
Testing Static Analysis Tools using
Exploitable Buffer Overflows from Open Source Code ∗

Misha Zitser
D. E. Shaw Group

New York, NY

zitserm@deshaw.com

Richard Lippmann
MIT Lincoln Laboratory

Lexington, MA

rpl@ll.mit.edu

Tim Leek
MIT Lincoln Laboratory

Lexington, MA

tleek@ll.mit.edu

ABSTRACT
Five modern static analysis tools (ARCHER, BOON, Poly-
Space C Verifier, Splint, and UNO) were evaluated using
source code examples containing 14 exploitable buffer over-
flow vulnerabilities found in various versions of Sendmail,
BIND, and WU-FTPD. Each code example included a “BAD”
case with and a “OK” case without buffer overflows. Buffer
overflows varied and included stack, heap, bss and data
buffers; access above and below buffer bounds; access us-
ing pointers, indices, and functions; and scope differences
between buffer creation and use. Detection rates for the
“BAD” examples were low except for PolySpace and Splint
which had average detection rates of 87% and 57%, respec-
tively. However, average false alarm rates were high and
roughly 50% for these two tools. On patched programs these
two tools produce one warning for every 12 to 46 lines of
source code and neither tool accurately distinguished be-
tween vulnerable and patched code.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: [Software/Program Verifi-
cation]; D.2.5 [Software Engineering]: [Testing and De-
bugging]; K.4.4 [Computers and Society]: [Electronic
Commerce]

General Terms
Measurement, Performance, Security, Verification

Keywords
Security, buffer overflow, static analysis, evaluation, exploit,
test, detection, false alarm, source code

∗This work was sponsored by the Advanced Research and
Development Activity under Air Force Contract F19628-00-
C-0002. Opinions, interpretations, conclusions, and recom-
mendations are those of the authors and are not necessarily
endorsed by the United States Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’04/FSE-12,Oct. 31–Nov. 6, 2004, Newport Beach, CA, USA.
Copyright 2004 ACM 1-58113-855-5/04/0010 ...$5.00.

Figure 1: Cumulative buffer overflow vulnerabilities
found in BIND, WU-FTPD, and Sendmail server
software since 1996

1. INTRODUCTION
The Internet is constantly under attack as witnessed by

recent Blaster and Slammer worms that infected more than
200,000 computers in a few hours [19, 25]. These, and many
past worms and attacks exploit buffer overflow vulnerabili-
ties in server software. The term buffer overflow is used in
this paper to describe all types of out-of-bound buffer ac-
cesses including accessing above the upper limit or below
the lower limit of a buffer.

Buffer overflow vulnerabilities often permit remote attack-
ers to run arbitrary code on a victim server or to crash
server software and perform a denial of service (DoS) attack.
They account for roughly 1/3 of all the severe remotely ex-
ploitable vulnerabilities listed in the NIST ICAT vulnerabil-
ity database [22]. The often-suggested approach of patching
software as quickly as possible after buffer overflow vulner-
abilities are announced is clearly not working given the ef-
fectiveness of recent worms. Figure 1 shows the dates that
new remotely exploitable buffer overflow vulnerabilities were
announced in three popular Internet server software applica-
tions (BIND, WU-FTP, and Sendmail) and the cumulative
number of these vulnerabilities. For just these three servers,
there have been from one to six remotely exploitable buffer-
overflow vulnerabilities announced each year, no reduction
in the rate of new vulnerabilities, and a total of 24 vulnera-
bilities published since 1996.

A detailed review of approaches that have been devel-
oped to counter buffer overflow exploits is available in [30].

97

Copyright 2004 Association for Computing Machinery. ACM acknow-
ledges that this contribution was authored or co-authored by a contractor
or affiliate of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
SIGSOFT’04/FSE-12, Oct. 31–Nov. 6, 2004, Newport Beach, CA, USA.
Copyright 2004 ACM 1-58113-855-5/04/0010...$5.00.

These include static analysis to discover and eliminate buffer
overflows during software development, dynamic analysis to
discover buffer overflows during software testing, dynamic
prevention to detect buffer overflows when they occur af-
ter software has been deployed, and the use of memory-safe
languages. Static analysis is the only approach that elimi-
nates both buffer overflows and their effects and that can
be applied to the vast amounts of open-source legacy C
code in widely-used open-source software. Dynamic test-
ing is expensive and almost always cannot exercise all code
paths. Dynamic prevention approaches such as Stackguard,
CCured, and CRED [9, 11, 24, 23] detect some buffer over-
flows at run time, only to turn them into DoS attacks be-
cause a program halts in order to prevent a buffer overflow.
Similarly, safe languages such as Java, LISP, and ML check
buffer accesses at runtime, raising exceptions at any out-of-
bounds attempts.

Many static analysis tools that detect buffer overflows
in source code have been recently developed, but we are
aware of no comprehensive evaluations. Most past evalu-
ations were performed by tool developers, use few exam-
ples, and do not measure both detection and false alarm
rates of tools [14, 15, 27, 29]. Although some studies apply
tools to large amounts of source code and find many buffer
overflows [29], the detection rate for in-the-wild exploitable
buffer overflows is still not known and the false alarm rate
is difficult to assess.

