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Foreword

This is a set of le
ture notes on 
ryptography 
ompiled for 6.87s, a one week long 
ourse on 
ryptographytaught at MIT by Sha� Goldwasser and Mihir Bellare in the summers of 1996{2001. The notes wereformed by merging notes written for Sha� Goldwasser's Cryptography and Cryptanalysis 
ourse at MIT withnotes written for Mihir Bellare's Cryptography and network se
urity 
ourse at UCSD. In addition, RosarioGennaro (as Tea
hing Assistant for the 
ourse in 1996) 
ontributed Se
tion 9.6, Se
tion 11.4, Se
tion 11.5,and Appendix D to the notes, and also 
ompiled, from various sour
es, some of the problems in Appendix E.Cryptography is of 
ourse a vast subje
t. The thread followed by these notes is to develop and explain thenotion of provable se
urity and its usage for the design of se
ure proto
ols.Mu
h of the material in Chapters 2, 3 and 7 is a result of s
ribe notes, originally taken by MIT graduatestudents who attended Professor Goldwasser's Cryptography and Cryptanalysis 
ourse over the years, andlater edited by Frank D'Ippolito who was a tea
hing assistant for the 
ourse in 1991. Frank also 
ontributedmu
h of the advan
ed number theoreti
 material in the Appendix. Some of the material in Chapter 3 isfrom the 
hapter on Cryptography, by R. Rivest, in the Handbook of Theoreti
al Computer S
ien
e.Chapters 4, 5, 6, 8 and 10, and Se
tions 9.5 and 7.4.6, were written by Professor Bellare for his Cryptographyand network se
urity 
ourse at UCSD.All rights reserved.Sha� Goldwasser and Mihir Bellare Cambridge, Massa
husetts, August 2001.
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C h a p t e r 1Introdu
tion to Modern Cryptography

Cryptography is about 
ommuni
ation in the presen
e of an adversary. It en
ompasses many problems(en
ryption, authenti
ation, key distribution to name a few). The �eld of modern 
ryptography provides atheoreti
al foundation based on whi
h we may understand what exa
tly these problems are, how to evaluateproto
ols that purport to solve them, and how to build proto
ols in whose se
urity we 
an have 
on�den
e.We introdu
e the basi
 issues by dis
ussing the problem of en
ryption.1.1 En
ryption: Histori
al Glan
eThe most an
ient and basi
 problem of 
ryptography is se
ure 
ommuni
ation over an inse
ure 
hannel.Party A wants to send to party B a se
ret message over a 
ommuni
ation line whi
h may be tapped by anadversary.The traditional solution to this problem is 
alled private key en
ryption. In private key en
ryption A and Bhold a meeting before the remote transmission takes pla
e and agree on a pair of en
ryption and de
ryptionalgorithms E and D, and an additional pie
e of information S to be kept se
ret. We shall refer to S as the
ommon se
ret key. The adversary may know the en
ryption and de
ryption algorithms E and D whi
h arebeing used, but does not know S.After the initial meeting when A wants to send B the 
leartext or plaintext message m over the inse
ure
ommuni
ation line, A en
rypts m by 
omputing the 
iphertext 
 = E(S;m) and sends 
 to B. Upon re
eipt,B de
rypts 
 by 
omputing m = D(S; 
). The line-tapper (or adversary), who does not know S, should notbe able to 
ompute m from 
.Let us illustrate this general and informal setup with an example familiar to most of us from 
hildhood,the substitution 
ipher. In this method A and B meet and agree on some se
ret permutation f : � ! �(where � is the alphabet of the messages to be sent). To en
rypt message m = m1 : : :mn where mi 2 �,A 
omputes E(f;m) = f(m1) : : : f(mn). To de
rypt 
 = 
1 : : : 
n where 
i 2 �, B 
omputes D(f; 
) =f�1(
1) : : : f�1(
n) = m1 : : :mn = m. In this example the 
ommon se
ret key is the permutation f . Theen
ryption and de
ryption algorithms E and D are as spe
i�ed, and are known to the adversary. We notethat the substitution 
ipher is easy to break by an adversary who sees a moderate (as a fun
tion of the sizeof the alphabet �) number of 
iphertexts.A rigorous theory of perfe
t se
re
y based on information theory was developed by Shannon [186℄ in 1943.1. In this theory, the adversary is assumed to have unlimited 
omputational resour
es. Shannon showed1Shannon's famous work on information theory was an outgrowth of his work on se
urity ([187℄).11



12 Goldwasser and Bellarethat se
ure (properly de�ned) en
ryption system 
an exist only if the size of the se
ret information S thatA and B agree on prior to remote transmission is as large as the number of se
ret bits to be ever ex
hangedremotely using the en
ryption system.An example of a private key en
ryption method whi
h is se
ure even in presen
e of a 
omputationallyunbounded adversary is the one time pad. A and B agree on a se
ret bit string pad = b1b2 : : : bn, wherebi 2R f0; 1g (i.e pad is 
hosen in f0; 1gn with uniform probability). This is the 
ommon se
ret key. Toen
rypt a message m = m1m2 : : :mn where mi 2 f0; 1g, A 
omputes E(pad;m) = m�pad (bitwise ex
lusiveor). To de
rypt 
iphertext 
 2 f0; 1gn, B 
omputes D(pad; 
) = pad � 
 = pad � (m � pad) = m. It iseasy to verify that 8m; 
 the Ppad [E(pad;m) = 
℄ = 12n . From this, it 
an be argued that seeing 
 gives\no information" about what has been sent. (In the sense that the adversary's a posteriori probability ofpredi
ting m given 
 is no better than her a priori probability of predi
ting m without being given 
.)Now, suppose A wants to send B an additional messagem0. If A were to simply send 
 = E(pad;m0), then thesum of the lengths of messages m and m0 will ex
eed the length of the se
ret key pad, and thus by Shannon'stheory the system 
annot be se
ure. Indeed, the adversary 
an 
ompute E(pad;m) � E(pad;m0) = m �m0whi
h gives information about m and m0 (e.g. 
an tell whi
h bits of m and m` are equal and whi
h aredi�erent). To �x this, the length of the pad agreed upon a-priori should be the sum total of the length of allmessages ever to be ex
hanged over the inse
ure 
ommuni
ation line.1.2 Modern En
ryption: A Computational Complexity Based The-oryModern 
ryptography abandons the assumption that the Adversary has available in�nite 
omputing re-sour
es, and assumes instead that the adversary's 
omputation is resour
e bounded in some reasonable way.In parti
ular, in these notes we will assume that the adversary is a probabilisti
 algorithm who runs inpolynomial time. Similarly, the en
ryption and de
ryption algorithms designed are probabilisti
 and run inpolynomial time.The running time of the en
ryption, de
ryption, and the adversary algorithms are all measured as a fun
-tion of a se
urity parameter k whi
h is a parameter whi
h is �xed at the time the 
ryptosystem is setup.Thus, when we say that the adversary algorithm runs in polynomial time, we mean time bounded by somepolynomial fun
tion in k.A

ordingly, in modern 
ryptography, we speak of the infeasibility of breaking the en
ryption system and
omputing information about ex
hanged messages where as histori
ally one spoke of the impossibility ofbreaking the en
ryption system and �nding information about ex
hanged messages. We note that theen
ryption systems whi
h we will des
ribe and 
laim \se
ure" with respe
t to the new adversary are not\se
ure" with respe
t to a 
omputationally unbounded adversary in the way that the one-time pad systemwas se
ure against an unbounded adversary. But, on the other hand, it is no longer ne
essarily true thatthe size of the se
ret key that A and B meet and agree on before remote transmission must be as long asthe total number of se
ret bits ever to be ex
hanged se
urely remotely. In fa
t, at the time of the initialmeeting, A and B do not need to know in advan
e how many se
ret bits they intend to send in the future.We will show how to 
onstru
t su
h en
ryption systems, for whi
h the number of messages to be ex
hangedse
urely 
an be a polynomial in the length of the 
ommon se
ret key. How we 
onstru
t them brings us toanther fundamental issue, namely that of 
ryptographi
, or 
omplexity, assumptions.As modern 
ryptography is based on a gap between eÆ
ient algorithms for en
ryption for the legitimateusers versus the 
omputational infeasibility of de
ryption for the adversary, it requires that one have availableprimitives with 
ertain spe
ial kinds of 
omputational hardness properties. Of these, perhaps the most basi
is a one-way fun
tion. Informally, a fun
tion is one-way if it is easy to 
ompute but hard to invert. Otherprimitives in
lude pseudo-random number generators, and pseudorandom fun
tion families, whi
h we willde�ne and dis
uss later. From su
h primitives, it is possible to build se
ure en
ryption s
hemes.Thus, a 
entral issue is where these primitives 
ome from. Although one-way fun
tions are widely believed to
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ture Notes 13exist, and there are several 
onje
tured 
andidate one-way fun
tions whi
h are widely used, we 
urrently donot know how to mathemati
ally prove that they a
tually exist. We shall thus design 
ryptographi
 s
hemesassuming we are given a one-way fun
tion. We will use the 
onje
tured 
andidate one-way fun
tions for ourworking examples, throughout our notes. We will be expli
it about what exa
tly 
an and 
annot be provedand is thus assumed, attempting to keep the latter to a bare minimum.We shall elaborate on various 
onstru
tions of private-key en
ryption algorithms later in the 
ourse.The development of publi
 key 
ryptography in the seventies enables one to drop the requirement that Aand B must share a key in order to en
rypt. The re
eiver B 
an publish authenti
ated2 information (
alledthe publi
-key) for anyone in
luding the adversary, the sender A, and any other sender to read at their
onvenien
e (e.g in a phone book). We will show en
ryption algorithms in whi
h whoever 
an read thepubli
 key 
an send en
rypted messages to B without ever having met B in person. The en
ryption systemis no longer intended to be used by a pair of prespe
i�ed users, but by many senders wishing to send se
retmessages to a single re
ipient. The re
eiver keeps se
ret (to himself alone!) information (
alled the re
eiver'sprivate key) about the publi
-key, whi
h enables him to de
rypt the 
yphertexts he re
eives. We 
all su
han en
ryption method publi
 key en
ryption.We will show that se
ure publi
 key en
ryption is possible given a trapdoor fun
tion. Informally, a trapdoorfun
tion is a one-way fun
tion for whi
h there exists some trapdoor information known to the re
eiver alone,with whi
h the re
eiver 
an invert the fun
tion. The idea of publi
-key 
ryptosystems and trapdoor fun
tionswas introdu
ed in the seminal work of DiÆe and Hellman in 1976 [67, 68℄. Soon after the �rst implementationsof their idea were proposed in [170℄, [164℄, [137℄.A simple 
onstru
tion of publi
 key en
ryption from trapdoor fun
tions goes as follows. Re
ipient B 
an
hoose at random a trapdoor fun
tion f and its asso
iated trapdoor information t, and set its publi
 keyto be a des
ription of f and its private key to be t. If A wants to send message m to B, A 
omputesE(f;m) = f(m). To de
rypt 
 = f(m), B 
omputes f�1(
) = f�1(f(m)) = m. We will show that this
onstru
tion is not se
ure enough in general, but 
onstru
t probabilisti
 variants of it whi
h are se
ure.1.3 A Short List of Candidate One Way Fun
tionsAs we said above, the most basi
 primitive for 
ryptographi
 appli
ations is a one-way fun
tion whi
h is\easy" to 
ompute but \hard" to invert. (For publi
 key en
ryption, it must also have a trapdoor.) By\easy", we mean that the fun
tion 
an be 
omputed by a probabilisti
 polynomial time algorithm, and by\hard" that any probabilisti
 polynomial time (PPT) algorithm attempting to invert it will su

eed with\small" probability (where the probability ranges over the elements in the domain of the fun
tion.) Thus,to qualify as a potential 
andidate for a one-way fun
tion, the hardness of inverting the fun
tion should nothold only on rare inputs to the fun
tion but with high probability over the inputs.Several 
andidates whi
h seem to posses the above properties have been proposed.1. Fa
toring. The fun
tion f : (x; y) 7! xy is 
onje
tured to be a one way fun
tion. The asymptoti
allyproven fastest fa
toring algorithms to date are variations on Dixon's random squares algorithm [126℄.It is a randomized algorithm with running time L(n)p2 where L(n) = eplogn log logn. The number �eldsieve by Lenstra, Lenstra, Manasee, and Pollard with modi�
ations by Adlemann and Pomeran
e is afa
toring algorithm proved under a 
ertain set of assumptions to fa
tor integers in expe
ted timee((
+o(1))(logn) 13 (log logn) 23 )[128, 3℄.2. The dis
rete log problem. Let p be a prime. The multipli
ative groupZ�p = (fx < pj(x; p) = 1g; � mod p)is 
y
li
, so that Z�p = fgi mod pj1 � i � p�1g for some generator g 2 Z�p . The fun
tion f : (p; g; x) 7!2Saying that the information is \authenti
ated" means that the sender is given a guarantee that the information waspublished by the legal re
eiver. How this 
an be done is dis
ussed in a later 
hapter.



14 Goldwasser and Bellare(gx mod p; p; g) where p is a prime and g is a generator for Z�p is 
onje
tured to be a one-way fun
tion.Computing f(p; g; x) 
an be done in polynomial time using repeated squaring. However, The fastestknown proved solution for its inverse, 
alled the dis
rete log problem is the index-
al
ulus algorithm,with expe
ted running time L(p)p2 (see [126℄). An interesting problem is to �nd an algorithm whi
hwill generate a prime p and a generator g for Z�p . It is not known how to �nd generators in polynomialtime. However, in [8℄, E. Ba
h shows how to generate random fa
tored integers (in a given rangeN2 : : : N). Coupled with a fast primality tester (as found in [126℄, for example), this 
an be used toeÆ
iently generate random tuples (p� 1; q1; : : : ; qk) with p prime. Then pi
king g 2 Z�p at random, it
an be 
he
ked if (g; p�1) = 1, 8qi, g p�1qi mod p 6= 1, and gp�1 mod p = 1, in whi
h 
ase order(g) = p�1(order(g) = jfgi mod pj1 � i � p � 1gj). It 
an be shown that the density of Z�p generators is highso that few guesses are required. The problem of eÆ
iently �nding a generator for a spe
i�
 Z�p is anintriguing open resear
h problem.3. Subset sum. Let ai 2 f0; 1gn;~a = (a1; : : : ; an); si 2 f0; 1g; ~s = (s1; : : : ; sn), and let f : (~a;~s) 7!(~a;Pni=1 siai). An inverse of (~a;Pni=1 siai) under f is any (~a;~s0i) so that Pni=1 siai =Pni=1 s0iai. Thisfun
tion f is a 
andidate for a one way fun
tion. The asso
iated de
ision problem (given (~a; y), doesthere exists ~s so thatPni=1 siai = y?) is NP-
omplete. Of 
ourse, the fa
t that the subset-sum problemis NP-
omplete 
annot serve as eviden
e to the one-wayness of fss. On the other hand, the fa
t thatthe subset-sum problem is easy for spe
ial 
ases (su
h as \hidden stru
ture" and low density) 
an notserve as eviden
e for the weakness of this proposal. The 
onje
ture that f is one-way is based on thefailure of known algorithm to handle random high density instan
es. Yet, one has to admit that theeviden
e in favor of this 
andidate is mu
h weaker than the eviden
e in favor of the two previous ones.4. DES with �xed message. Fix a 64 bit message M and de�ne the fun
tion f(K) = DESK(M) whi
htakes a 56 bit key K to a 64 bit output f(K). This appears to be a one-way fun
tion. Indeed, this
onstru
tion 
an even be proven to be one-way assuming DES is a family of pseudorandom fun
tions,as shown by Luby and Ra
ko� [134℄.5. RSA. This is a 
andidate one-way trapdoor fun
tion. Let N = pq be a produ
t of two primes. Itis believed that su
h an N is hard to fa
tor. The fun
tion is f(x) = xe mod N where e is relativelyprime to (p � 1)(q � 1). The trapdoor is the primes p; q, knowledge of whi
h allows one to invert feÆ
iently. The fun
tion f seems to be one-way. To date the best atta
k is to try to fa
tor N , whi
hseems 
omputationally infeasible.In Chapter 2 we dis
uss formal de�nitions of one-way fun
tions and are more pre
ise about the above
onstru
tions.1.4 Se
urity De�nitionsSo far we have used the terms \se
ure" and \break the system" quite loosely. What do we really mean?It is 
lear that a minimal requirement of se
urity would be that: any adversary who 
an see the 
iphertextand knows whi
h en
ryption and de
ryption algorithms are being used, 
an not re
over the entire 
leartext.But, many more properties may be desirable. To name a few:1. It should be hard to re
over the messages from the 
iphertext when the messages are drawn fromarbitrary probability distributions de�ned on the set of all strings (i.e arbitrary message spa
es). Afew examples of message spa
es are: the English language, the set f0; 1g). We must assume that themessage spa
e is known to the adversary.2. It should be hard to 
ompute partial information about messages from the 
iphertext.3. It should be hard to dete
t simple but useful fa
ts about traÆ
 of messages, su
h as when the samemessage is sent twi
e.
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ture Notes 154. The above properties should hold with high probability.In short, it would be desirable for the en
ryption s
heme to be the mathemati
al analogy of opaque envelopes
ontaining a pie
e of paper on whi
h the message is written. The envelopes should be su
h that all legalsenders 
an �ll it, but only the legal re
ipient 
an open it.We must answer a few questions:� How 
an \opaque envelopes" be 
aptured in a pre
ise mathemati
al de�nition? Mu
h of Chapters 6and 7 is dedi
ated to dis
ussing the pre
ise de�nition of se
urity in presen
e of a 
omputationallybounded adversary.� Are \opaque envelopes" a
hievable mathemati
ally? The answer is positive . We will des
ribe the theproposals of private (and publi
) en
ryption s
hemes whi
h we prove se
ure under various assumptions.We note that the simple example of a publi
-key en
ryptions system based on trapdoor fun
tion, des
ribedin the previous se
tion, does not satisfy the above properties. We will show later, however, probabilisti
variants of the simple system whi
h do satisfy the new se
urity requirements under the assumption thattrapdoor fun
tions exist. More spe
i�
ally, we will show probabilisti
 variants of RSA whi
h satisfy the newse
urity requirement under, the assumption that the original RSA fun
tion is a trapdoor fun
tion, and aresimilar in eÆ
ien
y to the original RSA publi
-key en
ryption proposal.1.5 The Model of AdversaryThe entire dis
ussion so far has essentially assumed that the adversary 
an listen to 
yphertexts beingex
hanged over the inse
ure 
hannel, read the publi
-�le (in the 
ase of publi
-key 
ryptography), generateen
ryptions of any message on his own (for the 
ase of publi
-key en
ryption), and perform probabilisti
polynomial time 
omputation. This is 
alled a passive adversary.One may imagine a more powerful adversary who 
an inter
ept messages being transmitted from senderto re
eiver and either stop their delivery all together or alter them in some way. Even worse, suppose theadversary 
an request a polynomial number of 
yphertexts to be de
rypted for him. We 
an still ask whetherthere exists en
ryption s
hemes (publi
 or se
ret) whi
h are se
ure against su
h more powerful adversaries.Indeed, su
h adversaries have been 
onsidered and en
ryption s
hemes whi
h are se
ure against them de-signed. The de�nition of se
urity against su
h adversaries is more elaborate than for passive adversaries.In Chapters 6 and 7 we 
onsider a passive adversary who knows the probability distribution over the messagespa
e. We will also dis
uss more powerful adversaries and appropriate de�nitions of se
urity.1.6 Road map to En
ryptionTo summarize the introdu
tion, our 
hallenge is to design both se
ure private-key and publi
-key en
ryptionsystems whi
h provably meet our de�nition of se
urity and in whi
h the operations of en
ryption andde
ryption are as fast as possible for the sender and re
eiver.Chapters 6 and 7 embark on an in depth investigation of the topi
 of en
ryption, 
onsisting of the followingparts. For both private-key and publi
-key en
ryption, we will:� Dis
uss formally how to de�ne se
urity in presen
e of a bounded adversary.� Dis
uss 
urrent proposals of en
ryption systems and evaluate them respe
t to the se
urity de�nition
hosen.� Des
ribe how to design en
ryption systems whi
h we 
an prove se
ure under expli
it assumptions su
has the existen
e of one-way fun
tions, trapdoor fun
tions, or pseudo random fun
tions.
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uss eÆ
ien
y aspe
ts of en
ryption proposals, pointing out to possible ways to improve eÆ
ien
yby performing some 
omputations o�-line, in bat
h mode, or in a in
remental fashion.We will also overview some advan
ed topi
s 
onne
ted to en
ryption su
h 
hosen-
iphertext se
urity, non-malleability, key-es
row proposals, and the idea of shared de
ryption among many users of a network.



C h a p t e r 2One-way and trapdoor fun
tions

One Way fun
tions, namely fun
tions that are \easy" to 
ompute and \hard" to invert, are an extremelyimportant 
ryptographi
 primitive. Probably the best known and simplest use of one-way fun
tions, is forpasswords. Namely, in a time-shared 
omputer system, instead of storing a table of login passwords, one 
anstore, for ea
h password w, the value f(w). Passwords 
an easily be 
he
ked for 
orre
tness at login, buteven the system administrator 
an not dedu
e any user's password by examining the stored table.In Se
tion 1.3 we had provided a short list of some 
andidate one-way fun
tions. We now develop a theoreti
altreatment of the subje
t of one-way and trapdoor fun
tions, and 
arefully examine the 
andidate one-wayfun
tions proposed in the literature. We will o

asionaly refer to fa
ts about number theory dis
ussed inChapter C.We begin by explaining why one-way fun
tions are of fundamental importan
e to 
ryptography.2.1 One-Way Fun
tions: MotivationIn this se
tion, we provide motivation to the de�nition of one-way fun
tions. We argue that the existen
e ofone-way fun
tions is a ne
essary 
ondition to the existen
e of most known 
ryptographi
 primitives (in
ludingse
ure en
ryption and digital signatures). As the 
urrent state of knowledge in 
omplexity theory does notallow to prove the existen
e of one-way fun
tion, even using more traditional assumptions as P 6= NP ,we will have to assume the existen
e of one-way fun
tions. We will later try to provide eviden
e to theplausibility of this assumption.As stated in the introdu
tion 
hapter, modern 
ryptography is based on a gap between eÆ
ient algorithmsguaranteed for the legitimate user versus the unfeasibility of retrieving prote
ted information for an adversary.To make the following dis
ussion more 
lear, let us 
on
entrate on the 
ryptographi
 task of se
ure data
ommuni
ation, namely en
ryption s
hemes.In se
ure en
ryption s
hemes, the legitimate user is able to de
ipher the messages (using some private infor-mation available to him), yet for an adversary (not having this private information) the task of de
ryptingthe 
iphertext (i.e., \breaking" the en
ryption) should be infeasible. Clearly, the breaking task 
an be per-formed by a non-deterministi
 polynomial-time ma
hine. Yet, the se
urity requirement states that breakingshould not be feasible, namely 
ould not be performed by a probabilisti
 polynomial-time ma
hine. Hen
e,the existen
e of se
ure en
ryption s
hemes implies that there are tasks performed by non-deterministi
polynomial-time ma
hines yet 
annot be performed by deterministi
 (or even randomized) polynomial-timema
hines. In other words, a ne
essary 
ondition for the existen
e of se
ure en
ryption s
hemes is that NPis not 
ontained in BPP (and hen
e that P 6= NP). 17



18 Goldwasser and BellareHowever, the above mentioned ne
essary 
ondition (e.g., P 6= NP) is not a suÆ
ient one. P 6= NP onlyimplies that the en
ryption s
heme is hard to break in the worst 
ase. It does not rule-out the possibilitythat the en
ryption s
heme is easy to break in almost all 
ases. In fa
t, one 
an easily 
onstru
t \en
ryptions
hemes" for whi
h the breaking problem is NP-
omplete and yet there exist an eÆ
ient breaking algorithmthat su

eeds on 99% of the 
ases. Hen
e, worst-
ase hardness is a poor measure of se
urity. Se
urity requireshardness on most 
ases or at least average-
ase hardness. Hen
e, a ne
essary 
ondition for the existen
e ofse
ure en
ryption s
hemes is the existen
e of languages in NP whi
h are hard on the average. Furthermore,P 6= NP is not known to imply the existen
e of languages in NP whi
h are hard on the average.The mere existen
e of problems (in NP) whi
h are hard on the average does not suÆ
e. In order to be able touse su
h problems we must be able to generate su
h hard instan
es together with auxiliary information whi
henable to solve these instan
es fast. Otherwise, the hard instan
es will be hard also for the legitimate usersand they gain no 
omputational advantage over the adversary. Hen
e, the existen
e of se
ure en
ryptions
hemes implies the existen
e of an eÆ
ient way (i.e. probabilisti
 polynomial-time algorithm) of generatinginstan
es with 
orresponding auxiliary input so that(1) it is easy to solve these instan
es given the auxiliary input; and(2) it is hard on the average to solve these instan
es (when not given the auxiliary input).We avoid formulating the above \de�nition". We only remark that the 
oin tosses used in order to generatethe instan
e provide suÆ
ient information to allow to eÆ
iently solve the instan
e (as in item (1) above).Hen
e, without loss of generality one 
an repla
e 
ondition (2) by requiring that these 
oin tosses are hard toretrieve from the instan
e. The last simpli�
ation of the above 
onditions essentially leads to the de�nitionof a one-way fun
tion.2.2 One-Way Fun
tions: De�nitionsIn this se
tion, we present several de�nitions of one-way fun
tions. The �rst version, hereafter referred toas strong one-way fun
tion (or just one-way fun
tion), is the most 
onvenient one. We also present weakone-way fun
tions whi
h may be easier to �nd and yet 
an be used to 
onstru
t strong one way fun
tios,and non-uniform one-way fun
tions.2.2.1 (Strong) One Way Fun
tionsThe most basi
 primitive for 
ryptographi
 appli
ations is a one-way fun
tion. Informally, this is a fun
tionwhi
h is \easy" to 
ompute but \hard" to invert. Namely, any probabilisti
 polynomial time (PPT) algo-rithm attempting to invert the one-way fun
tion on a element in its range, will su

eed with no more than\negligible" probability, where the probability is taken over the elements in the domain of the fun
tion andthe 
oin tosses of the PPT attempting the inversion.This informal de�nition introdu
es a 
ouple of measures that are prevalent in 
omplexity theoreti
 
ryptog-raphy. An easy 
omputation is one whi
h 
an be 
arried out by a PPT algorithm; and a fun
tion �: N! Ris negligible if it vanishes faster than the inverse of any polynomial. More formally,De�nition 2.1 � is negligible if for every 
onstant 
 � 0 there exists an integer k
 su
h that �(k) < k�
 forall k � k
.Another way to think of it is �(k) = k�!(1).A few words, 
on
erning the notion of negligible probability, are in pla
e. The above de�nition and dis
ussion
onsiders the su

ess probability of an algorithm to be negligible if as a fun
tion of the input length the su
-
ess probability is bounded by any polynomial fra
tion. It follows that repeating the algorithm polynomially(in the input length) many times yields a new algorithm that also has a negligible su

ess probability. Inother words, events whi
h o

ur with negligible (in n) probability remain negligible even if the experiment
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ture Notes 19is repeated for polynomially (in k) many times. Hen
e, de�ning negligible su

ess as \o

urring with proba-bility smaller than any polynomial fra
tion" is naturally 
oupled with de�ning feasible as \
omputed withinpolynomial time". A \strong negation" of the notion of a negligible fra
tion/probability is the notion of anon-negligible fra
tion/probability. we say that a fun
tion � is non-negligible if there exists a polynomial psu
h that for all suÆ
iently large k's it holds that �(k) > 1p(k) . Note that fun
tions may be neither negligiblenor non-negligible.De�nition 2.2 A fun
tion f : f0; 1g� ! f0; 1g� is one-way if:(1) there exists a PPT that on input x output f(x);(2) For every PPT algorithm A there is a negligible fun
tion �A su
h that for suÆ
iently large k,P h f(z) = y : x R f0; 1gk ; y  f(x) ; z  A(1k; y) i � �A(k)
Remark 2.3 The guarantee is probabilisti
. The adversary is not unable to invert the fun
tion, but hasa low probability of doing so where the probability distribution is taken over the input x to the one-wayfun
tion where x if of length k, and the possible 
oin tosses of the adversary. Namely, x is 
hosen at randomand y is set to f(x).Remark 2.4 The advsersary is not asked to �nd x; that would be pretty near impossible. It is asked to�nd some inverse of y. Naturally, if the fun
tion is 1-1 then the only inverse is x.Remark 2.5 Note that the adversary algorithm takes as input f(x) and the se
urity parameter 1k (expressedin unary notatin) whi
h 
orresponds to the binary length of x. This represents the fa
t the adversary 
anwork in time polynomial in jxj, even if f(x) happends to be mu
h shorter. This rules out the possibility thata fun
tion is 
onsidered one-way merely be
ause the inverting algorithm does not have enough time to printthe output. Consider for example the fun
tion de�ned as f(x) = y where y is the log k least signi�
ant bitsof x where jxj = k. Sin
e the jf(x)j = log jxj no algorithm 
an invert f in time polynomial in jf(x)j, yetthere exists an obvious algorithm whi
h �nds an inverse of f(x) in time polynomial in jxj. Note that in thespe
ial 
ase of length preserving fun
tions f (i.e., jf(x)j = jxj for all x's), the auxiliary input is redundant.Remark 2.6 By this de�nition it trivially follows that the size of the output of f is bounded by a polynomialin k, sin
e f(x) is a poly-time 
omputable.Remark 2.7 The de�nition whi
h is typi
al to de�nitions from 
omputational 
omplexity theory, workswith asymptoti
 
omplexity|what happens as the size of the problem be
omes large. Se
urity is only askedto hold for large enough input lengths, namely as k goes to in�nity. Per this de�nition, it may be entirelyfeasible to invert f on, say, 512 bit inputs. Thus su
h de�nitions are less dire
tly relevant to pra
ti
e, butuseful for studying things on a basi
 level. To apply this de�nition to pra
ti
e in 
ryptography we musttypi
ally envisage not a single one-way fun
tion but a family of them, parameterized by a se
urity parameterk. That is, for ea
h value of the se
urity parameter k there is be a spe
i�
 fun
tion f : f0; 1gk ! f0; 1g�.Or, there may be a family of fun
tions (or 
ryptosystems) for ea
h value of k. We shall de�ne su
h familesin subsequent se
tion.The next two se
tions dis
uss variants of the strong one-way fun
tion de�nition. The �rst time reader isen
ouraged to dire
tly go to Se
tion 2.2.4.



20 Goldwasser and Bellare2.2.2 Weak One-Way Fun
tionsOne way fun
tions 
ome in two 
avors: strong and weak. The de�nition we gave above, refers to a strongway fun
tion. We 
ould weaken it by repla
ing the se
ond requirement in the de�nition of the fun
tion bya weaker requirement as follows.De�nition 2.8 A fun
tion f : f0; 1g� ! f0; 1g� is weak one-way if:(1) there exists a PPT that on input x output f(x);(2) There is a polynomial fun
tions Q su
h that for every PPT algorithm A, and for suÆ
iently large k,P h f(z) 6= y : x R f0; 1gk ; y  f(x) ; z  A(1k; y) i � 1Q(k)The di�eren
e between the two de�nitions is that whereas we only require some non-negligible fra
tion ofthe inputs on whi
h it is hard to invert a weak one-way fun
tion, a strong one-way fun
tion must be hard toinvert on all but a negligible fra
tion of the inputs. Clearly, the latter is preferable, but what if only weakone-way fun
tions exist ? Our �rst theorem is that the existen
e of a weak one way fun
tion implies theexisten
e of a strong one way fun
tion. Moreover, we show how to 
onstru
t a strong one-way fun
tion froma weak one. This is important in pra
ti
e as illustarted by the following example.Example 2.9 Consider for example the fun
tion f : Z�Z 7! Z where f(x; y) = x � y. This fun
tion 
an beeasily inverted on at least half of its outputs (namely, on the even integers) and thus is not a strong one wayfun
tion. Still, we said in the �rst le
ture that f is hard to invert when x and y are primes of roughly thesame length whi
h is the 
ase for a polynomial fra
tion of the k-bit 
omposite integers. This motivated thede�nition of a weak one way fun
tion. Sin
e the probability that an k-bit integer x is prime is approximately1=k, we get the probability that both x and y su
h that jxj = jyj = k are prime is approximately 1=k2. Thus,for all k, about 1� 1k2 of the inputs to f of length 2k are prime pairs of equal length. It is believed that noadversary 
an invert f when x and y are primes of the same length with non-negligible su

ess probability,and under this belief, f is a weak one way fun
tion (as 
ondition 2 in the above de�nition is satis�ed forQ(k) = O(k2)).Theorem 2.10 Weak one way fun
tions exist if and only if strong one way fun
tions exist.Proof Sket
h: By de�nition, a strong one way fun
tion is a weak one way fun
tion. Now assume that f isa weak one way fun
tion su
h that Q is the polynomial in 
ondition 2 in the de�nition of a weak one wayfun
tion. De�ne the fun
tion f1(x1 : : : xN ) = f(x1) : : : f(xN )where N = 2kQ(k) and ea
h xi is of length k.We 
laim that f1 is a strong one way fun
tion. Sin
e f1 is a 
on
atenation of N 
opies of the fun
tion f ,to 
orre
tly invert f1, we need to invert f(xi) 
orre
tly for ea
h i. We know that every adversary has aprobability of at least 1Q(k) to fail to invert f(x) (where the probability is taken over x 2 f0; 1gk and the
oin tosses of the adversary), and so intuitively, to invert f1 we need to invert O(kQ(k)) instan
es of f . Theprobability that the adversary will fail for at least one of these instan
es is extremely high.The formal proof (whi
h is omitted here and will be given in appendix) will take the form of a redu
tion;that is, we will assume for 
ontradi
tion that f1 is not a strong one way fun
tion and that there exists someadversary A1 that violates 
ondition 2 in the de�nition of a strong one way fun
tion. We will then show thatA1 
an be used as a subroutine by a new adversary A that will be able to invert the original fun
tion f with
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ture Notes 21probability better than 1 � 1Q(jxj) (where the probability is taken over the inputs x 2 f0; 1gk and the 
ointosses of A). But this will mean that f is not a weak one way fun
tion and we have derived a 
ontradi
tion.This proof te
hnique is quite typi
al of proofs presented in this 
ourse. Whenever su
h a proof is presentedit is important to examine the 
ost of the redu
tion. For example, the 
onstru
tion we have just outlined isnot length preserving, but expands the size of the input to the fun
tion quadrati
ally.2.2.3 Non-Uniform One-Way Fun
tionsIn the above two de�nitions of one-way fun
tions the inverting algorithm is probabilisti
 polynomial-time.Stronger versions of both de�nitions require that the fun
tions 
annot be inverted even by non-uniformfamilies of polynomial size algorithm We stress that the \easy to 
ompute" 
ondition is still stated in termsof uniform algorithms. For example, following is a non-uniform version of the de�nition of (strong) one-wayfun
tions.De�nition 2.11 A fun
tion f is 
alled non-uniformly strong one-way if the following two 
onditions hold(1) easy to 
ompute: as before There exists a PPT algorithm to 
ompute for f .(2) hard to invert: For every (even non-uniform) family of polynomial-size algorithms A = fMkgk2N, thereexists a negligble �A su
h that for all suÆ
iently large k'sP h f(z) 6= y : x R f0; 1gk ; y  f(x) ; z  Mk(y) i � �A(k)Note that it is redundent to give 1k as an auxiliary input to Mk.It 
an be shown that if f is non-uniformly one-way then it is (strongly) one-way (i.e., in the uniform sense).The proof follows by 
onverting any (uniform) probabilisti
 polynomial-time inverting algorithm into a non-uniform family of polynomial-size algorithm, without de
reasing the su

ess probability. Details follow. LetA0 be a probabilisti
 polynomial-time (inverting) algorithm. Let rk denote a sequen
e of 
oin tosses for A0maximizing the su

ess probability of A0. The desired algorithm Mk in
orporates the 
ode of algorithm A0and the sequen
e rk (whi
h is of length polynomial in k).It is possible, yet not very plausible, that strongly one-way fun
tions exist and but there are no non-uniformlyone-way fun
tions.2.2.4 Colle
tions Of One Way Fun
tionsInstead of talking about a single fun
tion f : f0; 1g� ! f0; 1g�, it is often 
onvenient to talk about 
olle
tionsof fun
tions, ea
h de�ned over some �nite domain and �nite ranges. We remark, however, that the singlefun
tion format makes it easier to prove properties about one way fun
tions.De�nition 2.12 Let I be a set of indi
es and for i 2 I let Di and Ri be �nite. A 
olle
tion of strong oneway fun
tions is a set F = ffi : Di ! Rigi2I satisfying the following 
onditions.(1) There exists a PPT S1 whi
h on input 1k outputs an i 2 f0; 1gk \ I(2) There exists a PPT S2 whi
h on input i 2 I outputs x 2 Di(3) There exists a PPT A1 su
h that for i 2 I and x 2 Di, A1(i; x) = fi(x).



22 Goldwasser and Bellare(4) For every PPT A there exists a negligible �A su
h that 8 k large enoughP h fi(z) = y : i R I ; x R Di ; y  fi(x) ; z  A(i; y) i � �A(k)(here the probability is taken over 
hoi
es of i and x, and the 
oin tosses of A).In general, we 
an show that the existen
e of a single one way fun
tion is equivalent to the existen
e of a
olle
tion of one way fun
tions. We prove this next.Theorem 2.13 A 
olle
tion of one way fun
tions exists if and only if one way fun
tions exist.Proof: Suppose that f is a one way fun
tion.Set F = ffi : Di ! Rigi2I where I = f0; 1g� and for i 2 I , take Di = Ri = f0; 1gjij and fi(x) = f(x).Furthermore, S1 uniformly 
hooses on input 1k, i 2 f0; 1gk, S2 uniformly 
hooses on input i, x 2 Di =f0; 1gjij and A1(i; x) = fi(x) = f(x). (Note that f is polynomial time 
omputable.) Condition 4 in thede�nition of a 
olle
tion of one way fun
tions 
learly follows from the similar 
ondition for f to be a one wayfun
tion.Now suppose that F = ffi : Di ! Rigi2I is a 
olle
tion of one way fun
tions. De�ne fF (1k; r1; r2) =A1(S1(1k; r1); S2(S1(1k; r1); r2)) where A1, S1, and S2 are the fun
tions asso
iated with F as de�ned inDe�nition 2.12. In other words, fF takes as input a string 1k Æ r1 Æ r2 where r1 and r2 will be the 
oin tossesof S1 and S2, respe
tively, and then� Runs S1 on input 1k using the 
oin tosses r1 to get the index i = S1(1k; r1) of a fun
tion fi 2 F .� Runs S2 on the output i of S1 using the 
oin tosses r2 to �nd an input x = S2(i; r2).� Runs A1 on i and x to 
ompute fF (1k; r1; r2) = A1(i; x) = fi(x).Note that randomization has been restri
ted to the input of fF and sin
e A1 is 
omputable in polynomialtime, the 
onditions of a one way fun
tion are 
learly met.A possible example is the following, treated thoroughly in Se
tion 2.3.Example 2.14 The hardness of 
omputing dis
rete logarithms yields the following 
olle
tion of fun
tions.De�ne EXP = fEXPp;g(i) = gi mod p; EXPp; g : Zp ! Z�pg<p;g>2I for I = f< p; g > p prime, g generatorfor Z�pg.2.2.5 Trapdoor Fun
tions and Colle
tionsInfromally, a trapdoor fun
tion f is a one-way fun
tion with an extra property. There also exists a se
retinverse fun
tion (thetrapdoor) that allows its possessor to eÆ
iently invert f at any point in the domainof his 
hoosing. It should be easy to 
ompute f on any point, but infeasible to invert f on any pointwithout knowledge of the inverse fun
tion . Moreover, it should be easy to generate mat
hed pairs of f 's and
orresponding trapdoor. On
e a mat
hed pair is generated, the publi
ation of f should not reveal anythingabout how to 
ompute its inverse on any point.De�nition 2.15 A trapdoor fun
tion is a one-way fun
tion f : f0; 1g� ! f0; 1g� su
h that there exists apolynomial p and a probabilisti
 polynomial time algorithm I su
h that for every k there exists an tk 2 f0; 1g�su
h that jtkj � p(k) and for all x 2 f0; 1g�, I(f(x); tk) = y su
h that f(y) = f(x).
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ture Notes 23An example of a fun
tion whi
h may be trapdoor if fa
toring integers is hard was proposed by Rabin[164℄.Let f(x; n) = x2 mod n where n = pq a produ
t of two primes and x 2 Z�n. Rabin[164℄ has shown thatinverting f is easy i� fa
toring 
omposite numbers produ
t of two primes is easy. The most famous 
andidatetrapdoor fun
tion is the RSA[170℄ fun
tion f(x; n; l) = xl mod n where (l; �(n)) = 1.Again it will be more 
onvenient to speak of families of trapdoor fun
tions parameterized by se
urity pa-rameter k.De�nition 2.16 Let I be a set of indi
es and for i 2 I let Di be �nite. A 
olle
tion of strong one waytrapdoor fun
tions is a set F = ffi : Di ! Digi2I satisfying the following 
onditions.(1) There exists a polynomial p and a PTM S1 whi
h on input 1k outputs pairs (i; ti) where i 2 I \f0; 1gkand jtij < p(k) The information ti is referred to as the trapdoor of i.(2) There exists a PTM S2 whi
h on input i 2 I outputs x 2 Di(3) There exists a PTM A1 su
h that for i 2 I , x 2 Di A1(i; x) = fi(x).(4) There exists a PTM A2 su
h that A2(i; ti; fi(x)) = x for all x 2 Di and for all i 2 I (that is, fi is easyto invert when ti is known).(5) For every PPT A there exists a negligble �A su
h that 8 k large enoughP h fi(z) = y : i R I ; x R Di ; y  fi(x) ; z  A(i; y) i � �A(k)A possible example is the following treated in in detail in the next se
tions.Example 2.17 [The RSA 
olle
tions of possible trapdoor fun
tions ℄ Let p; q denote primes, n = pq, Z�n =f1 � x � n; (x; n) = 1g the multipli
ative group whose 
ardinality is '(n) = (p � 1)(q � 1), and e 2 Zp�1relatively prime to '(n). Our set of indi
es will be I = f< n; e > su
h that n = pq jpj = jqjg and the trapdoorasso
iated with the parti
ular index < n; e > be d su
h that ed = 1 mod �(n). Let RSA = fRSA<n;e> :Z�n ! Z�ng<n;e>2I where RSA<n;e>(x) = xe mod n2.3 In Sear
h of ExamplesNumber theory provides a sour
e of 
andidates for one way and trapdoor fun
tions. Let us start our sear
hfor examples by a digression into number theorey. See also the mini-
ourse on number theory in Appendix C.Cal
ulating Inverses in Z�pConsider the set Z�p = fx : 1 � x < p and g
d(x; p) = 1g where p is prime. Z�p is a group under multipli
atonmodulo p. Note that to �nd the inverse of x 2 Z�p; that is, an element y 2 Z�p su
h that yx � 1 mod p, we
an use the Eu
lidean algorithm to �nd integers y and z su
h that yx+ zp = 1 = g
d(x; p). Then, it followsthat yx � 1 mod p and so y mod p is the desired inverse.The Euler Totient Fun
tion '(n)Euler's Totient Fun
tion ' is de�ned by '(n) = jfx : 1 � x < p and g
d(x; n) = 1g. The following are fa
tsabout '.(1) For p a prime and � � 1, '(p�) = p��1(p� 1).



24 Goldwasser and Bellare(2) For integers m;n with g
d(m;n) = 1, '(mn) = '(m)'(n).Using the rules above, we 
an �nd ' for any n be
ause, in general,'(n) = '( kYi=1 pi�i)= kYi=1'(pi�i)= kYi=1 pi�i�1(pi � 1)Z�p Is Cy
li
A group G is 
y
li
 if and only if there is an element g 2 G su
h that for every a 2 G, there is an integer isu
h that gi = a. We 
all g a generator of the group G and we denote the index i by indg(a).Theorem 2.18 (Gauss) If p is prime then Z�p is a 
y
li
 group of order p� 1. That is, there is an elementg 2 Z�p su
h that gp�1 � 1 mod p and gi 6� 1 mod p for i < p� 1.>From Theorem 2.18 the following fa
t is immediate.Fa
t 2.19 Given a prime p, a generator g for Z�p, and an element a 2 Z�p, there is a unique 1 � i � p � 1su
h that a = gi.The Legendre SymbolFa
t 2.20 If p is a prime and g is a generator of Z�p, theng
 = gagb mod p, 
 = a+ b mod p� 1>From this fa
t it follows that there is an homomorphism f : Z�p ! Zp�1 su
h that f(ab) = f(a) + f(b). Asa result we 
an work with Zp�1 rather than Z�p whi
h sometimes simpli�es matters. For example, supposewe wish to determine how many elements in Z�p are perfe
t squares (these elements will be referred to asquadrati
 residues modulo p). The following lemma tells us that the number of quadrati
 residues modulo pis 12 jZ�pj.Lemma 2.21 a 2 Z�p is a quadrati
 residue modulo p if and only if a = gx mod p where x satis�es 1 � x �p� 1 and is even.Proof: Let g be a generator in Z�p.(() Suppose an element a = g2x for some x. Then a = s2 where s = gx.()) Consider the square of an element b = gy. b2 = g2y � ge mod p where e is even sin
e 2y is redu
edmodulo p � 1 whi
h is even. Therefore, only those elements whi
h 
an be expressed as ge, for e an eveninteger, are squares.Consequently, the number of quadrati
 residues modulo p is the number of elements in Z�p whi
h are an evenpower of some given generator g. This number is 
learly 12 jZ�pj.
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ture Notes 25The Legendre Symbol Jp(x) spe
i�es whether x is a perfe
t square in Z�p where p is a prime.Jp(x) = 8<: 1 if x is a square in Z�p0 if g
d(x; p) 6= 1�1 if x is not a square in Z�pThe Legendre Symbol 
an be 
al
ulated in polynomial time due to the following theorem.Theorem 2.22 [Euler's Criterion℄ Jp(x) � x p�12 mod p.Using repeated doubling to 
ompute exponentials, one 
an 
al
ulate x p�12 in O(jpj3) steps. Though thisJp(x) 
an be 
al
ulated when p is a prime, it is not known how to determine for general x and n, whetherx is a square in Z�n.2.3.1 The Dis
rete Logarithm Fun
tionLet EXP be the fun
tion de�ned by EXP(p; g; x) = (p; g; gx mod p). We are parti
ularly interested in the 
asewhen p is a prime and g is a generator of Z�p . Deine an index set I = f(p; g) : p is prime and g is a generator of Z�pg.For (p; g) 2 I , it follows by Fa
t 2.19 that EXP(p; g; x) has a unique inverse and this allows us to de�nefor y 2 Z�p the dis
rete logarithm fun
tion DL by DL(p; g; y) = (p; g; x) where x 2 Zp�1 and gx � y mod p.Given p and g, EXP(p; g; x) 
an easily be 
omputed in polynomial time. However, it is unknown whether ornot its inverse DL 
an be 
omputed in polynomial time unless p�1 has very small fa
tors (see [158℄). Pohligand Hellman [158℄ present e�e
tive te
hniques for this problem when p� 1 has only small prime fa
tors.The best fully proved up-to-date algorithm for 
omputing dis
rete logs is the Index-
al
ulus algorithm. Theexpe
ted running time of su
h algorithm is polynomial in epk log k where k is the size of the modulos p.There is a re
ent variant of the number �eld sieve algorithm for dis
rete logarithm whi
h seems to work infaster running time of e(k log k) 13 . It interesting to note that working over the �nite �eld GF (2k) rather thanworking modulo p seems to make the problem substantially easier (see Coppersmith [57℄ and Odlyzko [152℄).Curiously, 
omputing dis
rete logarithms and fa
toring integers seem to have essentially the same diÆ
ultyat least as indi
ated by the 
urrent state of the art algorithms.With all this in mind, we 
onsider EXP a good 
andidate for a one way fun
tion. We make the followingexpli
it assumption in this dire
tion. The assumption basi
ally says that there exists no polynomial timealgorithm that 
an solvethe dis
rete log problem with prime modulos.Strong Dis
rete Logarithm Assumption (DLA):1 For every polynomial Q and every PPT A, for allsuÆ
iently large k,Pr[A(p; g; y) = x su
h that y � gx mod p where 1 � x � p� 1℄ < 1Q(k)(where the probability is taken over all primes p su
h that jpj � k, the generators g of Z�p, x 2 Z�p and the
oin tosses of A).An immediate 
onsequen
e of this assumption we getTheorem 2.23 Under the strong dis
rete logarithm assumption there exists a strong one way fun
tion;namely, exponentiation modulo a prime p.1We note that a weaker assumption 
an be made 
on
erning the dis
rete logarithm problem, and by the standard 
onstru
tionone 
an still 
onstru
t a strong one-way fun
tion. We will assume for the purpose of the 
ourse the �rst stronger assumption.Weak Dis
rete Logarithm Assumption: There is a polynomial Q su
h that for every PTM A there exists an integer k0su
h that 8k > k0 Pr[A(p; g; y) = x su
h that y � gx mod p where 1 � x � p � 1℄ < 1 � 1Q(k) (where the probability is takenover all primes p su
h that jpj � k, the generators g of Z�p, x 2 Z�p and the 
oin tosses of A).



