivial, meaning h 6= 1. Indeed, we know that
g2 6≡ 1 (mod p), because g, being a generator, has order p and our assumptions imply p > 2.

Example 9.25 Let q = 5 and p = 2q + 1 = 11. Both p and q are primes. We know from
Example 9.16 that

QR(Z∗

11) = {1, 3, 4, 5, 9} .

This is a group of prime order 5. We know from Example 9.9 that 2 is a generator of Z∗

p.
Proposition 9.24 tells us that 4 = 22 is a generator of QR(Z∗

11). We can verify this by raising
4 to the powers i = 0, . . . , 4:

i 0 1 2 3 4

4i mod 11 1 4 5 9 3

We see that the elements of the last row are exactly those of the set QR(Z∗

11).

Let us now explain what we perceive to be the advantage conferred by working in a group of
prime order. Let G be a cyclic group, and g a generator. We know that the discrete logarithms to

18 COMPUTATIONAL NUMBER THEORY

base g range in the set Zm where m = |G| is the order of G. This means that arithmetic in these
exponents is modulo m. If G has prime order, then m is prime. This means that any non-zero

exponent has a multiplicative inverse modulo m. In other words, in working in the exponents, we
can divide. It is this that turns out to be useful.

As an example illustrating how we use this, let us return to the problem of the distribution of
the DH key that we looked at in Section 9.4. Recall the question is that we draw x, y independently
at random from Zm and then ask how gxy is distributed over G. We saw that when G = Z∗

p for a
prime p ≥ 3, this distribution was noticebly different from uniform. In a group of prime order, the
distribution of the DH key, in contrast, is very close to uniform over G. It is not quite uniform,
because the identity element of the group has a slightly higher probability of being the DH key than
other group elements, but the deviation is small enough to be negligible for groups of reasonably
large size. The following proposition summarizes the result.

Proposition 9.26 Suppose G is a group of order q where q is a prime, and let g be a generator of
G. Then for any Z ∈ G we have

Pr
[

x $← Zq ; y $← Zq : gxy = Z
]

=







1

q

(

1−
1

q

)

if Z 6= 1

1

q

(

2−
1

q

)

if Z = 1,

where 1 denotes the identity element of G.

Proof of Proposition 9.26: First suppose Z = 1. The DH key gxy is 1 if and only if either x
or y is 0 modulo q. Each is 0 with probability 1/q and these probabilities are independent, so the
probability that either x or y is 0 is 2/q − 1/q2, as claimed.

Now suppose Z 6= 1. Let z = DLogG,g(Z), meaning z ∈ Z∗

q and gz = Z. We will have gxy ≡ Z
(mod p) if and only if xy ≡ z (mod q), by the uniqueness of the discrete logarithm. For any fixed
x ∈ Z∗

q , there is exactly one y ∈ Zq for which xy ≡ z (mod q), namely y = x−1z mod q, where
x−1 is the multiplicative inverse of x in the group Z∗

q . (Here we are making use of the fact that
q is prime, since otherwise the inverse of x modulo q may not exist.) Now, suppose we choose x
at random from Zq. If x = 0 then, regardless of the choice of y ∈ Zq, we will not have xy ≡ z
(mod q), because z 6≡ 0 (mod q). On the other hand, if x 6= 0 then there is exactly 1/q probability
that the randomly chosen y is such that xy ≡ z (mod q). So the probability that xy ≡ z (mod q)
when both x and y are chosen at random in Zq is

q − 1

q
·
1

q
=

1

q

(

1−
1

q

)

as desired. Here, the first term is because when we choose x at random from Zq, it has probability
(q − 1)/q of landing in Z∗

q .

9.6 Historical Notes

9.7 Exercises and Problems