We are aware of only three evaluations of tools that were
not performed by tool developers. A qualitative survey of
lexical analysis tools that detect use of functions often asso-
ciated with buffer overflows is available in [20]. A single tool
for detecting buffer overflows is evaluated in [21], described
as “a tool created by David Wagner based upon the BANE
toolkit.” Presumably, this is BOON [27]. While the authors
comment about excessive false positives and false negatives,
they do not attempt to quantify them. The study described
in [16] is more objective. It compares Flawfinder, ITS4,
RATS, Splint, and BOON on a testbed of 44 function invo-
cations, both safe and unsafe. They carefully count true pos-
itives and false positives for examples of “20 vulnerable func-
tions chosen from ITS4’s vulnerability database ... Secure
programming for Linux and UNIX HOWTO, and the whole
[fvsn]printf family”. These examples contain no complex
control structures, instances of inter-procedural scope, or di-
rect buffer accesses outside of string functions, and therefore
cannot represent complex buffer access patterns found in In-
ternet servers. However, this study is diagnostic. It exposes
weaknesses in particular implementations (e.g. BOON can-
not discriminate between a good and a bad strcpy even in
its simplest form). High detection/false alarm rates are re-
ported for the three purely lexical tools, Flawfinder, ITS4,
and RATS, and lower detection/false alarm rates for the
more sophisticated Splint and BOON. They also do not re-
port the conditional probability of no false alarm in a cor-
rected program given a detection in the vulnerable version.
This conditional probability is important because it mea-
sures the ability of a tool to discriminate between safe and
unsafe versions of the same code.

The purpose of the research described in this paper was
to perform an unbiased evaluation of modern static analy-
sis tools that can detect buffer overflows. This evaluation
measures detection and false alarm rates using a retrospec-
tive collection of 14 remotely-exploitable buffer overflows se-

Tools Analysis Strategy

ARCHER [29] Symbolic, interprocedural,
flow-sensitive analysis.

BOON [27] Symbolic, interprocedural
flow-insensitive analysis
only strings.

PolySpace Abstract interpretation,
C Verifier [1] interprocedural,

flow-sensitive.
SPLINT [14] Lightweight static analysis,

intraprocedural.
UNO [15] Model checking, interprocedural,

flow-sensitive.

Table 1: Static Analysis tools used in the evaluation

lected from open-source server software. A secondary goal of
this work was to characterize these in-the-wild buffer over-
flows in terms of type (e.g. stack, heap, static data) and
cause (e.g. improper signed/unsigned conversions, off-by-
one bounds check error, use of unsafe string function). A
final goal was to provide a common collection of realistic
examples that can be used to aid in the development of im-
proved static analysis.

2. STATIC ANALYSIS TOOLS
Table 1 provides a summary of the five static analysis

tools used in this evaluation. Four are open-source tools
(ARCHER, BOON, SPLINT, UNO) and one is a commer-
cial tool (PolySpace C Verifier). All perform in-depth sym-
bolic or abstract analysis of source code and all detect buffer
overflows. Simpler lexical analysis tools such as RATS and
ITS4 [5, 26] were excluded from this study because they
have high false alarm rates and limited scope.

ARCHER (ARray CHeckER) is a recently developed static
analysis tool that has found many memory access viola-
tions in LINUX kernel and other source code [29]. It uses
a bottom-up inter-procedural analysis. After parsing the
source code into abstract syntax trees, an approximate call
graph is created to determine an order for examining func-
tions. Starting at the bottom of the call graph, symbolic
triggers are calculated to determine ranges for function pa-
rameters that result in memory access violations. These
triggers are used to deduce new triggers for the callers, and
so on. Once the top-most caller is reached, if any of its trig-
gers are satisfied, a memory violation flag is raised. Error
detection is conservative with overflows reported only with
strong evidence, and in some kind of rank order. Archer
employs “several heuristics to minimize the number of false
positives”, which likely hamper its ability to detect some
classes of overflows accurately. The analysis is further lim-
ited because function pointers are not modeled, heuristics
are used to analyze loops, and only simple range constraints
are considered. ARCHER was used to analyze 2.6 million
lines of open-source code and generated 215 warnings. Of
these, 160 were true security violations and 55 were false
alarms [29].

BOON (Buffer Overrun detectiON) models manipulation
of string buffers, through direct access as well as a subset
of standard library functions [27]. Every string is modeled
by a pair of integers - the number of bytes allocated for the

98

storage buffer and the actual number of bytes used. For
each use of a string function, an integer range constraint is
generated. Constraints are collected across a program, ig-
noring control flow and the order of statements, and used
to detect accesses outside string boundaries. This analysis
is limited because it only considers strings and is flow in-
sensitive. BOON was applied to source code from Sendmail
8.9.3 and generated 44 warnings [27]. Only 4 of these were
actual buffer overflows.

PolySpace C Verifier is a commercial tool designed to de-
tect run-time errors in embedded software [1]. Few details
of the algorithm are available other than the fact that it uses
“abstract interpretation”, although company represenatives
have informed us that the algorithms are based upon the
research of Patrick Cousot and Alain Deutsch [10, 12, 13].
In a white paper, PolySpace describes its tool in this way:

Abstract Interpretation had to wait for the im-
plementation of very efficient and non-exponential
algorithms, and for the availability of increased
processing power on modestly equipped comput-
ers. When applied to runtime error detection,
Abstract Interpretation performs an exhaustive
analysis of all risky operations and automatically
provides a list of runtime errors contained in a
program before it is run, tested or shipped. [1]

The only evaluation of the Polyspace C Verifier tool that we
are aware of is described in [8]. This tool was applied to
NASA software used in the Mars Exploration Rover. Soft-
ware had to be manually broken up into 20-40k lines-of-code
blocks because the analysis couldn’t scale to larger code seg-
ments. An upper bound on the false alarm rate derived from
the number and types of alerts generated is one false alarm
for every 30 to 60 lines of code. False alarms, however, were
not verified and the miss rates for different alert types (e.g.
uninitialized variables, buffer overflows, zero divides) were
not measured.

SPLINT (Secure Programming Lint) extends LCLINT to
detect buffer overflows and other security violations [14]. It
uses several lightweight static analysis techniques. SPLINT
requires source annotations to perform inter-procedural anal-
ysis, but even without annotations, it monitors the creation
of and accesses to buffers and detects bounds violations.
SPLINT uses heuristics to model control flow and common
loop constructs. The developers used SPLINT to analyze
WU-FTP source code without annotations and generated
166 warnings [14]. Of these, 25 were real and 141 were false
alarms.