26 Goldwasser and BellareSome useful properties of EXP and DL follow.Remark 2.24 If DL(p; g1; y) is easy to 
al
ulate for some generator g1 2 Z�p then it is also easy to 
al
ulateDL(p; g2; y) for any other generator g2 2 Z�p. (The group Z�p has '(p � 1) generators.) To see this supposethat x1 = DL(p; g1; y) and x2 = DL(p; g2; y). If g2 � g1z mod p where g
d(z; p � 1) then y � g1x2z mod pand 
onsequently, x2 � z�1x1 mod p� 1.The following result shows that to eÆ
iently 
al
ulate DL(p; g; y) for (p; g) 2 I it will suÆ
e to �nd apolynomial time algorithm whi
h 
an 
al
ulate DL(p; g; y) on at least a 1Q(jpj) fra
tion of the possible inputsy 2 Z�p for some polynomial Q.Proposition 2.25 Let �, Æ 2 (0; 1) and let S be a subset of the prime integers. Suppose there is a proba-bilisti
 algorithm A su
h that for all primes p 2 S and for all generators g of Z�pPr[A(p; g; y) = x su
h that gx � y mod p℄ > �(where the probability is taken over y 2 Z�p and the 
oin tosses of A) and A runs in time polynomial in jpj.Then there is a probabilisti
 algorithm A0 running in time polynomial in ��1; Æ�1, and jpj su
h that for allprimes p 2 S, generators g of Z�p, and y 2 Z�pPr[A0(p; g; y) = x su
h that gx � y mod p℄ > 1� Æ(where the probability is taken over the 
oin tosses of A0).Proof: Choose the smallest integer N for whi
h 1eN < Æ.Consider the algorithm A0 running as follows on inputs p 2 S, g a generator of Z�p and y 2 Z�p.Repeat ��1N times.Randomly 
hoose z su
h that 1 � z � p� 1.Let w = A(p; g; gzy)If A su

eeds then gw = gzy = gz+x mod p where x = DLp;g(y)and therefore DLp;g(y) = w � z mod p� 1.Otherwise, 
ontinue to next iteration.End loopWe 
an estimate the probability that A0 fails:Pr[A0(p; g; y) fails℄ = Pr[A single iteration of the loop of A0 fails℄��1N< (1� �)��1N< (e�N )< ÆNote that sin
e N = O(log(Æ�1)) = O(Æ�1), A0 is a probabilisti
 algorithm whi
h runs in time polynomialin ��1, Æ�1, and jpj.The dis
rete logarithm problem also yields the following 
olle
tion of fun
tions.Let I = f(p; g) : p is prime and g is a generator of Z�pg and de�neEXP = fEXPp;g : Zp�1 ! Z�p where EXPp;g(x) = gx mod pg(p;g)2I :Then, under the strong dis
rete logarithm assumption, EXP is a 
olle
tion of strong one way fun
tions. This
laim will be shown to be true next.
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ture Notes 27Theorem 2.26 Under the strong dis
rete logarithm assumption there exists a 
olle
tion of strong one wayfun
tions.Proof: We shall show that under the DLA EXP is indeed a 
olle
tion of one way fun
tions. For this wemust show that it satis�es ea
h of the 
onditions in the de�nition of a 
olle
tion of one way fun
tions.For 
ondition 1, de�ne S1 to run as follows on input 1k.(1) Run Ba
h's algorithm (given in [8℄) to get a random integer n su
h that jnj = k along with its fa
tor-ization.(2) Test whether n+ 1 is prime. See primality testing in se
tion C.9.(3) If so, let p = n+ 1. Given the prime fa
torization of p� 1 we look for generators g of Z�p as follows.(1) Choose g 2 Z�p at random.(2) If p� 1 =Yi qi�i is the prime fa
torization of p� 1 then for ea
h qi 
he
k that g p�1qi 6� 1 mod p.If so, then g is a generator of Z�p. Output p and g.Otherwise, repeat from step 1.Claim 2.27 g is a generator of Z�p if for ea
h prime divisor q of p� 1, g p�1q 6� 1 mod p.Proof: The element g is a generator of Z�p if gp�1 � 1 mod p and gj 6� 1 mod p for all j su
h that 1 � j < p�1;that is, g has order p� 1 in Z�p.Now, suppose that g satis�es the 
ondition of Claim 2.27 and let m be the order of g in Z�p. Then m j p� 1.If m < p�1 then there exists a prime q su
h that m j p�1q ; that is, there is an integer d su
h that md = p�1q .Therefore g p�1q = (gm)d � 1 mod n 
ontradi
ting the hypothesis. Hen
e, m = p� 1 and g is a generator ofZ�p.Also, note that the number of generators in Z�p is '(p� 1) and in [172℄ it is shown that'(k) > k6 log log k :Thus we expe
t to have to 
hoose O(log log p) 
andidates for g before we obtain a generator. Hen
e, S1 runsin expe
ted polynomial time.For 
ondition 2 in the de�nition of a 
olle
tion of one way fun
tions, we 
an de�ne S2 to simply outputx 2 Zp�1 at random given i = (p; g).Condition 3 is true sin
e the 
omputation of gx mod p 
an be performed in polynomial time and 
ondition4 follows from the strong dis
rete logarithm assumption.2.3.2 The RSA fun
tionIn 1977 Rivest, Shamir, and Adleman [170℄ proposed trapdoor fun
tion 
andidate motivated by �nding apubli
-key 
ryptosystem satisfying the requirements proposed by DiÆe and Hellman. The trapdoor fun
tion



28 Goldwasser and Bellareproposed is RSA(n; e; x) = xe mod n where the 
ase of interest is that n is the produ
t of two large primesp and q and g
d(e; �(n)) = 1. The 
orresponding trapdoor information is d su
h that d � e � 1 mod �(n).Viewd as a 
olle
tion, let RSA = fRSAn;e : Z�n ! Z�n where RSAn;e(x) = xe mod ng(n;e)2I : for I = f<n; e > s.t. n = pq jpj = jqj; (e; �(n)) = 1g .RSA is easy to 
ompute. How hard is it to invert? We know that if we 
an fa
tor n we 
an invert RSAvia the Chinese Remainder Theorem, however we don't know if the 
onverse is true. Thus far, the best wayknown to invert RSA is to �rst fa
tor n. There are a variety of algorithms for this task. The best runningtime for a fully proved algorithm is Dixon's random squares algorithms whi
h runs in time O(eplog n log logn).In pra
ti
e we may 
onsider others. Let ` = jpj where p is the smallest prime divisor of n. The Ellipti
 Curvealgorithm takes expe
ted time O(ep2` log `). The Quadrati
 Sieve algorithm runs in expe
ted O(eplnn ln lnn).Noti
e the di�eren
e in the argument of the superpolynomial 
omponent of the running time. This meansthat when we suspe
t that one prime fa
tor is substantially smaller than the other, we should use the Ellipti
Curve method, otherwise one should use the Quadrati
 sieve. The new number �eld sieve algorithm seems toa
hieve a O(e1:9(lnn)1=3(ln lnn)2=3) running time whi
h is a substantial improvement asymptoti
ally althoughin pra
ti
e it still does not seem to run faster than the Quadrati
 Sieve algorithm for the size of integerswhi
h people 
urrently attempt to fa
tor. The re
ommended size for n these days is 1024 bits.With all this in mind, we make an expli
it assumption under whi
h one 
an prove that RSA provides a
olle
tion of trapdoor fun
tions.Strong RSA Assumption:2 Let Hk = fn = pq : p 6= q are primes and jpj = jqj = kg. Then for everypolynomial Q and every PTM A, there exists an integer k0 su
h that 8k > k0Pr[A(n; e;RSAn;e(x)) = x℄ < 1Q(k)(where the probability is taken over all n 2 Hk, e su
h that g
d(e; '(n)) = 1, x 2 Z�n, and the 
oin tosses ofA).We need to prove some auxilary 
laims.Claim 2.28 For (n; e) 2 I , RSAn;e is a permutation over Z�n.Proof: Sin
e g
d(e; '(n)) = 1 there exists an integer d su
h that ed � 1 mod '(n). Given x 2 Z�n, 
onsiderthe element xd 2 Z�n. Then RSAn;e(xd) � (xd)e � xed � x mod n. Thus, the fun
tion RSAn;e : Z�n �! Z�nis onto and sin
e jZ�nj is �nite it follows that RSAn;e is a permutation over Z�n.Remark 2.29 Note that the above is a 
onstru
tive proof that RSA has an unique inverse. Sin
e g
d(e; '(n)) =1 if we run the extended Eu
lidean algorithm we 
an �nd d 2 Z�n su
h thatRSA�1n;e(x) = (xe mod n)d mod n = xed mod n = x mod n. Note that on
e we found a d su
h that ed � 1 mod '(n) then we 
an invert RSAn;e eÆ
iently be
ausethen RSAn;e(x)d � xed � x mod '(n).Theorem 2.30 Under the strong RSA assumption, RSA is a 
olle
tion of strong one way trapdoor permu-tations.2A weaker assumption 
an be made whi
h under standard 
onstru
tions is equivalent to the stronger one whi
h is madein this 
lass. Weak RSA Assumption: Let Hk = fn = pq : p 6= q are prime and jpj = jqj = kg. There is a polynomial Qsu
h that for every PTM A, there exists an integer k0 su
h that 8k > k0 Pr[A(n; e;RSAn;e(x)) = x℄ < 1 � 1Q(k) (where theprobability is taken over all n 2 Hk, e su
h that g
d(e; '(n)) = 1, x 2 Z�n, and the 
oin tosses of A).



Cryptography: Le
ture Notes 29Proof: First note that by Claim 2.28, RSAn;e is a permutation of Z�n. We must also show that RSAsatis�es ea
h of the 
onditions in De�nition 2.16. For 
ondition 1, de�ne S1 to 
ompute, on input 1k, a pair(n; e) 2 I \f0; 1gk and 
orresponding d su
h that ed � 1 mod '(n). The algorithm pi
ks two random primesof equal size by 
hoosing random numbers and testing them for primality and setting n to be their pro
u
t,then e 2 Z�(n) is 
hosen at random, and �nally d is 
omputed in polynomial time by �rst 
omputing'(n) = (p � 1)(q � 1) and then using the extended Eu
lidean algorithm. For 
ondition 2, de�ne S2 torandomly generate x 2 Z�n on input (n; e). Let A1((n; e); x) = RSAn;e(x). Note that exponentiation modulon is a polynomial time 
omputation and therefore 
ondition 3 holds. Condition 4 follows from the StrongRSA assumption. For 
ondition 5, let A2((n; e); d;RSAn;e(x)) � RSAn;e(x)d � xed � x mod n and this is apolynomial time 
omputation.One of the properties of the RSA fun
tion is that if we have a polynomial time algorithm that inverts RSAn;eon at least a polynomial proportion of the possible inputs x 2 Z�n then a subsequent probabilisti
 expe
tedpolynomial time algorithm 
an be found whi
h inverts RSAn;e on almost all inputs x 2 Z�n. This 
an betaken to mean that for a given n; e if the fun
tion is hard to invert then it is almost everywhere hard toinvert.Proposition 2.31 Let �, Æ 2 (0; 1) and let S � I . Suppose there is a probabilisti
 algorithm A su
h thatfor all (n; e) 2 S Pr[A(n; e;RSAn;e(x)) = x℄ > �(where the probability is taken over x 2 Z�n and the 
oin tosses of A) and A runs in time polynomial in jnj.Then there is a probabilisti
 algorithm A0 running in time polynomial in ��1; Æ�1, and jnj su
h that for all(n; e) 2 S, and x 2 Z�n Pr[A0(n; e;RSAn;e(x)) = x℄ > 1� Æ(where the probability is taken over the 
oin tosses of A0).Proof: Choose the smallest integer N for whi
h 1eN < Æ.Consider the algorithm A0 running as follows on inputs (n; e) 2 S and RSAn;e(x).Repeat ��1N times.Randomly 
hoose z 2 Z�n.Let y = A(n; e;RSAn;e(x) � RSAn;e(z)) = A(n; e;RSAn;e(xz)).If A su

eeds then y = xz and therefore x = yz�1 mod n. Output x.Otherwise, 
ontinue to the next iteration.End loopWe 
an estimate the probability that A0 fails:Pr[A0(n; e;RSAn;e(x)) 6= x℄ = Pr[A single iteration of the loop of A0 fails℄��1N< (1� �)��1N< (e�N )< ÆNote that sin
e N = O(log(Æ�1)) = O(Æ�1), A0 is a probabilisti
 algorithm whi
h runs in time polynomialin ��1, Æ�1, and jnj.



30 Goldwasser and BellareOpen Problem 2.32 It remains to determine whether a similar result holds if the probability is also takenover the indi
es (n; e) 2 I . Spe
i�
ally, if �, Æ 2 (0; 1) and A is a PTM su
h thatPr[A(n; e;RSAn;e(x)) = x℄ > �(where the probability is taken over (n; e) 2 I , x 2 Z�n and the 
oin tosses of A), does there exist a PTM A0running in time polynomial in ��1 and Æ�1 su
h thatPr[A0(n; e;RSAn;e(x)) = x℄ > 1� Æ(where the probability is taken over (n; e) 2 I and the 
oin tosses of A0)?2.3.3 Conne
tion Between The Fa
torization Problem And Inverting RSAFa
t 2.33 If some PPT algorithm A 
an fa
tor n then there exists a PPT A0 that 
an invert RSAhn;ei.The proof is obvious as �(n) = (p�1)(q�1). The trapdoor information d 
an be found by using the extendedEu
lidean algorithm be
ause d = e�1 mod �(n).Fa
t 2.34 If there exists a PTM B whi
h on input hn; ei �nds d su
h that ed � 1 mod �(n) then there existsa PTM, B0 that 
an fa
tor n.Open Problem 2.35 It remains to determine whether inverting RSA and fa
toring are equivalent. Namely,if there is a PTM C whi
h, on input hn; ei, 
an invert RSAhn;ei, does there exist a PTM C 0 that 
an fa
torn? The answer to this question is unknown. Note that Fa
t 2.34 does not imply that the answer is yes, asthere may be other methods to invert RSA whi
h do not ne
essarily �nd d.2.3.4 The Squaring Trapdoor Fun
tion Candidate by RabinRabin in [164℄ introdu
ed a 
andidate trapdoor fun
tion whi
h we 
all the squaring fun
tion. The squaringfun
tion resemble the RSA fun
tion ex
ept that Rabin was able to a
tually prove that inverting the squaringfun
tion is as hard as fa
toring integers. Thus, inverting the squaring fun
tion is a 
omputation whi
h is atleast as hard as inverting the RSA fun
tion and possibly harder.De�nition 2.36 Let I = fn = pq : p and q are distin
t odd primes.g. For n 2 I, the squaring fun
tionSQUAREn : Z�n �! Z�n is de�ned by SQUAREn(x) � x2 mod n. The trapdoor information of n = pq 2 Iis tn = (p; q). We will denote the entire 
olle
tion of Rabin's fun
tions by RABIN = fSQUAREn : Z�n �!Z�ngn2I .Remark 2.37 Observe that while Rabin's fun
tion squares its input, the RSA fun
tion uses a varyingexponent; namely, e where g
d(e; �(n)) = 1. The requirement that g
d(e; �(n)) = 1 guarentees that theRSA fun
tion is a permutation. On the other hand, Rabin's fun
tion is 1 to 4 and thus it does not havea uniquely de�ned inverse. Spe
i�
ally, let n = pq 2 I and let a 2 Z�p. As dis
ussed in se
tion C.4,if a � x2 mod p then x and �x are the distin
t square roots of a modulo p and if a � y2 mod q theny and �y are the distin
t square roots of a modulo q. Then, there are four solutions to the 
ongruen
ea � z2 mod n, 
onstru
ted as follows. Let 
; d 2 Zn be the Chinese Remainder Theorem 
oeÆ
ients asdis
ussed in Appendix C.4. Then 
 = � 1 mod p0 mod qand d = � 0 mod p1 mod qand the four solutions are 
x+ dy, 
x� dy, �
x+ dy, and �
x� dy.



Cryptography: Le
ture Notes 31The main result is that RABIN is a 
olle
tion of strong one way trapdoor fun
tions and the proof relies onan assumption 
on
erning the diÆ
ulty of fa
toring. We state this assumption now.Fa
toring Assumption: Let Hk = fpq : p and q are prime and jpj = jqj = kg. Then for every polynomialQ and every PTM A, 9k0 su
h that 8k > k0Pr[A(n) = p : p j n and p 6= 1; n℄ < 1Q(k)(where the probability is taken over all n 2 Hk and the 
oin tosses of A).Our ultimate goal is to prove the following result.Theorem 2.38 Under the fa
toring assumption, RABIN is a 
olle
tion of one way trapdoor fun
tions.Before proving this, we 
onsider two auxiliary lemmas. Lemma 2.39 
onstru
ts a polynomial-time ma
hineA whi
h 
omputes square roots modulo a prime. Lemma 2.42 
onstru
ts another polynomial-time ma
hine,SQRT, that inverts Rabin's fun
tion using the trapdoor information; spe
i�
ally, it 
omputes a square rootmodulo 
omposites given the fa
torization. SQRT makes 
alls to A.Lemma 2.39 Let p be an odd prime and let a be a square modulo p. There exists a probabilisti
 algorithmA running in expe
ted polynomial time su
h that A(p; a) = x where x2 � a mod p.Proof: Let p be an odd prime and let a be a quadrati
 residue in Z�p. There are two 
ases to 
onsider;p � 1 mod 4 and p � 3 mod 4.Case 1 p � 3 mod 4; that is, p = 4m+ 3 for some integer m.Sin
e a is a square we have 1 = Jp(a) � a p�12 mod p =) a2m+1 � 1 mod p=) a2m+2 � a mod pTherefore, am+1 is a square root of a modulo p.Case 2 p � 1 mod 4; that is, p = 4m+ 1 for some integer m.As in Case 1, we will attempt to �nd an odd exponent e su
h that ae � 1 mod p.Again, a is a square and thus 1 = Jp(a) � a p�12 mod p =) a2m � 1 mod p.However, at this point we are not done as in Case 1 be
ause the exponent on a in the above 
ongruen
e iseven. But noti
e that a2m � 1 mod p =) am � �1 mod p. If am � 1 mod p with m odd, then we pro
eedas in Case 1.This suggests that we write 2m = 2lr where r is an odd integer and 
ompute a2l�ir mod p for i = 1; : : : ; lwith the intention of rea
hing the 
ongruen
e ar � 1 mod p and then pro
eeding as in Case 1. However,this is not guarenteed as there may exist an integer l0 satisfying 0 � l0 < l su
h that a2l0r � �1 mod p. Ifthis 
ongruen
e is en
ountered, we 
an re
over as follows. Choose a quadrati
 nonresidue b 2 Z�p. Then�1 = Jp(b) � b p�12 mod p and therefore a2l0r � b2lr = a2l0r � b p�12 � 1 mod p. Thus, by multiplying byb2lr � �1 mod p, we obtain a new 
ongruen
e (arb2l�l0r)2l0 � 1 mod p. We pro
eed by taking square roots



32 Goldwasser and Bellarein this 
ongruen
e. Sin
e l0 < l, we will, after l steps, arrive at arb2s � 1 mod p where s is integral. At thispoint we have ar+1b2s � a mod p =) a r+12 bs is a square root of a mod p.From the above dis
ussion (Cases 1 and 2) we obtain a probabilisti
 algorithm A for taking square roots.The algorithm A runs as follows on input a, p where Jp(a) = 1.(1) If p = 4m+ 3 for some integer m then output am+1 as a square root of a mod p.(2) If p = 4m + 1 for some integer m then randomly 
hoose b 2 Z�p until a value is found satisfyingJp(b) = �1.(1) Initialize i = 2m and j = 0.(2) Repeat until i is odd.i i2 and j  j2 .If aibj = �1 then j  j + 2m.Output a i+12 b j2 as a square root of a mod p.This algorithm terminates after O(l) iterations be
ause in step 2 (ii) the exponent on a is divided by 2. Notealso, that sin
e exa
tly half of the elements in Z�p are quadrati
 nonresidues, it is expe
ted that 2 iterationswill be required to �nd an appropriate value for b at the beginning of step 2. Thus, A runs in expe
tedpolynomial time and this 
ompletes the proof of Lemma 2.39.Remark 2.40 There is a deterministi
 algorithm due to Ren�e S
hoof (see [179℄) whi
h 
omputes the squareroot of a quadrati
 residue a modulo a prime p in time polynomial in jpj and a (spe
i�
ally, the algorithmrequires O((a 12+� log p)9) elementary operations for any � > 0). However, it is unknown whether there existsa deterministi
 algorithm running in time polynomial in jpj.Open Problem 2.41 Does there exist a deterministi
 algorithm that 
omputes square roots modulo aprime p in time polynomial in jpj?The next result requires knowledge of the Chinese Remainder Theorem. The statement of this theoremas well as a 
onstru
tive proof is given in Appendix C.4. In addition, a more general form of the ChineseRemainder Theorem is presented there.Lemma 2.42 Let p and q be primes, n = pq and a a square modulo p. There exists a probabilisti
 algorithmSQRT running in expe
ted polynomial time su
h that SQRT (p; q; n; a) = x where x2 � a mod n.Proof: The algorithm SQRT will �rst make 
alls to A, the algorithm of Lemma 2.39, to obtain square rootsof a modulo ea
h of the primes p and q. It then 
ombines these square roots, using the Chinese RemainderTheorem, to obtain the required square root.The algorithm SQRT runs as follows.(1) Let A(p; a) = x1 and A(q; a) = x2.(2) Use the Chinese Remainder Theorem to �nd (in polynomial time) y 2 Zn su
h that y � x1 mod p andy � x2 mod q and output y.Algorithm SQRT runs 
orre
tly be
ause y2 � � x21 � a mod px22 � a mod q =) y2 � a mod n.
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ture Notes 33On the other hand, if the fa
tors of n are unknown then the 
omputation of square roots modulo n is ashard as fa
toring n. We prove this result next.Lemma 2.43 Computing square roots modulo n 2 Hk is as hard as fa
toring n.Proof: Suppose that I is an algorithm whi
h on input n 2 Hk and a a square modulo n outputs y su
h thata � y2 mod n and 
onsider the following algorithm B whi
h on input n outputs a nontrivial fa
tor of n.(1) Randomly 
hoose x 2 Z�n.(2) Set y = I(n; x2 mod n).(3) Che
k if x � �y mod n. If not then g
d(x� y; n) is a nontrivial divisor of n. Otherwise, repeat from 1.Algorithm B runs 
orre
tly be
ause x2 � y2 mod n =) (x+ y)(x� y) � 0 mod n and so nj[(x+ y)(x� y)℄.But n 6 j (x � y) be
ause x 6� y mod n and n 6 j (x + y) be
ause x 6� �y mod n. Therefore, g
d(x � y; n) is anontrivial divisor of n. Note also that the 
ongruen
e a � x2 mod n has either 0 or 4 solutions (a proof ofthis result is presented in Appendix C.4). Therefore, if I(n; x2) = y then x � �y mod n with probability 12and hen
e the above algorithm is expe
ted to terminate in 2 iterations.We are now in a position to prove the main result, Theorem 2.38.Proof: For 
ondition 1, de�ne S1 to �nd on input 1k an integer n = pq where p and q are primes of equallength and jnj = k. The trapdoor information is the pair of fa
tors (p; q).For 
ondition 2 in the de�nition of a 
olle
tion of one way trapdoor fun
tions, de�ne S2 to simply outputx 2 Z�n at random given n.Condition 3 is true sin
e the 
omputation of x2 mod n 
an be performed in polynomial time and 
ondition4 follows from the fa
toring assumption and Lemma 2.43.Condition 5 follows by applying the algorithm SQRT from Lemma 2.42.Lemma 2.43 
an even be made stronger as we 
an also prove that if the algorithm I in the proof of Lemma 2.43works only on a small portion of its inputs then we are still able to fa
tor in polynomial time.Proposition 2.44 Let �, Æ 2 (0; 1) and let S � Hk. Suppose there is a probabilisti
 algorithm I su
h thatfor all n 2 S Pr[I(n; a) = x su
h that a � x2 mod n℄ > �(where the probability is taken over n 2 S, a 2 Z�n2, and the 
oin tosses of I). Then there exists a probabilisti
algorithm FACTOR running in time polynomial in ��1, Æ�1, and jnj su
h that for all n 2 S,Pr[FACTOR(n) = d su
h that d j n and d 6= 1; n℄ > 1� Æ(where the probability is taken over n and over the 
oins tosses of FACTOR).Proof: Choose the smallest integer N su
h that 1eN < Æ.Consider the algorithm FACTOR running as follows on inputs n 2 S.



34 Goldwasser and BellareRepeat 2��1N times.Randomly 
hoose x 2 Z�n.Set y = I(n; x2 mod n).Che
k if x � �y mod n. If not then g
d(x� y; n) is a nontrivial divisor of n.Otherwise, 
ontinue to the next iteration.End loopWe 
an estimate the probability that FACTOR fails. Note that even when I(n; x2 mod n) produ
es a squareroot of x2 mod n, FACTOR(n) will be su

essful exa
tly half of the time.Pr[FACTOR(n) fails to fa
tor n℄ = Pr[A single iteration of the loop of FACTOR fails℄��1N< (1� 12�)2��1N< (e�N)< ÆSin
e N = O(log(Æ�1)) = O(Æ�1), FACTOR is a probabilisti
 algorithm whi
h runs in time polynomial in��1, Æ�1, and jnj.2.3.5 A Squaring Permutation as Hard to Invert as Fa
toringWe remarked earlier that Rabin's fun
tion is not a permutation. If n = pq where p and q are primes andp � q � 3 mod 4 then we 
an redu
e the Rabin's fun
tion SQUAREn to a permutation gn by restri
ting itsdomain to the quadrati
 residues in Z�n, denoted by Qn. This will yield a 
olle
tion of one way permutationsas we will see in Theorem 2.3.5. This suggestion is due to Blum and Williams.De�nition 2.45 Let J = fpq : p 6= q are odd primes; jpj = jqj; and p � q � 3 mod 4g. For n 2 J let thefun
tion gn : Qn �! Qn be de�ned by gn(x) � x2 mod n and let BLUM-WILLIAMS = fgngn2J .We will �rst prove the following result.Lemma 2.46 Ea
h fun
tion gn 2 BLUM-WILLIAMS is a permutation. That is, for every element y 2 Qnthere is a unique element x 2 Qn su
h that x2 = y mod n.Proof: Let n = p1p2 2 J. Note that by the Chinese Remainder Theorem, y 2 Qn if and only if y 2 Qn andy 2 Qp1 and y 2 Qp2 . Let ai and �ai be the square roots of y mod pi for i = 1, 2. Then, as is done in theproof of the Chinese Remainder Theorem, we 
an 
onstru
t Chinese Remainder Theorem 
oeÆ
ients 
1, 
2su
h that 
1 = � 1 mod p10 mod p2 and 
2 = � 0 mod p11 mod p2 and 
onsequently, the four squareroots of y mod n are w1 = 
1a1 + 
2a2,w2 = 
1a1 � 
2a2,w3 = �
1a1 � 
2a2 = �(
1a1 + 
2a2) = �w1,and w4 = �
1a1 + 
2a2 = �(
1a1 � 
2a2) = �w2.Sin
e p1 � p2 � 3 mod 4, there are integers m1 and m2 su
h that p1 = 4m1 + 3 and p2 = 4m2 + 3. Thus,Jp1(w3) = Jp1(�w1) = Jp1(�1)Jp1(w1) = (�1) p1�12 Jp1(w1) = �Jp1(w1) be
ause p1�12 is odd and similarly,Jp1(w4) = �Jp1(w2), Jp2(w3) = �Jp2(w1), and Jp2(w4) = �Jp2(w2). Therefore, without loss of generality,we 
an assume that Jp1(w1) = Jp1(w2) = 1 (and so Jp1(w3) = Jp1(w4) = �1).
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ture Notes 35Sin
e only w1 and w2 are squares modulo p1 it remains to show that only one of w1 and w2 is a squaremodulo n or equivalently modulo p2.First observe that Jp2(w1) � (w1) p2�12 � (
1a1 + 
2a2)2m2+1 � (a2)2m2+1 mod p2 and that Jp2(w2) �(w2) p2�12 � (
1a1 � 
2a2)2m2+1 � (�a2)2m2+1 mod p2 (be
ause 
1 � 0 mod p2 and 
2 � 1 mod p2). There-fore, Jp2(w2) = �Jp2(w1). Again, without loss of generality, we 
an assume that Jp2(w1) = 1 andJp2(w2) = �1 and hen
e, w1 is the only square root of y that is a square modulo both p1 and p2. Therefore,w1 is the only square root of y in Qn.Theorem 2.47 [Williams, Blum℄ BLUM-Williams is a 
olle
tion of one-way trapdoor permutations.Proof: This follows immediately from Lemma 2.46 be
ause ea
h fun
tion gn 2 J is a permutation. Thetrapdoor information of n = pq is tn = (p; q).2.4 Hard-
ore Predi
ate of a One Way Fun
tionRe
all that f(x) does not ne
essarily hide everything about x even if f is a one-way fun
tion. E.g. if f is theRSA fun
tion then it preserves the Ja
obi symbol of x, and if f is the dis
rete logarithm fun
tion EXP thenit is easy to 
ompute the least signi�
ant bit of x from f(x) by a simple Legendre symbol 
al
ulation. Yet,it seems likely that there is at least one bit about x whi
h is hard to \guess" from f(x), given that x in itsentirety is hard to 
ompute. The question is: 
an we point to spe
i�
 bits of x whi
h are hard to 
ompute,and how hard to 
ompute are they. The answer is en
ouraging. A number of results are known whi
h givea parti
ular bit of x whi
h is hard to guess given f(x) for some parti
ular f 's su
h as RSA and the dis
retelogarithm fun
tion. We will survey these results in subsequent se
tions.More generally, we 
all a predi
ate about x whi
h is impossible to 
ompute from f(x) better than guessingit at random a hard-
ore predi
ate for f .We �rst look at a general result by Goldrei
h and Levin [94℄ whi
h gives for any one-way fun
tion f apredi
ate B su
h that it is as hard to guess B(x) from f(x) as it is to invert f .Histori
al Note: The idea of a hard-
ore predi
ate for one-way fun
tions was introdu
ed by Blum, Goldwasserand Mi
ali. It �rst appears in a paper by Blum and Mi
ali [40℄ on pseduo random number generation. Theyshowed that a if the EXP fun
tion (fp;g(x) = gx (mod p)) is hard to invert then it is hard to even guessbetter than guessing at random the most signi�
ant bit of x. Under the assumption that quadrati
 residuesare hard to distinguish from quadrati
 non-residues modulo 
omposite moduli, Goldwasser and Mi
ali in[98℄ showed that the squaring fun
tion has a hard 
ore perdi
ate as well. Subsequently, Yao [201℄ showeda general result that given any one way fun
tion, there is a predi
ate B(x) whi
h is as hard to guess fromf(x) as to invert f for any fun
tion f . Goldrei
h and Levin's result is a signi�
antly simpler 
onstru
tionthan Yao's earlier 
onstru
tion.2.4.1 Hard Core Predi
ates for General One-Way Fun
tionsWe now introdu
e the 
on
ept of a hard-
ore predi
ate of a fun
tion and show by expli
it 
onstru
tion thatany strong one way fun
tion 
an be modi�ed to have a hard-
ore predi
ate.Note: Unless otherwise mentioned, the probabilities during this se
tion are 
al
ulated uniformly over all
oin tosses made by the algorithm in question.De�nition 2.48 A hard-
ore predi
ate of a fun
tion f : f0; 1g� ! f0; 1g� is a boolean predi
ate B :f0; 1g� ! f0; 1g, su
h that



36 Goldwasser and Bellare(1) 9PPT A; su
h that 8xA(x) = B(x)(2) 8PPTG; 8 
onstants 
; 9 k0; s.t.8k>k0Pr[G(f(x)) = B(x)℄ < 12 + 1k
 :The probability is taken over the random 
oin tosses of G, and random 
hoi
es of x of length k.Intuitively, the de�nition guarantees that given x, B(x) is eÆ
iently 
omputable, but given only f(x), it ishard to even \guess" B(x); that is, to guess B(x) with a probability signi�
antly better than 12 .Yao, in [201℄, showed that the existen
e of any trapdoor length-preserving permutation implies the existen
eof a trapdoor predi
ate. Goldrei
h and Levin greatly simpli�ed Yao's 
onstru
tion and show that any one-way fun
tion 
an be modi�ed to have a trapdoor predi
ate as follows (we state a simple version of theirgeneral result).Theorem 2.49 [94℄ Let f be a (strong) length preserving one-way fun
tion. De�ne f 0(x Æ r) = f(x) Æ r,where jxj = jrj = k, and Æ is the 
on
atenation fun
tion. ThenB(x Æ r) = �ki=1xiri(mod 2):is a hard-
ore predi
ate for f 0.Note: v Æ w denotes 
on
atenation of strings v and w. Computing B from f 0 is trivial as f(x) and r areeasily re
overavle from f 0(x; r). Finaly noti
e that if f is one-way then so is f 0.For a full proof of the theorem we refer the reader to [94℄.It is trivial to extend the de�nition of a hard-
ore predi
ate for a one way fun
tion, to a 
olle
tion of hard
ore predi
ates for a 
olle
tion of one-way fun
tions.De�nition 2.50 A hard-
ore predi
ate of a one-way fun
tion 
olle
tion F = ffi : Di ! Rigi2I is a 
olle
tionof boolean predi
ates B = fBi : Di ! Rigi2I su
h that(1) 9PPT A; su
h that 8i; xA(i; x) = Bi(x)(2) 8PPTG; 8 
onstants 
; 9 ; k0; s.t.8k>k0Pr[G(i; fi(x)) = Bi(x)℄ < 12 + 1k
 :The probability is taken over the random 
oin tosses of G, random 
hoi
es of i 2 I\f0; 1gk and randomx 2 Di.2.4.2 Bit Se
urity Of The Dis
rete Logarithm Fun
tionLet us examine the bit se
urity of the EXP 
olle
tion of fun
tions dire
tly rather than through the Goldrei
hLevin general 
onstru
tion.We will be interested in the most signi�
ant bit of the dis
rete logarithm x of y modulo p.For (p; g) 2 I and y 2 Z�p, let Bp;g(y) =8>><>>: 0 if y = gx mod pwhere 0 � x < p�121 if y = gx mod pwhere p�12 � x < p� 1 .



Cryptography: Le
ture Notes 37We want to show that if for p a prime and g a generator of Z�p, EXPp;g(x) � gx mod p is hard to invert, thengiven y = EXPp;g(x), Bp;g(y) is hard to 
ompute in a very strong sense; that is, in attempting to 
omputeBp;g(y) we 
an do no better than essentially guessing its value randomly. The proof will be by way of aredu
tion. It will show that if we 
an 
ompute Bp;g(y) in polynomial time with probability greater than12 + � for some non-negligible � > 0 then we 
an invert EXPp;g(x) in time polynomial in jpj, jgj, and ��1.The following is a formal statement of this fa
t.Theorem 2.51 Let S be a subset of the prime integers. Suppose there is a polynomial Q and a PTM Gsu
h that for all primes p 2 S and for all generators g of Z�pPr[G(p; g; y) = Bp;g(y)℄ > 12 + 1Q(jpj)(where the probability is taken over y 2 Z�p and the 
oin tosses of G). Then for every polynomial P , there isa PTM I su
h that for all primes p 2 S, generators g of Z�p, and y 2 Z�pPr[I(p; g; y) = x su
h that y � gx mod p℄ > 1� 1P (jpj)(where the probability is taken over the 
oin tosses of I).We point to [40℄ for a proof of the above theorem.As a 
orollary we immediately get the following.De�nition 2.52 De�ne MSBp;g(x) = 0 if 1 � x < p�12 and 1 otherwise for x 2 Zp�1, and MSB =fMSBp;g(x) : Zp�1 ! f0; 1gg(p;g)2I . for I = f(p; g) : p is prime and g is a generator of Z�pg.Corollary 2.53 Under the strong DLA, MSB is a 
olle
tion of hard-
ore predi
ates for EXP.It 
an be shown that a
tually O(log log p) of the most signi�
ant bits of x 2 Zp�1 are hidden by the fun
tionEXPp;g(x). We state this result here without proof.Theorem 2.54 For a PTM A, let� = Pr[A(p; g; gx; xlog log pxlog log p�1 : : : x0) = 0 j x = xjpj : : : x0℄(where the probability is taken over x 2 Z�n and the 
oin tosses of A) and let� = Pr[A(p; g; gx; rlog log prlog log p�1 : : : r0) = 0 j ri 2R f0; 1g℄(where the probability is taken over x 2 Z�n, the 
oin tosses of A, and the bits ri). Then under the Dis
reteLogarithm Assumption, we have that for every polynomial Q and every PTM A, 9k0 su
h that 8k > k0,j�� �j < 1Q(k) .Corollary 2.55 Under the Dis
rete Logarithm Assumption we have that for every polynomial Q and everyPTM A, 9k0 su
h that 8k > k0 and 8kp < log log pPr[A(p; g; gx; xkp : : : x0) = xkp+1℄ < 12 + 1Q(k)(where the probability is taken over the primes p su
h that jpj = k, the generators g of Z�p, x 2 Z�p, and the
oin tosses of A).For further information on the simultaneous or individual se
urity of the bits asso
iated with the dis
retelogarithm see [131, 108℄.



38 Goldwasser and Bellare2.4.3 Bit Se
urity of RSA and SQUARING fun
tionsLet I = f< n; e > | n = pq jpj = jqj; (e; �(n)) = 1g , and RSA = fRSA<n;e> : Z�n ! Z�ng<n;e>2I be the
olle
tion of fun
tions as de�ned in 2.17.Alexi, Chor, Goldrei
h and S
hnoor [6℄ showed that guessing the least signi�
ant bit of x from RSA<n;e>(x)better than at random is as hard as inverting RSA.Theorem 2.56 [6℄ Let S � I . Let 
 > 0. If there exists a probabilisti
 polynomial-time algorithm O su
hthat for (n; e) 2 S, prob(O(n; e; xe mod n) = least signi�
ant bit of x mod n) � 12 + 1k
(taken over 
oin tosses of O and random 
hoi
es of x 2 Z�n) Then there exists a probabilisti
 expe
tedpolynomial time algorithm A su
h that for all n; e 2 S, for all x 2 Z�n, A(n; e; xe mod n) = x mod n.Now de�ne LSB = fLSB<n;e> : Z�n ! Z�ng<n;e>2I where LSB<n;e>(x) =least signi�
ant bit of x.A dire
t 
orollary to the above theorem is.Corollary 2.57 Under the (strong) RSA assumption, LSB is a 
olle
tion of hard 
ore predi
ates for RSA.A similar result 
an be shown for the most signifant bit of x and in fa
t for the log logn least (and most)signi�
ant bits of x simultaneously. Moreover, similar results 
an be shown for the RABIN and BLUM-WILLIAMS 
olle
tions. We refer to [6℄, [199℄ for the detailed results and proofs. Also see [80℄ for redu
tionsof improved se
urity.2.5 One-Way and Trapdoor Predi
atesA one-way predi
ate, �rst introdu
ed in [97, 98℄ is a notion whi
h pre
eeds hard 
ore predi
ates for one-wayfun
tions and is strongly related to it. It will be very useful for both design of se
ure en
ryption and proto
oldesign.A one-way predi
ate is a boolean fun
tion B : f0; 1g� ! f0; 1g for whi
h(1) Sampling is possible: There exists a PPT algorithm that on input v 2 f0; 1g and 1k, sele
ts a randomx su
h that B(x) = v and jxj � k.(2) Guessing is hard: For all 
 > 0, for all k suÆ
iently large, no PPT algorithm given x 2 f0; 1gk 
an
ompute B(x) with probability greater than 12 + 1k
 . (The probability is taken over the random 
hoi
esmade by the adversary and x su
h that jxj � k.)A trapdoor predi
ate is a one-way predi
ate for whi
h there exists, for every k, trapdoor information tkwhose size is bounded by a polynomial in k and whose knowledge enables the polynomial-time 
omputationof B(x), for all x su
h that jxj � k.Restating as a 
olle
tion of one-way and trapdoor predi
ates is easy.De�nition 2.58 Let I be a set of indi
es and for i 2 I let Di be �nite. A 
olle
tion of one-way predi
atesis a set B = fBi : Di ! f0; 1ggi2I satisfying the following 
onditions. Let Dvi = fx 2 Di; Bi(x) = v.(1) There exists a polynomial p and a PTM S1 whi
h on input 1k �nds i 2 I \ f0; 1gk.(2) There exists a PTM S2 whi
h on input i 2 I and v 2 f0; 1g �nds x 2 Di su
h that Bi(x) = v.
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ture Notes 39(3) For every PPT A there exists a negligble �A su
h that 8 k large enoughP h z = v : i R I \ f0; 1gk ; v R f0; 1g ; x R Dvi ; z R A(i; x) i � 12 + �A(k)De�nition 2.59 Let I be a set of indi
es and for i 2 I let Di be �nite. A 
olle
tion of trapdoor predi
atesis a set B = fBi : Di ! f0; 1ggi2I satisfying the following 
onditions. Let Dvi = fx 2 Di; Bi(x) = v.(1) There exists a polynomial p and a PTM S1 whi
h on input 1k �nds pairs (i; ti) where i 2 I \ f0; 1gkand jtij < p(k) The information ti is referred to as the trapdoor of i.(2) There exists a PTM S2 whi
h on input i 2 I and v 2 f0; 1g �nds x 2 Di su
h that Bi(x) = v.(3) There exists a PTM A1 su
h that for i 2 I and trapdoor ti, x 2 Di A1(i; ti; x) = Bi(x).(4) For every PPT A there exists a negligble �A su
h that 8 k large enoughP h z = v : i R I \ f0; 1gk ; v R f0; 1g ; x R Dvi ; z  A(i; x) i � 12 + �A(k)Note that this de�nition implies that D0i is roughly the same size as D1i .2.5.1 Examples of Sets of Trapdoor Predi
atesA Set of Trapdoor Predi
ates Based on the Quadrati
 Residue AssumptionLet Qn denote the set of all quadrati
 residues (or squares) modulo n; that is, x 2 Qn i� there exists a ysu
h that x � y2 mod n.Re
all that the Ja
obi symbol (Jn(x)) is de�ned for any x 2 Z�n and has a value in f�1; 1g; this value iseasily 
omputed by using the law of quadrati
 re
ipro
ity, even if the fa
torization of n is unknown. If n isprime then x 2 Qn , (Jn(x)) = 1; and if n is 
omposite, x 2 Qn ) (Jn(x)) = 1. We let J+1n denote the setfx j x 2 Z�n^ (Jn(x)) = 1g , and we let ~Qn denote the set of pseudo-squares modulo n: those elements of J+1nwhi
h do not belong to Qn. If n is the produ
t of two primes then jQnj = j ~Qnj, and for any pseudo-squarey the fun
tion fy(x) = y � x maps Qn one-to-one onto ~Qn.The quadrati
 residuousity problem is: given a 
omposite n and x 2 J+1n , to determine whether x is a squareor a pseudo-square modulo n. This problem is believed to be 
omputationally diÆ
ult, and is the basis fora number of 
ryptosystems.The following theorem informally shows for every n, if the quadrati
 residusosity is hard to 
ompute at allthen it is hard to distinguish between squares and non-squares for almost everywhere.Theorem 2.60 [97, 98℄: Let S � fns:t:n = pq; p; q; primesg If there exists a probabilisti
 polynomial-timealgorithm O su
h that for n 2 S,prob(O(n; x) de
ides 
orre
tly whether x 2 J+1n ) > 12 + � ; (2.1)where this probability is taken over the 
hoi
e of x 2 J+1n and O's random 
hoi
es, then there exists aprobabilisti
 algorithm B with running time polynomial in ��1; Æ�1 and jnj su
h that for all n 2 S, for allx 2 J+1n , prob(B(x; n) de
ides 
orre
tly whether x 2 Qnjx 2 J+1n ) > 1� Æ ; (2.2)where this probability is taken over the random 
oin tosses of B.



40 Goldwasser and BellareNamely, a probabilisti
 polynomial-time bounded adversary 
an not do better (ex
ept by a smaller than anypolynomial advantage) than guess at random whether x 2 Jn is a square mod n, if quadrati
 residuosityproblem is not in polynomial time.This suggests immediately the following set of predi
ates: LetQRn;z(x) = � 0 if x is a square mod n1 if x is a non-square mod n �where QRn;z : J+1n ! f0; 1g and Ik = fn#z j n = pq, jpj = jqj = k2 , p and q primes, (Jn(z)) = +1, za non-square mod ng. It is 
lear that QR = fQRn;zg is a set of trapdoor predi
ates where the trapdoorinformation asso
iated with every index < n; z > is the fa
torization < p; q >. Lets 
he
k this expli
itly.(1) To sele
t pairs (i; ti) at random, �rst pi
k two primes, p and q, of size ��k2 �� at random, determining n.Next, sear
h until we �nd a non-square z in Z�n with Ja
obi symbol +1. The pair we have found is then(< n; z >;< p; q >). We already know how to do all of these operations in expe
ted polynomial time .(2) Follows from the existen
e of the following algorithm to sele
t elements out of Dvn;z:� To sele
t x 2 D0n;z, let x = y2 mod n where y is an element of Z�n 
hosen at random.� To sele
t x 2 D1n;z, let x = zy2 mod n where y is an element of Z�n 
hosen at random.(3) To 
ompute QRn;z(x) given < p; q >, we 
ompute (Jp(x)) and (xq ). If both are +1 then QRn;z(x) is 0,otherwise it is 1.(4) This follows from the Quadarati
 Residuosity Assumption and the above theorem.A Set of Trapdoor Predi
ates Based on the RSA AssumptionDe�ne Bn;e(x) = the least signi�
ant bit of xd mod n for x 2 Z�n where ed = 1 mod �(n). Then, to sele
tuniformly an x 2 Z�n su
h that Bn;e(x) = v simply sele
t a y 2 Z�n whose least signi�
ant bit is v and setx = ye mod n. Given d it is easy to 
ompute Bn;e(x) = least signi�
ant bit of xd mod n.The se
urity of this 
onstru
tion follows trivially from the de�nition of 
olle
tion of hard 
ore predi
ates forthe RSA 
olle
tion of fun
tions.



C h a p t e r 3Pseudo-random bit generators

In this 
hapter, we dis
uss the notion of pseudo-random generators. Intuitively, a PSRG is a deterministi
program used to generate long sequen
e of bits whi
h looks like random sequen
e, given as input a shortrandom sequen
e (the input seed).The notion of PSRG has appli
ations in various �elds:Cryptography:In the 
ase of private key en
ryption, Shannon showed (see le
ture 1) that the length of the 
lear textshould not ex
eed the length of the se
ret key, that is, the two parties have to agree on a very longstring to be used as the se
ret key. Using a PSRG G, they need to agree only on a short seed r, andex
hange the message G(r)Lm.Algorithms Design:An algorithm that uses a sour
e of random bits, 
an manage with a shorter string, used as a seed to aPSRG.Complexity Theory:Given a probabilisti
 algorithm, an important question is whether we 
an make it deterministi
. Us-ing the notion of a PSRG we 
an prove, assuming the existen
e of one-way fun
tion that BPP �\�DTIME(2n�)In this 
hapter we will de�ne good pseudo random number generators and give 
onstru
tions of them underthe assumption that one way fun
tions exist.We �rst ask where do 
an we a
tually �nd truly random bit sequen
es. 13.0.2 Generating Truly Random bit Sequen
esGenerating a one-time pad (or, for that matter, any 
ryptographi
 key) requires the use of a \natural" sour
eof random bits, su
h as a 
oin, a radioa
tive sour
e or a noise diode. Su
h sour
es are absolutely essentialfor providing the initial se
ret keys for 
ryptographi
 systems.However, many natural sour
es of random bits may be defe
tive in that they produ
e biased output bits (sothat the probability of a one is di�erent than the probability of a zero), or bits whi
h are 
orrelated with1some of the preliminary dis
ussion in the following three subse
tions is taken from Rivest's survey arti
le on 
ryptographywhi
h appears in the handbook of 
omputer s
ien
e 41
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h other. Fortunately, one 
an remedy these defe
ts by suitably pro
essing the output sequen
es produ
edby the natural sour
es.To turn a sour
e whi
h supplies biased but un
orrelated bits into one whi
h supplies unbiased un
orrelatedbits, von Neumann proposed grouping the bits into pairs, and then turning 01 pairs into 0's, 10 pairs into1's, and dis
arding pairs of the form 00 and 11 [200℄. The result is an unbiased un
orrelated sour
e, sin
ethe 01 and 10 pairs will have an identi
al probability of o

urring. Elias [75℄ generalizes this idea to a
hievean output rate near the sour
e entropy.Handling a 
orrelated bit sour
e is more diÆ
ult. Blum [38℄ shows how to produ
e unbiased un
orrelatedbits from a biased 
orrelated sour
e whi
h produ
es output bits a

ording to a known �nite Markov 
hain.For a sour
e whose 
orrelation is more 
ompli
ated, Santha and Vazirani [176℄ propose modeling it as aslightly random sour
e, where ea
h output bit is produ
ed by a 
oin 
ip, but where an adversary is allowedto 
hoose whi
h 
oin will be 
ipped, from among all 
oins whose probability of yielding \Heads" is betweenÆ and 1� Æ. (Here Æ is a small �xed positive quantity.) This is an extremely pessimisti
 view of the possible
orrelation; nonetheless U. Vazirani [197℄ shows that if one has two, independent, slightly-random sour
esX and Y then one 
an produ
e \almost independent" �-biased bits by breaking the outputs of X and Yinto blo
ks x;y of length k = 
(1=Æ2 log(1=Æ) log(1=�)) bits ea
h, and for ea
h pair of blo
ks x;y produ
ingas output the bit x � y (the inner produ
t of x and y over GF (2)). This is a rather pra
ti
al and elegantsolution. Chor and Goldrei
h [54℄ generalize these results, showing how to produ
e independent �-biased bitsfrom even worse sour
es, where some output bits 
an even be 
ompletely determined.These results provide e�e
tive means for generating truly random sequen
es of bits|an essential requirementfor 
ryptography|from somewhat defe
tive natural sour
es of random bits.3.0.3 Generating Pseudo-Random Bit or Number Sequen
esThe one-time pad is generally impra
ti
al be
ause of the large amount of key that must be stored. Inpra
ti
e, one prefers to store only a short random key, from whi
h a long pad 
an be produ
ed with a suitable
ryptographi
 operator. Su
h an operator, whi
h 
an take a short random sequen
e x and deterministi
ally\expand" it into a pseudo-random sequen
e y, is 
alled a pseudo-random sequen
e generator. Usually x is
alled the seed for the generator. The sequen
e y is 
alled \pseudo-random" rather than random sin
e notall sequen
es y are possible outputs; the number of possible y's is at most the number of possible seeds.Nonetheless, the intent is that for all pra
ti
al purposes y should be indistinguishable from a truly randomsequen
e of the same length.It is important to note that the use of pseudo-random sequen
e generator redu
es but does not eliminate theneed for a natural sour
e of random bits; the pseudo-random sequen
e generator is a \randomness expander",but it must be given a truly random seed to begin with.To a
hieve a satisfa
tory level of 
ryptographi
 se
urity when used in a one-time pad s
heme, the output ofthe pseudo-random sequen
e generator must have the property that an adversary who has seen a portionof the generator's output y must remain unable to eÆ
iently predi
t other unseen bits of y. For example,note that an adversary who knows the 
iphertext C 
an guess a portion of y by 
orre
tly guessing the
orresponding portion of the message M , su
h as a standardized 
losing \Sin
erely yours,". We would notlike him thereby to be able to eÆ
iently read other portions of M , whi
h he 
ould do if he 
ould eÆ
ientlypredi
t other bits of y. Most importantly, the adversary should not be able to eÆ
iently infer the seed xfrom the knowledge of some bits of y.How 
an one 
onstru
t se
ure pseudo-random sequen
e generators?Classi
al Pseudo-random Generators are UnsuitableClassi
al te
hniques for pseudo-random number generation [120, Chapter 3℄ whi
h are quite useful ande�e
tive for Monte Carlo simulations are typi
ally unsuitable for 
ryptographi
 appli
ations. For example,linear feedba
k shift registers [104℄ are well-known to be 
ryptographi
ally inse
ure; one 
an solve for the
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ture Notes 43feedba
k pattern given a small number of output bits.Linear 
ongruential random number generators are also inse
ure. These generators use the re
urren
eXi+1 = aXi + b (mod m) (3.1)to generate an output sequen
e fX0; X1; : : :g from se
ret parameters a, b, and m, and starting point X0. Itis possible to infer the se
ret parameters given just a few of the Xi [157℄. Even if only a fra
tion of the bitsof ea
h Xi are revealed, but a, b, and m are known, Frieze, H�astad, Kannan, Lagarias, and Shamir showhow to determine the seed X0 (and thus the entire sequen
e) using the marvelous latti
e basis redu
tion (or\L3") algorithm of Lenstra, Lenstra, and Lov�asz [83, 127℄.As a �nal example of the 
ryptographi
 unsuitability of 
lassi
al methods, Kannan, Lenstra, and Lovasz[118℄ use the L3 algorithm to show that the binary expansion of any algebrai
 number y (su
h as p5 =10:001111000110111 : : :) is inse
ure, sin
e an adversary 
an identify y exa
tly from a suÆ
ient number ofbits, and then extrapolate y's expansion.3.0.4 Provably Se
ure Pseudo-Random Generators: Brief overviewThis se
tion provides a brief overview of the history of the modern history of pseudo random bit generators.Subsequent se
tion de�ne these 
on
epts formally and give 
onstru
tions.The �rst pseudo-random sequen
e generator proposed for whi
h one 
an prove that it is impossible to predi
tthe next number in the sequen
e from the previous numbers assuming that it is infeasible to invert the RSAfun
tion is due to Shamir [183℄. However, this s
heme generates a sequen
e of numbers rather than asequen
e of bits, and the se
urity proof shows that an adversary is unable to predi
t the next number, giventhe previous numbers output. This is not strong enough to prove that, when used in a one-time pad s
heme,ea
h bit of the message will be well-prote
ted.Blum and Mi
ali [40℄ introdu
ed the �rst method for designing provably se
ure pseudo-random bit sequen
egenerators, based on the use of one-way predi
ates. They 
all a pseudo-random bit generator se
ure if anadversary 
annot guess the next bit in the sequen
e from the pre�x of the sequen
e, better than guessing atrandom. Blum and Mi
ali then proposed a parti
ular generator based on the diÆ
ulty of 
omputing dis
retelogarithms. Blum, Blum, and Shub [35℄ propose another generator, 
alled the squaring generator , whi
h issimpler to implement and is provably se
ure assuming that the quadrati
 residuosity problem is hard. Alexi,Chor, Goldrei
h, and S
hnorr [6℄ show that the assumption that the quadrati
 residuosity problem is hard
an be repla
ed by the weaker assumption that fa
toring is hard. A related generator is obtained by using theRSA fun
tion. Kaliski shows how to extend these methods so that the se
urity of the generator depends onthe diÆ
ulty of 
omputing ellipti
 logarithms; his te
hniques also generalize to other groups [116, 117℄. Yao[201℄ shows that the pseudo-random generators de�ned above are perfe
t in the sense that no probabilisti
polynomial-time algorithm 
an guess with probability greater by a non-negligible amount than 1=2 whetheran input string of length k was randomly sele
ted from f0; 1gk or whether it was produ
ed by one of theabove generators. One 
an rephrase this to say that a generator that passes the next-bit test is perfe
tin the sense that it will pass all polynomial-time statisti
al tests. The Blum-Mi
ali and Blum-Blum-Shubgenerators, together with the proof of Yao, represent a major a
hievement in the development of provablyse
ure 
ryptosystems. Impagliazzo, Luby, Levin and H�astad show that a
tually the existen
e of a one-wayfun
tion is equivalent to the existen
e of a pseudo random bit generator whi
h passes all polynomial timestatisti
al tests.3.1 De�nitionsDe�nition 3.1 Let Xn, Yn be probability distributions on f0; 1gn (That is, by t 2 Xn we mean thatt 2 f0; 1gn and it is sele
ted a

ording to the distribution Xn). We say that fXng is poly-time indistin-



44 Goldwasser and Bellareguishable from fYng if 8PTM A, 8 polynomial Q, 9n0, s.t 8n > n0,j Prt2Xn(A(t) = 1)� Prt2Yn(A(t) = 1)j < 1Q(n)i.e., for suÆ
iently long strings, no PTM 
an tell whether the string was sampled a

ording to Xn ora

ording to Yn.Intuitively, Pseudo random distribution would be a indistinguishable from the uniform distribution. Wedenote the uniform probability distribution on f0; 1gn by Un. That is, for every � 2 f0; 1gn, Prx2Un [x =�℄ = 12n .De�nition 3.2 We say that fXng is pseudo random if it is poly-time indistinguishable from fUng. Thatis, 8PTM A, 8 polynomial Q, 9n0, su
h that 8n > n0,j Prt2Xn[A(t) = 1℄� Prt2Un[A(t) = 1℄j < 1Q(n)Comments:The algorithm A used in the above de�nition is 
alled a polynomial time statisti
al test. (Knuth, vol. 2,suggests various examples of statisti
al tests). It is important to note that su
h a de�nition 
annot makesense for a single string, as it 
an be drawn from either distribution.If 9A and Q su
h that the 
ondition in de�nition 2 is violated, we say that Xn fails the test A.De�nition 3.3 A polynomial time deterministi
 program G : f0; 1gk ! f0; 1gk̂ is a pseudo-random gener-ator (PSRG) if the following 
onditions are satis�ed.1. k̂ > k2. fGk̂gk̂ is pseudo-random where Gk̂ is the distribution on f0; 1gk̂ obtained as follows: to get t 2 Gk̂ :pi
k x 2 Ukset t = G(x)That is, 8PTMA;8 polynomial Q;8 suÆ
iently large k,j Prt2Gk̂(A(t) = 1)� Prt2Uk̂(A(t) = 1)j < 1Q(k̂) (3.2)
3.2 The Existen
e Of A Pseudo-Random GeneratorNext we prove the existen
e of PSRG's, if length-preserving one way permutations exist. It has been shownthat if one-way fun
tions exist (without requiring them to be length-preserving permutations) then one-wayfun
tions exist, but we will not show this here.Theorem 3.4 Let f : f0; 1g� ! f0; 1g� be a length preserving one-way permutation. Then
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ture Notes 451. 9PSRG G : f0; 1gk ! f0; 1gk+1 (su
h G is 
alled an extender).2. 8 polynomial Q, 9PSRG GQ : f0; 1gk ! f0; 1gQ(k).Proof:Proof of 1: Let f be as above. Let B be the hard 
ore bit of f . (that is, B is a boolean predi
ate,B : f0; 1g� ! f0; 1g, s.t it is eÆ
ient to 
ompute B(x) given x, but given only f(x), it is hard to 
omputeB(x) with probability greater than 12 + � for non-negligible �. ) Re
all that we showed last 
lass thatevery OWF f(x) 
an be 
onverted into f1(x; r) for whi
h B0(x; r) =Pjxj1 xiri mod 2 is a hard 
ore bit. Fornotational ease, assume that B is already a hard-
ore bit for f .De�ne G1(x) = f(x) ÆB(x)(Æ denotes the string 
on
atenation operation). We will prove that G1(x) has the required properties. Clearly,G1 is 
omputed in poly-time, and for jxj = k, jG1(x)j = k + 1. It remains to show that the distributionfG1k+1g is pseudo random.Intuition : Indeed, knowing f(x) should not help us to predi
t B(x). As f is a permutation, f(Uk) isuniform on f0; 1gk, and any separation between Uk+1 and Gk+1 must 
aused by the hard 
ore bit. Wewould like to show that any su
h separation would enable us to predi
t B(x) given only f(x) and obtain a
ontradi
tion to B being a hard 
ore bit for f .We pro
eed by 
ontradi
tion: Assume that (G is not good) 9 statisti
al test A, polynomial Q s.tPrt2Gk+1(A(t) = 1)� Prt2Uk+1(A(t) = 1) > 1Q(k + 1)(Note that we have dropped the absolute value from the inequality 3.2. This 
an be done wlog. We willlater see what would 
hange if the the other dire
tion of the inequality were true).Intuitively, we may thus interpret that if A answers 1 on a string t it is more likely that t is drawn fromdistribution Gk+1, and if A answers 0 on string t that it is more likely that t is drawn from distributionUk+1.We note that the probability that A(f(x)Æb) returns 1, is the sum of the weighted probability that A returns1 
onditioned on the 
ase that B(x) = b and 
onditioned on the 
ase B(x) = 1. By, the assumed separationabove, we get that it is more likely that A(f(x) Æ b) will return 1 when b = B(x). This easily translates toan algorithm for predi
ting the hard 
ore bit of f(x).Formally, we havePrx2Uk;b2U1 [A(f(x) Æ b) = 1℄ = Pr[A(f(x) Æ b) = 1 j b = B(x)℄ � Pr[b = B(x)℄+ Pr[A(f(x) Æ b) = 1 j b = B(x)℄ � Pr[b = B(x)℄= 12 (� + �)where � = Pr[A(f(x) Æ b) = 1 j b = B(x)℄ and � = Pr[A(f(x) Æ b) = 1 j b = B(x)℄.From the assumption we therefore getPrx2Uk [A(f(x) ÆB(x)) = 1℄� Prx2Uk [A(f(x) Æ b) = 1℄ = �� 12 (�+ �)