UNO is named for the three software defects it was de-
signed to detect: the use of Uninitialized variables, derefer-
encing Nil-pointers, and Out-of-bound array indexing [15].
UNO uses a public-domain compiler extension named ctree
to generate a parse tree for each procedure in a program.
Parse trees are turned into control flow graphs that are an-
alyzed using a model checker to find array indexing errors.
UNO does not check array indices that involve complicated
expressions or function calls. It only performs checks when a
bound on the index can be determined or the index is a con-
stant. Ranges for variables are deduced from assignments
and conditions and combined in a conservative fashion. The
analysis is not inter-procedural. UNO was applied to two
open-source software applications (Sendmail and unravel)
but detected no array indexing errors [15]. Overall, it pro-

duced 58 warnings for variables that were declared but not
used or initialized. Only 5 of these were false alarms.

3. OPEN SOURCE TEST CASES
Three widely-used open-source programs were chosen to

test the effectiveness of these five static analysis tools: BIND,
WU-FTPD, and Sendmail. BIND [4] is the most popu-
lar DNS server, WU-FTPD [7] is a popular FTP daemon,
and Sendmail [6] is the dominant mail transfer agent. The
fourteen most recent severe buffer overflow vulnerabilities
for these servers were selected for a retrospective analysis.
Eleven of these allow a remote attacker to gain full control
of the system running the vulnerable software and to exe-
cute arbitrary code. The goal of this retrospective analysis
was to determine if any static analysis tool could have de-
tected these vulnerabilities and been able to prevent their
exploitation if employed during development.

As a first step, we tried to gauge how easy it is to use
these tools on the sorts of programs we care about using a
vulnerable version of Sendmail (8.12.4), weighing in at more
than 145 thousand lines of code. Splint issued many parse
errors regarding type definitions like u_char and u_long,
even though all of the types in question were defined either
in Sendmail include files or standard C include files. We
were ultimately unable to convince Splint to analyze all of
Sendmail 1. ARCHER was able to parse the source, but
it terminated with a Division_by_zero exception during
analysis. PolySpace’s C Verifier was similarly uncoopera-
tive. After considerable consultation with PolySpace Sup-
port, the analysis ran for four days before raising some fatal
internal error 2.

This initial experience was disappointing; it suggested we
would not be able to run the tools on large and complex
programs like Sendmail. As an alternative we crafted self-
contained model programs by extracting just as much code
as was required to reproduce the buffer overflow vulnera-
bility. These model programs were small enough to permit
successful analysis with all of the tools, and ranged in size
from 90 to 800 lines 3. Every attempt was made to preserve
the general structure and complexity of the vulnerable code
when creating these models. If a buffer was declared in one
function and overflowed in another, or if it was accessed via
some complicated loops and conditionals, then the model did
so as well. It was especially difficult to extract code when
the vulnerability involved multiple procedure calls. On av-
erage, five to seven hours were required to construct each
model program. In addition, we arranged for inputs to each
model program that demonstrated a buffer overflow.

For each of the fourteen analyzed vulnerabilities, two model
programs were constructed: a BAD version and an OK ver-
sion. The BAD version contained one or more buffer over-
flow vulnerabilities modeling those seen in the real program.
These vulnerabilities were corrected in the OK version of the
model program via whatever strategy was indicated by the
patch file distributed by the code maintainers. We had no
analysis that could verify the completeness of the patches so
there is the possibility that vulnerabilities still remain in the
OK versions of the programs. However, for each OK model,

1David Evans supplied a page-long list of definitions neces-
sary for processing sendmail
2The machine was a 2.66GHz Xeon with 2GB RAM
3Program size reported by sloccount [28]

99

we did verify that the input that revealed the overflow in the
BAD model did not provoke an overflow in the OK model.

The following three sections describe vulnerabilities in
BIND, Sendmail, and WU-FTP used to create model pro-
grams. Further details on these vulnerabilities and model
programs, including descriptions, extracted source code, and
vulnerable version numbers, are available in [30].

3.1 Bind
Four serious buffer overflow vulnerabilities in BIND shown

in Table 2 were used to create model programs. These were
discovered between 1999 and 2001 and affected BIND Ver-
sion 4 up to 4.9.8 and BIND Version 8 up to 8.2. In the table,
vulnerabilities are listed by a simple name (e.g. BIND-1), a
common name (e.g. NXT record), a CVE (or CAN) num-
ber when available [3] or a CERT Advisory number for older
vulnerabilities when no CVE number is available [2], a code
that indicates the type of vulnerability, and a short descrip-
tion of the reason for the overflow. The code RC stands
for Remote Compromise, the code RD stands for Remote
DoS, and the code LC stands for Local Compromise. These
codes indicate the location of the attacker and the result of
the exploit. An attack on a server can either be issued from
a remote machine or locally from the server and the attacker
either achieves a high level of privilege (usually root or the
privilege of the server) and can execute arbitrary code or
the attacker disables the server. The RC code indicates the
most critical vulnerabilities. The BIND-1 RC vulnerability
(BIND-1) was responsible for the widespread Lion Internet
worm [18].

3.2 Sendmail
As noted above, Sendmail is currently the most widely

used mail transfer agent. The seven serious Sendmail buffer
overflow vulnerabilities shown in Table 2 were used to create
model programs. They were discovered between 1996 and
2003 and affect Sendmail versions up to 8.12. These include
five RC vulnerabilities that permit a remote attacker to ex-
ecute arbitrary code and two LC vulnerabilities that allow a
local user to obtain root level privileges. Reasons for these
buffer overflows are complex and include many logic errors,
incorrect assumptions about the validity of input data, and
typographic errors where one variable name was mistakenly
used for another.