46 Goldwasser and Bellare= 12 (�� �)> 1Q(k) .We now exhibit a polynomial time algorithm A0 that on input f(x) 
omputes B(x) with su

ess probabilitysigni�
antly better than 1=2.A0 takes as input f(x) and outputs either a 0 or 1.1. 
hoose b 2 f0; 1g2. run A(f(x) Æ b)3. If A(f(x) Æ b) = 1, output b, otherwise output b.Noti
e that, when dropping the absolute value from the inequality 3.2, if we take the se
ond dire
tion wejust need to repla
e b by b in the de�nition of A0.Claim 3.5 Pr[A0(f(x) = B(x))℄ > 12 + 1Q(k) .Proof:Pr[A0(f(x) = b)℄ Pr[A(f(x) Æ b) = 1 j b = B(x)℄ Pr[b = B(x))Pr[A(f(x) Æ b) = 0jb = B(x)) Pr[b = B(x)℄+ 12�+ 12 (1� �)= 12 + 12 (�� �)> 12 + 1Q(k) .
This 
ontradi
ts the hardness of 
omputing B(x). It follows that G1 is indeed a PSRG.Proof of 2: Given a PSRG G that expands random strings of length k to pseudo-random strings of lengthk+1, we need to show that, 8 polynomial Q, 9PSRGGQ : f0; 1g ! f0; 1gQ(k). We de�ne GQ by �rst usingG Q(k) times as follows:x ! G! f(x) ÆB(x)f(x) ÆB(x) ! G! f(f(x)) ÆB(f(x))f2(x) ÆB(f(x)) ! G! f3(x) ÆB(f2(x))���fQ(k)�2(x) ÆB(fQ(k)�1(x)) ! G! fQ(k)(x) ÆB(fQ(k)�1(x))The output of GQ(x) is the 
on
atenation of the last bit from ea
h string i.e.,GQ(x) = B(x) ÆB(f(x)) Æ � � � ÆB(fQ(k)�1(x) =bG1 (x) Æ bG2 (x) Æ � � � Æ bGQ(jxj)(x)Clearly, GQ is poly-time and it satis�es the length requirements. We need to prove that the distributiongenerated by GQ, GQ(Uk), is poly-time indistinguishable from UQ(k). We pro
eed by 
ontradi
tion, (and



Cryptography: Le
ture Notes 47show that it implies that G is not PSRG)If GQk is not poly-time indistinguishable from UQ(k), 9 statisti
al test A, and 9 polynomial P , s.t.Prt2GQ(k)(A(t) = 1)� Prt2UQ(k)(A(t) = 1) > 1P (k)(As before we omit the absolute value). We now de�ne a sequen
e D1; D2; :::; DQ(k) of distributions onf0; 1gQ(k), s.t. D1 is uniform (i.e. strings are random), DQ(k) = GQ(k), and the intermediate Di's aredistributions 
omposed of 
on
atenation of random followed by pseudorandom distributions. Spe
i�
ally,t 2 D1 is obtained by letting t = s where s 2 UQ(k)t 2 D2 is ontained by letting t = s ÆB(x) where s 2 UQ(k)�1; x 2 Ukt 2 D3 is ontained by letting t = s ÆB(x) ÆB(f(x)) where s 2 UQ(k)�2; x 2 Uk���t 2 DQ(k) is ontained by letting t = B(x)::: ÆB(fQ(k)�1(x)) where x 2 UkSin
e the sequen
e `moves' from D1 = UQ(k) to DQ(k) = GQ(k), and we have an algorithms A that distin-guishes between them, there must be two su

essive distributions between whi
h A distinguishes.i.e. 9 i, 1 � i � Q(k), s.t. Prt2Di(A(t) = 1)� Prt2Di+1(A(t) = 1) > 1P (k)Q(k)We now present a poly-time algorithm A0 that distinguishes between Uk+1 and Gk+1, with su

ess proba-bility signi�
antly better than 12 , 
ontradi
ting the fa
t that G is a PSRG.A0 works as follows on input � = �1�2:::�k+1 = �0 Æ b1. Choose 1 � i � q(k) at random.2. Let t = 
1 Æ ::: Æ 
Q(k)�i�1 Æ b Æ bG1 (�0) Æ bG2 (�0) Æ ::: Æ bGi (�0)where the 
j are 
hosen randomly.(Note that t 2 Di if �0 Æ b 2 Uk+1, and that t 2 Di+1 if �0 Æ b 2 Gk+1.)3. We now run A(t). If we get 1, A0 returns 0 If we get 0, A0 returns 1(i.e if A returns 1, it is interpreted as a vote for Di and therefore for b 6= B(�`) and � 2 Uk+1. Onthe other hand, if A returns 0, it is interpreted as a vote for Di+1 and therefore for b = B(�0) and� 2 Gk+1.)It is immediate that: Pr�2Uk+1(A0(�) = 1)� Pr�2Gk+1(A0(�) = 1) > 1P (k)Q2(k)The extra 1Q(k) fa
tor 
omes form the random 
hoi
e of i. This violates the fa
t that G was a pseudo randomgenerator as we proved in part 1. This is a 
ontradi
tion



48 Goldwasser and Bellare3.3 Next Bit TestsIf a pseudo-random bit sequen
e generator has the property that it is diÆ
ult to predi
t the next bit fromprevious ones with a

ura
y greater than 12 by a non-negligible amount in time polynomial in the size of theseed, then we say that the generator passes the \next-bit" test.De�nition 3.6 A next bit test is a spe
ial kind of statisti
al test whi
h takes as input a pre�x of a sequen
eand outputs a predi
tion of the next bit.De�nition 3.7 A (dis
rete) probability distribution on a set S is a fun
tion D : S ! [0; 1℄ � R so thatPs2S D(s) = 1. For brevity, probability distributions on f0; 1gk will be subs
ripted with a k. The notationx 2 Xn means that x is 
hosen so that 8z 2 f0; 1gnPr[x = z℄ = Xn(z). In what follows, Un is the uniformdistribution.Re
all the de�nition of a pseudo-random number generator:De�nition 3.8 A pseudo-random number generator (PSRG) is a polynomial time deterministi
 algorithmso that:1. if jxj = k then jG(x)j = k̂2. k̂ > k,3. Gk̂ is pseudo-random2, where Gk̂ is the probability distribution indu
ed by G on f0; 1gk̂.De�nition 3.9 We say that a pseudo-random generator passes the next bit test A if for every polynomialQ there exists ,an integer k0 su
h that for all k̂ > k0 and p < k̂Prt2Gk̂[A(t1t2 : : : tp) = tp+1℄ < 12 + 1Q(k)Theorem 3.10 G passes all next bit tests , G passes all statisti
al tests.Proof:(() Trivial.()) Suppose, for 
ontradi
tion, that G passes all next bit test but fails some statisti
al test A. We willuse A to 
onstru
t a next bit test A0 whi
h G fails. De�ne an operator � on probability distributionsso that [Xn � Ym℄(z) = Xn(zn) � Ym(zm) where z = zn Æ zm; jznj = n; jzmj = m (Æ is 
on
atenation).For j � k̂ let Gj;k̂ be the probability distribution indu
ed by Gk̂ on f0; 1gj by taking pre�xes. (That isGj;k̂(x) =Pz2f0;1gk̂;z extends xGk̂(z).)De�ne a sequen
e of distributions Hi = Gi;k̂ � Uk̂�i on f0; 1gk̂ of \in
reasing pseudo-randomness." ThenH0 = Uk̂ and Hk̂ = Gk̂. Be
ause G fails A, A 
an di�erentiate between Uk̂ = H0 and Gk̂ = Hk̂; thatis, 9Q 2 Q[x℄ so that jPrt2H0 [A(t) = 1℄ � Prt2Hk̂ [A(t) = 1℄j > 1Q(k) . We may assume without loss ofgenerality that A(t) = 1 more often when t is 
hosen from Uk̂ (otherwise we invert the output of A) so2A pseudo-random distribution is one whi
h is polynomial time indistinguishable from Uk̂



Cryptography: Le
ture Notes 49that we may drop the absolute value markers on the left hand side. Then 9i; 0 � i � k̂ � 1 so thatPrt2Hi [A(t) = 1℄� Prt2Hi+1 [A(t) = 1℄ > 1k̂Q(k) .The next bit test A0 takes t1t2 : : : ti and outputs a guess for ti+1. A0 �rst 
onstru
tss0 = t1t2 : : : ti0ri+2ri+3 : : : rk̂s1 = t1t2 : : : ti1r̂i+2r̂i+3 : : : r̂k̂where rj and r̂j are random bits for i+ 2 � j � k̂. A0 then 
omputes A(s0) and A(s1).If A(s0) = A(s1), then A0 outputs a random bit.If 0 = A(s0) = A(s1), then A0 outputs 0.If 1 = A(s0) = A(s1), then A0 outputs 1.Claim 3.11 By analysis similar to that done in the previous le
ture, Pr[A0(t1t2 : : : ti) = ti+1℄ > 12 + 1k̂Q(k) .Thus we rea
h a 
ontradi
tion: A0 is a next bit test that G fails, whi
h 
ontradi
ts our assumption that Gpasses all next bit tests.
3.4 Examples of Pseudo-Random GeneratorsEa
h of the one way fun
tions we have dis
ussed indu
es a pseudo-random generator. Listed below arethese generators (in
luding the Blum/Blum/Shub generator whi
h will be dis
ussed afterwards) and theirasso
iated 
osts. See [40, 35, 170℄.Name One way fun
tion Cost of 
omputing Cost of 
omputingone way fun
tion jthbit of generatorRSA xe mod n; n = pq k3 jk3Rabin x2 mod n; n = pq k2 jk2Blum/Mi
ali EXP(p; g; x) k3 jk3Blum/Blum/Shub (see below) k2 max(k2 log j; k3)3.4.1 Blum/Blum/Shub Pseudo-Random GeneratorThe Blum/Blum/Shub pseudo-random generator uses the (proposed) one way fun
tion gn(x) = x2 mod nwhere n = pq for primes p and q so that p � q � 3 mod 4. In this 
ase, the squaring endomorphism x 7! x2on Z�n restri
ts to an isomorphism on (Z�n)2, so gn is a permutation on (Z�n)2. (Re
all that every square hasa unique square root whi
h is itself a square.)Claim 3.12 The least signi�
ant bit of x is a hard bit for the one way fun
tion gn.The jth bit of the Blum/Blum/Shub generator may be 
omputed in the following way:B(x2j mod n) = B(x� mod m)



50 Goldwasser and Bellarewhere � � 2j mod �(n). If the fa
tors of n are known, then �(n) = (p� 1)(q� 1) may be 
omputed so that� may be 
omputed prior to the exponentiation. � = 2j mod �(n) may be 
omputed in O(k2 log j) time andx� may be be 
omputed in k3 time so that the 
omputation of B(x2j ) takes O(max(k3; k2 log j)) time.An interesting feature of the Blum/Blum/Shub generator is that if the fa
torization of n is known, the 2pn thbit 
an be generated in time polynomial in jnj. The following question 
an be raised: let GBBS(x; p; q) =B(f2pn(x)) Æ : : : Æ B(f2pn+2k(x)) for n = pq and jxj = k. Let GBBS2k be the distribution indu
ed by GBBSon f0; 1g2k.Open Problem 3.13 Is this distribution GBBS2k pseudo-random? Namely, 
an you prove that8Q 2 Q[x℄;8PTM A; 9k0;8k > k0jPrt2GBBS2k [A(t) = 1℄� Prt2U2k [A(t) = 1℄j < 1Q(2k)The previous proof that G is pseudo-random doesn't work here be
ause in this 
ase the fa
torization of n ispart of the seed so no 
ontradi
tion will be rea
hed 
on
erning the diÆ
ulty of fa
toring.More generally,Open Problem 3.14 Pseudo-random generators, given seed x, impli
itly de�ne an in�nite string gx1gx2 : : :.Find a pseudo-random generator so that the distribution 
reated by restri
ting to any polynomially sele
tedsubset of bits of gx is pseudo-random. By polynomially sele
ted we mean examined by a polynomial timema
hine whi
h 
an see gxi upon request for a polynomial number of i's (the ma
hine must write down thei's, restri
ting jij to be polynomial in jxj).



C h a p t e r 4Blo
k 
iphers and modes of operation

Blo
k 
iphers are the 
entral tool in the design of proto
ols for shared-key 
ryptography. They are the mainavailable \te
hnology" we have at our disposal. This 
hapter will take a look at these obje
ts and des
ribethe state of the art in their 
onstru
tion.It is important to stress that blo
k 
iphers are just tools; they don't, by themselves, do something that anend-user would 
are about. As with any powerful tool, one has to learn to use this one. Even a wonderfulblo
k 
ipher won't give you se
urity if you use don't use it right. But used well, these are powerful toolsindeed. A

ordingly, an important theme in several up
oming 
hapters will be on how to use blo
k 
ipherswell. We won't be emphasizing how to design or analyze blo
k 
iphers, as this remains very mu
h an art. Themain purpose of this 
hapter is just to get you a
quainted with what typi
al blo
k 
iphers look like. We'lllook at two examples, DES, and AES. DES is the \old standby." It is 
urrently (year 2001) the most widely-used blo
k 
ipher in existen
e, and it is of suÆ
ient histori
al signi�
an
e that every trained 
ryptographerneeds to have seen its des
ription. AES is a more modern blo
k 
ipher. It is a possible repla
ement for DES.4.1 What is a blo
k 
ipher?A blo
k 
ipher is a fun
tion E: f0; 1gk � f0; 1gl ! f0; 1gl that takes two inputs, a k-bit key K and anl-bit \plaintext" M , to return an l-bit \
iphertext" C = E(K;M). The key-length k and the blo
k-length lare parameters asso
iated to the blo
k 
ipher and vary from 
ipher to 
ipher, as of 
ourse does the designof the algorithm itself. For ea
h key K 2 f0; 1gk we let EK : f0; 1gl ! f0; 1gl be the fun
tion de�ned byEK(M) = E(K;M). For any blo
k 
ipher, and any key K, the fun
tion EK is a permutation on f0; 1gn.This means that it is a bije
tion, ie. a one-to-one and onto fun
tion of f0; 1gl to f0; 1gl. A

ordingly it hasan inverse, and we 
an denote it E�1K . This fun
tion also maps f0; 1gl to f0; 1gl, and of 
ourse we haveE�1K (FK(M)) = M and EK(E�1K (C)) = C for all M;C 2 f0; 1gl. We let E�1: f0; 1gk � f0; 1gl ! f0; 1gl bede�ned by E�1(K;C) = E�1K (C); this is the inverse 
ipher to E.The blo
k 
ipher is a publi
 and fully spe
i�ed algorithm. Both the 
ipher E and its inverse E�1 shouldbe easily 
omputable, meaning given K;M we 
an 
ompute E(K;M), and given K;C we 
an 
omputeE�1(K;C).In typi
al usage, a random key K is 
hosen and kept se
ret between a pair of users. The fun
tion EK is thenused by the two parties to pro
ess data in some way before they send it to ea
h other. The adversary maysee input-output examples of EK , meaning pairs of the form (M;C) where C = EK(M), but is not dire
tlyshown the key K. Se
urity relies on the se
re
y of the key. (This is ne
essary, but not always suÆ
ient,for se
urity.). So at a �rst 
ut at least, you might view the adversary's goal as re
overing the key K given51



52 Goldwasser and Bellaresome input-output examples of EK . The blo
k 
ipher should be designed to make this task 
omputationallydiÆ
ult. Later we will re�ne this view, but it is the 
lassi
al one, so let's go with it for now.How do blo
k 
iphers work? Lets take a look at some of them to get a sense of this.4.2 Data En
ryption StandardThe Data En
ryption Standard (DES) is the quintessential blo
k 
ipher. Even though it is now feeling itsage, and on the way out, no dis
ussion of blo
k 
iphers 
an really omit mention of this 
onstru
tion. DESis a remarkably well-engineered algorithm whi
h has had a powerful in
uen
e on 
ryptography. DES is invery widespread use, and probably will be for some years to 
ome. Every time you use an ATM ma
hine,you are using DES.4.2.1 A brief historyIn 1972 the NBS (National Bureau of Standards, now NIST, the National Institute of S
ien
e and Te
hnology)initiated a program for data prote
tion and wanted as part of it an en
ryption algorithm that 
ould bestandardized. They put out a request for su
h an algorithm. In 1974, IBM responded with a design basedon their \Lu
ifer" algorithm. This design would eventually evolve into the DES.DES has a key-length of k = 56 and a blo
k-length of l = 64. It 
onsists of 16 rounds of what is 
alled a\Feistel network." We will des
ribe the details shortly.After NBS, several other bodies adopted DES as a standard, in
luding ANSI (the Ameri
an National Stan-dards Institute) and the Ameri
an Bankers Asso
iation.The standard was to be reviewed every �ve years to see whether or not it should be re-adopted. Althoughthere were 
laims that it would not be re-
erti�ed, the algorithm was re-
erti�ed again and again. Onlyre
ently did the work for �nding a repla
ement begin in earnest, in the form of the AES (Advan
ed En
ryptionStandard) e�ort.DES proved remarkably se
ure. There has, sin
e the beginning, been 
on
erns, espe
ially about exhaustivekey-sear
h. But for a fair length of time, the key size of 56 bits was good enough against all but verywell-funded organizations. Interesting atta
ks signi�
antly di�erent from key sear
h emerged only in thenineties, and even then don't break DES in a sense signi�
ant in pra
ti
e. But with today's te
hnology, 56bits is too small a key size for many se
urity appli
ations.4.2.2 Constru
tionThe 
onstru
tion is des
ribed in FIPS 46 [147℄. The following dis
ussion is a qui
k guide that you 
an followif you have the FIPS do
ument at your side.Begin at page 87 where you see a big pi
ture. The input is 64 bits and in addition there is a 56 bit key K.(They say 64, but a
tually every eighth bit is ignored. It 
an be set to the parity of the previous seven.)Noti
e the algorithm is publi
. You operate with a hidden key, but nothing about the algorithm is hidden.The �rst thing the input is hit with is something 
alled the initial permutation, or IP. This just shu�es bitpositions. That is, ea
h bit is moved to some other position. How? In a �xed and spe
i�ed way: see page88. Similarly, right at the end, noti
e they apply the inverse of the same permutation. From now on, ignorethese. They do not a�e
t se
urity. (As far as anyone 
an tell, they are there to make loading the 
hipseasier.)The essen
e of DES is in the round stru
ture. There are 16 rounds. Ea
h round i has an asso
iated subkeyKi whi
h is 48 bits long. The subkeys K1; : : : ;K16 are derived from the main key K, in a manner explainedon page 95 of the FIPS do
ument.
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ture Notes 53In ea
h round, the input is viewed as a pair (Li; Ri) of 32 bit blo
ks, and these are transformed into the newpair (Li+1; Ri+1), via a 
ertain fun
tion f that depends on a subkey Ki pertaining to round i. The stru
tureof this transformation is important: it is 
alled the Feistel transformation.The Feistel transformation, in general, is like this. For some fun
tion g known to the party 
omputingthe transformation, it takes input (L;R) and returns (L0; R0) where L0 = R and R0 = g(R)�L. A 
entralproperty of this transformation is that it is a permutation, and moreover if you 
an 
ompute g then you
an also invert the transform. Indeed, given (L0; R0) we 
an re
over (L;R) via R = L0 and L = g(R)�R0.For DES, the role of g in round i is played by f(Ki; �), the round fun
tion spe
i�ed by the subkey Ki.Sin
e DESK(�) is a sequen
e of Feistel transforms, ea
h of whi
h is a permutation, the whole algorithm is apermutation, and knowledge of the key K permits 
omputation of DES�1K (�).Up to now the stru
ture has been quite generi
, and indeed many blo
k-
iphers use this high level design:a sequen
e of Feistel rounds. For a 
loser look we need to see how the fun
tion f(Ki; �) works. See thepi
ture on page 90 of the FIPS do
ument. Here Ki is a 48 bit subkey, derived from the 56 bit key in a waydepending on the round number. The 32 bit Ri is �rst expanded into 48 bits. How? In a pre
ise, �xed way,indi
ated by the table on the same page, saying E-bit sele
tion table. It has 48 entries. Read it as whi
hinputs bits are output. Namely, output bits 32, 1, 2, 3, 4, 5, then 4, 5 again, and so on. It is NOT randomlooking! In fa
t barring that 1 and 32 have been swapped (see top left and bottom right) it looks almostsequential. Why did they do this? Who knows. That's the answer to most things about DES.Now Ki is XORed with the output of the E-box and this 48 bit input enters the famous S-boxes. There areeight S-boxes. Ea
h takes 8 bits to 6 bits. Thus we get out 32 bits. Finally, there is a P-box, a permutationapplied to these 32 bits to get another 32 bits. You 
an see it on page 91.What are the S-boxes? Ea
h is a �xed, tabulated fun
tion, whi
h the algorithm stores as tables in the 
odeor hardware. You 
an see them on page 93. How to read them? Take the 6 bit input b1; b2; b3; b4; b5; b6.Interpret the �rst two bits as a row number, between 1 and 4. Interpret the rest as a 
olumn number, 1through 16. Now index into the table.Well, without going into details, the main obje
tive of the above was to give you some idea of the kind ofstru
ture DES has. Of 
ourse, the main questions about the design are: why, why and why? What motivatedthese design 
hoi
es? We don't know too mu
h about this, although we 
an guess a little.4.2.3 SpeedHow fast 
an you 
ompute DES? Let's begin by looking at hardware implementations sin
e DES was infa
t designed to be fast in hardware. We will be pretty rough; you 
an �nd pre
ise estimates, for di�erentar
hite
tures, in various pla
es.You 
an get over a Gbit/se
 throughput using VLSI. Spe
i�
ally at least 1.6 Gbits/se
, maybe more. That'spretty fast.Some software �gures I found quoted are: 12 Mbits/se
 on a HP 9000/887; 9.8 Mbits/se
 on a DEC Alpha4000/610. The performan
e of DES in software is not as good as one would like, and is one reason peopleseek alternatives.4.3 Advan
ed En
ryption StandardA new standard was 
hosen to repla
e the DES in February 2001. The AES (Advan
ed En
ryption Standard)is a blo
k 
ipher 
alled Rijndael. It is des
ribed in [62℄. It has a blo
k length of 128 bits, and the key size isvariable: it 
ould be 128, 192 or 256 bits.



54 Goldwasser and Bellare4.4 Some Modes of operationLet a blo
k 
ipher E be �xed, and assume two parties share a key K for this blo
k 
ipher. This gives themthe ability to 
ompute the fun
tions EK(�) and E�1K (�). These fun
tions 
an be applied to an input of l-bits.An appli
ation of EK is a 
alled en
iphering and an appli
ation of E�1K is 
alled de
iphering.Typi
ally the blo
k size l is 64 or 128. Yet in pra
ti
e we want to pro
ess mu
h larger inputs, say text �les toen
rypt. To do this one uses a blo
k 
ipher in some mode of operation. There are several of these. We willillustrate by des
ribing three of them that exhibit di�erent kinds of features. We look at ECB (Ele
troni
Code-Book), CBC (Cipher Blo
k Chaining) and CTR (Counter). In ea
h 
ase there is an en
ryption pro
esswhi
h takes an nl-bit string M , usually 
alled the plaintext, and returns a string C, usually 
alled the
iphertext. (If the length of x is not a multiple of l then some appropriate padding must be done to makeit so.) An asso
iated de
ryption pro
ess re
overs M from C.If x is a string whose length is a multiple of l then we view it as divided into a sequen
e of l-bit blo
ks, andlet x[i℄ denote the i-th blo
k, for i = 1; : : : ; jxj=l. That is, x = x[1℄ : : : x[n℄ where n = jxj=l.4.4.1 Ele
troni
 
odebook modeEa
h plaintext blo
k is individually en
iphered into an asso
iated 
iphertext blo
k.Algorithm EK(M [1℄ : : :M [n℄)For i = 1; : : : ; n doC[i℄ EK(M [i℄)Return C[1℄ : : : C[n℄ Algorithm DK(C[1℄ : : : C[n℄)For i = 1; : : : ; n doM [i℄ E�1K (C[i℄)Return M [1℄ : : :M [n℄4.4.2 Cipher-blo
k 
haining modeCBC mode pro
esses the data based on some initial ve
tor IV whi
h is an l-bit string, as follows.Algorithm EK(IV;M [1℄ : : :M [n℄)C[0℄ IVFor i = 1; : : : ; n doC[i℄ EK(C[i� 1℄�M [i℄)Return C[0℄C[1℄ : : : C[n℄ Algorithm DK(C[0℄C[1℄ : : : C[n℄)For i = 1; : : : ; n doM [i℄ E�1K (C[i℄)�C[i� 1℄Return M [1℄ : : :M [n℄Unlike ECB en
ryption, this operation is not length preserving: the output is l-bits longer than the input.The initial ve
tor is used for en
ryption, but is then part of the 
iphertext, so that the re
eiver need not beassumed to know it a priori.Di�erent spe
i�
 modes result from di�erent ways of 
hoosing the initial ve
tor. Unless otherwise stated,it is assumed that before applying the above en
ryption operation, the en
ryptor 
hooses the initial ve
torat random, anew for ea
h message M to be en
rypted. Other 
hoi
es however 
an also be 
onsidered, su
has letting IV be a 
ounter that is in
remented by one ea
h time the algorithm is applied. The se
urityattributed of these di�erent 
hoi
es are dis
ussed later.CBC is the most popular mode, used pervasively in pra
ti
e.4.4.3 Counter modeCTR mode also uses an auxiliary value, an \initial value" IV whi
h is an integer in the range 0; 1; : : : ; 2l� 1.In the following, addition is done modulo 2l, and NtSl(j) denotes the binary representation of integer j asan l-bit string.
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ture Notes 55Algorithm EK(IV;M [1℄ : : :M [n℄)For i = 1; : : : ; n doC[i℄ EK(NtSl(IV + i))�M [i℄Return NtSl(IV)C[1℄ : : : C[n℄ Algorithm DK(NtSl(IV)C[1℄ : : : C[n℄)For i = 1; : : : ; n doM [i℄ EK(NtSl(IV + i))�C[i℄Return M [1℄ : : :M [n℄Noti
e that in this 
ase, de
ryption did not require 
omputation of E�1K , and in fa
t did not even requirethat EK be a permutation. Also noti
e the eÆ
ien
y advantage over CBC: the en
ryption is parallelizable.Again, there are several 
hoi
es regarding the initial ve
tor. It 
ould be a 
ounter maintained by the senderand in
remented by n = jM j=l after messageM has been en
rypted. Or, it 
ould be 
hosen anew at randomea
h time the algorithm is invoked.4.5 Key re
overy atta
ks on blo
k 
iphersPra
ti
al 
ryptanalysis of a blo
k 
ipher E: f0; 1gk�f0; 1gl ! f0; 1gl fo
uses on key-re
overy. They formulatethe problem fa
ing the 
ryptanalyst like this. A k-bit key K is 
hosen at random. Let q � 0 be some integerparameter.Given: The adversary has a sequen
e of q input-output examples of EK , say(M1; C1); : : : ; (Mq; Cq)where Ci = EK(Mi) for i = 1; : : : ; q and M1; : : : ;Mq are all distin
t l-bit strings.Find: The adversary must �nd the key K.Two kinds of \atta
k" models are 
onsidered within this framework:Known-message atta
k: M1; : : : ;Mq are any distin
t points; the adversary has no 
ontrol over them,and must work with whatever it gets.Chosen-message atta
k: M1; : : : ;Mq are 
hosen by the adversary, perhaps even adaptively. That is,imagine it has a

ess to an \ora
le" for the fun
tion EK . It 
an feed the ora
le M1 and get ba
k C1 =EK(M1). It 
an then de
ide on a value M2, feed the ora
le this, and get ba
k C2, and so on.Clearly a 
hosen-message atta
k gives the adversary mu
h more power, but is also less realisti
 in pra
ti
e.The most obvious atta
k is exhaustive key sear
h.Exhaustive key sear
h: Go through all possible keys K 0 2 f0; 1gk until you �nd the right one, namelyK. How do you know when you hit K? If EK0(M1) = C1, you bet that K 0 = K. Of 
ourse, you 
ould bewrong. But the \
han
e" of being wrong is small, and gets mu
h smaller if you do more su
h tests. ForDES, two tests is quite enough. That is, the atta
k in this 
ase only needs q = 2, a very small number ofinput-output examples.Let us now des
ribe the atta
k in more detail. For i = 1; : : : ; 2k let Ki denote the i-th k-bit string (inlexi
ographi
 order). The following algorithm implements the atta
k.For i = 1; : : : ; 2k doIf E(Ki;M1) = C1then if E(Ki;M2) = C2 then return KiHow long does this take? In the worst 
ase, 2k 
omputations of the blo
k 
ipher. For the 
ase of DES, evenif you use the above mentioned 1.6 Gbits/se
 
hip to do these 
omputations, the sear
h takes about 6,000years. So key sear
h appears to be infeasible.
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on
lusion is a
tually too hasty. We will return to key sear
h and see why later.Differential and linear 
ryptanalysis: The dis
overy of a less trivial atta
k waited until 1990. Dif-ferential 
ryptanalysis is 
apable of �nding a DES key using 247 input-output examples (that is, it requiresq = 247). However, di�erential 
ryptanalysis required a 
hosen-message atta
k.Linear 
ryptanalysis improved di�erential in two ways. The number of input-output examples required isredu
ed to 243, but also only a known-message atta
k is required.These were major breakthroughs in 
ryptanalysis. Yet, their pra
ti
al impa
t is small. Why? It diÆ
ultto obtain 243 input-output examples. Furthermore, simply storing all these examples requires about 140terabytes of data.Linear and di�erential 
ryptanalysis were however more devastating when applied to other 
iphers, some ofwhi
h su

umbed 
ompletely to the atta
k.So what's the best possible atta
k against DES? The answer is exhaustive key sear
h. What we ignoredabove is parallelism.Key sear
h ma
hines: A few years ba
k it was argued that one 
an design a $1 million ma
hine thatdoes the exhaustive key sear
h for DES in about 3.5 hours. More re
ently, a DES key sear
h ma
hine wasa
tually built, at a 
ost of $250,000. It �nds the key in 56 hours, or about 2.5 days. The builders say it willbe 
heaper to build more ma
hines now that this one is built.Thus DES is feeling its age. Yet, it would be a mistake to take away from this dis
ussion the impressionthat DES is weak. Rather, what the above says is that it is an impressively strong algorithm. After all theseyears, the best pra
ti
al atta
k known is still exhaustive key sear
h. That says a lot for its design and itsdesigners.Later we will see that that we would like se
urity properties from a blo
k 
ipher that go beyond resistan
eto key-re
overy atta
ks. It turns out that from that point of view, a limitation of DES is its blo
k size.Birthday atta
ks \break" DES with about q = 232 input output examples. (The meaning of \break" here isvery di�erent from above.) Here 232 is the square root of 264, meaning to resist these atta
ks we must havebigger blo
k size. The next generation of 
iphers has taken this into a

ount.4.6 Limitations of key-re
overy based se
urityAs dis
ussed above, 
lassi
ally, the se
urity of a blo
k 
iphers has been looked at with regard to key re
overy.That is, analysis of a blo
k 
ipher E has fo
used primarily on the following question: given some number qof input-output examples (M1; C1)); : : : ; (Mq ; Cq), where K is a random, unknown key and Ci = EK(Mi),how hard is it for an atta
ker to �nd K? A blo
k 
ipher is viewed as \se
ure" if the best key-re
overy atta
kis 
omputationally infeasible, meaning requires a value of q that is too large to make the atta
k pra
ti
al.In the sequel, we refer to this as se
urity against key-re
overyHowever, as a notion of se
urity, se
urity against key-re
overy is quite limited. A good notion should besuÆ
iently strong to be useful. This means that if a blo
k 
ipher is se
ure, then it should be possible to usethe blo
k 
ipher to make worthwhile 
onstru
tions and be able to have some guarantee of the se
urity ofthese 
onstru
tions. But even a 
ursory glan
e at 
ommon blo
k 
ipher usages shows that good se
urity inthe sense of key re
overy is not suÆ
ient for se
urity of the usages of blo
k 
iphers.Take for example the CTR mode of operation dis
ussed in Se
tion 4.4. Suppose that the blo
k 
ipher had thefollowing weakness: Given C;FK(C + 1); FK(C + 2), it is possible to 
ompute FK(C + 3). Then 
learly theen
ryption s
heme is not se
ure, be
ause if an adversary happens to know the �rst two message blo
ks, it 
an�gure out the third message blo
k from the 
iphertext. (It is perfe
tly reasonable to assume the adversaryalready knows the �rst two message blo
ks. These might, for example, be publi
 header information, or thename of some known re
ipient.) This means that if CTR mode en
ryption is to be se
ure, the blo
k 
iphermust have the property that given C;FK(C + 1); FK(C + 2), it is 
omputationally infeasible to 
ompute
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ture Notes 57FK(C + 3). Let us 
all this property SP1, for \se
urity property one".Of 
ourse, anyone who knows the key K 
an easily 
ompute FK(C + 3) given C;FK(C + 1); FK(C + 2).And it is hard to think how one 
an do it without knowing the key. But there is no guarantee that someone
annot do this without knowing the key. That is, 
on�den
e in the se
urity of F against key re
overy doesnot imply that SP1 is true.This phenomenon 
ontinues. As we see more usages of 
iphers, we build up a longer and longer list of se
urityproperties SP1, SP2, SP3, : : : that are ne
essary for the se
urity of some blo
k 
ipher based appli
ation.Furthermore, even if SP1 is true, CTR mode en
ryption may still be weak. SP1 is not suÆ
ient to guaranteethe se
urity of CTR mode en
ryption. Similarly with other se
urity properties that one might naively 
omeup with.This long list of ne
essary but not suÆ
ient properties is no way to treat se
urity. What we need is onesingle \MASTER" property of a blo
k 
ipher whi
h, if met, guarantees se
urity of lots of natural usagesof the 
ipher.A good example to 
onvin
e oneself that se
urity against key re
overy is not enough is to 
onsider theblo
k 
ipher E: f0; 1gk � f0; 1gl ! f0; 1gl de�ned for all keys K 2 f0; 1gk and plaintexts x 2 f0; 1gl byF (K;x) = x. That is, ea
h instan
e FK of the blo
k 
ipher is the identity fun
tion. Is this a \good" blo
k
ipher? Surely not. Yet, it is ex
eedingly se
ure against key-re
overy. Indeed, given any number of inputoutput examples of FK , an adversary 
annot even test whether a given key is the one in use.This might seem like an arti�
ial example. Many people, on seeing this, respond by saying: \But, 
learly,DES and AES are not designed like this." True. But that is missing the point. The point is that se
urityagainst key-re
overy alone does not make a \good" blo
k 
ipher. We must seek a better notion of se
urity.Chapter 5 on pseudorandom fun
tions does this.4.7 Exer
ises and ProblemsExer
ise 4.1 Show that for all K 2 f0; 1g56 and all x 2 f0; 1g64DESK(x) = DESK(x) :This is 
alled the key-
omplementation property of DES.Exer
ise 4.2 Show how to use the key-
omplementation property of DES to speed up exhaustive key sear
hby a fa
tor of two. Explain any assumptions that you make.Exer
ise 4.3 Find a key K su
h that DESK(�) = DES�1K (�). Su
h a key is sometimes 
alled a \weak" key.How many weak keys 
an you �nd? Why do you think they are 
alled \weak?"



C h a p t e r 5Pseudo-random fun
tions

Pseudorandom fun
tions (PRFs) and their 
ousins, pseudorandom permutations (PRPs), �gure as 
entraltools in the design of proto
ols, espe
ially those for shared-key 
ryptography. At one level, PRFs and PRPs
an be used to model blo
k 
iphers, and they thereby enable the se
urity analysis of proto
ols based onblo
k 
iphers. But PRFs and PRPs are also a wonderful 
on
eptual starting points in other 
ontexts. Inthis 
hapter we will introdu
e PRFs and PRPs and try to understand their basi
 properties.5.1 Fun
tion familiesA fun
tion family is a map F : Keys(F ) � Dom(F ) ! Range(F ). Here Keys(F ) is the set of keys of F ;Dom(F ) is the domain of F ; and Range(F ) is the range of F . The two-input fun
tion F takes a key Kand input x to return a point y we denote by F (K;x). For any key K 2 Keys(F ) we de�ne the mapFK : Dom(F )! Range(F ) by FK(x) = F (K;x). We 
all the fun
tion FK an instan
e of family F . Thus, Fspe
i�es a 
olle
tion of maps, one for ea
h key. That's why we 
all F a family of fun
tions.Most often Keys(F ) = f0; 1gk and Dom(F ) = f0; 1gl and Range(F ) = f0; 1gL for some integer values ofk; l; L � 1. But sometimes the domain or range 
ould be sets of di�erent kinds, 
ontaining strings of varyinglengths.There is some probability distribution on the set of keys Keys(F ). Most often, just the uniform distribution.So with Keys(F ) = f0; 1gk, we are just drawing a random k-bit string as a key. We denote by K R Keys(F )the operation of sele
ting a random string from Keys(F ) and naming it K. Then f R F denotes theoperation: K R Keys(F ) ; f  FK . In other words, let f be the fun
tion FK where K is a randomly 
hosenkey. We are interested in the input-output behavior of this randomly 
hosen instan
e of the family.A permutation is a map whose domain and range are the same set, and the map is a length-preservingbije
tion on this set. That is, a map �: D ! D is a permutation if j�(x)j = jxj for all x 2 D and also � isone-to-one and onto. We say that F is a family of permutations if Dom(F ) = Range(F ) and ea
h FK is apermutation on this 
ommon set.Example 5.1 A blo
k 
ipher is a family of permutations. For example, DES is a family of permutations withKeys(DES) = f0; 1g56 and Dom(DES) = f0; 1g64 and Range(DES) = f0; 1g64. Here k = 56 and l = L = 64.Similarly AES is a family of permutations with Keys(AES) = f0; 1g128 and Dom(AES) = f0; 1g128 andRange(AES) = f0; 1g128. Here k = 128 and l = L = 128.58
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ture Notes 595.2 Random fun
tions and permutationsLet D;R � f0; 1g� be �nite sets and let l; L � 1 be integers. There are two fun
tion families that we �x.One is RandD!R, the family of all fun
tions of D to R. The other is PermD, the family of all permutationson D. For 
ompa
tness of notation we let Randl!L equal RandD!R with D = f0; 1gl and R = f0; 1gL. Wealso set Perml equal PermD with D = f0; 1gl.What are these families? The family RandD!R has domain D and range R, while the family PermD hasdomain and rangeD. The set of instan
es of RandD!R is the set of all fun
tions mappingD toR, while the setof instan
es of PermD is the set of all permutations on D. The key des
ribing any parti
ular instan
e fun
tionis simply a des
ription of this instan
e fun
tion in some 
anoni
al notation. For example, order the domainD lexi
ographi
ally as x1; x2; : : :, and then let the key for a fun
tion f be the list of values (f(x1); f(x2); : : :).The key-spa
e of RandD!R is simply the set of all these keys, under the uniform distribution.Let us illustrate in more detail for the 
ases in whi
h we are most interested. The key of a fun
tion inRandl!L is simply a list of of all the output values of the fun
tion as its input ranges over f0; 1gl. ThusKeys(Randl!L) = f (y1; : : : ; y2l) : y1; : : : ; y2l 2 f0; 1gL gis the set of all sequen
es of length 2l in whi
h ea
h entry of a sequen
e is an L-bit string. For any x 2 f0; 1glwe interpret x as an integer in the range f1; : : : ; 2lg and setRandl!L((y1; : : : ; y2l); x) = yx :Noti
e that the key spa
e is very large; it has size 2L2l . Naturally, sin
e there is a key for every fun
tionof l-bits to L-bits, and this is the number of su
h fun
tions. The key spa
e is equipped with the uniformdistribution, so that f R Randl!L is the operation of pi
king a random fun
tion of l-bits to L-bits.On the other hand, for Perml, the key spa
e isKeys(Perml) = f(y1; : : : ; y2l) : y1; : : : ; y2l 2 f0; 1gl andy1; : : : ; y2l are all distin
tg :For any x 2 f0; 1gl we interpret x as an integer in the range f1; : : : ; 2lg and setPerml((y1; : : : ; y2l); x) = yx :The key spa
e is again equipped with the uniform distribution, so that f R Perml is the operation of pi
kinga random permutation on f0; 1gl. In other words, all the possible permutations on f0; 1gl are equally likely.Example 5.2 We exemplify Rand3!2, meaning l = 3 and L = 2. The domain is f0; 1g3 and the range isf0; 1g2. An example instan
e f of the family is illustrated below via its input-output table:x 000 001 010 011 100 101 110 111f(x) 10 11 01 11 10 00 00 10The key 
orresponding to this parti
ular fun
tion is(10; 11; 01; 11; 10; 00; 00; 10) :The key-spa
e of Rand3!2 is the set of all su
h sequen
es, meaning the set of all 8-tuples ea
h 
omponent ofwhi
h is a two bit string. There are 22�23 = 216 = 65; 536su
h tuples, so this is the size of the key-spa
e.
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tually think about these families in terms of this formalism. Indeed, it is worth pausinghere to see how to think about them more intuitively, be
ause they are important obje
ts.We will 
onsider settings in whi
h you have bla
k-box a

ess to a fun
tion g. This means that there is a boxto whi
h you 
an give any value x of your 
hoi
e (provided x is in the domain of g), and box gives you ba
kg(x). But you 
an't \look inside" the box; your only interfa
e to it is the one we have spe
i�ed. A randomfun
tion g: f0; 1gl ! f0; 1gL being pla
ed in this box 
orresponds to the following. Ea
h time you give thebox an input, you get ba
k a random L-bit string, with the sole 
onstraint that if you twi
e give the box thesame input x, it will be 
onsistent, returning both times the same output g(x). In other words, a randomfun
tion of l-bits to L-bits 
an be thought of as a box whi
h given any input x 2 f0; 1gl returns a randomnumber, ex
ept that if you give it an input you already gave it before, it returns the same thing as last time.It is this \dynami
" view that we suggest the reader have in mind in thinking about random fun
tions.The dynami
 view 
an be thought of as following program. The program maintains the fun
tion in the formof a table T where T [x℄ holds the value of the fun
tion at x. Initially, the table is empty. The programpro
esses an input x 2 f0; 1gl as follows:If T [x℄ is not de�ned thenFlip 
oins to determine a string y 2 f0; 1gL and let T [x℄ yReturn T [x℄The answer on any point is random and independent of the answers on other points.Another way to think about a random fun
tion is as a large, pre-determined random table. The entries areof the form (x; y). For ea
h x someone has 
ipped 
oins to determine y and put it into the table.We are more used to the idea of pi
king points at random. Here we are pi
king a fun
tion at random.One must remember that the term \random fun
tion" is misleading. It might lead one to think that 
ertainfun
tions are \random" and others are not. (For example, maybe the 
onstant fun
tion whi
h alwaysreturns 0L is not random, but a fun
tion with many di�erent range values is random.) This is not right.The randomness of the fun
tion refers to the way it was 
hosen, not to an attribute of the sele
ted fun
tionitself. When you 
hoose a fun
tion at random, the 
onstant fun
tion is just as likely to appear as any otherfun
tion. It makes no sense to talk of the randomness of an individual fun
tion; the term \random fun
tion"just means a fun
tion 
hosen at random.Example 5.3 Let's do some simple probabilisti
 
omputations to understand random fun
tions. Fix x 2f0; 1gl and y 2 f0; 1gL. Then: P h f(x) = y : f R Randl!L i = 2�L :Noti
e it doesn't depend on l. Also it doesn't depend on the values of x; y.Now �x x1; x2 2 f0; 1gl and y 2 f0; 1gL. Then:P h f(x1) = f(x2) = y : f R Randl!L i = � 2�2L if x1 6= x22�L if x1 = x2This illustrates independen
e. Finally �x x1; x2 2 f0; 1gl and y 2 f0; 1gL. Then:P h f(x1)� f(x2) = y : f R Randl!L i = 8<: 2�L if x1 6= x20 if x1 = x2 and y 6= 0L1 if x1 = x2 and y = 0LSimilar things hold for the sum of more than two things.
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ture Notes 615.3 Pseudorandom fun
tionsA pseudorandom fun
tion is a family of fun
tions with the property that the input-output behavior ofa random instan
e of the family is \
omputationally indistinguishable" from that of a random fun
tion.Someone who has only bla
k-box a

ess to a fun
tion, meaning 
an only feed it inputs and get outputs, hasa hard time telling whether the fun
tion in question is a random instan
e of the family in question or arandom fun
tion. The purpose of this se
tion is to arrive at a suitable de�nition of this notion. Later wewill look at motivation and appli
ations.We �x a family of fun
tions F : Keys(F )�D ! R. (You may want to think Keys(F ) = f0; 1gk, D = f0; 1gland R = f0; 1gL for some integers k; l; L � 1, sin
e this is the most 
ommon 
ase.) Imagine that you are ina room whi
h 
ontains a 
omputer that is 
onne
ted to another 
omputer outside your room. You 
an typesomething into your 
omputer and send it out, and an answer will 
ome ba
k. The allowed questions you
an type must be strings from the domain D, and the answers you get ba
k will be strings from the rangeR. The 
omputer outside your room implements a fun
tion g: D ! R, so that whenever you type a valuex you get ba
k g(x). However, your only a

ess to g is via this interfa
e, so the only thing you 
an see isthe input-output behavior of g. We 
onsider two di�erent ways in whi
h g will be 
hosen, giving rise to twodi�erent \worlds."World 0: The fun
tion g is drawn at random from RandD!R, namely via g R RandD!R. (So g is just arandom fun
tion of D to R.)World 1: The fun
tion g is drawn at random from F , namely g R F . (This means that a key is 
hosen viaK R Keys(F ) and then g is set to FK .)You are not told whi
h of the two worlds was 
hosen. The 
hoi
e of world, and of the 
orresponding fun
tiong, is made before you enter the room, meaning before you start typing questions. On
e made, however, these
hoi
es are �xed until your \session" is over. Your job is to dis
over whi
h world you are in. To do this, theonly resour
e available to you is your link enabling you to provide values x and get ba
k g(x). After tryingsome number of values of your 
hoi
e, you must make a de
ision regarding whi
h world you are in. Thequality of pseudorandom family F 
an be thought of as measured by the diÆ
ulty of telling, in the abovegame, whether you are in World 0 or in World 1.Intuitively, the game just models some way of \using" the fun
tion g in an appli
ation like an en
ryptions
heme. If it is not possible to distinguish the input-output behavior of a random instan
e of F from a trulyrandom fun
tion, the appli
ation should behave in roughly the same way whether it uses a fun
tion from For a random fun
tion. Later we will see exa
tly how this works out; for now let us 
ontinue to develop thenotion. But we warn that pseudorandom fun
tions 
an't be substituted for random fun
tions in all usagesof random fun
tions. To make sure it is OK in a parti
ular appli
ation, you have to make sure that it fallswithin the realm of appli
ations for whi
h the formal de�nition below 
an be applied.The a
t of trying to tell whi
h world you are in is formalized via the notion of a distinguisher. This is analgorithm whi
h is provided ora
le a

ess to a fun
tion g and tries to de
ide if g is random or pseudorandom.(Ie. whether it is in world 0 or world 1.) A distinguisher 
an only intera
t with the fun
tion by giving itinputs and examining the outputs for those inputs; it 
annot examine the fun
tion dire
tly in any way. Wewrite Ag to mean that distinguisher A is being given ora
le a

ess to fun
tion g. Intuitively, a family ispseudorandom if the probability that the distinguisher says 1 is roughly the same regardless of whi
h worldit is in. We 
apture this mathemati
ally below. Further explanations follow the de�nition.De�nition 5.4 Let F : Keys(F )�D ! R be a family of fun
tions, and let A be an algorithm that takes anora
le for a fun
tion g: D ! R, and returns a bit. We 
onsider two experiments:Experiment Expprf-1F;AK R Keys(F )d AFKReturn d Experiment Expprf-0F;Ag R RandD!Rd AgReturn d



62 Goldwasser and BellareThe prf-advantage of A is de�ned asAdvprfF;A = P hExpprf-1F;A = 1i�P hExpprf-0F;A = 1i :For any t; q; � we de�ne the prf-advantage of FAdvprfF (t; q; �) = maxA fAdvprfF;A gwhere the maximum is over all A having time-
omplexity t and making at most q ora
le queries, the sum ofthe lengths of these queries being at must � bits.The algorithm A models the person we were imagining in our room, trying to determine whi
h world heor she was in by typing queries to the fun
tion g via a 
omputer. In the formalization, the person is analgorithm, meaning a pie
e of 
ode. We formalize the ability to query g as giving A an ora
le whi
h takesinput any string x 2 D and returns g(x). Algorithm A 
an de
ide whi
h queries to make, perhaps based onanswers re
eived to previous queries. Eventually, it outputs a bit d whi
h is its de
ision as to whi
h worldit is in.It should be noted that the family F is publi
. The adversary A, and anyone else, knows the des
ription ofthe family, and have 
ode to implement it, meaning are 
apable, given values K;x, of 
omputing F (K;x).The worlds are 
aptured by what we 
all \experiments." The �rst experiment pi
ks a random instan
e FKof family F and then runs adversary A with ora
le g = FK . Adversary A intera
ts with its ora
le, queryingit and getting ba
k answers, and eventually outputs a \guess" bit. The experiment returns the same bit.The se
ond experiment pi
ks a random fun
tion g: D ! R and runs A with this as ora
le, again returningA's guess bit. Ea
h experiment has a 
ertain probability of returning 1. The probability is taken over therandom 
hoi
es made in the experiment. Thus, for the �rst experiment, the probability is over the 
hoi
eof K and any random 
hoi
es that A might make, for A is allowed to be a randomized algorithm. In these
ond experiment, the probability is over the random 
hoi
e of g and any random 
hoi
es that A makes.These two probabilities should be evaluated separately; the two experiments are 
ompletely di�erent.To see how well A does at determining whi
h world it is in, we look at the di�eren
e in the probabilitiesthat the two experiments return 1. If A is doing a good job at telling whi
h world it is in, it would return 1more often in the �rst experiment than in the se
ond. So the di�eren
e is a measure of how well A is doing.We 
all this measure the prf-advantage of A. Think of it as the probability that A \breaks" the s
heme F ,with \break" interpreted in a spe
i�
, te
hni
al way based on the de�nition.Di�erent distinguishers will have di�erent advantages. There are two reasons why one distinguisher maya
hieve a greater advantage than another. One is that it is more \
lever" in the questions it asks and theway it pro
esses the replies to determine its output. The other is simply that it asks more questions, orspends more time pro
essing the replies. Indeed, we expe
t that as you see more and more input-outputexamples of g, your ability to tell whi
h world you are in will go up. The \se
urity" of family F must thusbe measured as a fun
tion of the resour
es allowed to the atta
ker. We want to know, for any given resour
elimitation, what is the prf-advantage a
hieved by the most \
lever" distinguisher amongst all those who arerestri
ted to the given resour
e limitations. We asso
iate to the family F a prf-advantage fun
tion whi
h oninput any values of the resour
e parameters returns the maximim prf-advantage that an adversary restri
tedto those resour
es 
ould obtain. Think of it as the maximum possible a
hievable probability of \breaking"the s
heme F if an atta
ker is restri
ted to the given resour
es.The 
hoi
e of resour
es to 
onsider 
an vary. In this 
ase we have 
hosen to measure the time-
omplexityof A, the number of queries q it makes, and the total length � of these queries. We asso
iate to thefamily F an advantage fun
tion whi
h on input a parti
ular 
hoi
e of these resour
e parameters returns themaximum possible advantage that 
ould be obtained by a distinguisher restri
ted in resour
e usage by thegiven parameters. Put another way, it is the advantage of the \
leverest" or \best" distinguisher restri
tedto the given resour
es. The advantage fun
tion of F 
aptures the se
urity of F as a PRF.Let us now explain the resour
es, and some important 
onventions underlying their measurement, in moredetail. The �rst resour
e is the time-
omplexity of A. To make sense of this we �rst need to �x a model of
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omputation. We �x some RAM model. Think of it as the model used in Algorithms 
ourses, so that youmeasure the running time of an algorithm just as you did there. However, we adopt the 
onvention that thetime-
omplexity of A refers not just to the running time of A, but to the maximum of the running times ofthe two experiments in the de�nition, plus the size of the 
ode of A. In measuring the running time of the�rst experiment, we must 
ount the time to 
hoose the key K at random, and the time to 
ompute the valueFK(x) for any query x made by A to its ora
le. In measuring the running time of the se
ond experiment, we
ount the time to 
hoose the random fun
tion g in a dynami
 way, meaning we 
ount the 
ost of maintaininga table of values of the form (x; g(x)). Entries are added to the table as g makes queries. A new entry ismade by pi
king the output value at random.The number of queries made by A 
aptures the number of input-output examples it sees. In general, not allstrings in the domain must have the same length, and hen
e we also measure the sum of the lengths of allqueries made.There is one feature of the above parameterization about whi
h everyone asks. Suppose that F has key-lengthk. Obviously, the key length is a fundamental determinant of se
urity: larger key length will typi
ally meanmore se
urity. Yet, the key length k does not appear expli
itly in the advantage fun
tion AdvprfF (t; q; �).Why is this? The advantage fun
tion is in fa
t a fun
tion of k, but without knowing more about F it isdiÆ
ult to know what kind of fun
tion. The truth is that the key length itself does not matter: what mattersis just the advantage a distinguisher 
an obtain. In a well-designed blo
k 
ipher, AdvprfF (t; q; �) should beabout t=2k. But that is really an ideal; in pra
ti
e we should not assume 
iphers are this good.The strength of this de�nition lies in the fa
t that it does not spe
ify anything about the kinds of strategiesthat 
an be used by a distinguisher; it only limits its resour
es. A distinguisher 
an use whatever meansdesired to distinguish the fun
tion as long as it stays within the spe
i�ed resour
e bounds.What do we mean by a \se
ure" PRF? De�nition 5.4 does not have any expli
it 
ondition or statementregarding when F should be 
onsidered \se
ure." It only asso
iates to F a prf-advantage fun
tion. Intuitively,F is \se
ure" if the value of the advantage fun
tion is \low" for \pra
ti
al" values of the input parameters.This is, of 
ourse, not formal. It is possible to formalize the notion of a se
ure PRF using a 
omplexitytheoreti
 framework; one would say that the advantage of any adversary whose resour
es are polynomially-bounded is negligible. This requires an extension of the model to 
onsider a se
urity parameter in terms ofwhi
h asymptoti
 estimates 
an be made. We will dis
uss this in more depth later, but for now we sti
k to aframework where the notion of what exa
tly is a se
ure PRF remains fuzzy. The reason is that this re
e
tsreal life. In real life, se
urity is not some absolute or boolean attribute; se
urity is a fun
tion of the resour
esinvested by an atta
ker. All modern 
ryptographi
 systems are breakable in prin
iple; it is just a questionof how long it takes.This is our �rst example of a 
ryptographi
 de�nition, and it is worth spending time to study and understandit. We will en
ounter many more as we go along. Towards this end let us summarize the main featuresof the de�nitional framework as we will see them arise later. First, there are experiments, involving anadversary. Then, there is some advantage fun
tion asso
iated to an adversary whi
h returns the probabilitythat the adversary in question \breaks' the s
heme. Finally, there is an advantage fun
tion asso
iated tothe 
ryptographi
 proto
ol itself, taking input resour
e parameters and returning the maximum possibleprobability of \breaking" the s
heme if the atta
ker is restri
ted to the given resour
e parameters. Thesethree 
omponents will be present in all de�nitions. The important 
omponent is the experiments; this iswhere we 
hose and pin down a model of se
urity.5.4 Pseudorandom permutationsRe
all that a blo
k 
ipher F is a family of permutations: ea
h instan
e FK of the family is a permutation.With the intent of modeling blo
k 
iphers we introdu
e the notion of a pseudorandom permutation. Wepro
eed exa
tly as above, but repla
e RandD!R with PermD.In this setting, there are two kinds of atta
ks that one 
an 
onsider. One, as before, is that the adversarygets an ora
le for the fun
tion g being tested. However when g is a permutation one 
an also 
onsider the
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ase where the adversary gets, in addition, and ora
le for g�1. We 
onsider these settings in turn. The �rstis the setting of 
hosen-plaintext atta
ks while the se
ond is the setting of 
hosen-
iphertext atta
ks.5.4.1 PRP under CPAWe �x a family of fun
tions F : Keys(F )�D ! D. (You may want to think Keys(F ) = f0; 1gk andD = f0; 1gl,sin
e this is the most 
ommon 
ase. We do not mandate that F be a family of permutations although againthis is the most 
ommon 
ase.) As before, we 
onsider an adversary A that is pla
ed in a room where it hasora
le a

ess to a fun
tion g 
hosen in one of two ways.World 0: The fun
tion g is drawn at random from PermD, namely via g R PermD. (So g is just a randompermutation on D.)World 1: The fun
tion g is drawn at random from F , namely g R F . (This means that a key is 
hosen viaK R Keys(F ) and then g is set to FK .)Noti
e that World 1 is the same in the PRF setting, but World 0 has 
hanged. As before the task fa
ing theadversary A is to determine in whi
h world it was pla
ed based on the input-output behavior of g.De�nition 5.5 Let F : Keys(F )�D ! D be a family of fun
tions, and let A be an algorithm that takes anora
le for a fun
tion g: D ! D, and returns a bit. We 
onsider two experiments:Experiment Expprp-
pa-1F;AK R Keys(F )d AFKReturn d Experiment Expprp-
pa-0F;Ag R PermDd AgReturn dThe prp-
pa-advantage of A is de�ned asAdvprp-
paF;A = P hExpprp-
pa-1F;A = 1i�P hExpprp-
pa-0F;A = 1i :For any t; q; � we de�ne the prp-
pa-advantage of F viaAdvprp-
paF (t; q; �) = maxA fAdvprp-
paF;A gwhere the maximum is over all A having time-
omplexity t and making at most q ora
le queries, the sum ofthe lengths of these queries being at must � bits.The intuition is similar to that for De�nition 5.4. The di�eren
e is that here the \ideal" obje
t with whi
h Fis being 
ompared is no longer the family of random fun
tions, but rather the family of random permutations.Experiment Expprp-
pa-1F;A is a
tually identi
al to Expprf-1F;A . The probability is over the random 
hoi
e ofkey K and also over the 
oin tosses of A if the latter happens to be randomized. The experiment returnsthe same bit that A returns. In Experiment Expprp-
pa-0F;A , a permutation g: f0; 1gl ! f0; 1gl is 
hosen atrandom, and the result bit of A's 
omputation with ora
le g is returned. The probability is over the 
hoi
eof g and the 
oins of A if any. As before, the measure of how well A did at telling the two worlds apart,whi
h we 
all the prp-
pa-advantage of A, is the di�eren
e between the probabilities that the experimentsreturn 1.Conventions regarding resour
e measures also remain the same as before. Informally, a family F is a se
urePRP under CPA if Advprp-
paF (t; q; �) is \small" for \pra
ti
al" values of the resour
e parameters.
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ture Notes 655.4.2 PRP under CCAWe �x a family of permutations F : Keys(F )�D ! D. (You may want to think Keys(F ) = f0; 1gk and D =f0; 1gl, sin
e this is the most 
ommon 
ase. This time, we do mandate that F be a family of permutations.)As before, we 
onsider an adversary A that is pla
ed in a room, but now it has ora
le a

ess to two fun
tions,g and its inverse g�1. The manner in whi
h g is 
hosen is the same as in the CPA 
ase, and on
e g is 
hosen,g�1 is automati
ally de�ned, so we do not have to say how it is 
hosen.World 0: The fun
tion g is drawn at random from PermD, namely via g R PermD. (So g is just a randompermutation on D.)World 1: The fun
tion g is drawn at random from F , namely g R F . (This means that a key is 
hosen viaK R Keys(F ) and then g is set to FK .)In World 1, g�1 = F�1K is the inverse of the 
hosen instan
e, while in World 0 it is the inverse of the 
hosenrandom permutation. As before the task fa
ing the adversary A is to determine in whi
h world it was pla
edbased on the input-output behavior of its ora
les.De�nition 5.6 Let F : Keys(F )�D ! D be a family of permutations, and let A be an algorithm that takesan ora
le for a fun
tion g: D ! D, and also an ora
le for the fun
tion g�1: D ! D, and returns a bit. We
onsider two experiments: Experiment Expprp-

a-1F;AK R Keys(F )d AFK ;F�1KReturn d Experiment Expprp-

a-0F;Ag R PermDd Ag;g�1Return dThe prp-

a-advantage of A is de�ned asAdvprp-

aF;A = P hExpprp-

a-1F;A = 1i�P hExpprp-

a-0F;A = 1i :For any t; qe; �e; qd; �d we de�ne the prp-

a-advantage of F viaAdvprp-

aF (t; qe; �e; qd; �d) = maxA fAdvprp-

aF;A gwhere the maximum is over all A having time-
omplexity t, making at most qe queries to the g ora
le, thesum of the lengths of these queries being at must �e bits, and also making at most qd queries to the g�1ora
le, the sum of the lengths of these queries being at must �d bits,The intuition is similar to that for De�nition 5.4. The di�eren
e is that here the adversary has more power:not only 
an it query g, but it 
an dire
tly query g�1. Conventions regarding resour
e measures also remainthe same as before. However, we add some resour
e parameters. Spe
i�
ally, sin
e there are now two ora
les,we 
ount separately the number of queries, and total length of these queries, for ea
h. Informally, a familyF is a se
ure PRP under CCA if Advprp-

aF (t; qe; �e; qd; �d) is \small" for \pra
ti
al" values of the resour
eparameters.5.4.3 Relations between the notionsIf an adversary above does not query g�1, the latter ora
le may as well not be there, and the adversary ise�e
tively mounting a 
hosen-plaintext atta
k. Thus we have the following:Proposition 5.7 Let F : Keys(F )�D ! D be a family of permutations. ThenAdvprp-
paF 
pa(t; q; �) = Advprp-
paF 

a(t; q; �; 0; 0)for any t; q; �.
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es of families of PRFs and PRPsAbove, the fun
tion families we 
onsider have a �nite key-spa
e, and typ
ially also domains and ranges thatare �nite sets. A sequen
e of families of fun
tions is a sequen
e F 1; F 2; F 3; : : :, written fFngn�1. Ea
h Fnis a family of fun
tions with input length l(n), output length L(n) and key length k(n), where l; L; k arefun
tions of the se
urity parameter n, 
alled the input, output and key lengths of the sequen
e, respe
tively.In modeling blo
k 
iphers, families as we have 
onsidered them are the appropriate abstra
tion. There areseveral reasons, however, for whi
h we may also want to 
onsider sequen
es of families. One is that se
urity
an be de�ned asymptoti
ally, whi
h is de�nitionally more 
onvenient, parti
ulary be
ause in that 
ase wedo have a well-de�ned notion of se
urity, rather than merely having measures of inse
urity as above. Also,when we look to designs whose se
urity is based on the presumed hardness of number-theoreti
 problems, wenaturally get sequen
es of families rather than families. Let us now state the de�nition of pseudorandomnessfor a sequen
e of families. (We omit the permutation 
ase, whi
h is analogous.)Let F = fFngn�1 be a sequen
e of fun
tion families with input length l(�) and output length L(�). We saythat F is polynomial-time 
omputable if there is an algorithm whi
h given n;K and x outputs Fn(K;x) intime poly(n). To de�ne se
urity, we now 
onsider a sequen
e fDngn�1 of distinguishers. We say that D ispolynomial time if Dn always halts in poly(n) steps.De�nition 5.8 Let F = fFngn�1 be a sequen
e of fun
tion families and let D = fDngn�1 be a sequen
eof distinguishers. The prf-advantage of D is the fun
tion AdvprfF;D(�), de�ned for every n byAdvprfF;D(n) = AdvprfFn;Dn :We say that F is a PRF if it is polynomial-time 
omputable and also the fun
tion AdvprfF;D(�) is negligiblefor every polynomial-time distinguisher sequen
e D.Noti
e that this time the de�nition insists that the fun
tions themselves 
an be eÆ
iently 
omputed.5.6 Usage of PRFs and PRPsWe dis
uss some motivation for these notions of se
urity.5.6.1 The shared random fun
tion modelIn symmetri
 (ie. shared-key) 
ryptography, Ali
e and Bob share a key K whi
h the adversary doesn't know.They want to use this key to a
hieve various things. In parti
ular, to en
rypt and authenti
ate the datathey send to ea
h other. A key is (or ought to be) a short string. Suppose however that we allow the partiesa very long shared string. The form it takes is a random fun
tion f of l bits to L bits, for some pre-spe
i�edl; L. This is 
alled the shared random fun
tion model.The shared random fun
tion model 
annot really be realized in pra
ti
e be
ause, as we saw, random fun
tionsare just too big to even store. It is a 
on
eptual model. To work in this model, we give the parties ora
lea

ess to f . They may write down x 2 f0; 1gl and in one step be returned f(x).It turns out that the shared random fun
tion model is a very 
onvenient model in whi
h to think about
ryptography, formulate s
hemes, and analyze them. In parti
ular, we will see many examples where wedesign s
hemes in the shared random fun
tion model and prove them se
ure. This is true for a variety ofproblems, but most importantly for en
ryption and message authenti
ation. The proof of se
urity here isabsolute: we do not make any restri
tions on the 
omputational power of the adversary, but are able tosimply provide an upper bound on the su

ess probability of the adversary.As an example, 
onsider the CTR mode of operation dis
ussed in Se
tion 4.4.3. Consider the version wherethe initial ve
tor is a 
ounter. Consider repla
eing every invo
ation of EK with an invo
ation of the random
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tion f . (Assume l = L). In that 
ase, the mode of operation turns into the one-time pad 
ryptosystem.The shared random key is just the random fun
tion f . As we have dis
ussed, this is well known to meet astrong and well-de�ned se
urity. So, in the shared random fun
tion model, CTR mode is easily seen to be\good".But now what? We have s
hemes whi
h are se
ure but a priori 
an't be eÆ
iently realized, sin
e they relyon random fun
tions. That's where pseudorandom fun
tion or permutation families 
ome in. A PRF familyis a family F of fun
tions indexed by small keys (eg. 56 or 128 bits). However, it has the property that if Kis shared between Ali
e and Bob, and we use FK in pla
e of a random fun
tion f in some s
heme designed inthe shared random fun
tion model, the resulting s
heme is still se
ure as long as the adversary is restri
tedin resour
e usage.In other words, instan
es of PRFs 
an be used in pla
e of random fun
tions in shared key s
hemes. Thede�nition of a PRF is 
rafted to make this possible for as wide a range of appli
ations as possible. Aninstan
e of a pseudorandom fun
tion is spe
i�ed by a short key K, and the parties need only store this key.Then, they use this fun
tion in pla
e of the random fun
tion in the s
heme. And things should work out, inthe sense that if the s
heme was se
ure when a random fun
tion was used, it should still be se
ure.This is a very rough idea. Te
hni
ally, it is not always true: this is the intuition. Pseudorandom fun
tionsdon't always work. That is, you 
an't substitute them for random fun
tions in any usage of the latter andexpe
t things to work out. But if used right, it works out in a large number of 
ases. How do we identifythese 
ases? We have to resort to the formal de�nition of a pseudorandom fun
tion family and prove these
urity of our 
onstru
t based on it. We will see how to do this later.In this 
ontext we stress one important point. The se
urity of a PRF relies on the key K being se
ret.The adversary is not given K and 
annot dire
tly 
ompute the fun
tion. (Of 
ourse it might gain someinformation about values of FK on various points via the usage of FK by the legitimate parties, but that willbe OK.) In other words, you 
an substitute shared, se
ret random fun
tions by PRFs, but not publi
 ones.Pseudorandom fun
tions are an intriguing notion and a powerful tool that enable the following designparadism. When you want to design a s
heme for en
ryption, authenti
ation, or some other purpose, designit in the shared random fun
tion model. Then simply substitute the random fun
tion with a pseudorandomone, and your s
heme should still be se
ure.5.6.2 Modeling blo
k 
iphersOne of the primary motivations for the notions of pseudorandom fun
tions (PRFs) and pseudorandompermutations (PRPs) is to model blo
k 
iphers and thereby enable the se
urity analysis of proto
ols thatuse blo
k 
iphers.As dis
ussed in Se
tion 4.6, 
lassi
ally the se
urity of DES or other blo
k 
iphers has been looked at onlywith regard to key re
overy. That is, analysis of a blo
k 
ipher F has fo
used on the following question:Given some number of input-output examples(x1; FK(x1)); : : : ; (xq ; FK(xq))where K is a random, unknown key, how hard is it to �nd K? The blo
k 
ipher is taken as \se
ure" if theresour
es required to re
over the key are prohibitive. Yet, as we saw, even a 
ursory glan
e at 
ommon blo
k
ipher usages shows that hardness of key re
overy is not suÆ
ient for se
urity. We had dis
ussed wanting a\MASTER" se
urity property of blo
k 
iphers under whi
h natural usages of blo
k 
iphers 
ould be provense
ure. We suggest that this \MASTER" property is that the blo
k 
ipher be a se
ure PRP, under eitherCPA or CCA.We 
annot prove that spe
i�
 blo
k 
iphers have this property. The best we 
an do is assume they do, andthen go on to use them. For quantitative se
urity assessements, we would make spe
i�
 
onje
tures aboutthe advantage fun
tions of various blo
k 
iphers. For example we might 
onje
ture something like:Advprp-
paDES (t; q; 64q) = 
1 � t=TDES255 + 
1 � q240
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omputation on our �xed RAM model of 
omputation, and 
1 is some
onstant. In other words, we are 
onje
turing that the best atta
ks are either exhaustive key sear
h or linear
ryptanalysis. We might be bolder with regard to AES and 
onje
ture something likeAdvprp-
paAES (t; q; 128q) = 
1 � t=TAES2128 + 
1 � q2128 :We 
ould also make similar 
onje
tures regarding the strength of blo
k 
iphers as PRPs under CCA ratherthan CPA.More interesting is AdvprfDES(t; q). Here we 
annot do better than assume thatAdvprfDES(t; q; 64q) = 
1 � t=TDES255 + q2264AdvprfAES(t; q; 128q) = 
1 � t=TAES2128 + q22128 :This is due to the birthday atta
k dis
ussed later. It is possible be
ause a blo
k 
ipher is a family ofpermutations, and is a general phenomenon.We stress that these are all 
onje
tures, and barring the birthday atta
k, they are based on the assumptionthat the best possible atta
ks against the pseudorandomness of the 
ipher stem from the known key-re
overyatta
ks. Yet, there 
ould exist better atta
ks that break the 
ipher as a PRF without re
overing the key.So far, we do not know of any su
h atta
ks, but the amount of 
ryptanalyti
 e�ort that has fo
used on thisgoal is small. Certainly, to assume that a blo
k 
ipher is a PRF is a mu
h stronger assumption than that itis se
ure against key re
overy. Nonetheless, the motivation and arguments we have outlined in favor of thePRF assumption stay, and our view is that if a blo
k 
ipher is broken as a PRF then it should be 
onsideredinse
ure, and a repla
ement should be sought.5.7 Example Atta
ksLet us illustrate the models by providing adversaries that atta
k di�erent fun
tion families in these models.Example 5.9 We de�ne a family of fun
tions F : f0; 1gk � f0; 1gl ! f0; 1gL as follows. We let k = Ll andview a k-bit key K as spe
ifying an L row by l 
olumn matrix of bits. (To be 
on
rete, assume the �rstL bits of K spe
ify the �rst 
olumn of the matrix, the next L bits of K spe
ify the se
ond 
olumn of thematrix, and so on.) The input string x = x[1℄ : : : x[l℄ is viewed as a sequen
e of bits, and the value of F (K;x)is the 
orresponding matrix ve
tor produ
t. That isFK(x) = 26664 K[1; 1℄ K[1; 2℄ � � � K[1; l℄K[2; 1℄ K[2; 2℄ � � � K[2; l℄... ...K[L; 1℄ K[L; 2℄ � � � K[L; l℄ 37775 � 26664 x[1℄x[2℄...x[l℄ 37775 = 26664 y[1℄y[2℄...y[L℄ 37775where y[1℄ = K[1; 1℄ � x[1℄�K[1; 2℄ � x[2℄� : : : �K[1; l℄ � x[l℄y[2℄ = K[2; 1℄ � x[1℄�K[2; 2℄ � x[2℄� : : : �K[2; l℄ � x[l℄... = ...y[L℄ = K[L; 1℄ � x[1℄�K[L; 2℄ � x[2℄� : : : �K[L; l℄ � x[l℄ :Here the bits in the matrix are the bits in the key, and arithmati
 is modulo two. The question we askis whether F is a \se
ure" PRF. We 
laim that the answer is no. The reason is that one 
an design anadversary algorithm A that a
hieves a high advantage (
lose to 1) in distinguishing between the two worlds.We observe that for any key K we have FK(0l) = 0L. This is a weakness sin
e a random fun
tion of l-bitsto L-bits is very unlikely to return 0L on input 0l, and thus this fa
t 
an be the basis of a distinguishing
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ture Notes 69adversary. Let us now show how the adversary works. Remember that as per our model it is given an ora
leg: f0; 1gl ! f0; 1gL and will output a bit. Our adversary D works as follows:Adversary DgLet y  g(0l)If y = 0L then return 1 else return 0This adversary queries its ora
le at the point 0l, and denotes by y the l-bit string that is returned. If y = 0Lit bets that g was an instan
e of the family F , and if y 6= 0L it bets that g was a random fun
tion. Let usnow see how well this adversary does. We 
laim thatP hExpprf-1F;D = 1i = 1P hExpprf-0F;D = 1i = 2�L :Why? Look at Experiment Expprf-1F;D as de�ned in De�nition 5.4. Here g = FK for some K. In that 
aseit is 
ertainly true that g(0l) = 0L so by the 
ode we wrote for D the latter will return 1. On the otherhand look at Experiment Expprf-0F;D as de�ned in De�nition 5.4. Here g is a random fun
tion. As we sawin Example 5.3, the probability that g(0l) = 0L will be 2�L, and hen
e this is the probability that D willreturn 1. Now as per De�nition 5.4 we subtra
t to getAdvprfF;D = P hExpprf-1F;D = 1i�P hExpprf-0F;D = 1i= 1� 2�L :Now let t be the time 
omplexity of D. This is O(l+L) plus the time for one 
omputation of F , 
oming toO(l2L). The number of queries made by D is just one, and the total length of all queries is l. Thus we haveAdvprfF (t; 1; l) = maxA fAdvprfF;A g� AdvprfF;D= 1� 2�L :The �rst inequality is true be
ause the adversary D is one member of the set of adversaries A over whi
hthe maximum is taken, and hen
e the maximum advantage is at least that attained by D. Our 
on
lusionis that the advantage fun
tion of F as a PRF is very high even for very low values of its resour
e parameterinputs, meaning F is very inse
ure as a PRF.Example 5.10 Suppose we are given a se
ure PRF F : f0; 1gk � f0; 1gl ! f0; 1gL. We want to use F todesign a PRF G: f0; 1gk�f0; 1gl ! f0; 1g2L. The input length of G is the same as that of F but the outputlength of G is twi
e that of F . We suggest the following 
andidate 
onstru
tion: for every k-bit key K andevery l-bit input x GK(x) = FK(x)kFK(x) :Here \k" denotes 
on
atenation of strings, and x denotes the bitwise 
omplement of the string x. We askwhether this is a \good" 
onstru
tion. \Good" means that under the assumption that F is a se
ure PRF,G should be too. However, this is not true. Regardless of the quality of F , the 
onstru
t G is inse
ure. Letus demonstrate this.We want to spe
ify an adversary atta
king G. Sin
e an instan
e of G maps l bits to 2L bits, the adversaryD will get an ora
le for a fun
tion g that maps l bits to 2L bits. In World 0, g will be 
hosen as a randomfun
tion of l bits to 2L bits, while in World 1, g will be set to GK where K is a random k-bit key. Theadversary must tell determine in whi
h world it is pla
ed. Our adversary works as follows:



70 Goldwasser and BellareAdversary DgLet y1  g(1l)Let y2  g(0l)Parse y1 as y1 = y1;1ky1;2 with jy1;1j = jy1;2j = LParse y2 as y2 = y2;1ky2;2 with jy2;1j = jy2;2j = LIf y1;1 = y2;2 then return 1 else return 0This adversary queries its ora
le at the point 1l to get ba
k y1 and then queries its ora
le at the point 0l toget ba
k y2. Noti
e that 1l is the bitwise 
omplement of 0l. The adversary 
he
ks whether the �rst half ofy1 equals the se
ond half of y2, and if so bets that it is in World 1. Let us now see how well this adversarydoes. We 
laim that P hExpprf-1G;D = 1i = 1P hExpprf-0G;D = 1i = 2�L :Why? Look at Experiment Expprf-1G;D as de�ned in De�nition 5.4. Here g = GK for some K. In that 
ase wehave GK(1l) = FK(1l)kFK(0l)GK(0l) = FK(0l)kFK(1l)by de�nition of the family G. Noti
e that the �rst half of GK(1l) is the same as the se
ond half of GK(0l).So D will return 1. On the other hand look at Experiment Expprf-0G;D as de�ned in De�nition 5.4. Here g isa random fun
tion. So the values g(1l) and g(0l) are both random and independent 2L bit strings. What isthe probability that the �rst half of the �rst string equals the se
ond half of the se
ond string? It is exa
tlythe probability that two randomly 
hosen L-bit strings are equal, and this is 2�L. So this is the probabilitythat D will return 1. Now as per De�nition 5.4 we subtra
t to getAdvprfG;D = P hExpprf-1G;D = 1i�P hExpprf-0G;D = 1i= 1� 2�L :Now let t be the time 
omplexity of D. This is O(l+L) plus the time for two 
omputations of G, 
oming toO(l +L) plus the time for four 
omputations of F . The number of queries made by D is two, and the totallength of all queries is 2l. Thus we haveAdvprfG (t; 2; 2l) = maxA fAdvprfG;A g� AdvprfG;D= 1� 2�L :Our 
on
lusion is that the advantage fun
tion of G as a PRF is very high even for very low values of itsresour
e parameter inputs, meaning G is very inse
ure as a PRF.Exer
ise 5.11 Present a se
ure 
onstru
tion for the problem of the previous example. That is, suppose weare given a se
ure PRF F : f0; 1gk � f0; 1gl ! f0; 1gL. Design a PRF G: f0; 1gk � f0; 1gl ! f0; 1g2L whi
his a se
ure PRF as long as F is se
ure. For simpli
ity you may assume k = l = L.5.8 Se
urity against key-re
overyWe have mentioned several times that se
urity against key-re
overy is not suÆ
ient as a notion of se
urity fora blo
k 
ipher. However it is 
ertainly ne
essary: if key-re
overy is easy, the blo
k 
ipher should be de
lared
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ture Notes 71inse
ure. We have indi
ated that we want to adopt as notion of se
urity for a blo
k 
ipher the notion of aPRF or a PRP. If this is to be viable, it should be the 
ase that any fun
tion family that is inse
ure underkey-re
overy is also inse
ure as a PRF or PRP. In this se
tion we verify this fa
t. Doing so will enable us toexer
ise the method of redu
tions.We begin by formalizing se
urity against key-re
overy. We 
onsider an adversary that, based on input-outputexamples of an instan
e FK of family F , tries to �nd K. Its advantage is de�ned as the probability thatit su

eeds in �nding K. The probability is over the random 
hoi
e of K, and any random 
hoi
es of theadversary itself.We give the adversary ora
le a

ess to FK so that it 
an obtain input-output examples of its 
hoi
e. We donot 
onstrain the adversary with regard to the method it uses. This leads to the following de�nition.De�nition 5.12 Let F : Keys(F ) �D ! R be a family of fun
tions, and let B be an algorithm that takesan ora
le for a fun
tion g: D ! R, and outputs a string. We 
onsider the experiment:Experiment ExpkrF;BK R Keys(F )K 0  BFKIf K = K 0 then return 1 else return 0The kr-advantage of B is de�ned as AdvkrF;B = P hExpkrF;B = 1i :For any t; q; � the kr-advantage of F is de�ned viaAdvkrF (t; q; �) = maxB fAdvkrF;B gwhere the maximum is over all B having time-
omplexity t and making at most q ora
le queries, the sum ofthe lengths of these queries being at must � bits.This de�nition has been made general enough to 
apture all types of key-re
overy atta
ks. Any of the
lassi
al atta
ks su
h as exhaustive key sear
h, di�erential 
ryptanalysis or linear 
ryptanalysis 
orrespondto di�erent, spe
i�
 
hoi
es of adversary B. They fall in this framework be
ause all have the goal of �ndingthe key K based on some number of input-output examples of an instan
e FK of the 
ipher. To illustrate letus see what are the impli
ations of the 
lassi
al key-re
overy atta
ks on DES for the value of the key-re
overyadvantage fun
tion of DES. Assuming the exhaustive sear
h atta
k is always su

essful based on testing twoexamples leads to the fa
t that AdvkrDES(t; 2; 2 � 64) = 1for t being about 255 times the time TDES for one 
omputation of DES. On the other hand, linear 
rypt-analysis implies that AdvkrDES(t; 243; 243 � 64) = 1for t being about 243 �TDES. This gives us a 
ouple of data points on the 
urve AdvkrDES(t; q; ql). For a more
on
rete example, let us look at the key re
overy advantage of the family of Example 5.9.Example 5.13 Let F : f0; 1gk�f0; 1gl ! f0; 1gL be the family of fun
tions from Example 5.9. We saw thatits prf-advantage was very high. Let us now 
ompute is kr-advantage. The following adversary B re
oversthe key. We let ej be the l-bit binary string having a 1 in position j and zeros everywhere else. We assumethat the manner in whi
h the key K de�nes the matrix is that the �rst L bits of K form the �rst 
olumn ofthe matrix, the next L bits of K form the se
ond 
olumn of the matrix, and so on.Adversary BFK



72 Goldwasser and BellareLet K 0 be the empty stringFor j = 1; : : : ; l doyj  FK(ej)K 0  K 0kyjEndForReturn K 0The adversary B invokes its ora
le to 
ompute the output of the fun
tion on input ej . The result, yj , isexa
tly the j-th 
olumn of the matrix asso
iated to the key K. The matrix entries are 
on
atenated to yieldK 0, whi
h is returned as the key. Sin
e the adversary always �nds the key we haveAdvkrF;B = 1 :The time-
omplexity of this adversary is t = O(l2L) sin
e it makes q = l 
alls to its ora
le and ea
h
omputation of FK takes O(lL) time. ThusAdvkrF (t; l; l2) = 1 :The parameters here should still be 
onsidered small: l is 64 or 128, whi
h is small for the number of queries.So F is inse
ure against key-re
overy. Note however that F is less se
ure as a PRF than against key-re
overy:its advantage fun
tion as a PRF had a value 
lose to 1 for parameter values mu
h smaller than those above.This leads into our next 
laim, whi
h says that for any given parameter values, the kr-advantage of a family
annot be signi�
antly more than its prf or prp-
pa advantage.Now we 
laim that if a blo
k 
ipher is a se
ure PRF or PRP then it is also se
ure against all key-re
overyatta
ks. Put another way, the advantage of F with respe
t to key re
overy 
annot be mu
h larger than itsadvantage as a PRF.Proposition 5.14 Let F : f0; 1gk�f0; 1gl ! f0; 1gL be a family of fun
tions. Then for any t; q with q < 2lwe have AdvkrF (t; q; ql) � AdvprfF (t0; q + 1; (q + 1)l) + 12L ; (5.1)and furthermore, if L = l, then alsoAdvkrF (t; q; ql) � Advprp-
paF (t0; q + 1; (q + 1)l) + 12L � q ; (5.2)where we set t0 to be t plus the time for one 
omputation of F .The proof introdu
es the 
entral idea of redu
tions. We will show a transformation B 7! AB of any kr-adversary B into a prf-adversary AB su
h thatAdvkrF;B � AdvprfF;AB + 12Land also, if the resour
es used by B are t; q; ql, then those used by AB are t0; q + 1; (q + 1)l. We 
laim thatbarring manipulation, this proves the �rst equation of the 
laim. Indeed, by taking maximums on both sides,we will be able to get the equation in question, as we will see later.The problem that adversary AB is trying to solve is to determine whether its given ora
le g is a randominstan
e of F or a random fun
tion of l bits to L-bits. The idea behind a redu
tion is that AB will run Bas a subroutine and use B's output to solve its own problem.B is an algorithm that expe
ts to be in a world where it gets an ora
le FK , and it tries to �nd K via queriesto its ora
le. For simpli
ity, �rst assume that B makes no ora
le queries. Now, when AB runs B, it produ
es
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ture Notes 73some key K 0. AB 
an test K 0 by 
he
king whether F (K 0; x) agrees with g(x) for some value x. If so, it betsthat g was an instan
e of F , and if not it bets that g was random.If B does make ora
le queries, we must ask how AB 
an run B at all. The ora
le that B wants is notavailable. However, B is a pie
e of 
ode, 
ommuni
ating with its ora
le via a pres
ribed interfa
e. If youstart running B, at some point it will output an ora
le query, say by writing this to some pres
ribed memorylo
ation, and stop. It awaits an answer, to be provided in another pres
ribed memory lo
ation. When thatappears, it 
ontinues its exe
ution. When it is done making ora
le queries, it will return its output. Nowwhen AB runs B, it will itself supply the answers to B's ora
le queries. When B stops, having made somequery, A will �ll in the reply in the pres
ribed memory lo
ation, and let B 
ontinue its exe
ution. B doesnot know the di�eren
e between this \simulated" ora
le and the real ora
le ex
ept in so far as it 
an gleanthis from the values returned.The value that B expe
ts in reply to query x is FK(x). That is not what AB gives it. Instead, it returnsg(x), where g is AB 's ora
le. When AB is in World 1, g(x) = FK(x), and so B is fun
tioning as it wouldin its usual environment, and will return the key K with a probability equal to its kr-advantage. Howeverwhen AB is in World 0, g is a random fun
tion, and B is getting ba
k values that bear little relation to theones it is expe
ting. That does not matter. B is a pie
e of 
ode that will run to 
ompletion and produ
esome output. When we are in World 0, we have no idea what properties this output will have. But it issome k-bit string, and AB will test it as indi
ated above. It will fail the test with high probability as longas the test point x was not one that B queried, and AB will make sure the latter is true via its 
hoi
e of x.Let us now pro
eed to the a
tual proof.Proof of Proposition 5.14: We prove the �rst equation and then brie
y indi
ate how to alter the proofto prove the se
ond equation.We will show that given any adversary B whose resour
es are restri
ted to t; q; ql we 
an 
onstru
t anadversary AB , using resour
es t0; q + 1; (q + 1)l, su
h thatAdvkrF;B � AdvprfF;AB + 12L : (5.3)If this is true then we 
an establish Equation (5.3) as follows:AdvkrF (t; q; �) = maxB fAdvkrF;B g� maxB fAdvprfF;AB + 2�L g� maxA fAdvprfF;A + 2�L g= AdvprfF (t; q + 1; (q + 1)l) + 2�L :The maximum, in the 
ase of B, is taken over all adversaries whose resour
es are t; q; ql. In the se
ond line,we apply Equation (5.3). In the third line, we maximize over all A whose resour
es are t; q+1; (q+1)l. Theinequality on the third line is true be
ause this set in
ludes all adversaries of the form AB . The last line issimply by de�nition. So it remains to show how to design AB so that Equation (5.3) holds. (This is the 
oreof the argument, namely what is 
alled the \redu
tion.")As per De�nition 5.4, adversary AB will be provided an ora
le for a fun
tion g: f0; 1gl ! f0; 1gL, and willtry to determine in whi
h World it is. To do so, it will run adversary B as a subroutine. We provide thedes
ription followed by an explanation and analysis.Adversary AgBi 0Run adversary B, replying to its ora
le queries as followsWhen B makes an ora
le query x do



74 Goldwasser and Bellarei i+ 1 ; xi  xyi  g(xi)Return yi to B as the answerUntil B stops and outputs a key K 0Let x be an l bit string not in the set fx1; : : : ; xqgy  g(x)If F (K 0; x) = y then return 1 else return 0As indi
ated in the dis
ussion pre
eding the proof, AB is running B and itself providing answers to B'sora
le queries via the ora
le g. When B has run to 
ompletion it returns some k-bit string K 0, whi
h ABtests by 
he
king whether F (K 0x) agrees with g(x). Here x is a value di�erent from any that B queried, andit is to ensure that su
h a value 
an be found that we require q < 2l in the statement of the Proposition.Now we 
laim that P hExpprf-1F;AB = 1i � AdvkrF;BP hExpprf-0F;AB = 1i = 2�L :We will justify these 
laims shortly, but �rst let us use them to 
on
lude. Subtra
ting, as per De�nition 5.4,we get AdvprfF;AB = P hExpprf-1F;AB = 1i�P hExpprf-0F;AB = 1i� AdvkrF;B � 2�L :Re-arranging terms gives us Equation (5.3). It remains to justify Equations (5.4) and (5.4).Equation (5.4) is true be
ause in Expprf-1F;AB the ora
le g is FK for some K, whi
h is the ora
le that B expe
ts,and thus B fun
tions as it does in ExpkrF;B . If B is su

essful, meaning the key K 0 it outputs equals K, then
ertainly AB returns 1. (It is possible that AB might return 1 even though B was not su

essful. This wouldhappen if K 0 6= K but F (K 0; x) = F (K;x). It is for this reason that P hExpprf-1F;AB = 1i is greater than orequal to AdvkrF;B rather than merely equal to it.) Equation (5.4) is true be
ause in Expprf-0F;AB the fun
tion gis random, and sin
e x was never queried by B, the value g(x) is unpredi
table to B. Imagine that g(x) is
hosen only when x is queried to g. At that point, K 0, and thus F (K 0; x), is already de�ned. So g(x) has a2�L 
han
e of hitting this �xed point. Note this is true regardless of how hard B tries to make F (K 0; x) bethe same as g(x).For the proof of Equation (5.2) we seek a redu
tion B 7! AB with the property thatAdvkrF;B � Advprp-
paF;AB + 12L � q : (5.4)The redu
tion is identi
al to the one given above, meaning the adversary AB is the same. For the analysiswe see that P hExpprp-
pa-1F;AB = 1i = AdvkrF;BP hExpprp-
pa-0F;AB = 1i � 12L � q :Subtra
ting yields Advprp-
paF;AB = P hExpprp-
pa-1F;AB = 1i�P hExpprp-
pa-0F;AB = 1i� AdvkrF;B � 12L � q
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ture Notes 75and re-arranging terms gives us Equation (5.4). The �rst equation above is true for the same reason asbefore. The se
ond equation is true be
ause in World 0 the map g is now a random permutation of l-bits tol-bits. So g(x) assumes any random value ex
ept the values y1; : : : ; yq, meaning there are 2L � q things it
ould be. (Remember L = l in this 
ase.)The following example illustrates that the 
onverse of the above 
laim is far from true. The kr-advantage ofa family 
an be signi�
antly smaller than its prf or prp-
pa advantage, meaning that a family might be veryse
ure against key re
overy yet very inse
ure as a prf or prp, and thus not useful for proto
ol design.Example 5.15 De�ne the blo
k 
ipher E: f0; 1gk�f0; 1gl ! f0; 1gl by EK(x) = x for all k-bit keys K andall l-bit inputs x. We 
laim that it is very se
ure against key-re
overy but very inse
ure as a PRP underCPA. More pre
isely, we 
laim that for all values of t; q, however high,AdvkrE (t; q; ql) = 2�k ;and on the other hand Advprp-
paE (t; 1; l) � 1� 2�lfor t = O(l). In other words, given an ora
le for EK , you may make as many queries as you want, and spendas mu
h time as you like, before outputting your guess as to the value of K, yet your 
han
e of getting itright is only 2�k. On the other hand, using only a single query to a given ora
le g: f0; 1gl ! f0; 1gl, andvery little time, you 
an tell almost with 
ertainity whether g is an instan
e of E or is a random fun
tionof l bits to l bits. Why are these 
laims true? Sin
e EK does not depend on K, an adversary with ora
leEK gets no information about K by querying it, and hen
e its guess 
an as to the value of K 
an be 
orre
tonly with probability 2�k. On the other hand, an adversary 
an test whether g(0l) = 0l, and by returning 1if and only if this is true, attain a prp-advantage of 1� 2�l.5.9 The birthday atta
kSuppose E: f0; 1gk � f0; 1gl ! f0; 1gl is a family of permutations, meaning a blo
k 
ipher. If we are givenan ora
le g: f0; 1gl ! f0; 1gl whi
h is either an instan
e of E or a random fun
tion, there is a simple testto determine whi
h of these it is. Query the ora
le at distin
e points x1; x2; : : : ; xq , and get ba
k valuesy1; y2; : : : ; yq . You know that if g were a permutation, the values y1; y2; : : : ; yq must be distin
t. If g was arandom fun
tion, they may or may not be distin
t. So, if they are distin
t, bet on a permutation.Surprisingly, this is pretty good distinguisher, as we will argue below. Roughly, it takes q = p2l queries toget an advantage that is quite 
lose to 1. The reason is the birthday paradox. If you are not familiar withthis, you may want to look at Se
tion A.1, and then 
ome ba
k to the following.This tells us that an instan
e of a blo
k 
ipher 
an be distinguished from a random fun
tion based on seeinga number of input-output examples whi
h is approximately 2l=2. This has important 
onsequen
es for these
urity of blo
k 
ipher based proto
ols.Proposition 5.16 Let E: f0; 1gk � f0; 1gl ! f0; 1gl be a family of permutations. Suppose q satis�es2 � q � 2(l+1)=2. Then AdvprfE (t; q; ql) � 0:3 � q(q � 1)2l ;where and t is the time for q 
omputations of E, plus O(ql).Proof of Proposition 5.16: The birthday atta
k is implemented by an adversary D who, given an ora
leg: f0; 1gl ! f0; 1gl, works like this:



76 Goldwasser and BellareAdversary DgFor i = 1; : : : ; q doLet xi be the i-th l-bit string in lexi
ographi
 orderyi  g(xi)End ForIf y1; : : : ; yq are all distin
t then return 1, else return 0We 
laim that AdvprfE;D � 0:3 � q(q � 1)2l ;from whi
h the Proposition follows. Let us now justify this lower bound. Letting N = 2l, we 
laim thatP hExpprf-1E;D = 1i = 1 (5.5)P hExpprf-0E;D = 1i = 1� C(N; q) : (5.6)Here C(N; q), as de�ned in Se
tion A.1, is the probability that some bin gets two or more balls in theexperiment of randomly throwing q balls into N bins. We will justify these 
laims shortly, but �rst let ususe them to 
on
lude. Subtra
ting, we getAdvprfE;D = P hExpprf-1E;D = 1i�P hExpprf-0E;D = 1i= 1� [1� C(N; q)℄= C(N; q)� 0:3 � q(q � 1)2l :The last line is by Proposition A.1. It remains to justify Equations (5.5) and (5.6).Equation (5.5) is 
lear be
ause in World 1, g = EK , and sin
e E is a family of permutations, g is apermutation, and thus y1; : : : ; yq are all distin
t. Now, suppose D is in World 0, so that g is a randomfun
tion of l bits to l bits. What is the probability that y1; : : : ; yq are all distin
t? Sin
e g is a randomfun
tion and x1; : : : ; xq are distin
t, y1; : : : ; yq are random, independently distributed values in f0; 1gl. Thuswe are looking at the birthday problem. We are throwing q balls into N = 2l bins and asking what is theprobability of there being no 
ollisions, meaning no bin 
ontains two or more balls. This is 1 � C(N; q),justifying Equation (5.6).5.10 PRFs versus PRPsWhen we 
ome to analyses of blo
k 
ipher based 
onstru
tions, we will �nd a 
urious di
hotomy. Analysesare 
onsiderably simpler and more natural assuming the blo
k 
ipher is a PRF. Yet, PRPs are what mostnaturally model blo
k 
iphers. To bridge the gap, we relate the prf and prp-
pa advantage fun
tions ofa given blo
k 
ipher. The following says, roughly, that the birthday atta
k is the best possible one. Aparti
ular family of permutations E may have prf-advantage that is greater than its prp-advantage, but onlyby an amount of q(q � 1)=2l+1, the 
ollision probability term in the birthday atta
k.Proposition 5.17 Suppose E: f0; 1gk � f0; 1gl ! f0; 1gl is a family of permutations. ThenAdvprfE (t; q; ql) � q(q � 1)2l+1 +Advprp-
paE (t; q; ql)for any t; q.
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ture Notes 77The proof is again by redu
tion, but a very simple one. A given prf-adversary A is mapped to prp-adversaryA, meaning the adversary is un
hanged. A

ordingly, the following does not expli
itly talk of redu
tions.Proof: Let A be an adversary that takes an ora
le for a fun
tion g: f0; 1gl ! f0; 1gl. Then we 
laim thatAdvprfE;A � Advprp-
paE;A + q(q � 1)2l+1 ; (5.7)where q is the number of ora
le queries made by A. The Proposition follows by taking maximums, so itremains to prove Equation (5.7).Let B denote the adversary that �rst runs A to obtain an output bit b and then returns �b, the 
omplementof b. Then AdvprfE;A = P hExpprf-1E;A = 1i�P hExpprf-0E;A = 1i= �1�P hExpprf-1E;B = 1i�� �1�P hExpprf-0E;B = 1i�= P hExpprf-0E;B = 1i�P hExpprf-1E;B = 1i= P hExpprf-0E;B = 1i�P hExpprp-
pa-1E;B = 1i= P hExpprf-0E;B = 1i�P hExpprp-
pa-0E;B = 1i+ P hExpprp-
pa-0E;B = 1i�P hExpprp-
pa-1E;B = 1i= P hExpprf-0E;B = 1i�P hExpprp-
pa-0E;B = 1i+Advprp-
paE;A :So it suÆ
es to show thatP hExpprf-0E;B = 1i�P hExpprp-
pa-0E;B = 1i � q(q � 1)2l+1 : (5.8)Let P [�℄ denote the probability in Experiment Expprf-0E;B , and let g denote the ora
le in that experiment.Assume without loss of generality that all ora
le queries of A |they are the same as those of B| aredistin
t. Let D denote the event that all the answers are distin
t, and let D denote the 
omplement of eventD. Then P hExpprf-0E;B = 1i = P [Bg = 1℄= P [Bg = 1 j D℄ �P [D℄ +P �Bg = 1 j D� �P �D�� P [Bg = 1 j D℄ +P �D�= P hExpprp-
pa-0E;B = 1i+P �D�� P hExpprp-
pa-0E;B = 1i+ q(q � 1)2l+1 :In the last step we used Proposition A.1. Re-arranging terms gives us Equation (5.8) and 
on
ludes theproof.5.11 Constru
tions of PRF familiesWhere 
an we �nd PRFs? There are a variety of ways. We 
an build them out of pseudorandom bit generatorsor one-way fun
tions, a 
onservative but to date ineÆ
ient approa
h. There are more eÆ
ient 
onstru
tions



78 Goldwasser and Bellarewhose se
urity is based on the presumed hardness of spe
i�
 number-theoreti
 problems. Finally in pra
ti
ewe might be willing to assume that blo
k 
iphers like the AES have the property, as dis
ussed above.The notion of a pseudorandom bit generator (PRBG) was dis
ussed in Chapter 3. Re
all it is a polynomialtime 
omputable fun
tion G whi
h takes a k bit seed and produ
es a p(k) > k bit sequen
e of bits that lookrandom to any eÆ
ient test.The �rst 
onstru
tion of PRF families was from PRBGs whi
h are length doubling: the output length istwi
e the input length.Theorem 5.18 [92℄ Given a length-doubling pseudorandom bit generator we 
an 
onstru
t a sequen
e offamilies F whi
h is a PRF.The 
onstru
tion, 
alled the binary tree 
onstru
tion, is like this. The fun
tion G indu
es a tree of fun
tionsGz in the following way:� De�ne G0(x) ÆG1(x) = G(x) where k = jG0(x)j = jG1(x)j.� De�ne GzÆ0(x) ÆGzÆ1(x) = Gz(x) where k = jGzÆ0j = jGzÆ1j.Then fi(x) is de�ned in terms of the binary tree indu
ed by G as follows: 8xfi(x) = Gx(i). We now letF = fF kgk�1 where F k is ffi : f0; 1gk ! f0; 1gkjjij = kg. It is shown in [92℄ that this is se
ure.Another 
onstru
tion based on a primitive 
alled synthesizers was given by Naor and Reingold [143℄. Thisyields a PRBG based 
onstru
tion whi
h is more parallelizable than the binary tree based one.We saw before that we 
an 
onstru
t PRBGs from one-way fun
tions [111, 107℄. It follows from the abovethat we 
an build (in�nite) PRF families from one-way fun
tions. Furthermore, one 
an see that given anypseudorandom fun
tion family one 
an 
onstru
t a one-way fun
tion [110℄. Thus we have the following.Theorem 5.19 There exists a sequen
e of families whi
h is a PRF if and only if there exist one-wayfun
tions.This is quite a strong statement. One-way fun
tions are a seemingly weak primitive, a priori quite unrelatedto PRFs. Yet the one 
an be transformed into the other. Unfortunately the 
onstru
tion is not eÆ
ientenough to be pra
ti
al.Naor and Reingold have suggested a 
onstru
tion of a sequen
e of families F = fFngn�1 whi
h they proveis a PRF assuming that the DDH (De
isional DiÆe-Hellman) problem is hard [144℄. In this 
onstru
t,evaluation of parti
ular fun
tion from Fn on an l(n)-bit input requires l(n) modular multipli
ations and onemodular exponentiation, over an underlying group.5.11.1 Extending the domain sizeSuppose we start with a �nite PRF family with input length l. Often we need to extend the fun
tions to alarger domain in su
h a way that they are still PRFs on the larger domain. (One of the important reasonsfor this is that pseudorandom fun
tions make good message authenti
ation 
odes. See Theorem 8.6.) Thereare various ways to do this. One is to use the CBC (
ipher blo
k 
haining) 
onstru
tion.Here we are given a �nite PRF family with input length l and output length also l. An integer m is �xed andwe want to 
onstru
t a family of fun
tions mapping f0; 1glm to f0; 1gl. The 
onstru
tion is like this. Thekeys for the new family are the same as for the old one. Let f = FK be the l bit to l bit fun
tion indi
atedby key K. The new fun
tion, given M1 : : :Mm, does the following:Set Y0 = 0lSet Y1 = f(M1�Y0)
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ture Notes 79Set Y2 = f(M2�Y1)...Set Ym = f(Mm�Ym�1)Output Ym.Let F (m) denote the family of fun
tions in whi
h the fun
tion indexed by K maps f0; 1gml to f0; 1gl and isgiven by the CBC using f = FK .Theorem 5.20 [12℄ Let l;m � 1 and q; t � 0 be integers. Let F : KeysF � f0; 1gl ! f0; 1gl be a family offun
tions. Then AdvprfF (m)(q; t) � AdvprfF (q0; t0) + 1:5 � q2m22l (5.9)� Advprp-
paF (q0; t0) + q2m22l�1 (5.10)where q0 = mq and t0 = t+O(mql).We stress that the input must be of exa
tly nl bits, not at most nl bits. Else the 
onstru
tion is not se
ure.There are also other 
onstru
tions. For example, the 
as
ade 
onstru
tion of [19℄. Also, based on the ideas ofXOR MACs [11℄, a 
onstru
tion 
alled the Prote
ted Counter Sum was given in [30℄. Di�erent 
onstru
tionshave di�erent properties in terms of se
urity and eÆ
ien
y.Similarly (or simultaneously) we may want to extend the output length. It turns out this is easier, so wewon't dis
uss it in detail.5.12 Some appli
ations of PRFs5.12.1 Cryptographi
ally Strong HashingLet P1; P2 be polynomials so that 8x; P1(x) > P2(x). De�ne FP1;P2 = ff : f0; 1gP1(k) ! f0; 1gP1(k)g.Then we wish to hash names into address where jNamej = P1(k) and jAddressj = P2(k). We may usepseudo-random fun
tions to hash these names so that Address = fi(Name).Claim 5.21 If there exist one way fun
tions, then for all polynomials P , and for all integers k suÆ
ientlylarge, the previous hashing algorithm admits no more than O( 12pAddress ) + 1P (k) 
ollisions even if, after �xingthe s
heme, the names are 
hosen by an adversary with a

ess to previous (Name;Address) pairs.5.12.2 Predi
tionA predi
tion test T (1k)1. queries an ora
le for f 2 Fk, dis
overing (x1; f(x1)); : : : ; (xl; f(xl)),2. outputs an \exam", x, and3. is given y so that with probability 12 , y = f(x) (otherwise, y is 
hosen randomly in f0; 1gjf(x)j�ff(x)g).4. outputs 1 if it guesses that y = f(x), 0 otherwise.