3.3 Wu-ftpd
The WU-FTPD FTP server is installed and enabled by

default on many Linux operating systems including Red-
Hat and Slackware. Three buffer overflow vulnerabilities in
WU-FTPD shown in Table 2 were selected for this study.
They were discovered between 1999 and 2003 and affected
WU-FTP versions up to 2.6.2. They were caused by missing
checks on array bounds for the strcpy() function and incor-
rect logic. All three are RC vulnerabilities that were again
used to create model programs.

4. OVERFLOW CHARACTERISTICS
Buffer overflows in the fourteen model programs were char-

acterized to obtain statistics on the types of buffer overflows
that occur in real programs and are exploitable. It was
found that buffer overflows within each individual model
program were often similar and that they were sometimes
repeated many times. For example, for the SM-1 model pro-

Characteristic Observed Values

Bound 93 % upper, 7% lower
Type 64% char, 36% u char
Location 73% stack, 16% bss,

7% heap, 4% data
Scope 43% inter-procedural,

52% same function,
5% global buffer

Container 93% none, 7% union
Index or 64% none, 22% variable,
limit 7% linear exp,

7% contents of buffer
Access 56% C function,

26% pointer, 11% index,
7% double de-reference

Buffer 52% alias, 34% no alias,
alias 14% alias of an alias
Control 29% none, 49% if-statement,
flow 22% switch
Surrounding 46% none, 42% while,
loops 5% for, 7% nested
Input 64% packet, 22% dir
taint functions, 7% file

7% argc/argv

Table 3: Characteristics of buffer overflows

gram, there were 28 buffer overflows of the same buffer that
were identical with regard to the features used in Table 3.
It is likely that an actual static analysis tool would detect
none or all of these similar buffer overflows and that a pro-
grammer would also correct all or none. Results in Table 3
reflect this assumption and do not count identical buffer
overflows in one model program individually. Instead, the
relative frequencies of the observed values in Table 3 were
first calculated separately for each model program weight-
ing each buffer overflow uniformly when computing relative
frequencies. Following this, overall relative frequencies were
calculated by weighting relative frequencies uniformly for
all model programs. The results, giving each model pro-
gram a weight of one, appear in Table 3 and indicate that
there is considerable variety in real buffer overflows. Most
out-of-bound accesses exceed the upper bound, but one is
below the lower bound. Most involve character arrays, but
many involve u_char arrays. The buffer is on the stack
for roughly 3/4 of the overflows but on the heap, bss, or
data segments roughly 1/4 of the time. The difference in
scope between where the buffer is declared and where it is
accessed is inter-procedural roughly 40% of the time, intra-
procedural half the time, and otherwise global. Most buffers
are not inside a container, but a small percentage (7%) are
in unions. Most (67%) of array accesses use a string ma-
nipulation function that includes a limit (e.g. strncpy) or
access the array directly with an index (e.g. array[i]). For
these, the index or limit is a variable most of the time, but
can also be a linear expression or the contents of an integer
array. Many (56%) of the buffer overflows are caused by
incorrect use of a string manipulation function (e.g. strcpy,
memcpy), and the rest are caused by direct accesses using
pointers or an index. Buffers are accessed directly for only
1/3 of the overflows while 2/3 of the overflows use indirec-

100

Simple name Common name Ref Type Reason

BIND-1 NXT record CA-1999-14 RC Size arg of memcpy not checked.
BIND-2 SIG record CA-1999-14 RD negative arg to memcpy underflows to large positive int
BIND-3 iquery CVE-1999-0009 RC Size arg of memcpy not checked
BIND-4 nslookupComplain (CVE-2001-0013) RC Use of sprintf() without proper bounds checking.

SM-1 crackaddr CA-2003-07 RC Upper bound increment for a > char but not decrement for <

SM-2 gecos CVE-1999-0131 LC gecos field copied into fixed-size buffer without size check
SM-3 8.8.0/8.8.1 mime CVE-1999-0206 RC Pointer to buffer not reset to beginning after line read.
SM-4 8.8.3/8.8.4 mime CVE-1999-0047 RC Typo prevents a size check from being performed.
SM-5 prescan CA-2003-12 RC Input byte set to 0xff cast to minus one error code.
SM-6 tTflag CVE-2001-0653 LC Negative index passes size check but causes underflow.
SM-7 TXT record CVE-2002-0906 RC Size for strncpy read from packet header but not checked.

FTP-1 mapped chdir CVE-1999-0878 RC Several strcpy calls without bounds checks.
FTP-2 off-by-one CAN-2003-0466 RC Wrong size check inside if > should really be >=

FTP-3 realpath CVE-1999-0368 RC Several unchecked strcpy and strcat calls.

Table 2: Vulnerabilities in bind, sendmail, and wu-ftpd

int main(int argc, char *argv[]) {

...

/* name is tainted and can be very long */

char *name;

name = argv[1];

call_realpath(name);

}

void call_realpath(char *name){

...

char path[MAXPATHLEN + 1];

...

my_realpath(name,path,chroot_path);

}

char *my_realpath (const char *pname, char *result,

char* chroot_path) {

char curpath[MAXPATHLEN];

...

/*BAD*/

strcpy(curpath, pname);

...

}

Figure 2: Source fragment extracted from model of
FTP-3 containing one buffer overflow.

tion caused by aliases. The local surrounding control flow
includes an if statement or a switch statement for roughly
70% of the overflows and a surrounding loop for roughly half
of the overflows. Finally, tainted input from users that can
cause the buffer overflow to occur comes from Internet pack-
ets for roughly 2/3 of the overflows but also from directory
functions (e.g. getcwd and pwd), from file inputs, and from
command line arguments.