80 Goldwasser and BellareF is said to pass the predi
tion test T if 8Q 2 Q[x℄; 9k0;8k > k0,Pr[T (1k) guesses 
orre
tly given y in step 3℄ < 12 + 1Q(k)The above pseudo-random fun
tions then pass all predi
tion tests (assuming there exist one way fun
tions).5.12.3 LearningDe�ne a 
on
ept spa
e S and a 
on
ept C � S. A learner is exposed to a number of pairs (ei;�i) whereei 2 S and �i = + , ei 2 C. The learner is then requested to determine if a given e 2 S is an element ofC.The above pseudo-random fun
tion show that if there exist one way fun
tions, then there exist 
on
epts notlearnable in polynomial time. (The 
on
ept in this 
ase would be fx; f(x)g � fx; yg.)5.12.4 Identify Friend or FoeConsider the situation of two for
es of war planes �ghting an air battle. Ea
h plane wishes to identifypotential targets as friendly or enemy. This 
an be done using pseudo-random fun
tions in the followingway:1. All the planes on a 
ertain for
e know i.2. To identify a target, a plane sends the target a random number r and expe
ts to re
eive ba
k fi(r) ifthe target is a friend.Then, even though the enemy planes see many pairs of the form (x; f(x)), they 
annot 
ompute f(y) for ythey have not yet seen.5.12.5 Private-Key En
ryptionLet A and B privately agree on i. Then to en
rypt message m, A produ
es a random string r and sends(r; fi(r) �m). B 
an 
ompute fi(r) and so 
ompute fi(r) �m� fi(r) = m. Assuming that there exist oneway fun
tions, su
h a system is se
ure again 
hosen 
iphertext atta
k, that is, se
ure even if the adversary
an 
ompute (r; fi(r)) for a 
olle
tion of r's. See Chapter 6 for more on this.5.13 Histori
al NotesThe basi
 de�nition of a pseudorandom fun
tions is due to Goldrei
h, Goldwasser and Mi
ali [92℄. Inparti
ular these authors introdu
ed the important notion of distinguishers. The notion of a pseudorandompermutation is due to Luby and Ra
ko� [133℄. These works are in the 
omplexity-theoreti
 or \asymptoti
"setting, where one 
onsiders sequen
es of families rather than just one family, and de�nes se
urity as perDe�nition 5.8. The approa
h used for the bulk of the 
urrent 
hapter, motivated by the desire to modelblo
k 
iphers, is 
alled \
on
rete se
urity," and originates with [13℄. De�nitions 5.4 and 5.5 are from [13℄, asare Propositions 5.16 and 5.17.5.14 Exer
ises and ProblemsProblem 5.22 Let a[i℄ denote the i-th bit of a binary string i, where 1 � i � jaj. The inner produ
t ofn-bit binary strings a; b is h a; b i = a[1℄b[1℄�a[2℄b[2℄�� � ��a[n℄b[n℄ :
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ture Notes 81A family of fun
tions F : f0; 1gk � f0; 1gl ! f0; 1gL is said to be inner-produ
t preserving if for everyK 2 f0; 1gk and every distin
t x1; x2 2 f0; 1gl � f0lg we haveh F (K;x1); F (K;x2) i = h x1; x2 i :Prove that if F is inner-produ
t preserving thenAdvprfF (t; 2; 2l) � 12 ��1 + 12L�for t = q � TF + O(�), where TF denotes the time to perform one 
omputation of F . Explain in a senten
ewhy this shows that if F is inner-produ
t preserving then F is not a se
ure PRF.Problem 5.23 Let E: f0; 1gk � f0; 1gl ! f0; 1gl be a blo
k 
ipher. The two-fold 
as
ade of E is the blo
k
ipher E(2): f0; 1g2k � f0; 1gl ! f0; 1gl de�ned byE(2)(K1kK2; x) = E(K1; E(K2; x))for all K1;K2 2 f0; 1gk and all x 2 f0; 1gl. (Here \k" stands for 
on
atenation of strings.) Prove thatAdvprp-
paE(2) (t; q; lq) � Advprp-
paE (t; q; lq)for all t; q. Explain in a senten
e why this shows that if E is a se
ure PRP then so is E(2).



C h a p t e r 6Private-key en
ryption

The private-key setting, also 
alled the symmetri
 setting, 
onsiders two parties who share a key and willuse this key to imbue 
ommuni
ated data with various se
urity attributes. (How they 
ame into possessionof a shared key is not part of the problem 
onsidered here, and will be addressed later.) The main se
uritygoals are priva
y and authenti
ity of the 
ommuni
ated data. A symmetri
 en
ryption s
heme (also 
alleda private-key en
ryption s
heme) enables parties in possession of a shared se
ret key to a
hieve the goal ofdata priva
y. This is the 
anoni
al goal of 
ryptography.6.1 Symmetri
 en
ryption s
hemesA symmetri
 en
ryption s
heme spe
i�es an en
ryption algorithm, whi
h tells the sender how to pro
essher data as a fun
tion of the key to produ
e the obje
t that is a
tually transmitted. It also spe
i�esa de
apsulation algorithm whi
h tells the re
eiver how to retrieve the original data from the transmissionwhile possibly also performing some veri�
ation. Finally, there is a key generation algorithm, whi
h produ
esa key that the parties need to share. The formal des
ription follows.De�nition 6.1 A symmetri
 en
ryption s
heme SE = (K; E ;D) 
onsists of three algorithms, as follows:� The key generation algorithm K is a randomized algorithm that returns a string K. We let Keys(SE)denote the set of all strings that have non-zero probability of being output by K. The members of thisset are 
alled keys. We write K R K for the operation of exe
uting K and letting K denote the keyreturned.� The en
ryption algorithm E takes the key K 2 Keys(SE) and a plaintext M 2 f0; 1g� to return a
iphertext C 2 f0; 1g�[f?g. This algorithm might be randomized or stateful. We write C R EK(M).� The deterministi
 de
ryption algorithm D takes a key K 2 Keys(SE) and a 
iphertext C 2 f0; 1g� toreturn some M 2 f0; 1g� [ f?g. We write M  DK(C).We require that for any key K 2 Keys(SE) and any message M 2 f0; 1g�, if EK(M) returns a 
iphertextC 6= ? then DK(C) =M .The key generation algorithm, as the de�nition indi
ates, is randomized. It takes no inputs. When it is run,it 
ips 
oins internally and uses these to sele
t a key K. Typi
ally, the key is just a random string of somelength, in whi
h 
ase this length is 
alled the key length of the s
heme. When two parties want to use the82
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ture Notes 83s
heme, it is assumed they are in possession of K generated via K. How they 
ame into joint possessionof this key K in su
h a way that the adversary did not get to know K is not our 
on
ern here; it is anassumption we make.On
e in possession of a shared key, the parties 
an en
rypt data for transmission. To en
rypt plaintext M ,the sender (or en
rypter) runs the en
ryption algorithm with key K and input M to get ba
k a string we
all the 
iphertext.The en
ryption algorithm may be either randomized or stateful. If randomized, it 
ips 
oins and uses thoseto 
ompute its output on a given input K;M . Ea
h time the algorithm is invoked, it 
ips 
oins anew,and in parti
ular invoking it twi
e on the same inpupts may not yield the same response both times. Ifthe en
ryption algorithm is stateful, its operation depends on a global variable su
h as a 
ounter, whi
h isupdated upon ea
h invo
ation of the en
ryption algorithm. Thus, the en
rypter maintains a 
ounter that isinitialized in some pre-spe
i�ed way. When the en
ryption algorithm is invoked on inputs K;M , it 
omputesa 
iphertext based on K;M and the 
urrent 
ounter value. It then updates the 
ounter, and the new 
ountervalue is stored. (The re
eiver does not need to maintain a 
ounter, and in parti
ular de
ryption does notrequire a

ess to any global variable or 
all for any syn
hronization between parties.)When there is no su
h 
ounter or global variable, the s
heme is stateless. In stateful s
hemes the en
ryptionalgorithm typi
ally does not 
ip 
oins internally. (It is still OK to 
all it a randomized algorithm. It justhappens to not make use of its given random number generator.) In stateless s
hemes, randomization isessential to se
urity, as we will see.On
e a 
iphertext C is 
omputed, it is transmitted to the re
eiver. The latter 
an re
over the message byrunning the de
ryption algorithm with the same key used to 
reate the 
iphertext, namely viaM  DK(C).The de
ryption algorithm is neither randomized nor stateful.Many en
ryption s
hemes restri
t the set of strings that they are willing to en
rypt. (For example, perhapsthe algorithm 
an only en
rypt plaintexts of length a positive multiple of some blo
k length l, and 
an onlyen
rypt plaintext of length up to so maximum length.) These kinds of restri
tions are 
aptured by having theen
ryption algorithm return the spe
ial symbol ? when fed a message not meeting the required restri
tion.In a stateless s
heme, there is typi
ally a set of strings, 
alled the plaintext spa
e, su
h that EK(M) 6= ? forall K and all M in the plaintext spa
e. In a stateful s
heme, whether or not EK(M) returns ? depends notonly on M but also possibly on the value of the state variable. For example, when a 
ounter is being used,it is typi
al that there is a limit to the number of en
ryptions performed, and when the 
ounter rea
hes a
ertain value the en
ryption algorithm returns ? no matter what message it is fed.6.2 Some en
ryption s
hemesLet us begin with a few examples.S
heme 6.2 The one-time-pad en
ryption s
heme (also 
alled the Vernam 
ipher) SE = (K; E ;D) is statefuland deterministi
. The key generation algorithm simply returns a random k-bit string K, where the key-length k is a parameter of the s
heme, so that the key spa
e is Keys(SE) = f0; 1gk. The en
ryptor maintainsa 
ounter 
tr whi
h is initially zero. The en
ryption and de
ryption algorithms operate as follows:Algorithm EK(M)Let n = jM jIf 
tr + n > k then return ?For i = 1 to n doC[i℄ K[
tr + i℄�M [i℄EndFor
tr  
tr + nC  C[1℄ : : : C[n℄Return (
tr; C)
Algorithm DK((C; 
tr))Let n jM jFor i = 1 to n doM [i℄ K[
tr + i℄�C[i℄EndForM  M [1℄ : : :M [n℄Return M



84 Goldwasser and BellareHere X [i℄ dennotes the i-th bit of a binary string X . The en
ryption algorithm XORs the message bits withkey bits, starting with the key bit indi
ated by the 
urrent 
ounter value. The 
ounter is then in
remented bythe length of the message. Key bits are not reused, and thus if not enough key bits are available to en
rypta message, the en
ryption algorithm returns ?. Note that the 
iphertext returned in
ludes the value of the
ounter. This is in order to enable de
ryption. (Re
all that the de
ryption algorithm, as per De�nition 6.1,must be stateless and deterministi
, so we do not want it to have to maintain a 
ounter as well.)The following s
hemes rely either on a family of permutations (ie. a blo
k 
ipher) or a family of fun
tions. Itis 
onvenient if the length of the message to be en
rypted is a positive multiple of a blo
k length asso
iated tothe family. A

ordingly, the en
ryption algorithm returns ? if this is not the 
ase. In pra
ti
e, however, onewould �rst pad the message appropriately so that the padded message always had length a positive multipleof the blo
k length, and apply the en
ryption algorithm to the padded message. The padding fun
tion shouldbe inje
tive and easily invertible.S
heme 6.3 Let E: f0; 1gk � f0; 1gl ! f0; 1gl be a blo
k 
ipher. Operating it in ECB (Ele
troni
 CodeBook) mode yields a stateless symmetri
 en
ryption s
heme, SE = (K; E ;D). The key generation algorithmsimply returns a random key for the blo
k 
ipher, meaning it pi
ks a random k-bit string key and returnsit, so that the key spa
e is f0; 1gk. The en
ryption and de
ryption algorithms are as follows:Algorithm EK(M)If jM j < l then return ?If jM j mod l 6= 0 then return ?Parse M as M [1℄ : : :M [n℄For i = 1; : : : ; n doC[i℄ EK(M [i℄)EndForC  C[1℄ : : : C[n℄Return C
Algorithm DK(C)If jCj < l then return ?If jCj mod l 6= 0 then return ?Parse C as C = C[1℄ : : : C[n℄For i = 1; : : : ; n doM [i℄ E�1K (M [i℄)EndForM  M [1℄ : : :M [n℄Return MParsing M means that we divide it into l-bit blo
ks and let M [i℄ denote the i-th su
h blo
k, and similarlyfor C. Noti
e that here the en
ryption algorithm did not make any random 
hoi
es. That does not meanwe are not allowed to 
all it a randomized algorithm; it is simply a randomized algorithm that happened to
hoose to not make random 
hoi
es.Cipher-blo
k 
haining (CBC) is the most popular mode, used pervasively in pra
ti
e.S
heme 6.4 Let E: f0; 1gk � f0; 1gl ! f0; 1gl be a blo
k 
ipher. Operating it in CBC mode with randomIV yields a stateless symmetri
 en
ryption s
heme, SE = (K; E ;D). The key generation algorithm simplyreturns a random key for the blo
k 
ipher, meaning it pi
ks a random k-bit string key and returns it, so thatthe key spa
e is f0; 1gk. The en
ryption and de
ryption algorithms are as follows:Algorithm EK(M)If jM j < l then return ?If jM j mod l 6= 0 then return ?Parse M as M [1℄ : : :M [n℄C[0℄ R f0; 1glFor i = 1; : : : ; n doC[i℄ FK(C[i� 1℄�M [i℄)EndForC  C[0℄C[1℄ : : : C[n℄Return C
Algorithm DK(C)If jCj < 2l then return ?If jCj mod l 6= 0 then return ?Parse C as C[0℄C[1℄ : : : C[n℄For i = 1; : : : ; n doM [i℄ E�1K (C[i℄)�C[i� 1℄EndForM  M [1℄ : : :M [n℄Return MParsingM means that we divide it into l-bit blo
ks and let M [i℄ denote the i-th su
h blo
k. In parsing C wealso divide it into l-bit blo
ks, but this time the blo
ks are numbered starting at 0. The IV is C[0℄, whi
h is
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hosen at random by the en
ryption algorithm. This 
hoi
e is made independently ea
h time the algorithmis invoked.For the following s
hemes it is useful to introdu
e some notation. If l � 1 and i are integers with 0 � i � 2l�1then we let NtSl(i) (read \number to string") denote the l-bit string whi
h is the binary representation ofinteger i. If s is a string we let StN(s) (read \string to number") denote the non-negative integer whosebinary representation is s.The CTR (
ounter) modes that follow are not mu
h used, to the best of our knowledge, but perhaps wronglyso. We will see later that they have good se
urity properties. In 
ontrast to CBC, the en
ryption andde
ryption pro
edures are parallelizable, whi
h 
an be exploited to speed up these pro
esses in the presen
eof hardware support. There are two variants of the mode, one random and the other stateful, and, as wewill see later, their se
urity properties are di�erent.S
heme 6.5 Let F : f0; 1gk � f0; 1gl ! f0; 1gL be a family of fun
tions. (Not ne
essarily a family ofpermutations.) Operating it in CTR mode with starting point 
hosen at random anew for ea
h messageyields a stateless symmetri
 en
ryption s
heme, SE = (K; E ;D), whi
h we 
all R-CTR mode or the R-CTRsymmetri
 en
ryption s
heme. The key generation algorithm simply returns a random key for F , meaningit pi
ks a random k-bit string key and returns it, so that the key spa
e is f0; 1gk. The en
ryption andde
ryption algorithms are as follows:Algorithm EK(M)If jM j < L then return ?If jM j mod L 6= 0 then return ?Parse M as M [1℄ : : :M [n℄R R f0; 1; : : : ; 2l � 1gFor i = 1; : : : ; n doC[i℄ FK(NtSl(R + i))�M [i℄EndForC[0℄ NtSl(R)C  C[0℄C[1℄ : : : C[n℄Return C
Algorithm DK(C)If jCj < l + L then return ?If (jCj � l) mod L 6= 0 then return ?Let C[0℄ be the �rst l bits of CParse the rest of C as C[1℄ : : : C[n℄R StN(C[0℄)For i = 1; : : : ; n doM [i℄ FK(NtSl(R+ i))�C[i℄EndForM  M [1℄ : : :M [n℄Return MParsingM means that we divide it into L-bit (not l-bit!) blo
ks and let M [i℄ denote the i-th su
h blo
k. ForC the de
ryption algorithm �rst 
hops o� the �rst l bits, and then divides the rest of the string into L-bitblo
ks. The random value 
hosen by the en
ryption algorithm is an integer in the range 0; : : : ; 2l � 1. It isused to de�ne a sequen
e of values on whi
h FK is applied to produ
e a \pseudo one-time pad" to whi
hthe data is XORed. The random value is in
luded in the 
iphertext in order to enable de
ryption.S
heme 6.6 Let F : f0; 1gk � f0; 1gl ! f0; 1gL be a family of fun
tions. (Not ne
essarily a family ofpermutations.) Operating it in CTR mode with 
ounter yields a stateful symmetri
 en
ryption s
heme,SE = (K; E ;D), whi
h we 
all C-CTR mode or C-CTR symmetri
 en
ryption s
heme. The key generationalgorithm simply returns a random key for F , meaning it pi
ks a random k-bit string key and returns it, sothat the key spa
e is f0; 1gk. The en
ryptor maintains a 
ounter 
tr whi
h is initially zero. The en
ryptionand de
ryption algorithms are as follows:



86 Goldwasser and BellareAlgorithm EK(M)If jM j < L then return ?If jM j mod L 6= 0 then return ?Parse M as M [1℄ : : :M [n℄If 
tr + n � 2l then return ?For i = 1; : : : ; n doC[i℄ FK(NtSl(
tr + i))�M [i℄EndForC[0℄ NtSl(
tr)C  C[0℄C[1℄ : : : C[n℄
tr  
tr + nReturn C
Algorithm DK(C)If jCj < l + L then return ?If (jCj � l) mod L 6= 0 then return ?Let C[0℄ be the �rst l bits of CParse the rest of C as C[1℄ : : : C[n℄
tr  StN(C[0℄)For i = 1; : : : ; n doM [i℄ FK(NtSl(
tr + i))�C[i℄EndForM  M [1℄ : : :M [n℄Return MParsing M means that we divide it into L-bit (not l-bit!) blo
ks and let M [i℄ denote the i-th su
h blo
k.For C the de
ryption algorithm �rst 
hops o� the �rst l bits, and then divides the rest of the string intoL-bit blo
ks. The 
ounter is not allowed to wrap around: the en
ryption algorithm returns ? if this wouldhappen. The 
ounter is in
luded in the 
iphertext in order to enable de
ryption. The en
ryption algorithmupdates the 
ounter upon ea
h invo
ation, and begins with this updated value the next time it is invoked.We will return to the se
urity of these s
hemes after we have developed the appropriate notions.6.3 Issues in se
urityLet us �x a parti
ular symmetri
 en
ryption s
heme SE = (K; E ;D). Two parties share a key K for thiss
heme, this key having being generated as K R K. The adversary does not a priori know K. We now wantto explore the issue of what se
urity (in this 
ase, priva
y) of the s
heme might mean.The adversary is assumed able to 
apture any 
iphertext that 
ows on the 
hannel between the two parties.It 
an thus 
olle
t 
iphertexts, and try to glean something from them. Our question is: what exa
tly does\glean" mean? What tasks, were the adversary to a

omplish them, would make us de
lare the s
hemeinse
ure? And, 
orrespondingly, what tasks, were the adversary unable to a

omplish them, would make usde
lare the s
heme se
ure?It is mu
h easier to think about inse
urity than se
urity, be
ause we 
an 
ertainly identify adversary a
tionsthat indubitably imply the s
heme is inse
ure. For example, if the adversary 
an, from a few 
iphertexts,derive the underlying key K, it 
an later de
rypt anything it sees, so if the s
heme allowed easy key re
overyfrom a few 
iphertexts it is de�nitely inse
ure. Yet, an absen
e of easy key re
overy is 
ertainly not enoughfor the s
heme to be se
ure; maybe the adversary 
an do something else.One might want to say something like: given C, the adversary has no idea what M is. This however 
annotbe true, be
ause of what is 
alled a priori information. Often, something about the message is known. Forexample, it might be a pa
ket with known headers. Or, it might be an English word. So the adversary, andeveryone else, has some information about the message even before it is en
rypted.One might also try to say that what we want is: given 
iphertext C, the adversary 
an't easily re
overthe plaintext M . But a
tually, this isn't good enough. The reason is that the adversary might be able to�gure out partial information about M . For example, even though she might not be able to re
over M , theadversary might, given C, be able to re
over the �rst bit of M , or the sum of all the bits of M . This is notgood, be
ause these bits might 
arry valuable information.For a 
on
rete example, say I am 
ommuni
ating to my broker a message whi
h is a sequen
e of \buy" or\sell" de
isions for a pre-spe
i�ed sequen
e of sto
ks. That is, we have 
ertain sto
ks, numbered 1 throughl, and bit i of the message is 1 if I want to buy sto
k i and 0 otherwise. The message is sent en
rypted. Butif the �rst bit leaks, the adversary knows whether I want to buy or sell sto
k 1, whi
h may be something
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ture Notes 87I de�nitely don't want to reveal. If the sum of the bits leaks, the adversary knows how many sto
ks I ambuying.Granted, this might not be a problem at all if the data was in a di�erent format. However, making assump-tions, or requirements, on how users format data, or how they use it, is a bad and dangerous approa
h tose
ure proto
ol design. It is an important prin
iple of our approa
h that the en
ryption s
heme should yieldse
urity no matter what is the format of the data. That is, we don't want people to have to worry abouthow they format their data: it should be se
ure regardless.In other words, as designers of se
urity proto
ols, we 
annot make assumptions about data 
ontent orformats. Our proto
ols must prote
t any data, no matter how formatted. We view it as the job of theproto
ol designer to ensure this is true. And we want s
hemes that are se
ure in the strongest possiblenatural sense.So what is the best we 
ould hope for? It is useful to make a thought experiment. What would an \ideal"en
ryption be like? Well, it would be as though some angel took the message M from the sender anddelivered it to the re
eiver, in some magi
 way. The adversary would see nothing at all. Intuitively, ourgoal is to \approximate" this as best as possible. We would like en
ryption to have the properties of idealen
ryption. In parti
ular, no partial information would leak.As an example, 
onsider the ECB en
ryption s
heme of Example 6.3. Given the 
iphertext, 
an an eaves-dropping adversary �gure out the message? Hard to see how, sin
e it does not know K, and if F is a \good"blo
k 
ipher, then it ought to have a hard time inverting FK without knowledge of the underlying key.Nonetheless this is not a good s
heme. Consider just the 
ase n = 1 of a single blo
k message. Suppose Ihave just two messages, 0l for \buy" and 1l for \sell." I keep sending data, but always one of these two.What happens? The adversary sees whi
h are the same. That is, it might see that the �rst two are the sameand equal to the third, et
.In a se
ure en
ryption s
heme, it should not be possible to 
o-relate 
iphertexts of di�erent messages in su
ha way that information is leaked.This has a somewhat dramati
 impli
ation. Namely, en
ryption must be probabilisti
 or depend on stateinformation. If not, you 
an always tell if the same message was sent twi
e. Ea
h en
ryption must usefresh 
oin tosses, or, say, a 
ounter, and an en
ryption of a parti
ular message may be di�erent ea
h time.In terms of our setup it means E is a probabilisti
 or stateful algorithm. That's why we de�ned symmetri
en
ryption s
hemes, above, to allow these types of algorithms.The reason this is dramati
 is that it goes in many ways against the histori
al or popular notion of en
ryption.En
ryption is thought of as a 
ode, a �xed mapping of plaintexts to 
iphertexts. This is no longer true.A single plaintext will have many possible 
iphertexts. (Depending on the random 
hoi
es or state of theen
ryption algorithm.) Yet, it should be possible to de
rypt. How is this possible? We have seen severalexamples above.Let us now start looking at priva
y more formally. We will begin with the information-theoreti
 notion ofperfe
t priva
y introdu
ed by Shannon, and analyze the one-time pad s
heme in this light. Perfe
t se
urity,however, requires a key as long as the total amount of data en
rypted, and is not pra
ti
al. So we then lookat a notion of \
omputational se
urity." The se
urity will only hold with respe
t to adversaries of limited
omputing power. If the adversary works harder, she 
an �gure out more, but a \feasible" amount of e�ortyields no noti
eable information. This is the important notion for us and will be used to analyze the se
urityof s
hemes su
h as those presented above.6.4 Information-theoreti
 se
urityWe dis
uss the information-theoreti
 notion of se
urity 
alled perfe
t se
urity whi
h we will show is possessedby the one-time-pad s
heme.We �x a parti
ular symmetri
 en
ryption s
heme SE = (K; E ;D). Two parties share a key K for this s
hemeand the adversary does not a priori know K. The adversary is assumed able to 
apture any 
iphertext that
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ows on the 
hannel between the two parties. Having 
aptured a 
iphertext, it attempts to glean informationabout the 
orresponding plaintext message.Take for example the one-time-pad s
heme, and assume a single k-bit message is en
rypted and transmitted,where k is the length of the key. Due to the random 
hoi
e of the key (pad), this 
ertainly seems very\se
ure." We would like to say that the adversray, given the 
iphertext, has \no idea" what the messagewas. But it is not 
lear how to say this, or if it is even really true. The adversary 
ould always guess themessage. Or, it 
ould have a pretty good idea what the message was from some 
ontext surrounding theen
ryption. For example, it may know that the �rst few bytes of the message is a pa
ket header 
ontainingthe sender's (known) ip address.So we 
an't really say the adversary has no idea what the message is given the 
iphertext. Instead, we adopta 
omparitive measure of se
urity. We are interested in how mu
h more the adversary knows about themessage given the 
iphertext as opposed to what it knew before it saw the 
iphertext. Perfe
t se
urity holdsif \the adversary's best guess as to the message after having seen the 
iphertext is the same as before it sawthe 
iphertext." In other words, the 
iphertext was no help in �guring out anything new about the message.This is 
aptured this as follows. We assume a single message will be en
rypted, and are interested onlyin the se
urity of this en
ryption. There is some plaintext spa
e Plaintexts � f0; 1g� of messages that theen
ryptor is willing to en
rypt. (For example, with the one-time pad s
heme, if the key length is k bits thenPlaintexts = f0; 1gk.) Noti
e that this e�e
tively makes the s
heme stateless.We model the a priori information (the information the adversary already possesses about the message) asa probability distribution on the set of possible messages. Formally, a message distribution on Plaintexts isa fun
tion D: Plaintexts! [0; 1℄ su
h that XM2PlaintextsD(M) = 1 ;and also D(M) > 0 for all M 2 Plaintexts. For example, there might be four messages, 00; 01; 10; 11, withD(00) = 1=6; D(01) = 1=3; D(10) = 1=4; and D(11) = 1=4 :We imagine that the sender 
hooses a message at random a

ording to D, meaning that a spe
i�
 messageM 2 Plaintexts has probability D(M) of being 
hosen. In our example, the sender would 
hoose 00 withprobability 1=6, and so on.The message distribution, and the fa
t that the sender 
hooses a

ording to it, are known to the adversary.Before any 
iphertext is transmitted, the adversary's state of knowledge about the message 
hosen by thesender is given by D. That is, it knows that the message was 00 with probability 1=6, and so on.We say that the en
ryption s
heme is perfe
tly se
ure if the possession of the 
iphertext does not impart anyadditional information about the message than was known a priori via the fa
t that it was 
hosen a

ordingto D. The setup is like this. After the sender has 
hosen the message a

ording to D, a key K is also
hosen, a

ording to the key generation algorithm, meaning K  K, and the message is en
rypted to get a
iphertext, via C  EK(M). The adversary is given C. We ask the adversary: given that you know C isthe 
iphertext produ
ed, for ea
h possible value of the message, what is the probability that that parti
ularvalue was a
tually the message 
hosen? If the adversary 
an do no better than say that the probability thatM was 
hosen was D(M), it means that the possession of the 
iphertext is not adding any new informationto what is already known. This is perfe
t se
urity.To state this more formally, we �rst letS = Keys(SE)� Plaintexts� f0; 1grdenote the sample spa
e underlying our experiment. Here r is the number of 
oins the en
ryption algorithmtosses. (This is zero if the en
ryption algorithm is deterministi
, as is the 
ase for the one-time pad.) We letintrodu
e the following random variables:K: S ! Keys(SE) de�ned by (K;M;R) 7! KM: S ! Plaintexts de�ned by (K;M;R) 7!MC: S ! f0; 1g� de�ned by (K;M;R) 7! EK(M ;R)
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ture Notes 89ThusK simply returns the value of the 
hosen key whileM returns the value of the 
hosen message. The lastrandom variable returns the en
ryption of the message using keyK and 
oins R. The probability distributionunderlying this sample spa
e is denoted PD;SE [�℄ and is given by a 
hoi
e of K as per K, a 
hoi
e of M asper D, and a random 
hoi
e of R, all these being made independently.De�nition 6.7 Let SE = (K; E ;D) be a symmetri
 en
ryption s
heme with asso
iated message spa
ePlaintexts. Let D: Plaintexts ! [0; 1℄ be a message distribution on Plaintexts. We say that SE is perfe
tlyse
ure with respe
t to D if for every M 2 Plaintexts and every possible 
iphertext C it is the 
ase thatPD;SE [M =M j C = C℄ = D(M) : (6.1)We say that SE = (K; E ;D) is perfe
tly se
ure if it is perfe
tly se
ure with respe
t to every message distri-bution on Plaintexts.Here \M = M" is the event that the message 
hosen by the sender was M , and \C = C" is the event thatthe 
iphertext 
omputed by the sender and re
eived by the adversary was C. The de�nition 
onsiders the
onditional probability that the message wasM given that the 
iphertext was C. It says that this probabilityis exa
tly the a priori probability of the message M , namely D(M).In 
onsidering the one-time pad en
ryption s
heme (
f. S
heme 6.2) we omit the 
ounter as part of the
iphertext sin
e only a single message is being en
rypted. Thus, the 
iphertext is a k-bit string where k isthe length of the key and also of the message. Also note that in this s
heme r = 0 sin
e the en
ryptionalgorithm is not randomized.Example 6.8 Let SE = (K; E ;D) be the one-time-pad en
ryption s
heme with the key length (and thus alsomessage length and 
iphertext length) set to k = 2 bits and the message spa
e set to Plaintexts = f0; 1gk.Let D be the message distribution on Plaintexts de�ned by D(00) = 1=6, D(01) = 1=3, D(10) = 1=4 andD(11) = 1=4. For ea
h possible 
iphertext C 2 f0; 1gk, the �rst table of Figure 6.1 shows the value ofPD;SE [C = C jM =M ℄, the probability of obtaining this parti
ular 
iphertext if you en
rypt M with theone-time pad s
heme. As the table indi
ates, this probability is always 0:25. Why? Having �xed M , thepossible 
iphertexts are M�K as K ranges over f0; 1gk. So, regardless of the value of M , all di�erentk bit strings are equally likely as 
iphertexts. The 
orresponding general statement is stated and provedin Lemma 6.9 below. The se
ond table shows the value of PD;SE [M =M j C = C℄, the probability thatthe message was M given that an adversary sees 
iphertext C. Noti
e that this always equals the a prioriprobability D(M).The following lemma 
aptures the basi
 se
urity property of the one-time-pad s
heme: no matter what isthe message, ea
h possible k-bit 
iphertext is produ
ed with probability 2�k, due to the random 
hoi
e ofthe key. .Lemma 6.9 Let k � 1 be an integer and let SE = (K; E ;D) be the one-time-pad en
ryption s
heme ofS
heme 6.2 with the key length set to k bits and the message spa
e set to Plaintexts = f0; 1gk. Let D be amessage distribution on Plaintexts. ThenPD;SE [C = Y jM = X ℄ = 2�k :for any X 2 Plaintexts and any Y 2 f0; 1gk.Proof of Lemma 6.9: If X is �xed and known, what's the probability that we see Y ? Sin
e Y = K�Xfor the one-time-pad s
heme, it only happens if K = Y�X . The probability that K is this parti
ular stringis exa
tly 2�k sin
e K is a randomly 
hosen k-bit string.This enables us to show that the one-time-pad s
heme meets the notion of perfe
t se
urity we 
onsideredabove.



90 Goldwasser and BellareC 00 01 10 11D(M) M1=6 00 0:25 0:25 0:25 0:251=3 01 0:25 0:25 0:25 0:251=4 10 0:25 0:25 0:25 0:251=4 01 0:25 0:25 0:25 0:25C 00 01 10 11D(M) M1=6 00 1=6 1=6 1=6 1=61=3 01 1=3 1=3 1=3 1=31=4 10 1=4 1=4 1=4 1=41=4 01 1=4 1=4 1=4 1=4Figure 6.1: In the �rst table, the entry 
orresponding to row M and 
olumn C shows the value ofPD;SE [C = C jM =M ℄, for the one-time-pad s
heme of Example 6.8. Here the key and message lengthare both k = 2. In the se
ond table, the entry 
orresponding to row M and 
olumn C shows the value ofPD;SE [M =M j C = C℄, for the same s
heme.Theorem 6.10 Let k � 1 be an integer and let SE = (K; E ;D) be the one-time-pad en
ryption s
heme ofS
heme 6.2 with the key length set to k bits and the message spa
e set to Plaintexts = f0; 1gk. Let D be amessage distribution on Plaintexts. Then SE is perfe
tly se
ure with respe
t to D.Proof of Theorem 6.10: Let M 2 Plaintexts be a message and let C 2 f0; 1gk be a possible 
iphertext.We need to show that Equation (6.1) is true. We havePD;SE [M =M j C = C℄ = PD;SE [C = C jM =M ℄ � PD;SE [M =M ℄PD;SE [C = C ℄= 2�k � PD;SE [M =M ℄PD;SE [C = C℄ :The �rst equality was by Bayes' rule. The se
ond equality was obtained by applying Lemma 6.9 with X =Mand Y = C. By de�nition PD;SE [M =M ℄ = D(M)is the a priori probability of M . Now for the last term:PD;SE [C = C℄ = XX PD;SE [M = X℄ �PD;SE [C = C jM = X ℄= XX D(X) � 2�k= 2�k �XX D(X)= 2�k � 1 :The sum here was over all possible messages X 2 Plaintexts, and we used Lemma 6.9. Plugging all this intothe above we get PD;SE [M =M j C = C℄ = 2�k � D(M)2�k = D(M)
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ture Notes 91as desired.The one-time-pad s
heme is not the only s
heme possessing perfe
t se
urity, but it seems to be the simplestand most natural one.6.5 Indistinguishability under 
hosen-plaintext atta
kPerfe
t se
urity 
an only be a
hieved by s
hemes with keys as long as the message en
rypted, whi
h is notpra
ti
al. (We will not prove this.) We wish to �nd a notion of se
urity that, even though not perfe
t inthe above sense, is as good in pra
ti
e. Roughly, the main di�eren
e is to take into a

ount the fa
t thatadversaries are 
omputationally restri
ted. There may be \useful" information in a 
iphertext, but if you
an't 
ompute it, the 
iphertext hasn't really given you anything.In some ways, this is where modern 
ryptography really begins. For us, what is most relevant is not theabove, but what follows.We have already dis
ussed the issues in Se
tion 6.3 above and will now distill a formal de�nition of se
urity.6.5.1 De�nitionWe dis
ussed above the 
ase where the sender is en
rypting one of two known messages. It turns out that thisis the \worst" 
ase for se
urity. We 
onsider an adversary (not in possession of the se
ret key) who knows(in fa
t, is allowed to 
hoose) two messages of the same length. Then, one is en
rypted and the 
iphertextgiven to the adversary. The s
heme is se
ure if the adversary has a hard time telling whi
h message wasen
rypted.We a
tually want to 
onsider en
ryption not of one message, but a whole sequen
e of them, so this idea mustbe extended. There is a sequen
e of pairs of messages, (M1;0;M1;1); : : : ; (Mq;0;Mq;1), where, in ea
h pair,the two messages have the same length. This sequen
e is known to the adversary. Now, a \
hallenge" bitb is 
hosen at random, and a sequen
e of 
iphertexts C1; : : : ; Cq is produ
ed, where Ci  EK(Mi;b). Notethat in these en
ryptions, the en
ryption algorithm uses fresh 
oins, or an updated state, ea
h time. Theadversary gets the sequen
e of 
iphertexts and must guess the bit b to win. In other words, the adversary istrying to determine whether the sender sent M1;0; : : : ;Mq;0 or M1;1; : : : ;Mq;1.To further empower the adversary, it is allowed to 
hoose the sequen
e of message pairs via a 
hosen plaintextatta
k. This means that it 
hooses the �rst pair, then re
eives C1, then 
hooses the se
ond pair, and so on.Let us now formalize this. We �x a spe
i�
 en
ryption s
heme SE = (K; E ;D). (It 
ould be either stateless orstateful). We 
onsider an adversary A. It is a program whi
h has a

ess to an ora
le to whi
h it 
an provideas input any pair (M0;M1) of equal-length messages. The ora
le will return a 
iphertext. We will 
onsidertwo possible ways in whi
h this 
iphertext is 
omputed by the ora
le, 
orresponding to two possible \worlds"in whi
h the adversary \lives". To do this, �rst de�ne the left-or-right en
ryption ora
le EK(LR(�; �; b)), asfollows:Ora
le EK(LR(M0;M1; b)) // b 2 f0; 1g and M0;M1 2 f0; 1g�C  EK(Mb)Return CThe ora
le en
rypts one of the messages, the 
hoi
e of whi
h being made a

ording to the bit b. Now thetwo worlds are as follows:World 0: The ora
le provided to the adversary is EK(LR(�; �; 0)). So, whenever the adversary makes a query(M0;M1) to its ora
le, the latter 
omputes C R EK(M0), and returns C as the answer.World 1: The ora
le provided to the adversary is EK(LR(�; �; 1)). So, whenever the adversary makes a query(M0;M1) to its ora
le, the latter 
omputes C R EK(M1), and returns C as the answer.
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all the �rst world, or ora
le, the \left" world or ora
le, and the se
ond the \right" world or ora
le. Theproblem for the adversary is, after talking to its ora
le for some time, to tell whi
h of the two ora
les it wasgiven. Before we pin this down, let us further 
larify exa
tly how the ora
les operate.Think of an ora
le as a subroutine to whi
h A has a

ess. A 
an make an ora
le query (M0;M1) by writing(M0;M1) in some spe
ial, spe
i�ed lo
ation in memory, and, in one step, the answer is returned. A has no
ontrol on how the answer is 
omputed, nor 
an A even see the working of the ora
le, whi
h will typi
allydepend on se
ret information that A is not given. A just has an interfa
e to this subroutine; the ability to
all it as a bla
k-box, and get ba
k an answer.First assume the given symmetri
 en
ryption s
heme SE is stateless. The ora
le, in either world, is proba-bilisti
, be
ause it 
alls the en
ryption algorithm. Re
all that this algorithm is probabilisti
. Above, whenwe say C R EK(Mb), it is impli
it that E pi
ks its own random 
oins impli
itly and uses them to 
omputeC.The random 
hoi
es of the en
ryption fun
tion are somewhat \under the rug" here, but should not beforgotten; they are 
entral to the meaningfulness of the notion, as also the se
urity of the s
hemes.If the given symmetri
 en
ryption s
heme SE was stateful, the ora
les, in either world, be
ome stateful too.(Think of a subroutine that maintains a global variable a
ross 
alls to the subroutine.) In world b the ora
lebegins with a state value initialized a

ording to the spe
i�
ation of the s
heme. For example, for CTRmode with a 
ounter, it is a 
ounter 
tr set to 0. Now, ea
h time the ora
le is invoked, it 
omputes EK(Mb)a

ording to the spe
i�
ation of algorithm E . This algorithm will, as a side-e�e
t, update the 
ounter, andupon the next invo
ation of the ora
le, the new 
ounter value will be used.We 
larify that the 
hoi
e of whi
h world we are in is made on
e, a priori, and then the adversary exe
utes.In world 0, all message pairs sent to the ora
le are answered by the ora
le en
rypting the left message in thepair, while in world 1, all message pairs are answered by the ora
le en
rypting the right message in the pair.The 
hoi
e of whi
h does not 
ip-
op from ora
le query to ora
le query; it is made on
e and then remainsthe same for all messages.We 
onsider an en
ryption s
heme to be \se
ure against 
hosen-plaintext atta
k" if a \reasonable" adversary
annot obtain \signi�
ant" advantage in distinguishing the 
ases b = 0 and b = 1 given a

ess to the ora
le,where reasonable re
e
ts its resour
e usage. The te
hni
al notion is 
alled indistinguishability under 
hosen-plaintext atta
k, denoted IND-CPA.Before presenting it we need to dis
uss a subtle point. There are 
ertain queries that an adversary 
an maketo its lr-en
ryption ora
le whi
h will de�nately enable it to learn the value of the hidden bit b (meaning�gure out in whi
h world it is) but whi
h we 
onsider illegitimate. One is to query the ora
le with messagesM0;M1 of di�erent lengths. We do not ask that en
ryption hide the length of the plaintext, and indeed
ommon s
hemes reveal this be
ause the length of the 
iphertext depends on the length of the plaintext,so an adversary making su
h a query 
ould easily win. Another, less obvious atta
k is for the adversary tomake a query M0;M1 of equal-length messages su
h that EK(M0) 6= ? and EK(M1) = ?. (If the s
hemeis stateless, this means M0 is in the plaintext spa
e and M1 is not.) For some s
hemes, it is easy for theadversary to �nd su
h messages. However, the response of the lr-en
ryption ora
le then gives away the bitb. We have 
hosen to deal with these issues by simply disallowing the adversary from making su
h queries.That is, let us say that an adversary is illegitimate if it either makes a lr-en
ryption query 
onsisting of twomessages of di�erent lengths, or makes an lr-en
ryption query M0;M1 for whi
h EK(M
) = ? with positiveprobability for some value of 
. The adversary is legitimate if it is not illegitimate.The issue of legitima
y 
an, on
e dis
ussed, be forgotten, sin
e in all our redu
tions and results we will haveonly legitimate adversaries, but we do have to deal with it in the de�nition.De�nition 6.11 Let SE = (K; E ;D) be a symmetri
 en
ryption s
heme, let b 2 f0; 1g, and let A be analgorithm that has a

ess to an ora
le that takes input a pair of strings and returns a string. We 
onsiderthe following experiment:
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ture Notes 93Experiment Expind-
pa-bSE;AK R Kd AEK (LR(�;�;b))Return dThe ind-
pa-advantage of A is de�ned asAdvind-
paSE;A = P hExpind-
pa-1SE;A = 1i�P hExpind-
pa-0SE;A = 1iif A is legitimate, and 0 otherwise. For any t; q; � we de�ne the ind-
pa-advantage of SE viaAdvind-
paSE (t; q; �) = maxA nAdvind-
paSE;A owhere the maximum is over all legitimate A having time-
omplexity t, making to the ora
le at most q queriesthe sum of whose lengths is at most � bits.We dis
uss some important 
onventions. The time-
omplexity mentioned above is the worst 
ase totalexe
ution time of the experiment, plus the size of the 
ode of the adversary, in some �xed RAM model of
omputation. We stress that the the total exe
ution time of the experiment is more than the running time ofthe adversary. It in
ludes the time of all operations in the experiment, in
luding the time for key generationand the 
omputation of answers to ora
le queries. This 
onvention for measuring time 
omplexity is thesame as used in other parts of these notes.Another 
onvention is that the length of a query M0;M1 to a left-or-right en
ryption ora
le is de�ned asjM0j. (We 
an assume this equals jM1j sin
e the adversary is assumed to be legitimate.) This 
onvention isused in measuring the parameter �.If Advind-
paSE;A is small, it means that A is outputting 1 just about as often in world 0 as in world 1, meaningit is not doing a good job of telling whi
h world it is in. If this quantity is large (meaning 
lose to one) thenthe adversary A is doing well, meaning our s
heme SE is not se
ure.For symmetri
 en
ryption s
heme SE to be se
ure against 
hosen plaintext atta
k, the ind-
pa-advantageof an adversary must be small, no matter what strategy the adversary tries. However, we expe
t that theadvantage grows as the adversary invests more e�ort in the pro
ess. To 
apture this we have de�ned theadvantage fun
tion Advind-
paSE (�; �; �) as above. This is a fun
tion asso
iated to any symmetri
 en
ryptions
heme SE , whi
h be
omes �xed on
e we �x the s
heme. The resour
es of the adversary we have 
hosento use in the parameterization are three. First, its time-
omplexity, measured a

ording to the 
onventionabove. Se
ond, the number of ora
le queries, or the number of message pairs the adversary asks of itsora
le. These messages may have di�erent lengths, and our third parameter is the sum of all these lengths,denoted �, again measured a

ording to the 
onvention above. The ind-
pa-advantage fun
tion of the s
hememeasures the maximum probability that the se
urity of the s
heme SE 
an be 
ompromised by an adversaryusing the indi
ated resour
es.6.5.2 Alternative interpretation of advantageWhy is the Advind-
paSE;A 
alled the \advantage" of the adversary? We 
an view the task of the adversary astrying to guess whi
h world it is in. A trivial guess is for the adversary to return a random bit. In that 
ase,it has probability 1=2 of being right. Clearly, it has not done anything damaging in this 
ase. The advantageof the adversary measures how mu
h better than this it does at guessing whi
h world it is in, namely theex
ess over 1=2 of the adversary's probability of guessing 
orre
tly. In this subse
tion we will see how theabove de�nition 
orresponds to this alternative view, a view that lends some extra intuition to the de�nitionand is also useful in later usages of the de�nition.As usual we �x a symmetri
 en
ryption s
heme SE = (K; E ;D). We now 
onsider the following game, orexperiment.
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pa-
gSE;APi
k a bit b at randomLet K R Kg  AEK(LR(�;�;b))If b = g return 1 else return 0Here, A is run with an ora
le for world b, where the bit b is 
hosen at random. A eventually outputs a bitg, its guess as to the value of b. The experiment returns 1 if A's guess is 
orre
t. ThusP hExpind-
pa-
gSE;A = 1iis the probability that A 
orre
tly guesses whi
h world it is in. (The probability is over the initial 
hoi
eof world as given by the bit b, the 
hoi
e of K, the random 
hoi
es of EK(�) if any, and the 
oins of A ifany.) The following proposition says that one-half of the advantage is exa
tly the ex
ess above one-half ofthe 
han
e that A 
orre
tly guesses whi
h world it is in.Proposition 6.12 Let SE be a symmetri
 en
ryption s
heme. ThenP hExpind-
pa-
gSE;A = 1i = 12 + Advind-
paSE;A2 :for any ind-
pa-adversary A.Proof of Proposition 6.12: We let P [�℄ be the probability of event \�00 in the experiment Expind-
pa-
gSE;A ,and refer below to quantities in this experiment. The 
laim of the Proposition follows by a straightforward
al
ulation: P hExpind-
pa-
gSE;A = 1i= P [b = g℄= P [b = g j b = 1℄ �P [b = 1℄ +P [b = g j b = 0℄ �P [b = 0℄= P [b = g j b = 1℄ � 12 +P [b = g j b = 0℄ � 12= P [g = 1 j b = 1℄ � 12 +P [g = 0 j b = 0℄ � 12= P [g = 1 j b = 1℄ � 12 + (1�P [g = 1 j b = 0℄) � 12= 12 + 12 � (P [g = 1 j b = 1℄�P [g = 1 j b = 0℄)= 12 + 12 � �P hExpind-
pa-1SE;A = 1i�P hExpind-
pa-0SE;A = 1i�= 12 + 12 �Advind-
paSE;A :We began by expanding the quantity of interest via standard 
onditioning. The term of 1=2 in the thirdline emerged be
ause the 
hoi
e of b is made at random. In the fourth line we noted that if we are askingwhether b = g given that we know b = 1, it is the same as asking whether g = 1 given b = 1, and analogouslyfor b = 0. In the �fth line and sixth lines we just manipulated the probabilities and simpli�ed. The nextline is important; here we observed that the 
onditional probabilities in question are exa
tly the su

essprobabilities in the real and random games respe
tively. That meant we had re
overed the advantage, asdesired.
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ture Notes 956.6 Example 
hosen-plaintext atta
ksWe illustrate the use of the model in �nding atta
ks by providing an atta
k on ECB mode, and also a generalatta
k on deterministi
, stateless s
hemes.6.6.1 Atta
k on ECBLet us �x a blo
k 
ipherE: f0; 1gk�f0; 1gl ! f0; 1gl. The ECB symmetri
 en
ryption s
heme SE = (K; E ;D)is that of S
heme 6.3. Suppose an adversary sees a 
iphertext C = EK(M) 
orresponding to some unknownplaintext text M , en
rypted under the key K also unknown to the adversary. Can the adversary re
overM?Not easily, if E is a \good" blo
k 
ipher. For example if E is AES, it seems quite infeasible. Yet, we havealready dis
ussed how infeasability of re
overing plaintext from 
iphertext is not an indi
ation of se
urity.ECB has other weaknesses. Noti
e that if two plaintexts M and M 0 agree in the �rst blo
k, then so do the
orresponding 
iphertexts. So an adversary, given the 
iphertexts, 
an tell whether or not the �rst blo
ks ofthe 
orresponding plaintexts are the same. This is loss of partial information about the plaintexts, and isnot permissible in a se
ure en
ryption s
heme.It is a test of our de�nition to see that the de�nition 
aptures these weaknesses and also �nds the s
hemeinse
ure. It does. To show this, we want to show that there is an adversary that has a high ind-
pa-advantagewhile using a small amount of resour
es. This is what the following proposition says.Proposition 6.13 Let E: f0; 1gk�f0; 1gl ! f0; 1gl be a blo
k 
ipher, and SE = (K; E ;D) the 
orrespondingECB symmetri
 en
ryption s
heme as des
ribed in S
heme 6.3. ThenAdvind-
paSE (t; 1; 2l) = 1for t = O(l) plus the time for two appli
ations of the blo
k 
ipher.The advantage of this adversary is 1 even though it uses hardly any resour
es: just one query, and not along one at that. That is 
learly an indi
ation that the s
heme is inse
ure.Proof of Proposition 6.13: We will present an adversary algorithm A, having time-
omplexity t, making1 query to its ora
le, this query being of length 2l, and havingAdvind-
paSE;A = 1 :The Proposition follows.Remember the adversaryA is given a lr-en
ryption ora
le EK(LR(�; �; b)) whi
h takes input a pair of messages,and returns an en
ryption of either the left or the right message in the pair, depending on the value of b.The goal of A is to determine the value of b. Our adversary works like this:Adversary AEK(LR(�;�;b))M1  02l ; M0  0lk1lC[1℄C[2℄ EK(LR(M0;M1; b))If C[1℄ = C[2℄ then return 1 else return 0The adversary's single ora
le query is the pair of messages M0;M1. Sin
e ea
h of them is two blo
ks long,so is the 
iphertext 
omputed a

ording to the ECB s
heme. Now, we 
laim thatP hExpind-
pa-1SE;A = 1i = 1P hExpind-
pa-0SE;A = 1i = 0 :
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e Advind-
paSE;A = 1 � 0 = 1. And A a
hieved this advantage by making just one ora
le query, whoselength, whi
h as per our 
onventions is just the length of M0, is 2l bits. So Advind-
paSE (t; 1; 2l) = 1.Why are the two equations 
laimed above true? You have to return to the de�nitions of the quantities inquestion, and tra
e through the experiments de�ned there. In World 1, meaning when b = 1, the ora
lereturns C[1℄C[2℄ = EK(0l)kEK(0l), so C[1℄ = C[2℄ and A returns 1. In World 0, meaning when b = 0, theora
le returns C[1℄C[2℄ = EK(0l)EK(1l). Sin
e EK is a permutation, C[1℄ 6= C[2℄. So A returns 0 in this
ase.As an exer
ise, try to analyze the same adversary as an adversary against CBC or CTR modes, and 
onvin
eyourself that the adversary will not get a high advantage.There is an important feature of this atta
k that must be emphasized. Namely, ECB is an inse
ure en
ryptions
heme even if the underlying blo
k 
ipher E is highly se
ure. The weakness is not in the tool being used,but in the manner we are using it. It is the ECB me
hanism that is at fault. Even a good tool is useless ifyou don't use it well.This is the kind of design 
aw that we want to be able to spot and eradi
ate. Our goal is to �nd symmetri
en
ryption s
hemes that are se
ure as long as the underlying blo
k 
ipher is se
ure. In other words, thes
heme has no inherent 
aw. As long as you use good ingredients, the re
ipe produ
es a good meal. If youdon't use good ingredients? Well, that is your problem.6.6.2 Deterministi
, stateless s
hemes are inse
ureECB mode is deterministi
 and stateless, so that if the same message is en
rypted twi
e, the same 
iphertextis returned. It turns out that this property, in general, results in an inse
ure s
heme, and provides perhapsa better understanding of why ECB fails. Let us state the general fa
t more pre
isely.Proposition 6.14 Let SE = (K; E ;D) be a deterministi
, stateless symmetri
 en
ryption s
heme. Assumethere is an integer m su
h that the plaintext spa
e of the s
heme 
ontains two distin
t strings of length m.Then Advind-
paSE (t; 2; 2m) = 1for t = O(l) plus the time for two en
ryptions.The requirement being made on the message spa
e is minimal; typi
al s
hemes have messages spa
es 
ontain-ing all strings of lengths between some minimum and maximum length. Note that this Proposition appliesto ECB and is enough to show the latter is inse
ure, but Proposition 6.13 shows something a little strongerbe
ause there there is only one query rather than two.Proof of Proposition 6.14: We will present an adversary algorithm A, having time-
omplexity t, making2 queries to its ora
le, ea
h query being of length m, and havingAdvind-
paSE;A = 1 :The Proposition follows.Remember the adversaryA is given a lr-en
ryption ora
le EK(LR(�; �; b)) whi
h takes input a pair of messages,and returns an en
ryption of either the left or the right message in the pair, depending on the value of b.The goal of A is to determine the value of b. Our adversary works like this:Adversary AEK(LR(�;�;b))Let X;Y be distin
t, m-bit strings in the plaintext spa
eC1  EK(LR(X;Y; b))C2  EK(LR(Y; Y; b))If C1 = C2 then return 1 else return 0
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laim that P hExpind-
pa-1SE;A = 1i = 1P hExpind-
pa-0SE;A = 1i = 0 :Hen
e Advind-
paSE;A = 1 � 0 = 1. And A a
hieved this advantage by making two ora
le query, ea
hof whose length, whi
h as per our 
onventions is just the length of the �rst message, is m bits. SoAdvind-
paSE (t; 2; 2m) = 1.Why are the two equations 
laimed above true? In World 1, meaning when b = 1, the ora
le returnsC1 = EK(Y ) and C2 = EK(Y ), and sin
e the en
ryption fun
tion is deterministi
 and stateless, C1 = C2, soA returns 1. In World 0, meaning when b = 0, the ora
le returns C1 = EK(X) and C2 = EK(Y ), and sin
eit is required that de
ryption be able to re
over the message, it must be that C1 6= C2. So A returns 0.6.7 Se
urity against plaintext re
overyIn Se
tion 6.3 we noted a number of se
urity properties that are ne
essary but not suÆ
ient for se
urity. Forexample, it should be 
omputationally infeasible for an adversary to re
over the key from a few plaintext-
iphertext pairs, or to re
over a plaintext from a 
iphertext. A test of our de�nition is that it implies theseproperties, in the sense that a s
heme that is se
ure in the sense of our de�nition is also se
ure againstkey-re
overy or plaintext-re
overy.The situation is analogous to what we saw in the 
ase of PRFs. There we showed that a se
ure PRF isse
ure against key-re
overy. In order to have some variation, this time we 
hoose a di�erent property, namelyplaintext re
overy. We formalize this, and then show if there was an adversary B 
apable of re
overing theplaintext from a given 
iphertext, then this would enable us to 
onstru
t an adversary A that broke thes
heme in the IND-CPA sense, meaning �gured out whi
h of the two Worlds it is in. But if the s
heme isse
ure in the IND-CPA sense, that latter adversary 
ould not exist. Hen
e, neither 
ould the former.The idea of this argument illustrates how we 
onvin
e ourselves that the above de�nition is good, and 
apturesall the properties we might want for se
urity against 
hosen plaintext atta
k. Take some other property thatyou feel a se
ure s
heme should have: infeasability of key re
overy from a few plaintext-
iphertext pairs;infeasabilty of predi
ting the XOR of the plaintext bits; et
. Imagine there was an adversary B that wassu

essful at this task. We 
laim this would enable us to 
onstru
t an adversary A that broke the s
hemein the left-or-right sense, and hen
e B does not exist if the s
heme is se
ure in the left-or-right sense. Morepre
isely, we would use the inse
urity fun
tion of the s
heme to bound the probability that adversary Bsu

eeds. Assuming the inse
urity fun
tion is small at the spe
i�ed parameter values, so is the 
han
e thatadversary B su

eeds.Let us now go through the plaintext re
overy example in detail. The task fa
ing the adversary will be tode
rypt a 
iphertext whi
h was formed by en
rypting a randomly 
hosen 
hallenge message of some lengthm. In the pro
ess we want to give the adversary the ability to see plaintext-
iphertext pairs, and 
apturethis by giving it a

ess to an en
ryption ora
le. This en
ryption ora
le is not the lr-en
ryption ora
le we sawabove: instead, it simply takes input a single message M and returns a 
iphertext C R EK(M) 
omputedby en
rypting M . To 
apture providing the adversary with a 
hallenge 
iphertext, we introdu
e anotherora
le that takes no inputs, and upon being invoked pi
ks a random m-bit string (plaintext) M , 
omputesC R EK(M), and returns C. The adversary is allowed only a single query to this ora
le, and wins if it 
anoutput the plaintext M 
orresponding to the 
iphertext C that this 
hallenge ora
le returns. We denotethe 
hallenge ora
le by EK($m). Here $m is meant to indi
ate the 
hoosing of a random m-bit string as theinput to EK .For simpli
ity we assume the en
ryption s
heme is stateless, and that f0; 1gm is a subset of the plaintext spa
easso
iated to the s
heme. As usual, when either the en
ryption or the 
hallenge ora
le invoke the en
ryption
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tion, it is impli
it that they respe
t the randomized nature of the en
ryption fun
tion, meaning thelatter tosses 
oins anew upon ea
h invo
ation of the ora
le.De�nition 6.15 Let SE = (K; E ;D) be a stateless symmetri
 en
ryption s
heme whose plaintext spa
ein
ludes f0; 1gm, and let B be an algorithm that has a

ess to two ora
les. We 
onsider the followingexperiment: Experiment ExpprSE;BK R KM  BEK(�);EK($m)If DK(C) =M , where C was the response to B's query to EK($m)then return 1else return 0The pr-advantage of B is de�ned asAdvprSE;B = P hExpprSE;B = 1i :For any t; q; � we de�ne the pr-advantage of SE viaAdvprSE(t; q; �) = maxB nAdvprSE;B owhere the maximum is over all B having time-
omplexity t, making to the en
ryption ora
le at most qqueries the sum of whose lengths is at most � bits.In the experiment above, B is exe
uted with its two ora
les. Re
all that it is allowed exa
tly one query toits 
hallenge ora
le. We denote the 
iphertext returned as response to this query by C. (Re
all the 
hallengeora
le takes no inputs.) The adversary B wins if it 
an 
orre
tly de
rypt C, and in that 
ase the experimentreturns 1. In the pro
ess, the adversary 
an make en
ryption ora
le queries as it pleases.The following Proposition says that the probability that an adversary su

essfully re
overs a plaintext froma 
hallenge 
iphertext 
annot ex
eed the ind-
pa-advantage of the s
heme (with resour
e parameters those ofthe plaintext re
overy adversary) plus the 
han
e of simply guessing the plaintext. In other words, se
urityin the IND-CPA sense implies se
urity against plaintext re
overy.Proposition 6.16 Let SE = (K; E ;D) be a stateless symmetri
 en
ryption s
heme whose plaintext spa
ein
ludes f0; 1gm. Then AdvprSE(t; q; �) � Advind-
paSE (t; q + 1; �+m) + 12mfor any t; q; �.The reason this is true is quite simple. If an adversary B were 
apable of de
rpting a 
hallenge 
iphertext,we 
ould easily build an adversary AB that, using B as a subroutine, would be able to tell whether it is inWorld 0 or World 1. In other words, it is a redu
tion.Proof of Proposition 6.16: We will show that given any adversary B whose resour
es are restri
ted tot; q; � we 
an 
onstru
t an adversary AB , using resour
es t; q + 1; �+m, su
h thatAdvprSE;B � Advind-
paSE;AB + 12m : (6.2)The Proposition follows by the usual maximization pro
ess.As per De�nition 6.1, adversary AB will be provided a lr-en
ryption ora
le, and will try to determine inwhi
h World it is. To do so, it will run adversary B as a subroutine. We provide the des
ription followed byan explanation and analysis.
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ture Notes 99Adversary AEK(LR(�;�;b))BRun adversary B, replying to its ora
le queries as followsWhen B makes an en
ryption ora
le query X doY  EK(LR(X;X; b))Return Y to B as the answerWhen B makes its 
hallenge ora
le query doM0 R f0; 1gm ; M1 R f0; 1gmC  EK(LR(M0;M1; b))Return C to B as the answerUntil B stops and outputs a plaintext MIf M =M1 then return 1 else return 0Here AB is running B and itself providing answers to B's ora
le queries. When B makes an en
ryptionora
le query X , adversary AB needs to return EK(X). It does this by invoking its lr-en
ryption ora
le withboth messages in the pair set to X , so that regardless of the value of the bit b, the 
iphertext returned isan en
ryption of X , just as B wants. When B makes its (one and only) query to the 
hallenge ora
le, ABpi
ks two random messages, ea
h of length m, and invokes its lr-en
ryption ora
le on them to get ba
k a
iphertext C. Now B returns a message M whi
h is supposed to be the de
ryption of C. Adversary ABtests whether M =M1 and if so bets that it is in World 1. Else it bets that it is in World 0. Now we 
laimthat P hExpind-
pa-=SE;AB;1 1i � AdvprSE;BP hExpind-
pa-=SE;AB;0 1i � 2�m :We will justify these 
laims shortly, but �rst let us use them to 
on
lude. Subtra
ting, as per De�nition 6.1,we get Advind-
paSE;AB = P hExpind-
pa-=SE;AB ;1 1i�P hExpind-
pa-=SE;AB;0 1i� AdvprSE;B � 2�m :Re-arranging terms gives us Equation (6.2). It remains to justify Equations (6.3) and (6.3).Adversary B will return the M = DK(C) with probability at least AdvprSE;B . In World 1, 
iphertext C is anen
ryption ofM1, so this means thatM =M1 with probability at least AdvprSE;B , and thus Equation (6.3) istrue. Now assume AB is in World 0. In that 
ase, AB will return 1 only if B returnsM =M1. But B is givenno information about M1, sin
e C is an en
ryption of M0 and M1 is 
hosen randomly and independently ofM0. It is simply impossible for B to output M1 with probability greater than 2�m. Thus Equation (6.3) istrue.Similar arguments 
an be made to show that other desired se
urity properties of a symmetri
 en
ryptions
heme follow from this de�nition. For example, is it possible that some adversary B, given some plaintext-
iphertext pairs and then a 
hallenge 
iphertext C, 
an 
ompute the XOR of the bits of M = DK(C)? Orthe sum of these bits? Or the last bit of M? Its probability of doing any of these 
annot be more thanmarginally above 1=2 be
ause were it so, we 
ould design an adversary A that won the left-or-right gameusing resour
es 
omparable to those used by B. We leave as an exer
ise the formulation and working out ofother su
h examples along the lines of Proposition 6.16.Of 
ourse one 
annot exhaustively enumerate all desirable se
urity properties. But you should be movingtowards being 
onvin
ed that our notion of left-or-right se
urity 
overs all the natural desirable properties ofse
urity under 
hosen plaintext atta
k. Indeed, we err, if anything, on the 
onservative side. There are someatta
ks that might in real life be viewed as hardly damaging, yet our de�nition de
lares the s
heme inse
ureif it su

umbs to one of these. That is all right; there is no harm in being a little 
onservative. What is moreimportant is that if there is any atta
k that in real life would be viewed as damaging, then the s
heme willfail the left-or-right test, so that our formal notion too de
lares it inse
ure.
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urity of CTR against 
hosen-plaintext atta
kLet F : f0; 1gk � f0; 1gl ! f0; 1gL be a family of fun
tions. The CTR symmetri
 en
ryption s
heme 
omesin two variants: the randomized (stateless) one of S
heme 6.5 and the 
ounter-based (stateful) one ofS
heme 6.6. Both are se
ure against 
hosen-plaintext atta
k, but, interestingly, the 
ounter version is morese
ure than the randomized version. We will �rst state the main theorems about the s
hemes, dis
uss them,and then prove them. For the 
ounter version we have:Theorem 6.17 Let F : f0; 1gk � f0; 1gl ! f0; 1gL be a family of fun
tions and let SE = (K; E ;D) be the
orresponding C-CTR symmetri
 en
ryption s
heme as des
ribed in S
heme 6.6. Then for any t; q; � with� < L2l we have Advind-
paSE (t; q; �) � 2 �AdvprfF (t; q0; lq0) ;where q0 = �=L.And for the randomized version:Theorem 6.18 Let F : f0; 1gk � f0; 1gl ! f0; 1gL be a family of fun
tions and let SE = (K; E ;D) be the
orresponding R-CTR symmetri
 en
ryption s
heme as des
ribed in S
heme 6.5. Then for any t; q; � with� < L2l we have Advind-
paSE (t; q; �) � 2 �AdvprfF (t; q0; lq0) + �(q � 1)L2l ;where q0 = �=L.This kind of result is what this whole approa
h is about. Namely, we are able to provide provable guaranteesof se
urity of some higher level 
ryptographi
 
onstru
t (in this 
ase, a symmetri
 en
ryption s
heme) basedon the assumption that some building blo
k (in this 
ase an underlying blo
k 
ipher treated as a PRF) isse
ure. They are the �rst example of the \pun
h-line" we have been building towards. So it is worth pausingat this point and trying to make sure we really understand what these theorems are saying and what aretheir impli
ations.If we want to entrust our data to some en
ryption me
hanism, we want to know that this en
ryptionme
hanism really provides priva
y. If it is ill-designed, it may not. We saw this happen with ECB. Even ifwe used a se
ure blo
k 
ipher, the design 
aws of ECB mode made it an inse
ure en
ryption s
heme.Flaws are not apparent in CTR at �rst glan
e. But maybe they exist. It is very hard to see how one 
an be
onvin
ed they do not exist, when one 
annot possible exhaust the spa
e of all possible atta
ks that 
ouldbe tried. Yet this is exa
tly the diÆ
ulty that the above theorems 
ir
umvent. They are saying that CTRmode does not have design 
aws. They are saying that as long as you use a good blo
k 
ipher, you areassured that nobody will break your en
ryption s
heme. One 
annot ask for more, sin
e if one does not usea good blo
k 
ipher, there is no reason to expe
t se
urity anyway. We are thus getting a 
onvi
tion that allatta
ks fail even though we do not even know exa
tly how these atta
ks operate. That is the power of theapproa
h.Now, one might appre
iate that the ability to make su
h a powerful statement takes work. It is for this thatwe have put so mu
h work and time into developing the de�nitions: the formal notions of se
urity that makesu
h results meaningful. For readers who have less experien
e with de�nitions, it is worth knowing, at least,that the e�ort is worth it. It takes time and work to understand the notions, but the payo�s are big: youa
tually have the ability to get guarantees of se
urity.How, exa
tly, are the theorems saying this? The above dis
ussion has pushed under the rug the quantitativeaspe
t that is an important part of the results. It may help to look at a 
on
rete example.
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ture Notes 101Example 6.19 Let us suppose that F is AES. So the key size is k = 128 and the blo
k size is l = L = 128.Suppose I want to en
rypt q = 240 messages, ea
h 128�23 bits long, so that I am en
rypting a total of � = 250bits of data. Can I do this se
urely using 
ounter-mode CTR? What is the 
han
e that an adversary �guresout something about my data? Well, if the adversary has t = 260 
omputing 
y
les, then by de�nitionits 
han
e is not more than Advind-
paSE (t; q; �). That has nothing to do with the theorem: it is just ourde�nitions, whi
h say that this is the maximum probability of being able to break the en
ryption s
hemein these given resour
es. So the question of whether the s
heme is se
ure for my 
hosen parameters boilsdown to asking what is the value of Advind-
paSE (t; q; �). A priori, we have no idea. But now, we appealto Theorem 6.17, whi
h says that this 
han
e is at most 2 �AdvprfF (t; q0; 128q0), where q0 is as given in thetheorem. Namely q0 = �=L = 250=128 = 243. So the question is, what is the value of AdvprfF (t; q0; 128q0)with these values of t0; q0?Thus, what the theorem has done is redu
e the question of estimating the probability of loss of priva
y fromthe en
ryption s
heme to the question of estimating the pseudorandomness of AES. As per Se
tion 5.6.2,one might 
onje
ture that AdvprfAES(t; q0; 128q0) = 
1 � t=TAES2128 + (q0)22128 ;where TAES is the time to do one AES 
omputation on our �xed RAM model of 
omputation. Now plug int = 260 and q0 = 243 and take into a

ount what we 
omputed above. We getAdvind-
paSE (t; q; �) � 2 �AdvprfAES(t; q0; 128q0)� 2
1 � t=TAES2128 + 2(q0)22128= 2612128 � 
1TAES + 243�2+12128= 1267 � 
1TAES + 1241� 1241 :In the last step, we made the (very reasonable) assumption that 
1=TAES is at most 226. Thus, the 
han
e theadversary gets any information about our en
rypted data is about 2�41, even though we allow this adversary
omputing time up to 260, and are en
rypting 250 bits of data. This is a very small 
han
e, and we 
an
ertainly live with it. It is in this sense that we say the s
heme is se
ure.Example 6.20 You are en
ouraged to work out another example along the following lines. Don't assumeF is AES, but rather assume it is an even better PRF. It still has k = l = L = 128, but assume it is not apermutation, so that there are no birthday atta
ks; spe
i�
ally, assumeAdvprfF (t; q0; 128q0) = 
1 � t=TAES2128 + 
1 � q2128 :Now, 
onsider both the 
ounter-based CTR s
heme and the randomized one. In the theorems, the di�eren
eis the �(q� 1)=L2l term. Try to see what kind of di�eren
e this makes. For ea
h s
heme, 
onsider how highyou 
an push q; �; t and still have some se
urity left. For whi
h s
heme 
an you push them higher? Whi
hs
heme is thus \more se
ure"?These examples illustrate how to use the theorems to �gure out how mu
h se
urity you will get from theCTR en
ryption s
heme in some appli
ation.6.8.1 Proof of Theorem 6.17The paradigm used is quite general in many of its aspe
ts, and we will use it again, not only for en
ryptions
hemes, but for other kinds of s
hemes that are based on pseudorandom fun
tions.



102 Goldwasser and BellareAlgorithm Eg(M)If jM j < L then return ?If jM j mod L 6= 0 then return ?Parse M as M [1℄ : : :M [n℄If 
tr + n � 2l then return ?For i = 1; : : : ; n doC[i℄ g(NtSl(
tr + i))�M [i℄EndForC[0℄ NtSl(
tr)C  C[0℄C[1℄ : : : C[n℄
tr  
tr + nReturn C
Algorithm Df (C)If jCj < l+ L then return ?If (jCj � l) mod L 6= 0 then return ?Let C[0℄ be the �rst l bits of CParse the rest of C as C[1℄ : : : C[n℄
tr  StN(C[0℄)For i = 1; : : : ; n doM [i℄ g(NtSl(
tr + i))�C[i℄EndForM  M [1℄ : : :M [n℄Return MFigure 6.2: Version SE [G℄ = (K; E ;D) of the C-CTR s
heme parameterized by a family of fun
tions G.An important observation regarding the CTR s
heme is that the en
ryption and de
ryption operations donot need dire
t a

ess to the key K, but only a

ess to a subroutine, or ora
le, that implements the fun
tionFK . This is important be
ause one 
an 
onsider what happens when FK is repla
ed by some other fun
tion.To 
onsider su
h repla
ements, we reformulate the s
heme. We introdu
e a s
heme that takes as a parameterany given family of fun
tions G having domain f0; 1gl and range f0; 1gL. As we will see later the 
ases ofinterest are G = F and G = Randl!L. Let us �rst however des
ribe this parameterized s
heme. In therest of this proof, SE [G℄ = (K; E ;D) denotes the symmetri
 en
ryption s
heme de�ned as follows. The keygeneration algorithm simply returns a random instan
e of G, meaning pi
ks a fun
tion g R G from familyG at random, and views g as the key. The en
ryptor maintains a 
ounter 
tr whi
h is initially zero. Theen
ryption and de
ryption algorithms are shown in Figure 6.2. In the �gure, parsingM means that we divideit into L-bit (not l-bit!) blo
ks and let M [i℄ denote the i-th su
h blo
k. For C the de
ryption algorithm �rst
hops o� the �rst l bits, and then divides the rest of the string into L-bit blo
ks. The en
ryption algorithmupdates the 
ounter upon ea
h invo
ation, and begins with this updated value the next time it is invoked.As the des
ription indi
ates, the s
heme is exa
tly C-CTR, ex
ept that fun
tion g is used in pla
e of FK .This seemingly 
osmeti
 
hange of viewpoint is quite useful, as we will see.We observe that the s
heme in whi
h we are interested, and whi
h the theorem is about, is simply SE [F ℄where F is our given family of fun
tions as per the theorem. Now, the proof breaks into two parts. The�rst step removes F from the pi
ture, and looks instead at an \idealized" version of the s
heme. Namelywe 
onsider the s
heme SE [Randl!L℄. Here, a random fun
tion g of l-bits to L-bits is being used where theoriginal s
heme would use FK . We then assess an adversary's 
han
e of breaking this idealized s
heme. Weargue that this 
han
e is a
tually zero. This is the main lemma in the analysis.This step is de�nitely a thought experiment. No real implementation 
an use a random fun
tion in pla
eof FK be
ause even storing su
h a fun
tion takes an exorbitant amount of memory. But this analysis ofthe idealized s
heme enables us to fo
us on any possible weaknesses of the CTR mode itself, as opposed toweaknesses arising from properties of the underlying blo
k 
ipher. We 
an show that this idealized s
hemeis se
ure, and that means that the mode itself is good.It then remains to see how this \lifts" to a real world, in whi
h we have no ideal random fun
tions, but ratherwant to assess the se
urity of the s
heme SE [F ℄ that uses the given family F . Here we exploit the notion ofpseudorandomness to say that the 
han
e of an adversary breaking the SE [F ℄ 
an di�er from its 
han
e ofbreaking the ideal-world s
heme SE [Randl!L℄ by an amount not ex
eeding the probability of breaking thepseudorandomness of F .Lemma 6.21 Let A be any ind-
pa-adversary atta
king SE [Randl!L℄. ThenAdvind-
paSE[Randl!L℄;A = 0
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ture Notes 103as long as the total length of A's ora
le queries is at most L2l.The lemma 
onsiders an aribtrary adversary. Let us say this adversary has time-
omplexity t, makes qqueries to its lr-en
ryption ora
le, these totalling � bits. The lemma does not 
are about the values of tand q, but insists that � be at most L2l. Under this restri
tion, it makes a strong statement. It says thatadversary has zero advantage, meaning no 
han
e at all of breaking the s
heme. The strength of this 
laimis enhan
ed when one 
onsiders that the only restri
tion, that � be at most L2l, is hardly a restri
tion inpra
ti
e, where l is typi
ally at least 64. The fa
t that no restri
tion is made on t indi
ates that the resultis information-theoreti
: it holds regardless of how mu
h 
omputing time the adversary invests.Of 
ourse, this lemma refers to the idealized s
heme, namely the one where the fun
tion g being used by theen
ryption algorithm is random. But remember that ECB was inse
ure even in this setting. (The atta
kswe provided for ECB work even if the underlying 
ipher E is Perml, the family of all permutations.) So thestatement is not 
ontent-free; it is saying something quite meaningful and important about the CTR mode.It is not true of all modes.We postpone the proof of the lemma. Instead we will �rst see how to use it to 
on
lude the proof of thetheorem. The argument here is quite simple and generi
.The lemma tells us that the C-CTR en
ryption s
heme is (very!) se
ure when g is a random fun
tion. Butwe are interested in the 
ase where g is is an instan
e of our given family F . So our worry is that the a
tuals
heme SE [F ℄ is inse
ure even though the idealized s
heme SE [Randl!L℄ is se
ure. In other words, we worrythat there might be an adversary having large ind-
pa-advantage in atta
king SE [F ℄, even though we knowthat its advantage in atta
king SE [Randl!L℄ is zero. But we 
laim that this is not possible if F is a se
urePRF. Intuitively, the existen
e of su
h an adversary indi
ates that F is not approximating Randl!L, sin
ethere is some dete
table event, namely the su

ess probability of some adversary in a 
ertain experiment,that happens with high probability when F is used and with low probability when Randl!L is used. To
on
retize this intuition, let A be a ind-
pa-adversary atta
king SE [F ℄. We asso
iate to A a distinguisherDA that is given ora
le a

ess to a fun
tion g: f0; 1gl ! f0; 1gL and is trying to determine whi
h world it isin, where in World 0 g is a random instan
e of Randl!L and in World 1 g is a random instan
e of F . Wesuggest the following strategy to the distinguisher. It runs A, and replies to A's ora
le queries in su
h a waythat A is atta
king SE [Randl!L℄ in DA's World 0, and A is atta
king SE [Randl!L℄ in DA's World 1. Thereason it is possible for DA to do this is that it 
an exe
ute the en
ryption algorithm Eg(�) of Figure 6.2,whi
h simply requires a

ess to the fun
tion g. If the adversary A wins, meaning breaks the en
ryptions
heme, DA bets that g is an instan
e of F , and otherwise DA bets that g is an instan
e of Randl!L.We stress the key point that makes this argument work. It is that the en
ryption fun
tion of the C-CTRs
heme invokes the fun
tion FK purely as an ora
le. If it had, instead, made dire
t some dire
t use of thekey K, the paradigm above would not work. The full proof follows.Proof of Theorem 6.17: Let A be any ind-
pa-adversary atta
king SE = (K; E ;D). Assume A makes qora
le queries totalling � bits, and has time-
omplexity t. We will design a distinguisher DA su
h thatAdvind-
paSE;A � 2 �AdvprfF;DA : (6.3)Furthermore,DA will make �=L ora
le queries and have time-
omplexity t. Now, the statement of Theorem 6.17follows as usual, by taking maximums. So the main thing is to provide the distinguisher for whi
h Equation (6.3)is true. This distinguisher uses A as a subroutine.Remember that DA takes an ora
le g: f0; 1gl ! f0; 1gL. This ora
le is either drawn at random from F orfrom Randl!L and DA does not know a priori whi
h. To �nd out, DA will use A. But remember that A toogets an ora
le, namely a lr-en
ryption ora
le. From A's point of view, this ora
le is simply a subroutine: A
an write, at some lo
ation, a pair of messages, and is returned a response by some entity it 
alls its ora
le.When DA runs A as a subroutine, it is DA that will \simulate" the lr-en
ryption ora
le for A, meaning DAwill provide the responses to any ora
le queries that A makes. Here is the des
ription of DA:Distinguisher DgA



104 Goldwasser and Bellareb R f0; 1gRun adversary A, replying to its ora
le queries as followsWhen A makes an ora
le query (M0;M1) doC R Eg(Mb)Return C to A as the answerUntil A stops and outputs a bit dIf d = b then return 1 else return 0Here Eg(�) denotes the en
ryption fun
tion of the generalized C-CTR s
heme that we de�ned in Figure 6.2.The 
ru
ial fa
t we are exploiting here is that this fun
tion 
an be implemented given an ora
le for g.Distinguisher DA itself pi
ks the 
hallenge bit b representing the 
hoi
e of worlds for A, and then seeswhether or not A su

eeds in guessing the value of this bit. If it does, it bets that g is an instan
e of F , andotherwise it bets that g is an instan
e of Randl!L. For the analysis, we 
laim thatP hExpprf-1F;DA = 1i = 12 + 12 �Advind-
paSE[F ℄;A (6.4)P hExpprf-0F;DA = 1i = 12 + 12 �Advind-
paSE[Randl!L℄;A : (6.5)We will justify these 
laims shortly, but �rst let us use them to 
on
lude. Subtra
ting, as per De�nition 5.4,we get AdvprfF;DA = P hExpprf-1F;DA = 1i�P hExpprf-0F;DA = 1i= 12 �Advind-
paSE[F ℄;A � 12 �Advind-
paSE[Randl!L℄;A (6.6)= 12 �Advind-
paSE[F ℄;A :The last inequality was obtained by applying Lemma 6.21, whi
h told us that the term Advind-
paSE[Randl!L℄;Awas simply zero. Re-arranging terms gives us Equation (6.3). Now let us 
he
k the resour
e usage. Ea
h
omputation Eg(Mb) requires jMbj=L appli
ations of g, and hen
e the total number of queries made byDA to its ora
le g is �=L. The time-
omplexity of DA equals that of A on
e one takes into a

ount the
onvention that time-
omplexity refers to the time of the entire underlying experiment. It remains to justifyEquations (6.4) and (6.5).Distinguisher DA returns 1 when b = d, meaning that ind-
pa-adversary A 
orre
tly identi�ed the world b inwhi
h it was pla
ed, or, in the language of Se
tion 6.5.2, made the \
orre
t guess." The role played by DA'sworld is simply to alter the en
ryption s
heme for whi
h this is true. When DA is in World 1, the en
ryptions
heme, from the point of view of A, is SE [F ℄, and when DA is in World 0, the en
ryption s
heme, from thepoint of view of A, is SE [Randl!L℄. Thus, using the notation from Se
tion 6.5.2, we haveP hExpprf-1F;DA = 1i = P hExpind-
pa-
gSE[F ℄;A = 1iP hExpprf-0F;DA = 1i = P hExpind-
pa-
gSE[Randl!L℄;A = 1i :To obtain Equations (6.4) and (6.5) we 
an now apply Proposition 6.12.For someone unused to PRF based proofs of se
urity the above may seem 
omplex, but the underlying ideais a
tually very simple, and will be seen over and over again. It is simply that one 
an view the experimentof the ind-
pa-adversary atta
king the en
ryption s
heme as information about the underlying fun
tion gbeing used, and if the adversary has more su

ess in the 
ase that g is an instan
e of F than that g is aninstan
e of Randl!L, then we have a distinguishing test between F and Randl!L. Let us now prove thelemma about the se
urity of the idealized C-CTR s
heme.
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ture Notes 105Proof of Lemma 6.21: The intuition is simple. When g is a random fun
tion, its value on su

essive
ounter values yields a one-time pad, a truly random and unpredi
table sequen
e of bits. As long as thenumber of data bits en
rypted does not ex
eed L2l, we invoke g only on distin
t values in the entire en
ryptionpro
ess. The outputs of g are thus random. Sin
e the data is XORed to this sequen
e, the adversary getsno information whatsoever about it.Now, we must make sure that this intuition 
arries through in our setting. Our lemma statement makesreferen
e to our notions of se
urity, so we must use the setup in Se
tion 6.5.1. The adversary A has a

essto a lr-en
ryption ora
le. Sin
e the s
heme we are 
onsidering is SE [Randl!L℄, the ora
le is Eg(LR(�; �; b)),where the fun
tion Eg was de�ned in Figure 6.2, and g is a random instan
e of Randl!L, meaning a randomfun
tion.The adversary makes some number q of ora
le queries. Let (Mi;0;Mi;1) be the i-th query, and let ni be thenumber of blo
ks in Mi;0. (This is the same as the number of blo
ks in Mi;1.) Let Mi;
[j℄ be the value of thej-th L-bit blo
k of Mi;
 for 
 2 f0; 1g. Let Ci be the response returned by the ora
le to query (Mi;0;Mi;1).It 
onsists of ni + 1 blo
ks, the �rst blo
k being the l-bit binary representation of the 
ounter at the startof the en
ryption Eg(Mi;b), where b is the 
hallenge bit underlying the Eg(LR(�; �; b)) ora
le, and the otherblo
ks are denoted Ci[1℄ : : : Ci[ni℄. Pi
torially:M1;b = M1;b[1℄M1;b[1℄ : : :M1;b[n1℄C1 = NtSl(0)C1[1℄ : : : C1[n1℄M2;b = M2;b[1℄M2;b[2℄ : : :M2;b[n2℄C2 = NtSl(n1)C2[1℄ : : : C2[n2℄... ...Mq;b = Mq;b[1℄Mq;b[2℄ : : :Mq;b[nq℄Cq = NtSl(n1 + � � �+ nq�1)Cq [1℄ : : : Cq [nq ℄What kind of distribution do the outputs re
eived by A have? We 
laim that the n1 + � � �+ nq values Ci[j℄(i = 1; : : : ; q and j = 1; : : : ; ni) are randomly and independently distributed, not only of ea
h other, but ofthe queried messages and the bit b, and moreover this is true in both worlds. Why? Here is where we use a
ru
ial property of the CTR mode, namely that it XORs data with the value of g on a 
ounter. We observethat a

ording to the s
hemeCi[j℄ = g(NtSl(n1 + � � �+ ni�1 + j)) �� Mi;1[j℄ if we are in world 1Mi;0[j℄ if we are in world 0.Now, we 
an �nally see that the idea we started with is really the heart of it. The values on whi
h g is beingapplied above are all distin
t. So the outputs of g are all random and independent. It matters not, then,what we XOR these outputs with; what 
omes ba
k is just random.This tells us that any given output sequen
e from the ora
le is equally likely in both worlds. Sin
e theadversary determines its output bit based on this output sequen
e, its probability of its returning 1 must bethe same in both worlds,P hExpind-
pa-1SE[Randl!L℄;A = 1i = P hExpind-
pa-0SE[Randl!L℄;A = 1i :Hen
e A's ind-
pa-advantage is zero.



106 Goldwasser and BellareAlgorithm Eg(M)If jM j < L then return ?If jM j mod L 6= 0 then return ?Parse M as M [1℄ : : :M [n℄R R f0; 1; : : : ; 2l � 1gFor i = 1; : : : ; n doC[i℄ g(NtSl(R+ i))�M [i℄EndForC[0℄ NtSl(R)C  C[0℄C[1℄ : : : C[n℄Return C
Algorithm Df (C)If jCj < l + L then return ?If (jCj � l) mod L 6= 0 then return ?Let C[0℄ be the �rst l bits of CParse the rest of C as C[1℄ : : : C[n℄R StN(C[0℄)For i = 1; : : : ; n doM [i℄ g(NtSl(R+ i))�C[i℄EndForM  M [1℄ : : :M [n℄Return MFigure 6.3: Version SE [G℄ = (K; E ;D) of the R-CTR s
heme parameterized by a family of fun
tions G.6.8.2 Proof of Theorem 6.18The proof of Theorem 6.18 re-uses a lot of what we did for the proof of Theorem 6.17 above. We �rst lookat the s
heme when g is a random fun
tion, and then use the pseudorandomness of the given family F todedu
e the theorem. As before we asso
iate to a family of fun
tions G having domain f0; 1gl and rangef0; 1gL a parameterized version of the R-CTR s
heme, SE [G℄ = (K; E ;D). The key generation algorithmsimply returns a random instan
e of G, meaning pi
ks a fun
tion g R G from family G at random, andviews g as the key, and the en
ryption and de
ryption algorithms are shown in Figure 6.3. Here is the mainlemma.Lemma 6.22 Let A be any ind-
pa-adversary atta
king SE [Randl!L℄. ThenAdvind-
paSE[Randl!L℄;A � �(q � 1)L2l ;where q is the number of ora
le queries made by A and � < L2l is the total length of these queries.The proof of Theorem 6.18 given this lemma is easy at this point be
ause it is almost identi
al to the aboveproof of Theorem 6.17. So let us �nish that �rst, and then go on to prove Lemma 6.22.Proof of Theorem 6.18: Let A be any ind-
pa-adversary atta
king SE = (K; E ;D). Assume A makes qora
le queries totalling � bits, and has time-
omplexity t. We will design a distinguisher DA su
h thatAdvind-
paSE;A � 2 �AdvprfF;DA + �(q � 1)L2l :Furthermore,DA will make �=L ora
le queries and have time-
omplexity t. Now, the statement of Theorem 6.18follows as usual, by taking maximums.The 
ode for DA is the same as in the proof of Theorem 6.17. However note that the underlying algorithmEg(�) has 
hanged, now being the one of Figure 6.3 rather than that of Figure 6.2. For the analysis, the only
hange is that the term Advind-
paSE[Randl!L℄;Ain Equation (6.6), rather than being zero, is upper bounded as per Lemma 6.22, and thusAdvprfF;DA � 12 �Advind-
paSE[F ℄;A � 12 � �(q � 1)L2l : (6.7)The rest is as before.
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ture Notes 107The above illustrates how general and generi
 was the \simulation" argument of the proof of Theorem 6.17.Indeed, it adapts easily not only to the randomized version of the s
heme, but to the use of pseudorandomfun
tions in many other s
hemes, even for di�erent tasks like message authenti
ation. The key point thatmakes it work is that the s
heme itself invokes g as an ora
le.Before we prove Lemma 6.22, we will analyze a 
ertain probabilisti
 game. The problem we isolate here ispurely probabilisti
; it has nothing to do with en
ryption or even 
ryptography.Lemma 6.23 Let n; q; l be positive integers, and let n1; : : : ; nq < 2l also be positive integers. Suppose wepi
k q integers r1; : : : ; rq from the range f0; 1; : : : ; 2l � 1g, uniformly and independently at random. We
onsider the following n1 + � � �+ nq numbers:r1 + 1; r1 + 2; � � � ; r1 + n1r2 + 1; r2 + 2; � � � ; r2 + n2... ...rq + 1; rq + 2; � � � ; rq + nq ;where the addition is performed modulo 2l. We say that a 
ollision o

urs if some two (or more) numbersin the above table are equal. Then P [Col℄ � (q � 1)(n1 + � � �+ nq)2l ;where Col denotes the event that a 
ollision o

urs.Proof of Lemma 6.23: As with many of the probabilisti
 settings that arise in this area, this is a questionabout some kind of \balls thrown in bills" setting, related to the birthday problem studied in Se
tion A.1,and indeed a reader may �nd it helpful to have studied that appendix �rst.Think of having 2l bins, numbered 0; 1; : : : ; 2l � 1. We have q balls, numbered 1; : : : ; q. For ea
h ball we
hoose a random bin whi
h we 
all ri. We 
hoose the bins one by one, so that we �rst 
hoose r1, then r2,and so on. When we have thrown in the �rst ball, we have de�ned the �rst row of the above table, namelythe values r1 + 1; : : : ; r1 + n1. Then we pi
k the assignment r2 of the bin for the se
ond ball. This de�nesthe se
ond row of the table, namely the values r2 + 1; : : : ; r2 + n2. A 
ollision o

urs if any value in these
ond row equals some value in the �rst row. We 
ontinue, up to the q-th ball, ea
h time de�ning a rowof the table, and are �nally interested in the probability that a 
ollision o

urred somewhere in the pro
ess.To upper bound this, we want to write this probability in su
h a way that we 
an do the analysis step bystep, meaning view it in terms of having thrown, and �xed, some number of balls, and seeing whether thereis a 
ollision when we throw in one more ball. To this end let Coli denote the event that there is a 
ollisionsomewhere in the �rst i rows of the table, for i = 1; : : : ; q. Let NoColi denote the event that there is no
ollision in the �rst i rows of the table, for i = 1; : : : ; q. Then by 
onditioning we haveP [Col℄ = P [Colq ℄= P [Colq�1℄ +P [Colq j NoColq�1℄ �P [NoColq�1℄� P [Colq�1℄ +P [Colq j NoColq�1℄� ...� P [Col1℄ + qXi=2 P [Coli j NoColi�1℄= qXi=2 P [Coli j NoColi�1℄ :
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han
e of a 
ollision upon throwing the i-th ball, given that there was no
ollision 
reated by the �rst i� 1 balls. Then we 
an sum up the quantities obtained and obtain our bound.We 
laim that for any i = 2; : : : ; q we haveP [Coli j NoColi�1℄ � (i� 1)ni + ni�1 + � � �+ n12l : (6.8)Let us �rst see why this proves the lemma and then return to justify it. From the above and Equation (6.8)we have P [Col℄ � qXi=2 P [Coli j NoColi�1℄� qXi=2 (i� 1)ni + ni�1 + � � �+ n12l= (q � 1)(n1 + � � �+ nq)2l :How did we do the last sum? The term ni o

urs with weight i � 1 in the i-th term of the sum, and thenwith weight 1 in the j-th term of the sum for j = i+1; : : : ; q. So its total weight is (i� 1)+ (q� i) = q� 1.It remains to prove Equation (6.8). To get some intuition about it, begin with the 
ases i = 1; 2. When wethrow in the �rst ball, the 
han
e of a 
ollision is zero, sin
e there is no previous row with whi
h to 
ollide,so that is simple. When we throw in the se
ond, what is the 
han
e of a 
ollision? The question is, what isthe probability that one of the numbers r2 + 1; : : : ; r2 + n2 de�ned by the se
ond ball is equal to one of thenumbers r1 + 1; : : : ; r1 + n1 already in the table? View r1 as �xed. Observe that a 
ollision o

urs if andonly if r1 � n2+1 � r2 � r1 +n1� 1. So there are (r1 +n1� 1)� (r1 �n2 +1)+ 1 = n1 +n2� 1 
hoi
es ofr2 that 
ould yield a 
ollision. This means that P [Col2 j NoCol1℄ � (n2 + n1 � 1)=2l.We need to extend this argument as we throw in more balls. So now suppose i� 1 balls have been thrownin, where 2 � i � q, and suppose there is no 
ollision in the �rst i � 1 rows of the table. We throw in thei-th ball, and want to know what is the probability that a 
ollision o

urs. We are viewing the �rst i � 1rows of the table as �xed, so the question is just what is the probability that one of the numbers de�ned byri equals one of the numbers in the �rst i� 1 rows of the table. A little thought shows that the worst 
ase(meaning the 
ase where the probability is the largest) is when the existing i� 1 rows are well spread-out.We 
an upper bound the 
ollision probability by reasoning just as above, ex
ept that there are i�1 di�erentintervals to worry about rather than just one. The i-th row 
an interse
t with the �rst row, or the se
ondrow, or the third, and so on, up to the (i� 1)-th row. So we getP [Coli j NoColi�1℄ � (ni + n1 � 1) + (ni + n2 � 1) + � � �+ (ni + ni�1 � 1)2l= (i� 1)ni + ni�1 + � � �+ n1 � (i� 1)2l ;and Equation (6.8) follows by just dropping the negative term in the above.Let us now extend the proof of Lemma 6.21 to prove Lemma 6.22.Proof of Lemma 6.22: Re
all that the idea of the proof of Lemma 6.21 was that when g is a randomfun
tion, its value on su

essive 
ounter values yields a one-time pad. This holds whenever g is applied onsome set of distin
t values. In the 
ounter 
ase, the inputs to g are always distin
t. In the randomized 
asethey may not be distin
t. The approa
h is to 
onsider the event that they are distin
t, and say that in that
ase the adversary has no advantage; and on the other hand, while it may have a large advantage in theother 
ase, that 
ase does not happen often. We now 
ush all this out in more detail.
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ture Notes 109The adversary makes some number q of ora
le queries. Let (Mi;0;Mi;1) be the i-th query, and let ni bethe number of blo
ks in Mi;0. (This is the same as the number of blo
ks in Mi;1.) Let Mi;
[j℄ be thevalue of the j-th L-bit blo
k of Mi;
 for 
 2 f0; 1g. Let Ci be the response returned by the ora
le to query(Mi;0;Mi;1). It 
onsists of ni + 1 blo
ks, the �rst blo
k being the l-bit binary representation of the randominteger ri 2 f0; 1; : : : ; 2l � 1g 
hosen by Eg(Mi;b), where b is the 
hallenge bit underlying the Eg(LR(�; �; b))ora
le, and the other blo
ks are denoted Ci[1℄ : : : Ci[ni℄. Pi
torially:M1;b = M1;b[1℄M1;b[1℄ : : :M1;b[n1℄C1 = NtSl(r1)C1[1℄ : : : C1[n1℄M2;b = M2;b[1℄M2;b[2℄ : : :M2;b[n2℄C2 = NtSl(r2)C2[1℄ : : : C2[n2℄... ...Mq;b = Mq;b[1℄Mq;b[2℄ : : :Mq;b[nq ℄Cq = NtSl(rq)Cq [1℄ : : : Cq [nq ℄Let NoCol be the event that the following n1 + � � �+ nq values are all distin
t:r1 + 1; r1 + 2; � � � ; r1 + n1r2 + 1; r2 + 2; � � � ; r2 + n2... ...rq + 1; rq + 2; � � � ; rq + nqLet Col be the 
omplement of the event NoCol, meaning the event that the above table 
ontains at least twovalues that are the same. It is useful for the analysis to introdu
e the following shorthand:P0 [�℄ = The probability of event \�" in world 0P0 [�℄ = The probability of event \�" in world 1 :We will use the following three 
laims, whi
h are proved later. The �rst 
laim says that the probability of a
ollision in the above table does not depend on whi
h world we are in.Claim 1: P1 [Col℄ = P0 [Col℄. 2The se
ond 
laim says that A has zero advantage in winning the left-or-right game in the 
ase that no
ollisions o

ur in the table. Namely, its probability of outputting one is identi
al in these two world underthe assumption that no 
ollisions have o

urred in the values in the table.Claim 2: P0 [A = 1 j NoCol℄ = P1 [A = 1 j NoCol℄. 2We 
an say nothing about the advantage of A if a 
ollision does o

ur in the table. That is, it might be big.However, it will suÆ
e to know that the probability of a 
ollision is small. Sin
e we already know that thisprobability is the same in both worlds (Claim 1) we bound it just in world 0:Claim 3: P0 [Col℄ � �(q � 1)L2l . 2Let us see how these put together 
omplete the proof of the lemma, and then go ba
k and prove them.Proof of Lemma given Claims: It is a simple 
onditioning argument:Advind-
paSE[Randl!L℄;A



110 Goldwasser and Bellare= P1 [A = 1℄�P0 [A = 1℄= P1 [A = 1 j Col℄ �P1 [Col℄ +P1 [A = 1 j NoCol℄ �P1 [NoCol℄� P0 [A = 1 j Col℄ �P0 [Col℄�P0 [A = 1 j NoCol℄ �P0 [NoCol℄Using Claim 1 and Claim 2, the above equals= (P1 [A = 1 j Col℄�P0 [A = 1 j Col℄) �P0 [Col℄� P0 [Col℄ :In the last step we simply bounded the parenthesized expression by 1. Now apply Claim 3, and we aredone. 2It remains to prove the three 
laims.Proof of Claim 1: The event NoCol depends only on the random values r1; : : : ; rq 
hosen by the en
ryptionalgorithm Eg(�). These 
hoi
es, however, are made in exa
tly the same way in both worlds. The di�eren
ein the two worlds is what message is en
rypted, not how the random values are 
hosen. 2Proof of Claim 2: Given the event NoCol, we have that, in either game, the fun
tion g is evaluated ata new point ea
h time it is invoked. (Here we use the assumption that � < L2l, sin
e otherwise theremay be wraparound in even a single query.) Thus the output is randomly and uniformly distributed overf0; 1gL, independently of anything else. That means the reasoning from the 
ounter-based s
heme as givenin Lemma 6.21 applies. Namely we observe that a

ording to the s
hemeCi[j℄ = g(NtSl(ri + j)) �� Mi;1[j℄ if we are in world 1Mi;0[j℄ if we are in world 0.Thus ea
h 
ipher blo
k is a message blo
k XORed with a random value. A 
onsequen
e of this is that ea
h
ipher blo
k has a distribution that is independent of any previous 
ipher blo
ks and of the messages. 2Proof of Claim 3: This follows from Lemma 6.23. We simply note that n1 + � � �+ nq = �=L. 2This 
on
ludes the proof.6.9 Se
urity of CBC against 
hosen-plaintext atta
kCBC en
ryption, presented in S
heme 6.4, is the most popular mode. We looked at the CTR modes �rstbe
ause they are easier to analyze. Indeed, we will not present the (more 
omplex) analysis of CBC modeen
ryption here, but we will state the result. The proof 
an be found in [20℄.Theorem 6.24 [20℄ Suppose Let F : f0; 1gk � f0; 1gl ! f0; 1gL be a family of fun
tions and let SE =(K; E ;D) be the 
orresponding CBC symmetri
 en
ryption s
heme as des
ribed in S
heme 6.4. Then for anyt; q; � we have Advind-
paSE (t; q; �) � 2 �AdvprfF (t; q0; lq0) + 2�2l22l ;where q0 = �=L.Noti
e that if all messages are of n blo
ks then � = nql so the additive term above is O(n2q2=2l).So what about we try to improve this using 
ounters? We 
an do 
ounters with CBC too! But this is nogood. It is a ni
e exer
ise to try to �nd the atta
k. Note this is true even for variations in whi
h the 
ounteris in
remented by the number of message blo
ks rather than by just one per message.
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ture Notes 111How about if the 
ounter is en
rypted? Then these atta
ks appear to vanish, but birthdays are ba
k. So wedon't really win out over the random IV s
heme. In fa
t the two be
ome very similar identi
al: f(
) where
 is a 
ounter is exa
tly a random number. (They are not identi
al be
ause 
 may also arise somewhere inthe plaintext.)In analyzing this, see how to think about these s
hemes via the modelling we have been doing. Ie think off as a random fun
tion. In that world the random CBC and en
rypted 
ounter modes are similar.6.10 Indistinguishability under 
hosen-
iphertext atta
kAbove, we have 
onsidered priva
y under 
hosen-plaintext atta
k. Sometimes we want to 
onsider priva
ywhen the adversary is 
apable of mounting a stronger type of atta
k, namely a 
hosen-
iphertext atta
k. Inthis type of atta
k, an adversary has a

ess to a de
ryption ora
le. It 
an feed this ora
le a 
iphertext, andget ba
k the 
orresponding plaintext.How might su
h a situation arise? We 
ould imagine that an adversary at some point gains temporary a

essto the equipment performing de
ryption. It 
an feed the equipment 
iphertexts and see what plaintextsemerge. (We assume it 
annot dire
tly extra
t the key from the equipment, however.)If an adversary has a

ess to a de
ryption ora
le, se
urity at �rst seems moot, sin
e after all it 
an de
ryptanything it wants. To 
reate a meaningful notion of se
urity, we put a restri
tion on the use of the de
ryptionora
le. To see what this is, let us look 
loser at the formalization. As in the 
ase of 
hosen-plaintext atta
ks,we 
onsider two worlds:World 0: The adversary is provided the ora
le EK(LR(�; �; 0)) as well as the ora
le DK(�).World 1: The adversary is provided the ora
le EK(LR(�; �; 1)) as well as the ora
le DK(�).The adversary's goal is the same as in the 
ase of 
hosen-plaintext atta
ks: it wants to �gure out whi
hworld it is in. There is one easy way to do this. Namely, query the lr-en
ryption ora
le on two distin
t, equallength messagesM0;M1 to get ba
k a 
iphertext C, and now 
all the de
ryption ora
le on C. If the messagereturned by the de
ryption ora
le is M0 then the adversary is in World 0, and if the message returned by thede
ryption ora
le is M1 then the adversary is in World 1. The restri
tion we impose is simply that this 
allto the de
ryption ora
le is not allowed. More generally, 
all a query C to the de
ryption ora
le illegitimateif C was previously been returned by the lr-en
ryption ora
le. Then, only legitimate queries are allowed. Inthe formalization below, the experiment simply returns 0 if the adversary makes an illegitimate query. (We
larify that a query C is legitimate if C is returned by the lr-en
ryption ora
le after C was queried to thede
ryption ora
le. It is only when C was previously output by the lr-en
ryption ora
le that it is illegitimate.)This restri
tion still leaves the adversary with a lot of power. Typi
ally, a su

essful 
hosen-
iphertextatta
k pro
eeds by taking a 
iphertext C returned by the lr-en
ryption ora
le, modifying it into a related
iphertext C 0, and querying the de
ryption ora
le with C 0. The atta
ker seeks to 
reate C 0 in su
h a waythat its de
ryption tells the atta
ker what was the message underlying M . We will see this illustrated inSe
tion 6.11 below.The model we are 
onsidering here might seem quite arti�
ial. If an adversary has a

ess to a de
ryptionora
le, how 
an we prevent it from 
alling the de
ryption ora
le on 
ertain messages? The restri
tion mightarise due to the adversary's having a

ess to the de
ryption equipment for a limited period of time. Weimagine that after it has lost a

ess to the de
ryption equipment, it sees some 
iphertexts, and we are
apturing the se
urity of these 
iphertexts in the fa
e of previous a

ess to the de
ryption ora
le. Furthermotivation for the model will emerge when we see how en
ryption s
hemes are used in proto
ols. We will seethat when an en
ryption s
heme is used in an authenti
ated key ex
hange proto
ol, the adversary e�e
tivelyhas the ability to mount 
hosen-
iphertext atta
ks of the type we are dis
ussing. For now let us just providethe de�nition and exer
ise it.