Figures 2 and 3 contain fragments of model source to il-
lustrate their complexity. Figure 2 contains a code fragment
from FTP-3 in which a command-line argument is read in,
passed through two functions, and eventually copied into
a fixed size buffer with no length check. The comment
/* BAD */ has been inserted immediately before the line

ADDRESS *recipient(...) {

...

else {

/* buffer created */

char nbuf[MAXNAME + 1];

buildfname(pw->pw_gecos,

pw->pw_name, nbuf);

...

}

}

void buildfname(gecos, login, buf)

register char *gecos;

char *login;

char *buf; {

...

register char *bp = buf;

/* fill in buffer */

for (p = gecos; *p != ’\0’ &&

*p != ’,’ &&

*p != ’;’ &&

*p != ’%’; p++) {

if (*p == ’&’) {

/* BAD */

(void) strcpy(bp, login);

*bp = toupper(*bp);

while (*bp != ’\0’)

bp++;

}

else

/* BAD */

*bp++ = *p;

}

/* BAD */

*bp = ’\0’;

}

Figure 3: Source fragment extracted from model of
SM-2 containing three buffer overflows.

101

with the buffer overflow. This example illustrates how a lo-
cal user can cause a buffer overflow. Using features from
Table 3, this buffer overflow is classified as: exceeds upper
bound, char variable, on stack, buffer declaration and use
in same scope, no container, no index computation, string
function, no alias, no local control flow, no loop, and tainted
input from the command line. This characterization, how-
ever, inadequately reflects the difficulty of analyzing the
code. First, a taint analysis must understand that the string
pointed to by name can be any length. Then, an inter-
procedural analysis must follow this pointer through two
functions to where it is used to copy the name string into a
fixed-length buffer. Our characterization does not measure
the complexity of following the tainted string through the
program or of identifying tainted input as it is read in.

Figure 3 contains a code fragment from SM-2. It contains
three lines with potential buffer overflows all preceded by the
comment line /* BAD */. The bottom two buffer overflows
occur when the real name from the gecos field in the passwd
file is copied into a fixed length buffer with no length check.
Using features from Table 3, these are both classified as: ex-
ceeds upper bound, char variable, on stack, inter-procedural
scope, no container, no index computation, pointer access,
alias, in if statement, in for loop, and tainted input from a
file. Both of these buffer overflows can be forced to occur by
a local user because it is relatively easy to change the real
name field in the password file to be a long string. The first
buffer overflow copies another field in the password file that
may be too long into a fixed length buffer. Characteristics
of this buffer overflow are identical to those of the second
two, except access to the buffer is through a string function
instead of through a pointer. Detecting these buffer over-
flows requires understanding that two fields of the password
structure (pw_gecos, pw_name) can point to long buffers, fol-
lowing pointers to these fields through multiple functions
and aliases, and analyzing the loop and local control flow
where these pointers are used to copy their contents into a
fixed-length buffer with no bounds checks.

These two examples demonstrate the need for static anal-
ysis approaches that perform in-depth analyses of source
code. A simple approach that is neither interprocedural nor
flow sensitive will miss over half of vulnerabilities.

5. TEST PROCEDURES
Details of the test procedures are provided in [30] includ-

ing command line settings for tools and scripts. No an-
notations were added to source code for any of the tools.
The only modifications made were for PolySpace because
buffer overflows were detected in library routines such as
strcpy and not mapped into the main program to the point
where the library routine was called. We corrected for this
by adding to the model program as many copies (e.g. str-
cpy1, strcpy2) of a library function as there were calls to
that function. This allowed us to map buffer overflow detec-
tions in these functions to call sites. Documentation, and
often advice from tool developers, was used to determine
appropriate flags and the environment for each tool.

The five tools were run on the fourteen pairs of BAD and
OK model programs. Each BAD program had one or more
lines in the code labeled BAD corresponding to the lines that
could overflow a buffer for some input. The OK program
employed the developers’ patch. This sometimes resulted in
a different number of BAD and OK lines.

System P (d) P (f) P (¬f |d)

PolySpace 0.87 0.5 0.37
Splint 0.57 0.43 0.30
Boon 0.05 0.05 -
Archer 0.01 0 -
Uno 0 0 -

Table 4: Detection and flase alarm rates for all sys-
tems

Some tools provided a source code line number for each
warning and we used this to count detections and false alarms.
Only warnings for lines labeled BAD or OK in the model
source code counted as detections or false alarms. For tools
that did not provide a line number (e.g. BOON), we used
the name and other buffer information to confirm that the
correct buffer overflow or buffer access was detected.

6. RESULTS
Three performance measures were computed for each tool.

For each run of a static analysis tool on a model program,
we counted the number of times a line labeled “BAD” was
correctly identified by inspecting the output of the tool. We
called this the number of detections for that tool on that
program, C(d). Similarly, we counted the number of times
a line labeled “OK” was incorrectly identified and called
this the number of false alarms for the tool on the program,
C(f). Finally, we counted the number of times a detection
was paired with a false alarm for a given BAD/OK pair
of programs and called this the number of confusions for
the tool on the program, C(df). In Table 4 these counts are
used to estimate probabilties of detection, P (d), false alarm,
P (f), and discrimination (no confusion given a detection),
P (¬f |d), according to the following formulae:

P (d) = C(d)/T (d) (1)

P (f) = C(f)/T (f) (2)

P (¬f |d) = 1− C(df)/C(d), (3)

where T (d) is the total number of detections possible for a
model program, and T (f) the total number of possible false
alarms (note that T (d) 6= T (f) is possible since correcting a
vulnerability can change the number of buffer accesses).

Table 4 shows overall detection and false alarm rates for
all systems. PolySpace and Splint detected a substantial
fraction of buffer overflows while the other three tools gen-
erated almost no warnings for any model program. Boon
had two confusions (detections combined with false alarms),
one on each of SM-6 and FTP-1. Archer had one detection
on SM-4 and no false alarms. UNO generated no warnings
concerning buffer overflows. P (d) for PolySpace and Splint
are quite high at 0.87 and 0.57. False alarm probabilities
are also high for these tools: both are near 0.5.