112 Goldwasser and BellareDe�nition 6.25 Let SE = (K; E ;D) be a symmetri
 en
ryption s
heme, let b 2 f0; 1g, and let A be analgorithm that has a

ess to two ora
les and returns a bit. We 
onsider the following experiment:Experiment Expind-

a-bSE;AK R Kd AEK(LR(�;�;b)) ;DK(�)If A queried DK(�) on a 
iphertext previously returned by EK(LR(�; �; b))Then return 0Else return dThe ind-

a-advantage of A is de�ned asAdvind-

aSE;A = P hExpind-

a-1SE;A = 1i�P hExpind-

a-0SE;A = 1i :For any t; qe; �e; qd; �d we de�ne the ind-

a-advantage of SE viaAdvind-

aSE (t; qe; �e; qd; �d) = maxA nAdvind-

aSE;A owhere the maximum is over all A having time-
omplexity t, making to the lr-en
ryption ora
le at most qequeries the sum of whose lengths is at most �e bits, and making to the de
ryption ora
le at most qd queriesthe sum of whose lengths is at most �d bits.The 
onventions with regard to resour
e measures are the same as those used in the 
ase of 
hosen-plaintextatta
ks. In parti
ular, the length of a query M0;M1 to the lr-en
ryption ora
le is the length is de�ned asthe length of M0, and the time-
omplexity is the exe
ution time of the entire experiment plus the size of the
ode of the adversary.We 
onsider an en
ryption s
heme to be \se
ure against 
hosen-
iphertext atta
k" if a \reasonable" adversary
annot obtain \signi�
ant" advantage in distinguishing the 
ases b = 0 and b = 1 given a

ess to the ora
les,where reasonable re
e
ts its resour
e usage. The te
hni
al notion is 
alled indistinguishability under 
hosen-
iphertext atta
k, denoted IND-CCA.6.11 Example 
hosen-
iphertext atta
ksChosen-
iphertext atta
ks are powerful enough to break all the standard modes of operation, even those likeCTR and CBC that (as we will see later) are se
ure against 
hosen-plaintext atta
k. The one-time pad s
hemeis also vulnerable to a 
hosen-
iphertext atta
k: perfe
t se
urity only takes into a

ount 
hosen-plaintextatta
ks. Let us now illustrate a few 
hosen-
iphertext atta
ks.6.11.1 Atta
k on CTRLet F : f0; 1gk � f0; 1gl ! f0; 1gL be a family of fun
tions and let SE = (K; E ;D) be the asso
iated R-CTR symmetri
 en
ryption s
heme as des
ribed in S
heme 6.5. The weakness of the s
heme that makes itsus
eptible to a 
hosen-
iphertext atta
k is the following. Say C[0℄C[1℄ is a 
iphertext of some L-bit messageM , and we 
ip bit i of C[1℄, resulting in a new 
iphertext C[0℄C 0[1℄. Let M 0 be the message obtained byde
rypting the new 
iphertext. Then M 0 equals M with the i-th bit 
ipped. (You should 
he
k that youunderstand why by looking at S
heme 6.5.) Thus, by making a de
ryption ora
le query of C[0℄C 0[1℄ one 
anlearn M 0 and thus M . In the following, we show how this idea 
an be applied to break the s
heme in ourmodel by �guring out in whi
h world an adversary has been pla
ed.Proposition 6.26 Let F : f0; 1gk�f0; 1gl ! f0; 1gL be a family of fun
tions and let SE = (K; E ;D) be the
orresponding R-CTR symmetri
 en
ryption s
heme as des
ribed in S
heme 6.5. ThenAdvind-

aSE (t; 1; L; 1; l+ L) = 1
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ture Notes 113for t = O(l + L) plus the time for one appli
ation of F .The advantage of this adversary is 1 even though it uses hardly any resour
es: just one query to ea
h ora
le.That is 
learly an indi
ation that the s
heme is inse
ure.Proof of Proposition 6.26: We will present an adversary algorithm A, having time-
omplexity t, making1 query to its lr-en
ryption ora
le, this query being of length L, making 1 query to its de
ryption ora
le,this query being of length l + L, and havingAdvind-

aSE;A = 1 :The Proposition follows.Remember the the lr-en
ryption ora
le EK(LR(�; �; b)) takes input a pair of messages, and returns an en
ryp-tion of either the left or the right message in the pair, depending on the value of b. The goal of A is todetermine the value of b. Our adversary works like this:Adversary AEK(LR(�;�;b)) ;DK(�)M0  0L ; M1  1LC[0℄C[1℄ EK(LR(M0;M1; b))C 0[1℄ C[1℄�1L ; C 0  C[0℄C 0[1℄M  DK(C 0)If M =M0 then return 1 else return 0The adversary's single lr-en
ryption ora
le query is the pair of distin
t messages M0;M1, ea
h one blo
klong. It is returned a 
iphertext C[0℄C[1℄. It 
ips the bits of C[1℄ to get C 0[1℄ and then feeds the 
iphertextC[0℄C 0[1℄ to the de
ryption ora
le. It bets on World 1 if it gets ba
k M0, and otherwise on World 0. It isimportant that C[0℄C 0[1℄ 6= C[0℄C[1℄, so the de
ryption ora
le query is legitimate. Now, we 
laim thatP hExpind-

a-1SE;A = 1i = 1P hExpind-

a-0SE;A = 1i = 0 :Hen
e Advind-

aSE;A = 1 � 0 = 1. And A a
hieved this advantage by making just one lr-en
ryption ora
lequery, whose length, whi
h as per our 
onventions is just the length of M0, is L bits, and just one de
ryptionora
le query, whose length is l + L bits. So Advind-

aSE (t; 1; L; 1; l+ L) = 1.Why are the two equations 
laimed above true? You have to return to the de�nitions of the quantities inquestion, as well as the des
ription of the s
heme itself, and walk it through. In World 1, meaning whenb = 1, let C[0℄C[1℄ denote the 
iphertext returned by the lr-en
ryption ora
le, and let R = StN(C[0℄). ThenC[1℄ = FK(NtSl(R+ 1))�M1 = FK(NtSl(R + 1))�1L :Now noti
e that M = DK(C[0℄C 0[1℄)= FK(NtSl(R + 1))�C 0[1℄= FK(NtSl(R + 1))�C[1℄�1L= FK(NtSl(R + 1))�(FK(NtSl(R+ 1))�1L)�1L= 0L= M0 :
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ryption ora
le will return M0, and thus A will return 1. In World 0, meaning when b = 0, letC[0℄C[1℄ denote the 
iphertext returned by the lr-en
ryption ora
le, and let R = StN(C[0℄). ThenC[1℄ = FK(NtSl(R+ 1))�M0 = FK(NtSl(R + 1))�0L :Now noti
e that M = DK(C[0℄C 0[1℄)= FK(NtSl(R + 1))�C 0[1℄= FK(NtSl(R + 1))�C[1℄�1L= FK(NtSl(R + 1))�(FK(NtSl(R+ 1))�0L)�1L= 1L= M1 :Thus, the de
ryption ora
le will return M1, and thus A will return 0, meaning will return 1 with probabilityzero.An atta
k on C-CTR (
f. S
heme 6.6) is similar, and is left to the reader.6.11.2 Atta
k on CBCLet E: f0; 1gk�f0; 1gl ! f0; 1gl be a blo
k 
ipher and let SE = (K; E ;D) be the asso
iated CBC symmetri
en
ryption s
heme as des
ribed in S
heme 6.4. The weakness of the s
heme that makes it sus
eptible to a
hosen-
iphertext atta
k is the following. Say C[0℄C[1℄ is a 
iphertext of some l-bit message M , and we 
ipbit i of the IV C[0℄, resulting in a new 
iphertext C 0[0℄C[1℄. Let M 0 be the message obtained by de
ryptingthe new 
iphertext. Then M 0 equals M with the i-th bit 
ipped. (You should 
he
k that you understandwhy by looking at S
heme 6.4.) Thus, by making a de
ryption ora
le query of C 0[0℄C[1℄ one 
an learn M 0and thus M . In the following, we show how this idea 
an be applied to break the s
heme in our model by�guring out in whi
h world an adversary has been pla
ed.Proposition 6.27 Let E: f0; 1gk � f0; 1gl ! f0; 1gl be a blo
k 
ipher and let SE = (K; E ;D) be the
orresponding CBC symmetri
 en
ryption s
heme as des
ribed in S
heme 6.4. ThenAdvind-

aSE (t; 1; l; 1; 2l) = 1for t = O(l) plus the time for one appli
ation of F .The advantage of this adversary is 1 even though it uses hardly any resour
es: just one query to ea
h ora
le.That is 
learly an indi
ation that the s
heme is inse
ure.Proof of Proposition 6.27: We will present an adversary algorithm A, having time-
omplexity t, making1 query to its lr-en
ryption ora
le, this query being of length l, making 1 query to its de
ryption ora
le, thisquery being of length 2l, and having Advind-

aSE;A = 1 :The Proposition follows.Remember the the lr-en
ryption ora
le EK(LR(�; �; b)) takes input a pair of messages, and returns an en
ryp-tion of either the left or the right message in the pair, depending on the value of b. The goal of A is todetermine the value of b. Our adversary works like this:
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ture Notes 115Adversary AEK(LR(�;�;b)) ;DK(�)M0  0l ; M1  1lC[0℄C[1℄ EK(LR(M0;M1; b))C 0[0℄ C[0℄�1L ; C 0  C 0[0℄C[1℄M  DK(C 0)If M =M0 then return 1 else return 0The adversary's single lr-en
ryption ora
le query is the pair of distin
t messages M0;M1, ea
h one blo
klong. It is returned a 
iphertext C[0℄C[1℄. It 
ips the bits of the IV C[0℄ to get a new IV C 0[0℄ and thenfeeds the 
iphertext C 0[0℄C[1℄ to the de
ryption ora
le. It bets on World 1 if it gets ba
k M0, and otherwiseon World 0. It is important that C 0[0℄C[1℄ 6= C[0℄C[1℄, so the de
ryption ora
le query is legitimate. Now,we 
laim that P hExpind-

a-1SE;A = 1i = 1P hExpind-

a-0SE;A = 1i = 0 :Hen
e Advind-

aSE;A = 1 � 0 = 1. And A a
hieved this advantage by making just one lr-en
ryption ora
lequery, whose length, whi
h as per our 
onventions is just the length of M0, is l bits, and just one de
ryptionora
le query, whose length is 2l bits. So Advind-

aSE (t; 1; l; 1; 2l) = 1.Why are the two equations 
laimed above true? You have to return to the de�nitions of the quantities inquestion, as well as the des
ription of the s
heme itself, and walk it through. In World 1, meaning whenb = 1, the lr-en
ryption ora
le returns C[0℄C[1℄ withC[1℄ = EK(C[0℄�M1) = EK(C[0℄�1l) :Now noti
e that M = DK(C 0[0℄C[1℄)= E�1K (C[1℄)�C 0[0℄= E�1K (EK(C[0℄�1l))�C 0[0℄= (C[0℄�1l)�C 0[0℄= (C[0℄�1l)�(C[0℄�1l)= 0l= M0 :Thus, the de
ryption ora
le will return M0, and thus A will return 1. In World 0, meaning when b = 0, thelr-en
ryption ora
le returns C[0℄C[1℄ withC[1℄ = EK(C[0℄�M0) = EK(C[0℄�0l) :Now noti
e that M = DK(C 0[0℄C[1℄)= E�1K (C[1℄)�C 0[0℄= E�1K (EK(C[0℄�0l))�C 0[0℄= (C[0℄�0l)�C 0[0℄= (C[0℄�0l)�(C[0℄�1l)



116 Goldwasser and Bellare= 1l= M1 :Thus, the de
ryption ora
le will return M1, and thus A will return 0, meaning will return 1 with probabilityzero.6.12 Other methods for symmetri
 en
ryption6.12.1 Generi
 en
ryption with pseudorandom fun
tionsThere is a general way to en
rypt with pseudorandom fun
tions. Suppose you want to en
rypt m bitmessages. (Think of m as large.) Suppose we have a pseudorandom fun
tion family F in whi
h ea
h key Kspe
i�es a fun
tion FK mapping l bits to m bits, for some �xed but quite large value l. Then we 
an en
ryptM via EK(M) = (r; FK(r)�M) for random r. We de
rypt (r; C) by 
omputing M = FK(r)�C. This is themethod of [92℄.Theorem 6.28 [92℄ Suppose F is a pseudorandom fun
tion family with output length m. Then the s
heme(E ;D) de�ne above is a se
ure private key en
ryption s
heme for m-bit messages.The di�eren
e between this and the CBC and XOR methods is that in the latter, we only needed a PRFmapping l bits to l bits for some �xed l independent of the message length. One way to get su
h a PRFis to use DES or some other blo
k 
ipher. Thus the CBC and XOR methods result in eÆ
ient en
ryption.To use the general s
heme we have just de�ned we need to 
onstru
ting PRFs that map l bits to m bits forlarge m.There are several approa
hes to 
onstru
ting \large" PRFs, depending on the eÆ
ien
y one wants and whatassumptions one wants to make. We have seen in Chapter 5 that pseudorandom fun
tion families 
an bebuilt given one-way fun
tions. Thus we 
ould go this way, but it is quite ineÆ
ient. Alternatively, we 
ouldtry to build these length extending PRFs out of given �xed length PRFs. See Se
tion 5.11.6.12.2 En
ryption with pseudorandom bit generatorsA pseudorandom bit generator is a deterministi
 fun
tion G whi
h takes a k-bit seed and produ
es a p(k) > kbit sequen
e of bits that looks pseudorandom. These obje
t were de�ned and studied in Chapter 3. Re
allthe property they have is that no eÆ
ient algorithm 
an distinguish between a random p(k) bit string andthe string G(K) with random K.Re
all the one-time pad en
ryption s
heme: we just XOR the message bits with the pad bits. The problemis we run out of pad bits very soon. Pseudorandom bit generators provide probably the most natural way toget around this. If G is a pseudorandom bit generator and K is the k-bit shared key, the parties impli
itlyshare the long sequen
e G(K). Now, XOR message bits with the bits of G(K). Never use an output bit ofG(K) more than on
e. Sin
e we 
an stret
h to any polynomial length, we have enough bits to en
rypt.More pre
isely, the parties maintain a 
ounter N , initially 0. Let Gi(K) denote the i-th bit of the outputof G(K). Let M be the message to en
rypt. Let Mi be its i-th bit, and let n be its length. The sender
omputes Ci = GN+i(K)�Mi for i = 1; : : : ; n and lets C = C1 : : : Cn be the 
iphertext. This is transmittedto the re
eiver. Now the parties update the 
ounter via N  N + n. The total number of bits that 
an been
rypted is the number p(k) of bits output by the generator. One 
an show, using the de�nition of PRBGs,that this works:Theorem 6.29 If G is a se
ure pseudorandom bit generator then the above is a se
ure en
ryption s
heme.
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ture Notes 117One seeming disadvantage of using a PRBG is that the parties must maintain a 
ommon, syn
hronized
ounter, sin
e both need to know where they are in the sequen
e G(K). (Note that the s
hemes we havedis
ussed above avoid this. Although some of the s
hemes above may optionally use a 
ounter instead of arandom value, this 
ounter is not a syn
hronized one: the sender maintains a 
ounter, but the re
eiver doesnot, and doesn't 
are that the sender thinks of 
ounters.) To get around this, we might have the sender sendthe 
urrent 
ounter value N (in the 
lear) with ea
h message. If authenti
ation is being used, the value Nshould be authenti
ated.The more major disadvantage is that the pseudorandom sequen
e G(K) may not have random a

ess. Toprodu
e the i-th bit one may have to start from the beginning and produ
e all bits up to the i-th one. (Thismeans the time to en
rypt M depends on the number and length of message en
rypted in the past, not adesirable feature.) Alternatively the sequen
e G(K) may be pre-
omputed and stored, but this uses a lot ofstorage. Whether this drawba
k exists or not depends of 
ourse on the 
hoi
e of PRBG G.So how do we get pseudorandom bit generators? We saw some number theoreti
 
onstru
tions in Chapter 3.These are less eÆ
ient than blo
k 
ipher based methods, but are based on di�erent kinds of assumptionswhi
h might be preferable. More importantly, though, these 
onstru
tions have the drawba
k that randoma

ess is not possible. Alternatively, one 
ould build pseudorandom bit generators out of �nite PRFs. This
an be done so that random a

ess is possible. However the resulting en
ryption s
heme ends up being nottoo di�erent from the XOR s
heme with a 
ounter so it isn't 
lear it is worth a separate dis
ussion.6.12.3 En
ryption with one-way fun
tionsWe saw in Chapter 3 that pseudorandom bit generators exist if one-way fun
tions exist [109℄. It is alsoknown that given any se
ure private key en
ryption s
heme one 
an 
onstru
t a one-way fun
tion [110℄.Thus we have the following.Theorem 6.30 There exists a se
ure private key en
ryption s
heme if and only if there exists a one-wayfun
tion.We will see later that the existen
e of se
ure publi
 key en
ryption s
hemes requires di�erent kinds ofassumptions, namely the existen
e of primitives with \trapdoors."6.13 Histori
al NotesThe pioneering work on the theory of en
ryption is that of Goldwasser and Mi
ali [98℄, with re�nements by[141, 91℄. This body of work is however in the asymmetri
 (ie. publi
 key) setting, and uses the asymptoti
framework of polynomial-time adversaries and negligible su

ess probabilities. The treatment of symmetri
en
ryption we are using is from 
iteBellareRo:symmetri
. In parti
ular De�nition 6.1 and the 
on
rete se
u-rity framework are from [20℄. The analysis of the CTR mode en
ryption s
hemes, as given in Theorems 6.17and 6.18, is also from [20℄.6.14 Exer
ises and ProblemsProblem 6.31 Formalize a notion of se
urity against key-re
overy for symmstri
 en
ryption s
hemes, andprove an analogue of Proposition 6.16.Problem 6.32 Let l � 1 and m � 2 be integers, and let SE = (K; E ;D) be a given symmetri
 en
ryptions
heme whose asso
iated plaintext spa
e is f0; 1gl, meaning one 
an safely en
rypt only messages of lengthl. In order to be able to en
rypt longer messages, we de�ne a new symmetri
 en
ryption s
heme SE (m) =(K; E(m);D(m)) having the same key generation algorithm as that of SE , plaintext spa
e f0; 1glm, anden
ryption and de
ryption algorithms as follows:



118 Goldwasser and BellareAlgorithm E(m)K (M)Parse M as M [1℄ : : :M [m℄For i = 1 to m doC[i℄ EK(M [i℄)EndForC  (C[1℄; : : : ; C[m℄)Return C
Algorithm D(m)K (C)Parse C as (C[1℄; : : : ; C[m℄)For i = 1 to m doM [i℄ DK(C[i℄)If M [i℄ = ? then return ?EndForM  M [1℄ : : :M [m℄Return MHere M is lm bits long. For en
ryption, M is broken into a sequen
e of blo
ks M = M [1℄ : : :M [m℄, ea
hblo
k being l-bits long. For de
ryption, C is parsed as a sequen
e of m strings, ea
h 
 bits long, where 
denotes the length of a 
iphertext in s
heme SE . If any 
omponent 
iphertexts C[i℄ is invalid (meaning DKreturns ? for it) then the entire 
iphertext (C[1℄; : : : ; C[m℄) is de
lared invalid.(a) Show that Advind-

aSE(m) (t; 1; lm; 1; 
m) = 1for some small t that you must spe
ify.(b) Show that Advind-
paSE(m) (t; q; lmq) � Advind-
paSE (t;mq; lmq)for any t; q.Part (a) says that SE (m) is inse
ure against 
hosen-
iphertext atta
k. Note this is true regardless of these
urity properties of SE , whi
h may itself be se
ure against 
hosen-
iphertext atta
k. Part (b) says that ifSE is se
ure against 
hosen-plaintext atta
k, then so is SE(m).Problem 6.33 Let E: f0; 1gk � f0; 1gl ! f0; 1gl be a blo
k 
ipher. Operating it in CBC mode with IVa 
ounter yields a stateful symmetri
 en
ryption s
heme, SE = (K; E ;D). The key generation algorithmsimply returns a random key for the blo
k 
ipher, meaning it pi
ks a random k-bit string key and returnsit, so that the key spa
e is f0; 1gk. The en
ryption and de
ryption algorithms are as follows:Algorithm EK(M)If jM j < l then return ?If jM j mod l 6= 0 then return ?Parse M as M [1℄ : : :M [n℄C[0℄ R NtSl(
tr)For i = 1; : : : ; n doC[i℄ FK(C[i� 1℄�M [i℄)EndForC  C[0℄C[1℄ : : : C[n℄
tr  
tr + nReturn C

Algorithm DK(C)If jCj < 2l then return ?If jCj mod l 6= 0 then return ?Parse C as C[0℄C[1℄ : : : C[n℄For i = 1; : : : ; n doM [i℄ E�1K (C[i℄)�C[i� 1℄EndForM  M [1℄ : : :M [n℄Return MParsing M means that we divide it into l-bit blo
ks and let M [i℄ denote the i-th su
h blo
k. In parsingC we also divide it into l-bit blo
ks, but this time the blo
ks are numbered starting at 0. The en
ryptermaintains a 
ounter 
tr, initially zero. The IV is C[0℄, whi
h is 
hosen to be the l-bit binary representationof the integer 
tr. The 
ounter is updated by the en
ryption algorithm as indi
ated.Show that SE is inse
ure against 
hosen-plaintext atta
k. Namely, present a lower bound onAdvind-
paSE (t; q; �)for 
ertain spe
i�
, small values of t; q; � that you will spe
ify, along with a 
ertain large (ie. 
lose to one)
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ture Notes 119value of the lower bound itself. Prove your 
laim 
orre
t by presenting and analyzing the 
orrespondingadversary.Your atta
k 
an assume that the initial value of the 
ounter used by the LR-en
ryption ora
le is is zero.(This 
orresponds to a setting in whi
h the atta
ker is present right from the moment the en
rypter startsusing the s
heme.) On
e you have solved the problem in this setting, however, try to also �nd an atta
k inwhi
h the initial value of the 
ounter used by the LR-en
ryption ora
le is not known to the atta
ker. (This
orresponds to the more realisti
 setting in whi
h the atta
ker enters the pi
ture after the s
heme has beenin use for some time.)Problem 6.34 Let P : f0; 1gk � f0; 1g2l ! f0; 1g2l be a family of permutations. We de�ne a symmetri
en
ryption s
heme SE = (K; E ;D). The key generation algorithm simply returns a random key for P ,meaning it pi
ks a random k-bit string key and returns it, so that the key spa
e is f0; 1gk. The messagespa
e is f0; 1gln where n > 1 is some �xed, given integer. The en
ryption and de
ryption algorithms are asfollows: Algorithm EK(M)If jM j 6= nl then return ?Parse M as M [1℄ : : :M [n℄For i = 1; : : : ; n doR[i℄ R f0; 1gl ; C[i℄ PK(R[i℄kM [i℄)Return C[1℄ : : : C[n℄
Algorithm DK(C)If jCj 6= 2nl then return ?Parse C as C[1℄ : : : C[n℄For i = 1; : : : ; n doR[i℄kM [i℄ P�1K (C[i℄)Return M [1℄ : : :M [n℄Show that this s
heme is se
ure against 
hosen-plaintext atta
k as long as P is a se
ure PRP. More pre
iselyshow that Advind-
paSE (t; q; lnq) � 2 �Advprp-
paP (t0; q0) + n2q22l ;where you must spe
ify the values of t0; q0 as fun
tions of t; q; l; n.Hint: Pro
eed in analogy to the analysis of CTR mode en
ryption done above. First analyze the s
hemewhi
h uses in pla
e of P the family Perm2l of random permutations on 2l bits. Then turn to the s
hemeusing the given PRP P .Problem 6.35 Let l � 64 be an integer, and let P : f0; 1gk � f0; 1gl ! f0; 1gl be a pseudorandom permu-tation. We de�ne a symmetri
 en
ryption s
heme S as follows. The key is a randomly 
hosen k-bit stringK, meaning a key for the PRP. The en
ryption and de
ryption algorithms are as follows:Algorithm EK(x1 : : : xn)r R f0; 1; : : : ; 2l � 1gFor i = 1; : : : ; n doyi  PK(hr + ii�xi)End ForReturn hriy1 : : : yn

Algorithm DK(hriy1 : : : yn)For i = 1; : : : ; n doxi  P�1K (yi)�hr + iiEnd ForReturn x1 : : : xnHere the en
ryption algorithm takes as input a message x of length a multiple of l, whi
h it views asdivided into l bit blo
ks, x = x1 : : : xn. It returns a string y of length l(n + 1), 
omputed as shown. Thede
ryption algorithm takes y to return x. Here \+" denotes addition modulo 2l, and hji denotes the binaryrepresentation of integer j as an l-bit string.Show that this s
heme is inse
ure. More pre
isely, show thatAdvind-
paSE (t; q; �) � 13 ;where t; q; � are values that you will spe
ify, and should be as small as possible.



C h a p t e r 7Publi
-key en
ryption

The idea of a publi
-key 
ryptosystem (PKC) was proposed by DiÆe and Hellman in their pioneering paper[68℄ in 1976. Their revolutionary idea was to enable se
ure message ex
hange between sender and re
eiverwithout ever having to meet in advan
e to agree on a 
ommon se
ret key. They proposed the 
on
eptof a trapdoor fun
tion and how it 
an be used to a
hieve a publi
-key 
ryptosystem. Shortly there afterRivest, Shamir and Adelman proposed the �rst 
andidate trapdoor fun
tion, the RSA. The story of modern
ryptography followed.The setup for a publi
-key 
ryptosystem is of a network of users u1 � � �un rather than an single pair of users.Ea
h user u in the network has a pair of keys < Pu; Su > asso
iated with him, the publi
 key Pu whi
h ispublished under the users name in a \publi
 dire
tory" a

essible for everyone to read, and the private-keySu whi
h is known only to u. The pairs of keys are generated by running a key-generation algorithm. Tosend a se
ret messagem to u everyone in the network uses the same exa
t method, whi
h involves looking upPu, 
omputing E(Pu;m) where E is a publi
 en
ryption algorithm, and sending the resulting 
iphertext 
 tou. Upon re
eiving 
iphertext 
, user u 
an de
rypt by looking up his private key Su and 
omputing D(Su; 
)where D is a publi
 de
ryption algorithm. Clearly, for this to work we need that D(Su; E(Pu;m)) = m.A parti
ular PKC is thus de�ned by a triplet of publi
 algorithms (G;E;D), the key generation, en
ryption,and de
ryption algorithms.7.1 De�nition of Publi
-Key En
ryptionWe now formally de�ne a publi
-key en
ryption s
heme. For now the de�nition will say nothing about wemean by \se
urity" of a s
heme (whi
h is the subje
t of mu
h dis
ussion in subsequent se
tions).De�nition 7.1 A publi
-key en
ryption s
heme is a triple, (G;E;D), of probabilisti
 polynomial-time al-gorithms satisfying the following 
onditions(1) key generation algorithm : a probabilisti
 expe
ted polynomial-time algorithm G, whi
h, on input1k (the se
urity parameter) produ
es a pair (e; d) where e is 
alled the publi
 key , and d is the
orresponding private key. (Notation: (e; d) 2 G(1k)). We will also refer to the pair (e; d) a pair ofen
ryption/de
ryption keys.(2) An en
ryption algorithm: a probabilisti
 polynomial time algorithm E whi
h takes as input a se
urityparameter 1k, a publi
-key e from the range of G(1k) and string m 2 f0; 1gk 
alled the message, andprodu
es as output string 
 2 f0; 1g� 
alled the 
iphertext. (We use the notation 
 2 E(1k; e;m) to120
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ture Notes 121denote 
 being an en
ryption of message m using key e with se
urity parameter k. When 
lear, we useshorthand 
 2 Ee(m), or 
 2 E(m). )(3) A de
ryption algorithm: a probabilisti
 polynomial time algorithm D that takes as inputs a se
urityparameter 1k, a private-key d from the range of G(1k), and a 
iphertext 
 from the range of E(1k; e;m),and produ
es as output a string m0 2 f0; 1g�, su
h that for every pair (e; d) in the range of G(1k), forevery m, for every 
 2 D(1k; e;m), the prob(D(1k ; d; 
) 6= m0) is negligible.(4) Furthermore, this system is \se
ure" (see De�nition 7.3).How to use this de�nition. To use a publi
-key en
ryption s
heme (G;E;D) with se
urity parameter1k, user A runs G(1k) to obtain a pair (e; d) of en
ryption/de
ryption keys. User A then "publishes" e in apubli
 �le, and keeps private d. If anyone wants to send A a message, then need to lookup e and 
omputeE(1k; e;m). Upon re
eipt of 
 2 E(1k; e;m), A 
omputes message m = D(1k; d; 
).Comments on the De�nitionsComment 0: Note that essentially there is no di�eren
e between the de�nition of a private-key en
ryptions
heme and the de�nition of a publi
-key en
ryption s
heme at this point. We 
ould have de�ned a privatekey en
ryption s
heme to have one key e for en
ryption and a di�erent key d for de
ryption. The di�eren
ebetween the two de�nitions 
omes up in the se
urity de�nition. In a publi
-key en
ryption s
heme theadversary or "breaking algorithm" is given e (the publi
 key) as an additional input; whereas in private-keys
heme e is not given to the adversary (thus without loss of generality one may assume that e = d).Comment 1: At this stage, en
ryption using a key of length k is de�ned only for messages of length k;generalization is postponed to Convention 7.1.Comment 2: Note that as algorithm G is polynomial time, the length of its output (e; d) (or e in theprivate-key en
ryption 
ase) is bounded by a polynomial in k. On the other hand, sin
e k also serves as the\se
urity parameter", k must be polynomial in jdj (or jej in the private-key en
ryption 
ase) in whi
h 
ase\polynomial in k" is equivalent to \polynomial in jdj".Comment 3: Condition (3) in De�nition 7.7 and 7.1 may be relaxed so that inequality may o

ur withnegligible probability. For simpli
ity, we 
hose to adopt here the more 
onservative requirement.Comment 4: We have allowed the en
ryption algorithm in both of the above de�nitions to be probabilisti
.Namely, there 
an be many 
yphertexts 
orresponding to the same message. In the simple (informal) exampleof a publi
-key en
ryption s
heme based on a trapdoor fun
tion outlined in the introdu
tion, every messagehas a unique 
orresponding 
iphertext. That is too restri
tive as, for example, if E is deterministi
, the sameinputs would always produ
e the same outputs, an undesirable 
hara
teristi
.Comment 5: We allowed D to be a probabilisti
 algorithms. This may 
on
eivably allow the 
onsiderationof en
ryption s
hemes whi
h may o�er higher se
urity ([46℄). A

ordingly, we may relax the requirementthat 8m;D(E(m)) = m to hold only with high probability.Conventions Regarding De�nitionsMessages of length not equal to k (the length of the en
ryption key) are en
rypted by breaking them intoblo
ks of length k and possibly padding the last blo
k. We extend the notation so thatEe(�1 � � ��l�l+1) = Ee(�1) � � �Ee(�l) �Ee(�l+1p)where j�1j = � � � = j�lj = k, j�l+1j�k, and p is some standard padding of length k � j�l+1j.The above 
onvention may be interpreted in two ways. First, it waves the extremely restri
ting 
onventionby whi
h the en
ryption s
heme 
an be used only to en
rypt messages of length equal to the length of the
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ond, it allows to redu
e the se
urity of en
rypting many messages using the same key to the se
urityof en
rypting a single message.The next 
onvention regarding en
ryption s
hemes introdu
es a brea
h of se
urity: namely, the length of the
leartext is always revealed by en
ryption s
hemes whi
h follow this 
onvention. However, as we show in alatter se
tion some information about the length of the 
leartext must be leaked by any en
ryption s
heme.The en
ryption algorithm maps messages of the same length to 
ryptograms of the same length.7.2 Simple Examples of PKC: The Trapdoor Fun
tion ModelA 
olle
tion of trapdoor fun
tions, dis
ussed at length in the 
hapter on one-way fun
tions and trapdoorfun
tions, has been de�ned as F = ffi : Di ! Digi2I where Di � f0; 1gjij, and I is a set of indi
es. Re
allthat 8i, fi was easy to 
ompute, but hard to invert; and 8i, there existed ti su
h that given ti and fi(x),fi(x) 
ould be inverted in polynomial time.DiÆe and Hellman suggested using the supposed existen
e of trapdoor fun
tions to implement Publi
 KeyCryptosystems as follows.(1) The generator G on se
urity parameter 1k outputs pairs (f; tf ) where f is a trapdoor fun
tion and tfits asso
iated trapdoor information.(2) For every message m 2M , E(f;m) = f(m).(3) Given 
 2 E(f;m) and tf , D(tf ; 
) = f�1(
) = f�1(f(m)) = m.7.2.1 Problems with the Trapdoor Fun
tion ModelThere are several immediate problems whi
h 
ome up in using the trapdoor fun
tion model for publi
 keyen
ryption.We summarize brie
y the main problems whi
h will be elaborated on in the next few se
tions.(1) Spe
ial Message Spa
es. The fa
t that f is a trapdoor fun
tion doesn't imply that inverting f(x) whenx is spe
ial is hard. Namely, suppose that the set of messages that we would like to send is drawn froma highly stru
tured message spa
e su
h as the English language, or more simply M = f0; 1g, it may beeasy to invert f(m). In fa
t, it is always easy to distinguish between f(0) and f(1)).(2) Partial Information. The fa
t that f is a one-way or trapdoor fun
tion doesn't ne
essarily imply thatf(x) hide all information about x. Even a bit of leakage many be too mu
h for some appli
ations. Forexample, for 
andidate one-way fun
tion f(p; g; x) = gx mod p where p is prime and g is a generator, theleast signi�
ant bit of x is always easily 
omputable from f(x). For RSA fun
tion f(n; l; x) = xl mod n,the Ja
obi symbol Jn(x) = Jn(xl mod n). Namely, the Ja
obi symbol of x is easy to 
ompute fromf(n; l; x) { this was observed by Lipton[130℄ who used this fast to 
ra
k a proto
ol for Mental poker byShamir Rivest and Adleman[185℄. See below. Moreover, In fa
t, for any one-way fun
tion f , informationsu
h as \the parity of f(m)" about m is always easy to 
ompute from f(m). See below.(3) Relationship between En
rypted Messages Clearly, we may be sending messages whi
h are related toea
h other in the 
ourse of a 
ommuni
ation. Some examples are: sending the same se
ret message toseveral re
ipients, or sending the same message (or slight variants) many times. It is thus desirable andsometimes essential that su
h dependen
ies remain se
ret. In the trapdoor fun
tion model, it is trivialto see that sending the same message twi
e is always dete
table. More serious problems were noted byseveral resear
hers, most notably by H�astad who shows [106℄ that if RSA with an exponent l is used,and the same message (or known linear 
ombinations of the same message) is send to l re
ipients, thenthe message 
an be 
omputed by an adversary.
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ture Notes 1237.2.2 Problems with Deterministi
 En
ryption in GeneralThe above problems are a
tually shared by any publi
-key 
ryptosystem in whi
h the en
ryption algorithmis deterministi
.It is obvious for problems 1 and 3 above. It is easy to show also for problem 3 as follows. Let E is anydeterministi
 en
ryption algorithm, we 
an extra
t partial information by using something similar to thefollowing predi
ate: P (x) = � 1 if E(x) even0 if E(x) odd �It is 
lear that we 
an easily 
ompute this predi
ate sin
e all we have to do is take the low bit of E(x). UnlessE(x) is always even or always odd for all the x's in the message spa
e, we have obtained partial informationabout x. If E(x) is always even or odd, the low bit of E(x) 
ontains no information. But, some other bit ofE(x) must 
ontain some information otherwise the message spa
e is 
omposed of only one message in whi
h
ase we have total information. Then, simply use that bit instead of the lowest bit and we have a partialinformation obtaining predi
ate.7.2.3 The RSA CryptosystemIn 1977 Shamir, Rivest and Adelman proposed the �rst implementation of trapdoor fun
tion, the RSAfun
tion, [170℄. We refer the reader to 
hapter 2, in parti
ular se
tions 2.2.5 and Se
tion 2.17 for a thoroughtreatment of the RSA trapdoor fun
tion.Here, let us examine the use of the RSA trapdoor fun
tion for the purpose of en
ryption in the straightforward manner proposed by DiÆe and Hellman. We will show that it will not satisfy the kind of se
uritywhi
h we desire. We will later see that a probabilisti
 variant will do the job.Re
all the de�nition of RSA trapdoor fun
tion 2.17. Let p; q denote primes, n = pq, Z�n = f1 � x �n; (x; n) = 1g the multipli
ative group whose 
ardinality is '(n) = (p � 1)(q � 1), and e 2 Zp�1 relativelyprime to '(n). Our set of indi
es will be I = f< n; e > su
h that n = pq jpj = jqjg and the trapdoorasso
iated with the parti
ular index < n; e > be t<n;e> = d su
h that ed = 1 mod �(n). Let RSA =fRSA<n;e> : Z�n ! Z�ng<n;e>2I where RSA<n;e>(x) = xe mod nSparse Message Spa
esWe showed that the RSA fun
tion has some ni
e properties that seem espe
ially good for use as a PKC. Forexample, we showed for a given pair < n; e >, it is either hard to invert RSA<n;e> for all but a negligiblefra
tion of x's in Z�n, or easy to invert RSA<n;e>(x) 8x; x 2 Z� . Does this mean that the RSA 
ryptosystemis diÆ
ult to break for almost all messages if fa
toring integers is hard? The answer is negative.Suppose that the message spa
e M we are interested in is the English language. Then, let Mk = f0; 1gkwhere m 2 Mk is an English senten
e. Compared to the entire spa
e, the set of English senten
es is quitesmall. For example, jMkjjZ�nj � 12pn . Thus it is possible that fn;e(x) is easy to invert for all x 2 Mk, even ifthe fa
torization problem is hard. In other words, English senten
es are highly stru
tured; it might well bethe 
ase that our fun
tion 
an be easily inverted on all su
h inputs. Clearly, we would ultimately like ouren
ryption s
hemes to be se
ure for all types of message spa
es, in
luding English text.Partial Information about RSAWhat partial information about x 
an be 
omputed from RSA<n;e>(x).We showed in the 
hapter on one-way and trapdoor fun
tions, that indeed some bits su
h as the leastsigni�
ant bit and most signi�
ant bit of RSA are very well hidden. This is the good news.
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ases very subtle leakage of partial information 
an defeat the whole purpose ofen
ryption. We present a \
ute" example of this shown by Lipton shortly after RSA was invented.An Example: Mental Poker (SRA '76): Mental Poker is a proto
ol by whi
h two parties ea
h of whomdistrusts the other 
an deal ea
h other 
ards from a de
k without either being able to 
heat. The proto
olfor A to deal B a 
ard goes like this:(1) A and B agree on a set X = fx1; : : : ; x52g; xi 2 Z�n, of random numbers where n = pq, p and q primeand known to both A and B. These numbers represent the de
k of 
ards, xi representing the ith 
ardin the de
k.(2) A pi
ks s su
h that (s; '(n)) = 1, and t su
h that st � 1 (mod '(n)) se
retly. B does the same for eand f . (I.e., ef � 1 (mod '(n)))(3) A 
al
ulates xsi mod n for i = 1 : : : 52, shu�es the numbers, and sends them to B.(4) B 
al
ulates (xsi mod n)e mod n for i = 1 : : : 52, shu�es the numbers, and sends them to A.(5) A 
al
ulates ((xsi mod n)e mod n)t mod n = xei mod n for i = 1 : : : 52. A then 
hooses a 
ard randomly(I.e., pi
ks xej where j 2 [1 : : : 52℄) and sends it to B.(6) B then takes (xej mod n)d mod n = xj mod n. This is the 
ard B has been dealt.Why it works: Note that so long as no partial information 
an be obtained from the RSA trapdoor fun
tion,neither A nor B 
an in
uen
e in any way the probably of B getting any given 
ard. A is unable to give Bbad 
ards and likewise B 
an not deal himself good 
ards. This follows from the fa
t that en
rypting the
ards is analogous to pla
ing ea
h of them in boxes lo
ked with padlo
ks. So long as a 
ard is lo
ked in abox with a padlo
k of the other player's on it, nothing 
an be told about it and it is indistinguishable fromthe other lo
ked boxes.When B gets the de
k in step 3, he has no idea whi
h 
ard is whi
h and thus is unable to in
uen
e whi
h
ard he is dealt. However, A 
an still tell them apart sin
e its A's padlo
ks that are on the boxes. To preventA from being able to in
uen
e the 
ards, B then puts his own lo
ks on the boxes as well and shu�es thede
k. Now A also 
an not tell the 
ards apart so when he is for
ed to make his 
hoi
e, he is for
ed to justdeal a random 
ard. Thus, the two players in spite of distrusting ea
h other 
an play poker.How to extra
t partial information from the RSA fun
tion: The proto
ol fails, however, be
auseit is possible to extra
t partial information from the RSA fun
tion and thus determine to some degree ofa

ura
y whi
h 
ards are whi
h and hen
e in
uen
e the out
ome of the draw. One way to do this is by
omputing the Ja
obi symbol sin
e (Jn(xi)) = (Jn(xsi )) sin
e s is odd. Thus, sin
e half of the xi's have aJa
obi symbol of 1 on the average sin
e they are random numbers in Z�n, we 
an extra
t roughly one bit ofinformation from ea
h of the 
ards. In order to in
uen
e the draw in our favor, we simply determine whetheror not the 
ards with a Ja
obi symbol of 1 or the 
ards with a Ja
obi symbol of -1 are better for us and thendraw only from that set of 
ards.One's immediate rea
tion to this, of 
ourse, is simply to modify the proto
ol so that in step 1 only numberswith say a Ja
obi symbol of 1 are 
hosen. Then no information will be gained by 
omputing the Ja
obisymbol. However, this is no guarantee that some other more 
lever predi
ate does not exist whi
h 
an stillextra
t partial information and indeed su
h fun
tions must exist by the very nature of trapdoor fun
tions.Low exponent atta
ksLet the exponent be e = 3. We saw that any exponent relatively prime to '(N) is OK, and we 
an easily
hoose N = pq so that 3 is relatively prime to (p�1)(q�1) = '(N). This is a popular 
hoi
e for performan
ereasons. En
ryption is now fast. And we saw that RSA is still (assumed) one-way under this 
hoi
e.So en
ryption of m is now m3 mod N . Here is an interesting atta
k illustrating the weaknesses of RSAen
ryption, due to Coppersmith, Franklin, Patarin and Reiter [58℄. Suppose I en
rypt m and then m+ 1. I
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laim you 
an re
over m. We have 
iphertexts:
1 = m3
2 = (m+ 1)3 = m3 + 3m+ 3m2 + 1 = 
1 + 3m+ 3m2 + 1Now lets try to solve for m. Perhaps the �rst thought that springs to mind is that we have a quadrati
equation for m. But taking square roots is hard, so we don't know how to solve it that way. It turns out thefollowing works: 
2 + 2
1 � 1
2 � 
1 + 2 = (m+ 1)3 + 2m3 � 1(m+ 1)3 �m3 + 2 = 3m3 + 3m2 + 3m3m2 + 3m+ 3 = m :This 
an be generalized. First, you 
an generalize to messages m and �m + � for known �; �. Se
ond, itworks for exponents greater than 3. The atta
k then runs in time O(e2) so it is feasible for small exponents.Finally, it 
an work for k messages related by a higher degree polynomial.These are the kinds of atta
ks we most de�nitely would like to avoid.7.2.4 Rabin's Publi
 key CryptosystemRe
all Rabin's trapdoor fun
tion from Chapter 2.fn(m) � m2 mod nwhere n is the produ
t of two large primes, p and q. On
e again, this fun
tion 
an yield another example ofa trapdoor/publi
 key 
ryptosystem ex
ept that fn is not as permutation but a 4-to-1 fun
tion. An inverseof fn(m): f�1n (m2) = x su
h that x2 = m2 mod nHowever, in pra
ti
e, when we invert Rabin's fun
tion, we do not simply want any square root of theen
rypted message, but the 
orre
t one of the four that was meant to be sent by the sender and wouldbe meaningful to the intended re
ipient. So, we need to add a 
onstraint to uniquely identify the root xwhi
h must be output by the de
ryption algorithm on fn(m2) su
h as �nd x su
h that x2 = m2 mod n,and x 2 S where S is a property for whi
h it is quite unlikely that there exists two roots m;x 2 S. What
ould S be? Well if the message spa
e M is sparse in Z�n (whi
h would usually be the 
ase), then S may besimply M . In su
h 
ase it is unlikely that there exists m 6= m0 2 M su
h that m02 = m2 mod n. (If M isnot sparse, S may be the all x whose last 20 digits are r for some random r. Then to send m in se
re
y,(fn(m0) = fn(220m+ r); r) need be sent.)Re
all, that earlier in the 
lass, we had shown that inverting Rabin's fun
tion is as hard as fa
toring. Namely,we had shown that inverting Rabin's fun
tion for � of the m2 2 Z�n's implies the ability to fa
tor. The proofwent as follows:� Suppose there existed a bla
k box that on inputs x2 responded with a y su
h that x2 = y2 mod n.Then, to fa
tor n, 
hoose an i at random from Z�n and give as input i2 mod n to the bla
k box. If thebox responds with a y, su
h that y 6= �i, then we 
an indeed fa
tor n by 
omputing g
d(i� y; n). Inthe 
ase that y = �i, we have gained no information, so repeat.If we think of this bla
k box as a de
oding algorithm for the publi
 key system based on Rabin's fun
tionused to en
rypt messages in message spa
e M , 
an we 
on
lude that if it is possible to de
rypt the publi
 keysystem fn(m) for m 2M , then it is possible to fa
tor n?If the message spa
e M is sparse, then the answer is no. Why? for the bla
k box (above) to be of any usewe need to feed it with an fn(i) for whi
h there exists an y su
h that y 2M and y 6= i. The probability thatsu
h y exists is about jMjjZ�nj , whi
h may be exponentially small.
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e M is not sparse, we run into another problem. Rabin's s
heme would not be se
ure inthe presen
e of an a
tive adversary who is 
apable of a 
hosen 
iphertext atta
k. This is easy to see againusing the above proof that inverting Rabin's fun
tion is as hard as fa
toring. Temporary a

ess to a de
odingalgorithm for Rabin's publi
 key en
ryption for message in M , is the same as having a

ess to the bla
k boxof the above proof. The adversary 
hooses i at random and feeds the de
oding algorithm with fn(i). If theadversary gets ba
k y su
h that y2 = i2 mod n, (again, i 6= �y), fa
tor n, and obtain the se
ret key. If M isnot sparse this will be the 
ase after trying a polynomial number of i's. From here on, the adversary wouldbe able to de
rypt any 
iphertext with the aid of the se
ret key and without the need for a bla
k box.Therefore, either Rabin's s
heme is not equivalent to fa
toring, whi
h is the 
ase when inverting on a sparsemessage spa
e, or (when M is not sparse) it is inse
ure before a 
hosen 
iphertext adversary.7.2.5 Knapsa
ksA number of publi
-key 
ryptosystems have been proposed whi
h are based on the knapsa
k (or | moreproperly | the subset sum) problem: given a ve
tor a = (a1; a2; : : : ; an) of integers, and a target value C, todetermine if there is a length-n ve
tor x of zeroes and ones su
h that a �x = C. This problem is NP-
omplete[86℄.To use the knapsa
k problem as the basis for a publi
-key 
ryptosystem, you 
reate a publi
 key by 
reatinga knapsa
k ve
tor a, and publish that as your publi
 key. Someone else 
an send you the en
ryption of amessage M (where M is a length-n bit ve
tor), by sending you the value of the inner produ
t C = M � a.Clearly, to de
rypt this 
iphertext is an instan
e of the knapsa
k problem. To make this problem easy foryou, you need to build in hidden stru
ture (that is, a trapdoor) into the knapsa
k so that the en
ryptionoperation be
omes one-to-one and so that you 
an de
rypt a re
eived 
iphertext easily. It seems, however,that the problem of solving knapsa
ks 
ontaining a trapdoor is not NP-
omplete, so that the diÆ
ulty ofbreaking su
h a knapsa
k is no longer related to the P = NP question.In fa
t, history has not been kind to knapsa
k s
hemes; most of them have been broken by extremely 
leveranalysis and the use of the powerful L3 algorithm [127℄ for working in latti
es. See [137, 180, 182, 2, 184,123, 44, 151℄.Some knapsa
k or knapsa
k-like s
hemes are still unbroken. The Chor-Rivest s
heme [56℄, and the multi-pli
ative versions of the knapsa
k [137℄ are examples. M
Elie
e has a knapsa
k-like publi
-key 
ryptosystembased on error-
orre
ting 
odes [136℄. This s
heme has not been broken, and was the �rst s
heme to userandomization in the en
ryption pro
ess.We are now ready to introdu
e what is required from a se
ure Publi
 Key Cryptosystem.7.3 De�ning Se
urityBrain storming about what it means to be se
ure brings immediately to mind several desirable properties.Let us start with the the minimal requirement and build up.First and foremost the private key should not be re
overable from seeing the publi
 key. Se
ondly, with highprobability for any message spa
e, messages should not be entirely re
overed from seeing their en
ryptedform and the publi
 �le. Thirdly, we may want that in fa
t no useful information 
an be 
omputed aboutmessages from their en
rypted form. Fourthly, we do not want the adversary to be able to 
ompute anyuseful fa
ts about traÆ
 of messages, su
h as re
ognize that two messages of identi
al 
ontent were sent,nor would we want her probability of su

essfully de
iphering a message to in
rease if the time of deliveryor relationship to previous en
rypted messages were made known to her.In short, it would be desirable for the en
ryption s
heme to be the mathemati
al analogy of opaque envelopes
ontaining a pie
e of paper on whi
h the message is written. The envelopes should be su
h that all legalsenders 
an �ll it, but only the legal re
ipient 
an open it.
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ture Notes 127We must answer a few questions:� How 
an \opaque envelopes" be 
aptured in a pre
ise mathemati
al de�nition?� Are \opaque envelopes" a
hievable mathemati
ally?Several de�nitions of se
urity attempting to 
apture the \opaque envelope" analogy have been proposed. Allde�nitions proposed so far have been shown to be equivalent. We des
ribe two of them and show they areequivalent.7.3.1 De�nition of Se
urity: Polynomial IndistinguishabilityInformally, we say that an en
ryption s
heme is polynomial time indistinguishable if no adversary 
an �ndeven two messages, whose en
ryptions he 
an distinguish between. If we re
all the envelope analogy, thistranslates to saying says that we 
annot tell two envelopes apart.De�nition 7.2 We say that a Publi
 Key Cryptosystem (G;E;D) is polynomial time indistinguishable iffor every PPT M , A, and for every polynomial Q, 8 suÆ
iently large kPr(A(1k; e;m0;m1; 
) = m j (e; d) R G(1k) ; fm0;m1g R M(1k) ; m R fm0;m1g ; 
 R E(e;m))< 12 + 1Q(k) (7.1)In other words, it is impossible in polynomial in k time to �nd two messages m0;m1 su
h that a polynomialtime algorithm 
an distinguish between 
 2 E(e;m0) and 
 2 E(e;m1).Remarks about the de�nition:(1) We remark that a stronger form of se
urity would be: the above holding 8m0;m1, (not only those whi
h
an be found in polynomial time by running M(1k)). Su
h se
urity 
an be shown in a non-uniformmodel, or when the messages are 
hosen before the keys, and thus 
an not involve any informationabout the se
ret keys themselves.(2) In the 
ase of private-key en
ryption s
heme, the de�nition 
hanges ever so slightly. The en
ryptionkey e is not given to algorithm A.(3) Note that any en
ryption s
heme in whi
h the en
ryption algorithm E is deterministi
 immediately failsto pass this se
urity requirement. (e.g given f;m0;m1 and 
 2 ff(m1); f(m0)g it is trivial to de
idewhether 
 = f(m0) or 
 = f(m1).(4) Note that even if the adversary know that the messages being en
rypted is one of two, he still 
annottell the distributions of 
iphertext of one message apart from the other.7.3.2 Another De�nition: Semanti
 Se
urityConsider the following two games. Let h :M ! f0; 1g�, where M is a message spa
e in whi
h we 
an samplein polynomial time, or equivalently, a probabilisti
 polynomial time algorithm M that takes as input 1k andgenerates a message m 2 f0; 1gk, and h(m) is some information about the message (for example, let be su
hthat h(m) = 1 if m has the letter 'e' in it, then V = f0; 1g).� Game 1: I tell the adversary that I am about to 
hoose m 2M(1k) and, ask her to guess h(m).� Game 2: I tell the adversary � 2 E(m); for somem 2M(1k) and on
e again, ask her to guess h(m).