The information in Table 4 is also rendered graphically
as a kind of ROC (Receiver Operating Characteristic) curve
in Figure 4. Probability of detection and false alarm, P (d)
and P (f), make up the vertical and horizontal axes in this
plot. The diagonal line is the locus of points representing
a naive system following the strategy of random guessing.
By choosing different probabilities for labeling a line in a
program as having a buffer overflow, this random system can

102

Figure 4: ROC-type plot for the five systems evalu-
ated in this study. Only PolySpace has performance
significantly better than the diagonal random guess-
ing line.

achieve any performance for which P (d) = P (f). A useful
system must have an operating point that is substantially
above this diagonal. Only PolySpace where P (d) = 0.87 and
Splint where P (d) = 0.57 have points above the diagonal.

We further require that the vertical distance between an
operating point and the diagonal be statistically significant.
If a system randomly detects buffer overflows in the BAD/OK
lines by flipping a biased coin then we would expect it to
have an arbitrary P (f), with a per-model-program variance
given by σ2 = p(1−p)/N where p = P (f) and N is the num-
ber of lines labeled BAD in the model program. The overall
P (d) is the average of the 14 per-model program average de-
tection rates, and the variance of P (d) is equal to the sum
of the per-model program variances divided by 142 = 196.
The error bars in this figure are ± two standard deviations
for random guessing systems with false alarm rates equal
to those observed for Splint and PolySpace. From this we
see that the detection rate of Splint is not outside the two
standard deviation range, while that of PolySpace is sub-
stantially outside the range. Splint is thus not statistically
significantly different at the 0.05 confidence level from a ran-
dom guessing system that labels 43% of all lines BAD. The
detection rate of PolySpace, however, is statistically greater
than that of a random guessing system that labels 50% of
all lines BAD.

The above analysis is incomplete, however, since P (d) and
P (f) don’t adequately capture how these tools might be
used. We need to measure not only the ability of a tool
to detect vulnerabilities, but also its ability to discriminate
between the presence and the absence (patch) of vulnerabil-
ities. If a system correctly detects every line of source code
containing a buffer overflow, but is unable to notice that the

overflow has been corrected, then a user of the system will
not be able to determine whether a code modification de-
signed to correct a problem is effective. Without the ability
to validate patches that correct security weaknesses, a tool
can only suggest potential problems, and it may not be used
because its warnings are untrustworthy. We measured the
probability of not false alarming on patched software as the
conditional probability of not generating a false alarm on
a corrected vulnerability, given a detection of the original
vulnerability (see equation 3). These values have been cal-
culated for Splint and PolySpace and are provided in Table 4
under the column labeled P (¬f |d). Note that an ideal sys-
tem would have P (¬f |d) = 1.0. For PolySpace and Splint,
these conditional probabilities are 0.37 and 0.3, respectively.
This means that more than half the time, these tools con-
tinue to signal a buffer overflow after it has been patched.

The above analyses focused only on source code lines in
the model programs that were known to contain buffer over-
flows. Warnings caused by other lines of source code were
ignored. Unfortunately, there were many such warnings.
We counted the number of buffer-overflow related warnings
generated by Splint and PolySpace for each of the 14 OK
versions of the model programs. We used these counts to
estimate the number of false alarms to expect from each
tool per line of code. PolySpace produced one warning for
every 12 lines of code and Splint produced one for every 46
lines of code. These are very high warning rates for patched
programs, and they concur with our qualitative experience
of the tools.

7. EXPLAINING FALSE ALARMS
This evaluation indicates that while state-of-the-art static

analysis tools like Splint and PolySpace can find real buffer
overflows with security implications, warning rates are un-
acceptably high. We can think of two ways to explain why
a tool might signal a warning on a line labeled OK. First, the
warning may really be a detection, meaning that the version
of the model program created by applying the developers’
patch is not perfectly guarded against the overflow for all in-
puts. In this case, static analysis is properly reporting that
the vulnerability persists, and the reported false alarm rate
is too high. Second, the warning may be a false alarm, and
thus represents a blind spot for a particular static analysis
tool.

In our examination of the false alarms in the model pro-
grams, there were certainly many situations in which the
false alarms seemed genuine. These false alarms overwhelm-
ingly involved buffer overflows subject to some complicated
control flow (loops, nested conditionals, etc) which in turn
is subject to the contents of either an array or structure.
The model programs are excerpted from server code, which
often includes logic to parse input: a pointer walks through
the contents of a buffer in a manner that is determined by
the contents of the buffer itself and may also affect the way
in which another buffer is simultaneously populated with
values.

As mentioned above, the OK models were too complicated
to warrant against out-of-bounds accesses by inspection. So
we decided to create for closer study a few contrived exam-
ples of the sort of program that looked like it was a problem
for most of the tools. One such example, “aia2”, appears in
Figure 5, in which an array, x, is populated via a for loop
with the values -1,0,+1. The contents of this array are sub-

103

1: int main () {

2: int i;

3: int x[3], y[2];

4: x[0] = 1;

5: for (i=0; i<3; i++)

6: x[i] = i-1;

7: for (i=1; i<3; i++)

8: y[x[i]] = i;

9: }

Figure 5: False alarm example ”aia2”, in which the
lack of overflow depends upon contents of an array.

1: int main () {

2: char buf[] = "The";

3: char *bp;

4: bp=buf;

5: while(1)

6: if (!(*bp++))

7: break;

8: printf ("strlen(buf)=%d\n", bp-buf);

9: }

Figure 6: False alarm example ”inp” in which
the lack of overflow depends upon existence/non-
existence of a null terminator in a string..

sequently used, again in a for loop, to index into another
array, y. Even though x takes on a value -1, that value is
never used to index into y because of the limits chosen for
the loop. Notice that if we change the lower loop limit in
line 7 to i=0 then there is an underflow.

Another contrived example, “inp”, of a false alarm involv-
ing the contents of a buffer appears in Figure 6. This ex-
ample revolves around an implementation of strlen which
will read beyond the upper bound of any string that is not
null terminated. However, here the string is guaranteed to
be null terminated because it is initialized with a string lit-
eral [17]. Notice that this example can be turned into a
read overflow if we insert the line buf[3]=’a’ between lines
3 and 4: the string is no longer guaranteed to be properly
terminated.

We paired these two OK example programs with BAD ones
created by making the two modifications described above.
Then we tried the five static analysis tools evaluated in this
study on these four tiny programs. As seen in Table 5, the
subjective assessment that these static analysis tools gener-
ate false alarms on buffer accesses subject to the contents of
an array seems to be well supported. Archer and Uno neither
detect anything nor false alarm on anything. Boon registers
both a detection and a false alarm on the “inp” example.
Splint registers both but only on the “aia2” example. Poly-
Space registers both for both examples. In all cases, when a
static analysis tool finds an error in the BAD example, it also
false alarms on the OK one, meaning that P (¬f |d) = 0 for
Boon, Splint, and PolySpace. For these examples, discrim-
ination could not be any worse. Unfortunately, this sort of
code is not only common in server software, it is essential,
and it is hard to imagine how to do without it.

System aia2 inp

Archer
Boon df
PolySpace df df
Splint df
Uno

Table 5: Performance of five evaluated tools on false
alarm examples

8. DISCUSSION
The performance of five modern static analysis tools was

analyzed using 14 model programs to determine both detec-
tion rates for known buffer overflows and false alarm rates for
patched source code after these buffer overflows have been
eliminated. The model programs were generated by ana-
lyzing 14 serious buffer overflow vulnerabilities in BIND,
WU-FTP, and Sendmail and then hand extracting source
code required to reproduce these vulnerabilities. It was nec-
essary to excerpt in this way because the majority of the
tools could not operate upon full programs.

These experiments are the first we are aware of that care-
fully measure detection, false alarm, and discrimination rates
for in-the-wild buffer overflows and that analyze characteris-
tics of such overflows. The results demonstrate that simple
static analysis techniques do not detect buffer overflows that
occur in Internet server software. The detection rates of
three of the five systems tested were below 5% when tested
on C source code modeled after those sections of open-source
C WU-FTP, Sendmail, and BIND server software that con-
tain known and exploitable buffer overflows. These poor
detection rates may be due to the complexity of analyzing
real buffer overflows. An analysis of the overflows in this
server software indicates that they differ in many character-
istics. Only roughly half of them involve string manipula-
tion routines, two-thirds involve buffers on the stack, half
involve inter-procedural scope difference between locations
where buffers are created and used, and about half involve
pointers that are aliases of the original buffer. Finally, one
vulnerability was a buffer underflow, many were inside loops,
and some buffers were in unions. These results suggest that
static analysis tools must be designed to handle complex
buffer accesses, since they occur in quantity in actual code.
They should also determine when a buffer access is tainted
and can be forced to occur by external inputs. All of the
in-the-wild buffer overflows were tainted.

Even though two static analysis tools (Splint and Poly-
Space) had high detection rates of 87% and 57%, they are
not without problems. These tools would have detected
some in-the-wild buffer overflows, but warnings generated
by them might have been ignored by developers annoyed by
high false alarm rates. The false alarm rate measured just
on the patched lines in the model programs was 43% and
50%. More concerning, perhaps, is the rate of false alarms
per line of code, which for these tools is 1 in 12 and 1 in
46. Additionally, these tools do not appear to be able to
discriminate between vulnerable source code and patched
software that is safe, making them of little use in an itera-
tive debugging loop. We estimate the discrimination rates,
i.e. the probability of not warning about a buffer overflow
in a properly patched line of code, for these two tools at

104

less than 40%, as compared with 100% for an ideal system
and 50% for a trivial system that flips a biased coin. Fi-
nally, the tool with the best performance, PolySpace is slow
enough to preclude common use; it takes days to analyze a
medium-sized program of 100,000 lines.

The results are promising because some static analysis
tools would have detected in-the-wild buffer overflows. They
are disappointing because false alarm rates are high and dis-
crimination is poor. These results suggest that further work
developing static analysis tools to detect buffer overflows
should include testing on complex buffer overflows found in
actual software and the careful measurement of detection,
false alarm, and discrimination rates. To this end, we plan
to release the 14 model programs used in this study for use
by developers and evaluators. 4 In addition, we are develop-
ing a library of much simpler test cases that explore buffer
overflows differing along the dimensions used to create Ta-
ble 3. When developed, such test cases can be used to better
diagnose the capabilities and limitations of existing and new
static analysis tools.

Our evaluation also suggests that static analysis tools
should perform a taint analysis that tracks external inputs
to a program from packets, files, command-line arguments,
and system calls. Any buffer overflow that is affected by
these inputs, especially inputs that can be affected by remote
attackers, is more critical than others. Further, static anal-
ysis tools should be designed to accommodate large complex
programs such as Sendmail, WU-FTP, and BIND without
extensive tuning, modification, or changes to the build envi-
ronment. None of the best tools could analyze a program as
big and complicated as Sendmail. And only ARCHER was
able to impersonate gcc in makefiles (it uses the front-end
of gcc to generate its abstract syntax trees), requiring no
changes in the build environment.

The above results and conclusions should be interpreted
only in the context of these experiments. They are based on
model programs that contain already discovered buffer over-
flows that occur in Internet server source code. The model
programs extract only the part of the source essential to
replicate and represent the out-of-bounds buffer accesses.
The false alarm rates reported here cannot be conclusively
verified, for they assume that developers creating patches to
address specific vulnerabilities actually succeed in doing so
completely. Both detection and false alarm rates, further,
may be unrepresentative of that for the remainder of the
server code that was excluded in extracting the model pro-
grams. In addition, this study focuses on BIND, Sendmail,
and WU-FTP Internet server software. The results may not
generalize to other types of server software (e.g. database
servers, web servers) or to other types of software (e.g. oper-
ating system kernel, word processing, numerical simulation,
or graphics).

9. ACKNOWLEDGEMENTS
We would like to thank Robert Cunnigham, Roger Khazan,

Kendra Kratkiewicz, and Jesse Rabek for discussions on
static analysis. We would also like to thank David Evans
for his help with Splint, David Wagner for answering ques-
tions about BOON, Yichen Xie and Dawson Engler for their
help with ARCHER, and Chris Hote and Vince Hopson for
all their help on answering questions about C-Verifier.

4Please direct all inquiries to tleek@ll.mit.edu.

10. REFERENCES

[1] Abstract interpretation.
http://www.polyspace.com/downloads.htm,
September 2001.

[2] Cert coordination center.
http://www.cert.org/advisories, October 2003.

[3] Common vulnerabilities and exposures.
http://www.cve.mitre.org, October 2003.

[4] Internet software consortium – bind.
http://www.isc.org/products/BIND, October 2003.

[5] Secure software, rough auditing tool for security
(rats). http://www.securesoftware.com, October 2003.

[6] Sendmail consortium. http://www.sendmail.org,
October 2003.

[7] Wu-ftp development group. http://www.wu-ftpd.org,
October 2003.

[8] G. Brat and R. Klemm. Static analysis of the mars
exploration rover flight software. In Proceedings of the
First International Space Mission Challenges for
Information Technology, pages 321–326, 2003.

[9] J. Condit, M. Harren, S. McPeak, G. C. Necula, and
W. Weimer. Ccured in the real world. In Proceedings
of the ACM SIGPLAN 2003 conference on
Programming language design and implementation,
pages 232–244. ACM Press, 2003.

[10] P. Cousot and R. Cousot. Static determination of
dynamic properties of programs. In Proceedings of the
Second International Symposium on Programming,
pages 106–130. Dunod, Paris, France, 1976.

[11] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, Q. Zhang, and
H. Hinton. Stackguard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In
Proceedings of the 7th USENIX Security Conference,
pages 63–78, San Antonio, Texas, January 1998.

[12] A. Deutsch. Interprocedural may-alias analysis for
pointers: Beyond k-limiting. In Proceedings of the
Conference on Programming Language Design and
Implementation, pages 230–241, 1994.

[13] A. Deutsch. On the complexity of escape analysis. In
Proceedings of the Symposium on Principles of
Programming Languages, pages 358–371, 1997.

[14] D. Evans and D. Larochelle. Improving security using
extensible lightweight static analysis. IEEE Softw.,
19(1):42–51, 2002.

[15] G. Holzmann. Static source code checking for
user-defined properties. Pasadena, CA, USA, June
2002.

[16] M. K. J. Wilander. A comparison of publicly available
tools for static intrusion prevention. In Proceedings of
the 7th Nordic Workshop of Secure IT Systems, 2002.

[17] B. W. Kernighan and D. M. Ritchie. The C
Programming Language. Prentice Hall, Murray Hill,
NJ, 2nd edition, 1988.

[18] W. S. M. Fearnow. Sans institute – lion worm.
http://www.sans.org/y2k/lion.htm, April 2001.

[19] D. Moore, V. Paxson, S. Savage, C. Shannon,
S. Staniford, and N. Weaver. The spread of the
sapphire/slammer worm. Technical report, CAIDA,
ICSI, Silicon Defense, UC Berkeley EECS and UC San
Diego CSE, 2003.

105

[20] J. Nazario. Source code scanners for better code.
Linux Journal, 2002.

[21] E. O. P. Broadwell. A comparison of static analysis
and fault injection techniques for developing robust
system services. Technical report, University of
California, Berkeley, May 2002.

[22] T. G. P. Mell, V. Hu. Nist icat metabase.
http://icat.nist.gov, October 2003.

[23] M. Rinard, C. Cadar, D. Dumitran, D. Roy, and
W. Beebee. Enhancing availability and security
through failure-oblivious computing. Technical Report
935, Massachusetts Institute of Technology, 2004.

[24] O. Ruwase and M. Lam. A practical dynamic buffer
overflow detector. In Proceedings of the 11th Annual
Network and Distributed System Security Symposium
(NDSS 2004), February 2003.

[25] J. Ullrich. Sans institute – blaster, power outage,
sobig: Two weeks in august and the internet storm
center.
http://isc.incidents.org/presentations/sansne2003.pdf,
2003.

[26] J. Viega, J. T. Bloch, T. Kohno, and G. McGraw.
ITS4: A static vulnerability scanner for C and C++
code. ACM Transactions on Information and System
Security, 5(2), 2002.

[27] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken.
A first step towards automated detection of buffer
overrun vulnerabilities. In Network and Distributed
System Security Symposium, pages 3–17, San Diego,
CA, February 2000.

[28] D. Wheeler. More than a gigabuck: Estimating
gnu/linux’s size. http://www.dwheeler.com/sloc, 2001.

[29] Y. Xie, A. Chou, and D. Engler. Archer: using
symbolic, path-sensitive analysis to detect memory
access errors. In Proceedings of the 10th ACM
SIGSOFT international symposium on Foundations of
software engineering, pages 327–336. ACM Press,
2003.

[30] M. Zitser. Securing software: An evaluation of static
source code analyzers. Master’s thesis, Massachusetts
Institute of Technology, 2003.

106