128 Goldwasser and BellareIn both of the above 
ases we may assume that the adversary knows the message spa
e algorithm M andthe publi
 key P .In the �rst game, the adversary only knows that a message m is about to be 
hosen. In addition to thisfa
t, the adversary of the Game 2 sees the a
tual 
iphertext itself. For all types of message spa
es, semanti
se
urity will essentially require that the probability of the adversary winning Game 1 to be about the same asher probability of winning Game 2. Namely, that the adversary should not gain any advantage or informationfrom having seen the 
iphertext resulting from our en
ryption algorithm.Said di�erently, this de�nition will require that for all probability distributions over the message spa
e, nopartial information about the message 
an be 
omputed from the 
iphertext. This requirement is reminis
entof Shannon's perfe
t se
urity de�nition { with respe
t to a 
omputationally bounded adversary.De�nition 7.3 We say that an en
ryption s
heme (G;E;D) is semanti
ally se
ure if for all PPT algorithmsM and A, fun
tions h, polynomials Q there is a PPT B su
h that for suÆ
iently large k,Pr(A(1k ; 
; e) = h(m) j (e; d) R G(1k) ; m R M(1k) ; 
 R E(e;m))� Pr(B(1k) = h(m) j m R M(1k)) + 1Q(k) (7.2)Here, Game 1 is represented by PTM B, and Game 2 by PTM A. Again, this 
an only hold true whenthe en
ryption algorithm is a probabilisti
 one whi
h sele
ts one of many possible en
odings for a message;otherwise, if E were deterministi
, and M = f0; 1g, then any adversary would have 100% 
han
e of guessing
orre
tly h(m) for m 2M by simply testing whether E(0) = 
 or E(1) = 
.Theorem 7.4 A Publi
 Key Cryptosystem passes Indistinguishable Se
urity if and only if it passes Semanti
Se
urity.7.4 Probabilisti
 Publi
 Key En
ryptionWe turn now to showing how to a
tually build a publi
 key en
ryption s
heme whi
h is polynomial timeindistinguishable.In order to do so, we must abandon the trapdoor fun
tion PKC model and deterministi
 algorithms ofen
ryption all together, in favor of probabilisti
 en
ryption algorithm. The probabilisti
 en
ryption algorithmwhi
h we will 
onstru
t will still assume the existen
e of trapdoor fun
tions and use them as a primitivebuilding blo
k.The key to the 
onstru
tion is to �rst answer a simpler problem: How to se
urely en
rypt single bits. Weshow two ways to approa
h this problem. The �rst is based on trapdoor predi
ates as dis
ussed in Se
tion 2.5,and the se
ond is based on hard 
ore predi
ates as dis
ussed in Se
tion 2.4.7.4.1 En
rypting Single Bits: Trapdoor Predi
atesTo en
rypt single bits, the notion of one-way and trapdoor predi
ates was introdu
ed by [98℄. It later turnedout to be also quite useful for proto
ol design. We refer the reader to se
tion 2.5 for a general treatment ofthis subje
t. Here we look at its use for en
ryption.The Idea: Brie
y, a one-way predi
ate, is a Boolean fun
tion whi
h is hard to 
ompute in a very strongsense. Namely, an adversary 
annot 
ompute the predi
ate value better than by taking a random guess.Yet, it is possible to sample the domain of the predi
ate for elements for whi
h the predi
ate evaluates to 0and to 1. A trapdoor predi
ate possesses the extra feature that there exists some trapdoor information that
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ture Notes 129enables the 
omputation of the predi
ate. We 
an 
onstru
t examples of 
olle
tion of trapdoor predi
atesbased on the intra
tability of fa
toring, RSA inversion and the diÆ
ulty of distinguishing quadrati
 residuesfrom non-residues.Now, given a 
olle
tion of trapdoor predi
ates exist, we use them to set up a 
ryptosystem for one biten
ryption as follows. Every user A 
hooses and publishes a random trapdoor predi
ate, keeping se
ret the
orresponding trapdoor information. To send A a one bit message m, any other user 
hooses at randoman element in the domain of the trapdoor predi
ate for whi
h the predi
ate evaluates to m. To de
rypt, Auses his trapdoor information to 
ompute the value of predi
ate on the domain element it re
eives. Note,that this is a probabilisti
 en
ryption with many possible 
yphertexts for 0 as well as 1, where essentially anadversary 
annot distinguish between an en
oding of 0 and an en
oding of 1.Re
all, the formal de�nition of trapdoor predi
ates 2.59.Let I be a set of indi
es and for i 2 I let Di be �nite. A 
olle
tion of trapdoor predi
ates is a set B = fBi :Di ! f0; 1ggi2I satisfying the following 
onditions. Let Dvi = fx 2 Di; Bi(x) = v.1. There exists a polynomial p and a PTM S1 whi
h on input 1k �nds pairs (i; ti) where i 2 I \ f0; 1gkand jtij < p(k) The information ti is referred to as the trapdoor of i.2. There exists a PTM S2 whi
h on input i 2 I and v 2 f0; 1g outputs x 2 Di at random su
h thatBi(x) = v.3. There exists a PTM A1 su
h that for i 2 I and trapdoor ti, x 2 Di A1(i; ti; x) = Bi(x).4. For every PPT A there exists a negligible �A su
h that 8 k large enoughP h z 6= v : i R I \ f0; 1gk ; v R f0; 1g ; x R Dvi ; z  A(i; x) i � �A(k)De�nition 7.5 Assume that B is a 
olle
tion of trapdoor predi
ates. We 
an now de�ne a publi
 key
ryptosystem (G;E;D)B for sending single bit messages as follows:� Key generation algorithm: G(1k) 
hooses (i; ti) (publi
 key is then i and private key is ti). This isdoable by running algorithm S1.� En
ryption algorithm: Let m 2 f0; 1g be the message. En
ryption algorithm E(i; e) sele
ts x 2 Dmi .(The 
iphertext is thus x). This is doable by running algorithm S2.� De
ryption algorithm: D(
; ti) 
omputes Bi(
). This is doable using A1 given the trapdoor information.It is 
lear from the de�nition of a set of trapdoor predi
ates, that all of the above operations 
an be done inexpe
ted polynomial time and that messages 
an indeed be sent this way. It follows immediately from thede�nition of trapdoor predi
ates than indeed this system is polynomially indistinguishable when restri
tedto one bit message spa
es.7.4.2 En
rypting Single Bits: Hard Core Predi
atesAlternatively, you may take the following perhaps simpler approa
h, starting dire
tly with trapdoor fun
tionsand using their hard 
ore predi
ates. For a detailed dis
ussion of trapdoor fun
tions and hard 
ore predi
atesfor them see se
tion Se
tion 2.59. The dis
ussion here assumes su
h knowledge.Re
all that a 
olle
tion of trapdoor permutations is a set F = ffi : Di �! Digi2I su
h that:1. S1(1k) samples (i; ti) where i 2 I , jij = k and jtij < p(k) for some polynomial p.
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h that A1(i; x) = fi(x).4. Pr[A(i; fi(x)) 2 f�1i (fi(x))℄ < 1Q(k) 8 PTM A, 8Q, 8k > k0.5. 9 PTM A2 su
h that A2(i; ti; fi(x)) = x, 8x 2 Di, i 2 I .Further, let Bi(x) be hard 
ore for fi(x). Re
all that the existen
e of F implies the existen
e of F 0 thathas a hard 
ore predi
ate. So, for notational simpli
ity assume that F = F 0. Also re
all that for the RSA
olle
tion of trapdoor fun
tions, LSB is a 
olle
tion of hard 
ore predi
ate the LSB.De�nition 7.6 Given a 
olle
tion F with hard 
ore predi
ates B, de�ne publi
 key 
ryptosystem (G;E;D)Bfor sending a single bit as follows:� Key generation algorithm: G(1k) 
hooses pair < i; ti > by running S1(1k). (for RSA, G(1k) 
hooses< n; e >; d su
h that n is an RSA modulus, and ed = 1 mod �(n).)� En
ryption algorithm: E(i;m) 
hooses at random an x 2 Di su
h that Bi(x) = m, and output as a
iphertext fi(x). Using the Goldrei
h Levin 
onstru
tion of a hard 
ore predi
ate, simply 
hoose x; rsu
h that the inner produ
t of x and r is m and output f(x) Æ r. (for RSA, to en
rypt bit m, 
hooseat random an x 2 Z�n su
h that LSB<n;e>(x) = m and output as a 
iphertext RSA<n;e>(x).)� De
ryption algorithm: To de
rypt 
 = fi(x), given i and ti, the de
ryption algorithm D(ti; 
) 
omputeBi(f�1i (
)) = Bi(x) = m. Using the Goldrei
h Levin 
onstru
tion this amounts to given 
 = fi(x) Æ rto 
omputing the inner produ
t of x and r. (for RSA, to de
rypt 
, given n; e and d, 
ompute theLSB((RSA<n;e>(x))d) = least signi�
ant bit of x.)7.4.3 General Probabilisti
 En
ryptionHow should we en
rypt arbitrary length messages?The �rst answer is to simply en
rypt ea
h bit individually using one of the above methods. as above. Before
onsidering whether this is wise from an eÆ
ien
y point of view, we need to argue that it indeed will produ
ea en
ryption s
heme whi
h is polynomial time indistinguishable. This requires re
e
tion, as even throughevery bit individually is se
ure, it 
an be the 
ase that say that some predi
ate 
omputed on all the bits iseasily 
omputable, su
h as the ex
lusive or of the bits. This turns out lu
kily not to be the 
ase, but requiresproof.We now provide 
onstru
tion and proof.De�nition 7.7 We de�ne a probabilisti
 en
ryption based on trapdoor 
olle
tion F with hard 
ore bit Bto be PE = (G;E;D) where:� G(1k) 
hooses (i; ti) by running S1(1k) (Publi
 key is i, private key is ti ).� Let m = m1 : : :mk where mj 2 f0; 1g be the message.E(i;m) en
rypts m as follows:Choose xj 2R Di su
h that Bi(xj) = mj for j = 1; : : : ; k.Output 
 = fi(x1) : : : fi(xk).� Let 
 = y1 : : : yk where yi 2 Di be the 
yph ertext.D(ti; 
) de
rypts 
 as follows:Compute mj = Bi(f�1i (yj)) for j = 1; : : : ; k.Output m = m1 : : :mk.
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Claim 7.8 If F is a 
olle
tion of trapdoor permutations then the probabilisti
 en
ryption PE = (G;E;D)is indistinguishably se
ure.Proof: Suppose that (G;E;D) is not indistinguishably se
ure. Then there is a polynomial Q, a PTM Aand a message spa
e algorithm M su
h that for in�nitely many k, 9m0;m1 2M(1k) with,Pr[A(1k; i;m0;m1; 
) = jjmj 2 fm0;m1g; 
 2 E(i;mj))℄ > 12 + 1Q(k)where the probability is taken over the 
oin tosses of A, (i; ti) 2 G(1k), the 
oin tosses of E and mj 2fm0;m1g. In other words, A says 0 more often when 
 is an en
ryption of m0 and says 1 more often when
 is an en
ryption of m1.De�ne distributions Dj = E(i; sj) for j = 0; 1; : : : ; k where k = jm0j = jm1j and su
h that s0 = m0; sk = m1and sj di�ers from sj+1 in pre
isely 1 bit.Let Pj = Pr[A(1k; i;m0;m1; 
) = 1j
 2 Dj = E(i; sj)℄.Then 12 + 1Q(k) < Pr[A 
hooses j 
orre
tly℄ = (1� P0)( 12 ) + Pk( 12 ).Hen
e, Pk � P0 > 2Q(k) and sin
e Pk�1j=0 (Pj+1 � Pj) = Pk � P0, 9j su
h that Pj+1 � Pj > 2Q(k)k .Now, 
onsider the following algorithm B whi
h takes input i; fi(y) and outputs 0 or 1. Assume that sj andsj+1 di�er in the lth bit; that is, sj;l 6= sj+1;l or, equivalently, sj+1 = �sj .B runs as follows on input i; fi(y):(1) Choose y1; : : : ; yk su
h that Bi(yr) = sj;r for r = 1; : : : ; k.(2) Let 
 = fi(y1); : : : ; fi(y); : : : ; fi(yk) where fi(y) has repla
ed fi(yl) in the lth blo
k.(3) If A(1k; i; ;m0;m1; 
) = 0 then output sj;l.If A(1k; i; ;m0;m1; 
) = 0 then output sj+1;l = �sj;l.Note that 
 2 E(i; sj) if Bi(y) = sj;l and 
 2 E(i; sj+1) if Bi(y) = sj+1;l.Thus, in step 3 of algorithm B, outputting sj;l 
orresponds to A predi
ting that 
 is an en
oding of sj ; inother words, 
 is an en
oding of the string nearest to m0.Claim. Pr[B(i; fi(y)) = Bi(y)℄ > 12 + 1Q(k)kProof:Pr[B(i; fi(y)) = Bi(y)℄ = Pr[A(1k; i;m0;m1; 
) = 0j
 2 E(i; sj)℄ Pr[
 2 E(i; sj)℄+Pr[A(1k; i;m0;m1; 
) = 1j
 2 E(i; sj+1)℄ Pr[
 2 E(i; sj+1)℄� (1� Pj)( 12 ) + (Pj+1)( 12 )= 12 + 12 (Pj+1 � Pj)> 12 + 1Q(k)k 2Thus, B will predi
t Bi(y) given i, fi(y) with probability better than 12 + 1Q(k)k . This 
ontradi
ts theassumption that Bi(y) is hard 
ore for fi(y).



132 Goldwasser and BellareHen
e, the probabilisti
 en
ryption PE = (G;E;D) is indistinguishably se
ure.In fa
t, the probabilisti
 en
ryption PE = (G;E;D) is also semanti
ally se
ure. This follows from the fa
tthat semanti
 and indistinguishable se
urity are equivalent.7.4.4 EÆ
ient Probabilisti
 En
ryptionHow eÆ
ient are the probabilisti
 s
hemes? In the s
hemes des
ribed so far, the 
iphertext is longer than the
leartext by a fa
tor proportional to the se
urity parameter. However, it has been shown [35, 39℄ using laterideas on pseudo-random number generation how to start with trapdoor fun
tions and build a probabilisti
en
ryption s
heme that is polynomial-time se
ure for whi
h the 
iphertext is longer than the 
leartext byonly an additive fa
tor. The most eÆ
ient probabilisti
 en
ryption s
heme is due to Blum and Goldwasser[39℄ and is 
omparable with the RSA deterministi
 en
ryption s
heme in speed and data expansion. Re
all,that private-key en
ryption seemed to be mu
h more eÆ
ient. Indeed, in pra
ti
e the publi
-key methods areoften used to transmit a se
ret session key between two parti
ipants whi
h have never met, and subsequentlythe se
ret session key is used in 
onjun
tion with a private-key en
ryption method.We �rst des
ribe a probabilisti
 publi
 key 
ryptosystem based on any trapdoor fun
tion 
olle
tion whi
hsu�ers only from a small additive bandwidth expansion.As in the previous probabilisti
 en
ryption PE, we begin with a 
olle
tion of trapdoor permutations F = ffi :Di ! Dig with hard 
ore predi
ates B = fBi : Di ! f0; 1g. For this se
tion, we 
onsider that Di � f0; 1gk,where k = jij.Then EPE = (G;E;D) is our PKC based on F with:Key Generation: G(1k) = S1(1k) = (i; ti). The publi
 key is i, and the se
ret key is ti.En
ryption Algorithm: To en
rypt m, E(i;m) runs as follows, where l = jmj:(1) Choose r 2 Di at random.(2) Compute fi(r); f2i (r); : : : ; f li (r).(3) Let p = Bi(r)Bi(fi(r))Bi(f2i (r)) : : : Bi(f l�1i (r)).(4) Output the 
iphertext 
 = (p�m; f li (r)).De
ryption Algorithm: To de
rypt a 
iphertext 
 = (m0; a), D(ti; 
) runs as follows, where l = jm0j:(1) Compute r su
h that f li (r) = a. We 
an do this sin
e we 
an invert fi using the trapdoorinformation, ti, and this r is unique sin
e fi is a permutation.(2) Compute the pad as above for en
ryption: p = Bi(r)Bi(fi(r)) : : : Bi(f l�1i (r)).(3) Output de
rypted message m = m0 � p.To 
onsider the eÆ
ien
y of this s
heme, we note that the 
hannel bandwidth is j
j = jmj+ k, where k is these
urity parameter as de�ned above. This is a signi�
ant improvement over the jmj � k bandwidth a
hievedby the s
heme proposed in the previous le
ture, allowing improvement in se
urity with only minimal in
reasein bandwidth.If Ci1 is the 
ost of 
omputing fi, and Ci2 is the 
ost of 
omputing f�1i given ti, then the 
ost of en
ryptionis jmj � Ci1, and the 
ost of de
ryption is jmj � Ci2, assuming that the 
ost of 
omputing Bi is negligible.Another interesting point is that for all fun
tions 
urrently 
onje
tured to be trapdoor, even with ti, it isstill easier to 
ompute fi than f�1i , that is, Ci1 < Ci2, though of 
ourse, both are polynomial in k = jij.Thus in EPE, if it is possible to 
ompute f�li more eÆ
iently than as l 
ompositions of f�1i , then 
omputing
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ture Notes 133r = f�li (a), and then 
omputing fi(r); f2i (r); : : : ; f l�1i (r) may redu
e the overall 
ost of de
ryption. Thefollowing implementation demonstrates this.7.4.5 An implementation of EPE with 
ost equal to the 
ost of RSAIn this se
tion, we 
onsider a parti
ular implementation of EPE as eÆ
ient as RSA. This uses for F asubset of Rabin's trapdoor fun
tions whi
h were introdu
ed in Le
ture 5. Re
all that we 
an redu
e Rabin'sfun
tions to permutations if we only 
onsider the Blum primes, and restri
t the domain to the set of quadrati
residues. In fa
t, we will restri
t our attention to primes of the form p � 7 mod 8.1Let N = fnjn = pq; jpj = jqj; p; q � 7 mod 8g. Then let F = ffn : Dn �! Dngn2N , where fn(x) �x2 mod n, and Dn = Qn = fyjy � x2 mod ng. Be
ause p; q � 3 mod 4, we have that fn is a permutation onDn. Bn(x) is the least signi�
ant bit (LSB) of x, whi
h is a hard 
ore bit if and only if fa
toring is diÆ
ult,i.e., the Fa
toring Assumption from Le
ture 5 is true. (This fa
t was stated, but not proven, in Le
ture 7.)Then 
onsider the EPE (G;E;D), with:Generation: G(1k) = (n; (p; q)) where pq = n 2 N , and jnj = k. Thus n is the publi
 key, and (p,q) is these
ret key.En
ryption: E(n;m), where l = jmj (exa
tly as in general 
ase above):(1) Choose r 2 Qn randomly.(2) Compute r2; r4; r8; : : : ; r2l (mod n).(3) Let p = LSB(r)LSB(r2)LSB(r4) : : :LSB(r2l�1).(4) Output 
 = (m� p; r2l mod n).The 
ost of en
rypting is O(k2 � l).De
ryption: D((p; q); 
), where 
 = (m0; a); l = jm0j (as in general 
ase above):(1) Compute r su
h that r2l � a mod n.(2) Compute p = LSB(r)LSB(r2)LSB(r4) : : :LSB(r2l�1).(3) Output m = m0 � p.Sin
e p; q � 7 mod 8, we have p = 8t+ 7 and q = 8s+ 7 for some integers s; t. Re
all from Le
ture 3that if p is prime, the Legendre symbol Jp(a) = a p�12 � 1 mod p if and only if a 2 Qp, Sin
e a 2 Qn,we also have a 2 Qp. Thus we 
an 
omputea � a � a p�12 � a1+4t+3 � (a2t+2)2 (mod p);yielding, pa � a2t+2 mod p. Furthermore, a2t+2 = (at+1)2 2 Qp, so we 
an do this repeatedly to�nd rp � 2lpa � a(2t+2)l mod p. (This is why we require p � 7 mod 8.) Analogously, we 
an �ndrq � 2lpa � a(2s+2)l mod q, and using the Chinese Remainder Theorem (Le
ture 5), we 
an �ndr � 2lpa mod n. The 
ost of de
rypting in this fashion is O(k3 � l).However, we 
an also 
ompute r dire
tly by 
omputing u = (2t + 2)l and v = (2s + 2)l �rst, and infa
t, if the length of the messages is known ahead of time, we 
an 
ompute u and v o�-line. In anyevent, the 
ost of de
rypting then is simply the 
ost of 
omputing au mod p and av mod q, using theChinese Remainder Theorem, and then 
omputing p given r, just as when en
rypting. This 
omes outto O(k3 + k2 � l) = O(k3) if l = O(k).1More re
ent results indi
ate that this additional restri
tion may not be ne
essary.
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urityWe wish to show that EPE also passes indistinguishable se
urity. To do this we use the notion of pseudo-random number generators (PSRG) introdu
ed in the 
hapter on pseudo random number generation. Notethat PSRG(r; i) = f li (r) ÆBi(r)Bi(fi(r))Bi(f2i (r)) : : : Bi(f l�1i (r)) = a Æ p where p and a are generated whileen
rypting messages, (Æ is the 
on
atenation operator.) is a pseudo-random number generator. Indeed, thisis the 
onstru
tion we used to prove the existen
e of PSRGs, given one-way permutations.Certainly if the pad p were 
ompletely random, it would be impossible to de
rypt the message sin
em0 = m�pmaps m0 to a random string for any m. Sin
e p is pseudo-random, it appears random to any PTM withoutfurther information i.e., the trapdoor ti. However, the adversary does know a = f li (r), and we have to showthat it 
annot use this to 
ompute p.More pre
isely, we note that if there exists a PTM A that 
an distinguish between (m�p)Æa and (m�R)Æawhere R is a 
ompletely random string from f0; 1gl, then it 
an distinguish between p Æ a and R Æ a. We
an use this then, as a statisti
al test to 
he
k whether a given string is a possible output of PSRG, whi
h
ontradi
ts the 
laim that PSRG is pseudo-random, and thus the 
laim that fi is one-way. It is left as anexer
ise to express this formally.7.4.6 Pra
ti
al RSA based en
ryption: OAEPConsider a sender who holds a k-bit to k-bit trapdoor permutation f and wants to transmit a message x toa re
eiver who holds the inverse permutation f�1. We 
on
entrate on the 
ase whi
h arises most often in
ryptographi
 pra
ti
e, where n = jxj is at least a little smaller than k. Think of f as the RSA fun
tion.En
ryption s
hemes used in pra
ti
e have the following properties: en
ryption requires just one 
omputationof f ; de
ryption requires just one 
omputation of f�1; the length of the en
iphered text should be pre
isely k;and the length n of the text x that 
an be en
rypted is 
lose to k. Examples of s
hemes a
hieving these
onditions are [173, 113℄.Unfortunately, these are heuristi
 s
hemes. A provably se
ure s
heme would be preferable. We have nowseen several provably good asymmetri
 (i.e. publi
 key) en
ryption s
hemes. The most eÆ
ient is theBlum-Goldwasser s
heme [39℄. But, unfortunately, it still doesn't mat
h the heuristi
 s
hemes in eÆ
ien
y.A

ordingly, pra
tioners are 
ontinuing to prefer the heuristi
 
onstru
tions.This se
tion presents a s
heme 
alled the OAEP (Optimal Asymmetri
 En
ryption Padding) whi
h 
an �llthe gap. It was designed by Bellare and Rogaway [23℄. It meets the pra
ti
al 
onstraints but at the sametime has a se
urity that 
an be reasonably justi�ed, in the following sense. The s
heme 
an be proven se
ureassuming some underlying hash fun
tions are ideal. Formally, the hash fun
tions are modeled as randomora
les. In implementation, the hash fun
tions are derived from 
ryptographi
 hash fun
tions.This random ora
le model represents a pra
ti
al 
ompromise under whi
h we 
an get eÆ
ien
y with reason-able se
urity assuran
es. See [15℄ for a full dis
ussion of this approa
h.RSA-OAEP is 
urrently in
luded in several standards and draft standards and is implemented in varioussystems. In parti
ular, it is the RSA PKCS#1 v2 en
ryption standard and is also in the IEEE P1363/P1363adraft standards. It is also used in the SET (Se
ure Ele
troni
 Transa
tions) proto
ol of Visa and Master
ard.Simple embedding s
hemes and OAEP featuresThe heuristi
 s
hemes invariably take the following form: one (probabilisti
ally, invertibly) embeds x intoa string rx and then takes the en
ryption of x to be f(rx).2 Let's 
all su
h a pro
ess a simple-embeddings
heme. We will take as our goal to 
onstru
t provably-good simple-embedding s
hemes whi
h allow n tobe 
lose to k.2It is well-known that a naive embedding like rx = x is no good: besides the usual de�
ien
ies of any deterministi
en
ryption, f being a trapdoor permutation does not mean that f(x) 
on
eals all the interesting properties of x. Indeed it wasexa
tly su
h 
onsiderations that helped inspire ideas like semanti
 se
urity [98℄ and hard
ore bits [40, 201℄.
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ture Notes 135The best known example of a simple embedding s
heme is the RSA PKCS #1 standard. Its design is howeverad ho
; standard assumptions on the trapdoor permutation there (RSA) do not imply the se
urity of thes
heme. In fa
t, the s
heme su

umbs to 
hosen 
iphertext atta
k [34℄. The OAEP s
heme we dis
uss belowis just as eÆ
ient as the RSA PKCS #1 s
heme, but resists su
h atta
ks. Moreover, this resistan
e is ba
kedby proofs of se
urity. The new version of the RSA PKCS#1 standard, namely v2, uses OAEP.OAEP is a simple embedding s
heme that is bit-optimal (i.e., the length of the string x that 
an be en
ryptedby f(rx) is almost k). It is proven se
ure assuming the underlying hash fun
tions are ideal. It is shown in[23℄ that RSA-OAEP a
hieves semanti
 se
urity (as de�ned by [98℄). It is shown in [84℄ (building on [188℄)that it also a
hieves a notion 
alled \plaintext-aware en
ryption" de�ned in [23, 21℄. The latter notion isvery strong, and in parti
ular it is shown in [21℄ that semanti
 se
urity plus plaintext awareness implies\ambitious" goals like 
hosen-
iphertext se
urity and non-malleability [71℄ in the ideal-hash model.Now we brie
y des
ribe the basi
 s
heme and its properties. We refer the reader to [23℄ for full des
riptionsand to [23, 84℄ for proofs of se
urity.The s
hemeRe
all k is the se
urity parameter, f mapping k-bits to k-bits is the trapdoor permutation. Let k0 be 
hosensu
h that the adversary's running time is signi�
antly smaller than 2k0 steps. We �x the length of themessage to en
rypt as let n = k � k0 � k1 (shorter messages 
an be suitably padded to this length). Thes
heme makes use of a \generator" G: f0; 1gk0 ! f0; 1gn+k1 and a \hash fun
tion" H : f0; 1gn+k1 ! f0; 1gk0 .To en
rypt x 2 f0; 1gn 
hoose a random k0-bit r and setEG;H(x) = f(x0k1 �G(r)kr �H(x0k1 �G(r))):The de
ryption DG;H is de�ned as follows. Apply f�1 to the 
iphertext to get a string of the form akb withjaj = k � k0 and jbj = k0. Compute r = H(a)� b and y = G(r) � a. If the last k1 bits of y are not all zerothen reje
t; else output the �rst n bits of y as the plaintext.The use of the redundan
y (the 0k1 term and the 
he
k for it in de
ryption) is in order to provide plaintextawareness.EÆ
ien
yThe fun
tion f 
an be set to any 
andidate trapdoor permutation su
h as RSA [170℄ or modular squaring[164, 35℄. In su
h a 
ase the time for 
omputing G and H is negligible 
ompared to the time for 
omputingf; f�1. Thus 
omplexity is dis
ussed only in terms of f; f�1 
omputations. In this light the s
heme requiresjust a single appli
ation of f to en
rypt, a single appli
ation of f�1 to de
rypt, and the length of the
iphertext is k (as long as k � n+ k0 + k1).The ideal hash fun
tion paradigmAs we indi
ated above, when proving se
urity we take G;H to be random, and when we want a 
on
retes
heme, G;H are instantiated by primitives derived from a 
ryptographi
 hash fun
tion. In this regard weare following the paradigm of [15℄ who argue that even though results whi
h assume an ideal hash fun
tiondo not provide provable se
urity with respe
t to the standard model of 
omputation, assuming an ideal hashfun
tion and doing proofs with respe
t to it provides mu
h greater assuran
e bene�t than purely ad. ho
.proto
ol design. We refer the reader to that paper for further dis
ussion of the meaningfulness, motivationand history of this ideal hash approa
h.Exa
t se
urityWe want the results to be meaningful for pra
ti
e. In parti
ular, this means we should be able to saymeaningful things about the se
urity of the s
hemes for spe
i�
 values of the se
urity parameter (e.g., k =
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s and address se
urity \exa
tly," but also that westrive for se
urity redu
tions whi
h are as eÆ
ient as possible.Thus the theorem proving the se
urity of the basi
 s
heme quanti�es the resour
es and su

ess probabilityof a potential adversary: let her run for time t, make qgen queries of G and qhash queries of H , and supposeshe 
ould \break" the en
ryption with advantage �. It then provides an algorithmM and numbers t0; �0 su
hthat M inverts the underlying trapdoor permutation f in time t0 with probability �0. The strength of theresult is in the values of t0; �0 whi
h are spe
i�ed as fun
tions of t; qgen; qhash; � and the underlying s
hemeparameters k; k0; n (k = k0 + n). Now a user with some idea of the (assumed) strength of a parti
ular f(e.g., RSA on 512 bits) 
an get an idea of the resour
es ne
essary to break our en
ryption s
heme. See [23℄for more details.OAEP a
hieves semanti
 se
urity for any trapdoor fun
tion f , as shown in [23℄. It a
hieves plaintextawareness, and thus se
urity against 
hosen-
iphertext atta
k, when f is RSA, as shown in [84℄.7.4.7 Enhan
ementsAn enhan
ement to OAEP, made by Johnson and Matyas [114℄, is to use as redundan
y, instead of the 0k1above, a hash of information asso
iated to the key. This version of OAEP is proposed in the ANSI X9.44draft standard.7.5 Exploring A
tive AdversariesUntil now we have fo
used mostly on passive adversaries. But what happens if the adversaries are a
tive?This gives rise to various stronger-than-semanti
 notions of se
urity su
h as non-malleability [71℄, se
urityagainst 
hosen 
iphertext atta
k, and plaintext awareness [23, 21℄. See [21℄ for a 
lassi�
ation of these notionsand dis
ussion of relations among them.In parti
ular, we 
onsider se
urity against 
hosen 
iphertext atta
k. In this model, we assume that ouradversary has temporary a

ess to the de
oding equipment, and 
an use it to de
rypt some 
yphertexts thatit 
hooses. Afterwards, the adversary sees the 
iphertext it wants to de
rypt without any further a

ess tothe de
oding equipment. Noti
e that this is di�erent from simply being able to generate pairs of messagesand 
yphertexts, as the adversary was always 
apable of doing that by simply en
rypting messages of its
hoi
e. In this 
ase, the adversary gets to 
hoose the 
iphertext and get the 
orresponding message from thede
oding equipment.We saw in previous se
tions that su
h an adversary 
ould 
ompletely break Rabin's s
heme. It is not knownwhether any of the other s
hemes dis
ussed for PKC are se
ure in the presen
e of this adversary. However,attempts to provably defend against su
h an adversary have been made.One idea is to put 
he
ks into the de
oding equipment so that it will not de
rypt 
yphertexts unless it haseviden
e that someone knew the message (i.e., that the 
iphertext was not just generated without knowledgeof what the message being en
oded was). We might think that a simple way to do this would be to requiretwo distin
t en
odings of the same message, as it is unlikely that an adversary 
ould �nd two separateen
odings of the same message without knowing the message itself. Thus a 
iphertext would be (�1; �2)where �1; �2 are 
hosen randomly from the en
ryptions of m.Unfortunately, this doesn't work be
ause if the de
oding equipment fails to de
rypt the 
iphertext, theadversary would still gain some knowledge, i.e., that �1 and �2 do not en
rypt the same message. Forexample, in the probabilisti
 en
ryption s
heme proposed last le
ture, an adversary may wish to learn thehard-
ore bit Bi(y) for some unknown y, where it has fi(y). Given de
oding equipment with the prote
tiondes
ribed above, the adversary 
ould still dis
over this bit as follows:(1) Pi
k m 2 M(1l), the message spa
e, and let b be the last bit of m.(2) Pi
k �1 2 E(i;m) randomly and independently.
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all that �1 = (fi(x1); fi(x2); : : : ; fi(xl)), with xj 
hosen randomly from Di for j = 1; 2; : : : ; l. Let�2 = (fi(x1); : : : ; fi(xl�1); fi(y)).(4) Use the de
oding equipment on 
 = (�1; �2). If it answers m, then Bi(y) = b. If it doesn't de
rypt 
,then Bi(y) = b.What is done instead uses the notion of Non-Intera
tive Zero-Knowledge Proofs (NIZK) [41, 146℄. The ideais that anyone 
an 
he
k a NIZK to see that it is 
orre
t, but no knowledge 
an be extra
ted from it aboutwhat is being proved, ex
ept that it is 
orre
t. Shamir and Lapidot have shown that if trapdoor fun
tionsexist, then NIZKs exist. Then a 
iphertext will 
onsist of three parts: two distin
t en
odings �1; �2 of themessage, and a NIZK that �1 and �2 en
rypt the same message. Then the de
oding equipment will simplyrefuse to de
rypt any 
iphertext with an invalid NIZK, and this refusal to de
rypt will not give the adversaryany new knowledge, sin
e it already knew that the proof was invalid.The pra
ti
al importan
e of 
hosen 
iphertext atta
k is illustrated in the re
ent atta
k of Blei
henba
her onthe RSA PKCS #1 en
ryption standard, whi
h has re
eived a lot of attention. Blei
henba
her [34℄ showshow to break the s
heme under a 
hosen 
iphertext atta
k. One should note that the OAEP s
heme dis
ussedin Se
tion 7.4.6 above is immune to su
h atta
ks.



C h a p t e r 8Message authenti
ation

A message authenti
ation s
heme enables parties in possession of a shared se
ret key to a
hieve the goal ofdata integrity. This is the se
ond main goal of private-key 
ryptography.8.1 Introdu
tion8.1.1 The problemSuppose you re
eive a 
ommuni
ation that purports to 
ome from a 
ertain entity, 
all it S. Here S mightbe one of many di�erent types of entities: for example a person, or a 
orporation, or a network address.You may know that it is S that purports to send this 
ommuni
ation for several reasons. For example, S'sidenti�er 
ould be atta
hed to the 
ommuni
ation. The identi�er here is a publi
 identity that is known tobelong to S: for example, if S is a person or 
orporation, typi
ally just the name of the person or 
orporation;if a network address, the address itself. Or, it may be that from the 
ontext in whi
h the 
ommuni
ation istaking pla
e you are expe
ting the 
ommuni
ation to be from a 
ertain known entity S.In many su
h settings, se
urity requires that the re
eiver have 
on�den
e that the 
ommuni
ated data doesoriginate with the 
laimed sender. This is ne
essary to implement a

ess 
ontrol, so that servi
es andinformation are provided to the intended parties. The risk is that an atta
ker will \impersonate" S. It willsend a 
ommuni
ation with S's identity atta
hed, so that the re
eiver is lead to believe the 
ommuni
ationis from S. This 
an have various undesirable 
onsequen
es. Examples of the damage 
aused abound; hereare a few that one might 
onsider.An on-line sto
k broker S replies to a quote request by sending the value of a 
ertain sto
k, but an adversarymodi�es the transmission, 
hanging the dollar value of the quote. The person who requested the quotere
eives in
orre
t information and 
ould be lead to make a �nan
ially detrimental a
tion. This applies toany data being obtained from a database: its value lies in its authenti
ity as vou
hed for by the databaseservi
e provider. Or 
onsider S needing to send data of only two kinds, say \buy" and \sell", or \�re" and\don't �re". This might be en
oded in a single bit, and if an adversary 
ips this bit, the wrong a
tion istaken. Or 
onsider ele
troni
 banking. S sends its bank a message asking that $200 be transferred from hera

ount to A's a

ount. A might play the role of adversary and 
hange the sum to $2,000.In fa
t the authenti
ity of data transmitted a
ross a network 
an be even more important to se
urity thanpriva
y of the data when it 
omes to enabling network appli
ations and 
ommer
e.This ability to send data purporting to be from a sour
e it is not requires an a
tive atta
k on the part of theadversary. That is, the adversary must have the means to modify transmitted 
ommuni
ations or introdu
e138
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ture Notes 139new ones. These abilities depend on the setting. It may be hard to introdu
e data into a dedi
ated phoneline, but not on a network like the Internet. It would be advisable to assume adversaries do have su
habilities.The authenti
ation problem is very di�erent from the en
ryption problem. We are not worried about se
re
yof the data; let the data be in the 
lear. We are worried about the adversary modifying it.8.1.2 En
ryption does not provide data integrityWe know how to en
rypt data so as to provide priva
y. Something often suggested (and done) is to en
ryptto provide data integrity, as follows. Fix a symmetri
 en
ryption s
heme SE = (K; E ;D), and let parties Sand B share a key K for this s
heme. When S wants to send a messageM to B, she en
rypts it, transferringa 
iphertext C generated via C R EK(M). B de
rypts it, re
overing DK(C).The argument that this provides data integrity is as follows. Suppose S transmits, as in the above example,a message M to its bank B asking that $200 be transferred from S's a

ount to A's a

ount. A wants to
hange the $200 to $2,000. If M is sent in the 
lear, A 
an easily modify it. But if M is en
rypted so that
iphertext C is sent, how is A to modify C so as to make B re
over the modi�ed message M 0? It does notknow the key K, so 
annot en
rypt the modi�ed message M 0. The priva
y of the message appears to maketampering diÆ
ult.This argument is falla
ious. To see the 
aws let's �rst look at a 
ounter-example and then the issues.Consider, say the randomized CTR s
heme, using some blo
k 
ipher F , say RC6. We proved in the 
hapteron symmetri
 en
ryption that this was a se
ure en
ryption s
heme assuming RC6 is a pseudorandom fun
tion.For simpli
ity say that the message M above is a single 128 bit blo
k, 
ontaining a

ount information forthe parties involved, plus a �eld for the dollar amount. To be 
on
rete, the last 16 bits of the 128-bit blo
khold the dollar amount en
oded as a 16-bit binary number. (So the amount must be at most $65,535.)Thus, the last 16 bits of M are 0000000011001000, the binary representation of the integer 200. We assumethat A is aware that the dollar amount in this ele
troni
 
he
k is $200; this information is not se
ret. Nowre
all that under randomized CTR en
ryption the 
iphertext transmitted by S has the form C = hriy wherey = FK(hr + 1i)�M . A's atta
k is as follows. It gets C = hriy and sets y0 = y�01120000011100001000. Itsets C 0 = hriy0 and forwards C 0 to B. B will de
rypt this, so that it re
overs the message FK(hr + 1i)�y0.Denoting it by M 0, its value isM 0 = FK(hr + 1i)�y0= FK(hr + 1i)�y�01120000011100001000= M�01120000011100001000= Mpre�x0000011111000000where Mpre�x is the �rst 112 bits of the original message M . Noti
e that the last 16 bits of M 0 is the binaryrepresentation of the integer 2000, while the �rst 112 bits of M 0 are equal to those of M . So the end resultis that the bank B will be misled into exe
uting the transa
tion that S requested ex
ept that the dollaramount has been 
hanged from 200 to 2000.There are many possible rea
tions to this 
ounter-example, some sound and some unsound. Let's take a lookat them.What you should 
on
lude from this is that en
ryption does not provide data integrity. With hindsight,it is pretty 
lear. The fa
t that data is en
rypted need not prevent an adversary from being able to makethe re
eiver re
over data di�erent from that whi
h the sender had intended, for many reasons. First, thedata, or some part of it, might not be private at all. For example, above, some information about M wasknown to A: as the re
ipient of the money, A 
an be assumed to know that the amount will be $200, a sumprobably agreed upon beforehand. However, even when the data is not known a priori, an adversary 
anmake the re
eiver re
over something in
orre
t. For example with the randomized CTR s
heme, an adversary
an e�e
tively 
ip an bit in the message M . Even if it does not know what is the value of the original bit,
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an be 
aused by 
ipping it to the opposite value. Another possibility is for the adversary to simplytransmit some string C. In many en
ryption s
hemes, in
luding CTR and CBC en
ryption, C will de
ryptto something, 
all it M . The adversary may have no idea what M will be, but we should still view it aswrong that the re
eiver a

epts M as being sent by S when in fa
t it wasn't.Now here is another possible rea
tion to the above 
ounter-example: CTR mode en
ryption is bad, sin
eit permits the above atta
k. So one should not use this mode. Let's use CBC instead; there you 
an't 
ipmessage bits by 
ipping 
iphertext bits.This is an unsound rea
tion to the 
ounter-example. Nonetheless it is not only often voi
ed, but even printed.Why is it unsound? Be
ause the point is not the spe
i�
 atta
k on CTR, but rather to re
ognize the disparityin goals. There is simply no reason to expe
t en
ryption to provide integrity. En
ryption was not designedto solve the integrity problem. The way to address this problem is to �rst pin down pre
isely what is theproblem, and then seek a solution. Nonetheless there are many existing systems, and pla
es in the literature,where en
ryption and authenti
ation are 
onfused, and where the former is assumed to provide the latter.It turns out that CBC en
ryption 
an also be atta
ked from the integrity point of view, again leading to
laims in some pla
es that it is not a good en
ryption me
hanism. Faulting an en
ryption s
heme for notproviding authenti
ity is like faulting a s
rewdriver be
ause you 
ould not 
ut vegetables with it. There isno reason to expe
t a tool to solve a problem it was not designed to solve.It is sometimes suggested that one should \en
rypt with redundan
y" to provide data integrity. That is, thesender S pads the data with some known, �xed string, for example 128 bits of zeros, before en
rypting it.The re
eiver de
rypts the 
iphertext and 
he
ks whether the de
rypted string ends with 128 zeros. If not,the re
eiver reje
ts the transmission as unauthenti
; else it outputs the rest of the string as the a
tual data.This too 
an fail in general; for example it is easy to see that with CTR mode en
ryption, an atta
k justlike the above applies. It 
an be atta
ked under CBC en
ryption too.Good 
ryptographi
 design is goal oriented. One must �rst understand and formalize the goal. Only thendoes one have the basis on whi
h to design and evaluate potential solutions. A

ordingly, our next step willbe to 
ome up with a de�nition of message authenti
ation s
hemes and their se
urity.8.2 Message authenti
ation s
hemesIn the private key setting, the primitive used to provide data integrity is a message authenti
ation s
heme.This is a s
heme spe
i�ed by three algorithms: a key generation algorithm K; a tagging algorithm T and averi�
ation algorithm V . The sender and re
eiver are assumed to be in possession of a key K generated viaK and not known to the adversary. When the sender wants to send M in an authenti
ated way to B, she
omputes a tag � for M as a fun
tion of M and the se
ret key K shared between the sender and re
eiver,in a manner spe
i�ed by the tagging algorithm; namely, she sets �  TK(M). This tag a

ompanies themessage in transmission; that is, S transmits the pair M;� to B. (Noti
e that the message is sent in the
lear. Also noti
e the transmission is longer than the original message by the length of the tag �.) Uponre
eiving a transmission M 0; �0 purporting to be from S, the re
eiver B veri�es the authenti
ity of the tagby using the spe
i�ed veri�
ation pro
edure, whi
h depends on the message, tag, and shared key. Namelyhe 
omputes VK(M 0; �0), whose value is a bit. If this value is 1, it is read as saying the data is authenti
,and so B a

epts it as 
oming from S. Else it dis
ards the data as unauthenti
.As we have dis
ussed before, there are many ways in whi
h the re
eiver might know that the transmissionpurports to be from S. For example, S's identity might a

ompany the transmission, or the 
ommuni
ationmay be taking pla
e in a 
ontext where the re
eiver is already expe
ting to be intera
ting with S. A

ordingly,we do not address this issue expli
itly in the model, preferring to leave it as being attended to \out of band".A viable s
heme of 
ourse requires some se
urity properties. But these are not our 
on
ern now. First wewant to pin down what 
onstitutes a spe
i�
ation of a s
heme, so that we know what are the kinds of obje
tswhose se
urity we want to assess. Let us now summarize the above in a de�nition.De�nition 8.1 A message authenti
ation s
heme MA = (K; T ;V) 
onsists of three algorithms, as follows:
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ture Notes 141� The key generation algorithm K is a randomized algorithm that returns a key K; we write K R K� The tagging algorithm T is a (possibly randomized) algorithm that takes the key K and a messageMto return a tag �; we write �  TK(M)� The veri�
ation algorithm V is a deterministi
 algorithm that takes the key K, a message M , and a
andidate tag � for M to return a bit; we write d VK(M;�).Asso
iated to the s
heme is a message spa
e Plaintexts from whi
h M is allowed to be drawn. We requirethat VK(M; TK(M)) = 1 for all M 2 Plaintexts.The last part of the de�nition says that tags that were 
orre
tly generated will pass the veri�
ation test.This simply ensures that authenti
 data will be a

epted by the re
eiver.The tagging algorithm might be randomized, meaning internally 
ip 
oins and use these 
oins to determineits output. In this 
ase, there may be many 
orre
t tags asso
iated to a single message M . The algorithmmight also be stateful, for example making use of a 
ounter that is maintained by the sender. In that 
asethe tagging algorithm will a

ess the 
ounter as a global variable, updating it as ne
essary.Unlike en
ryption s
hemes, whose en
ryption algorithms must be either randomized or stateful for the s
hemeto be se
ure, a deterministi
, stateless tagging algorithm is not only possible, but 
ommon, and in that 
asewe refer to the message authenti
ation s
heme as deterministi
. In this 
ase, veri�
ation 
an be performedby 
omputing the 
orre
t tag and 
he
king that the transmitted tag equals the 
orre
t one. That is, theveri�
ation algorithm is simply the following:Algorithm VK(M;�)�0  TK(M)If � = �0 then return 1 else return 0Hen
e when the tagging algorithm is deterministi
, the veri�
ation algorithm need not be expli
itly spe
i�ed;it is understood that it is the above.Example 8.2 Let F : f0; 1gk � f0; 1gl ! f0; 1gl be a blo
k 
ipher. The CBC MAC with base family Fis the (deterministi
) message authenti
ation s
heme in whi
h the tag of a message is the last blo
k of
iphertext obtained by pro
essing the message in CBC mode with zero IV. In more detail, the s
heme isCBC-MACF = (K; T ;V) with the algorithms de�ned as follows. We let K be the algorithm whi
h pi
ks ak-bit key K by 
ipping k 
oins and returning their out
ome. The message M input to the algorithms belowmust have length a multiple of l bits.Algorithm TK(M)Divide M into l bit blo
ks, M = x1 : : : xny0 R 0lFor i = 1; : : : ; n do yi  FK(yi�1�xi)Return yn Algorithm VK(M;�)Divide M into l bit blo
ks, M = x1 : : : xny0 R 0lFor i = 1; : : : ; n do yi  FK(yi�1�xi)If yn = � then return 1 else return 0Sin
e the tagging algorithm is deterministi
, the veri�
ation algorithm simply 
he
ks whether or not � is the
orre
t tag, as dis
ussed above.The 
hoi
e of message spa
e is important for the se
urity of the CBC MAC as we will see later. If messagesof varying length are allowed the s
heme is inse
ure, but if the length of the messages is restri
ted to somesingle pre-spe
i�ed and �xed value, the s
heme is se
ure.8.3 A notion of se
urityWe will �rst try to build up some intuition about what properties a message authenti
ation s
heme shouldhave to 
all it \se
ure", and then distill a formal de�nition of se
urity.
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urityThe goal that we seek to a
hieve in using a message authenti
ation s
heme is to be able to dete
t any attemptby the adversary to modify the transmitted data. What we are afraid of is that the adversary 
an produ
emessages that the re
eiver a

epts as 
oming from the legitimate sender S when in fa
t S did not send thismessage. That is, A 
an produ
e M;� su
h that VK(M;�) = 1, but M did not originate with the sender S.This is 
alled a forgery.Perhaps the �rst question one might ask is whether one should try to gauge the value of the forgery to theadversary, for example by asking what is the 
ontent of the message. For example, say the messages areexpe
ted to have 
ertain formats, and the forgery is just a random string. Should this really be viewed as aforgery? The answer is yes. We have seen this general issue before. It would be unwise to make assumptionsabout how the messages are formatted or interpreted. Good proto
ol design means the se
urity is guaranteedno matter what is the appli
ation. A

ordingly we view the adversary as su

essful if she produ
es M;�su
h that the sender never authenti
ated M but VK(M;�) = 1.In some dis
ussions of se
urity in the literature, the adversary's goal is viewed as being to re
over the sharedse
ret key K. Certainly if she 
ould do this, it would be a disaster, sin
e she 
ould forge anything. It isimportant to understand, however, that she might be able to forge without re
overing the key. Thus, we arehere making the notion of adversarial su

ess more liberal: what 
ounts is forgery, not key re
overy. So ase
ure s
heme has a stronger guarantee of se
urity.In making forgeries we must 
onsider various atta
ks, of in
reasing severity. The simplest setting is that thesender has not yet sent any transmissions, and the adversary may simply attempt to 
on
o
t a pair M;�whi
h passes the veri�
ation test, namely su
h that VK(M;�) = 1. This is 
alled a no-message atta
k.However, the adversary also has the ability to see what is transmitted. She might try to make forgeriesbased on this information. So suppose the sender sends the transmission M;� 
onsisting of some messageM and its legitimate (
orre
t) tag �. The re
eiver will 
ertainly a

ept this. At on
e, a simple atta
k 
omesto mind. The adversary 
an just 
opy this transmission. That is, she stores M;�, and at some later timere-transmits it. If the re
eiver a

epted it the �rst time, he will do so again. This is 
alled a replay atta
k.Is this a valid forgery? In real life it probably should be so 
onsidered. Say the �rst message was \Transfer$1000 from my a

ount to the a

ount of B." B suddenly sees a way of enri
hing herself. She keeps replayingthis message and her bank balan
e in
reases.It is important to prote
t against replay atta
ks. But for the moment we will not try to do this. We willsay that a replay is NOT a valid forgery. To be valid, a forgery must be of a message M whi
h was nottransmitted by the sender. We will later see that we 
an a
hieve se
urity against replay by addition of timestamps or 
ounters to any normal message authenti
ation me
hanism. At this point, separating the issuesresults in a 
leaner problem and allows greater modularity in proto
ol design. Namely we will 
ut up theproblem into logi
al parts and solve them one by one. A

ordingly from now on don't regard replay as avalid atta
k.So if the adversary wants to be su

essful, it must somehow use the valid transmission M;� to 
on
o
t apair M 0; �0 su
h that M 6= M 0 but VK(M 0; �0) = 1. If she 
an do this, we say she is su

essful. Thus, wehave a very liberal notion of adversarial su

ess. So when we say a s
heme is se
ure, it is se
ure in a verystrong sense.We have allowed the adversary to see an example message. Of 
ourse, it may see more than one, and forgerymust still be hard. We expe
t that the adversary's ability to forge will in
rease as it sees more examples oflegitimately authenti
ated data, so that as usual we expe
t the notion of se
urity to be quantitative, withthe adversary's su

ess probability being a fun
tion of of the number q of legitimate pairs seen.In many settings, it is possible for the adversary to in
uen
e the 
hoi
e of legitimate messages being tagged.In the worst 
ase, we 
an think the adversary herself 
hooses these messages. This is 
alled a 
hosen plaintextatta
k. At �rst glan
e a 
hosen plaintext atta
k may seem unrealisti
ally strong. There are two argumentsagainst this view. First, we will see examples where su
h an atta
k is quite realisti
. Se
ond, re
all ourgeneral prin
iples. We want to design s
hemes whi
h are se
ure in any usage. This requires that we make\worst 
ase" notions of se
urity in whi
h if we err, it is on the side of 
aution, allowing the adversary as
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h power as possible. Sin
e eventually we will be able to design s
hemes that meet su
h stringent notionsof se
urity, we only gain by the pro
ess.One instan
e of a 
hosen-message atta
k is a setting in whi
h S is forwarding to B data that it re
eives fromC, and authenti
ating that data based on a key K shared between S and B, in the pro
ess. If C wants toplay an adversarial role, C 
an 
hoose the data as it wishes, and then see the 
orresponding tags as sent byS to B. Other s
enarios are also possible.In summary, we want a notion of se
urity to 
apture the following. We allow an adversary to mount a
hosen-message atta
k on the sender, obtaining from the sender 
orre
t tags of messages of the adversary's
hoi
e. Then, the adversary attempts a forgery, and is de
lared su

essful if the forgery is valid (meaninga

epted by the re
eiver) and the message in it was never authenti
ated by the sender.8.3.2 A notion of se
urityLet MA = (K; T ;V) be an arbitrary message authenti
ation s
heme. Our goal is to formalize a measurea inse
urity against forgery under 
hosen-message atta
k for this s
heme. As dis
ussed above, we envisiona 
hosen-message atta
k mounted on the sender, and then a forgery attempt dire
ted at the re
eiver. Informalizing this we begin by distilling the key aspe
ts of the model. There is no need, in fa
t, to thinkexpli
itly of the sender and re
eiver as animate entities. The result of the adversary requesting the senderto authenti
ate a message M is that the adversary obtains a tag � generated via �  TK(M), where K isthe key shared between sender and re
eiver. Thus, we may as well simplify the situation and think of theadversary as having ora
le a

ess to the algorithm TK(�). It 
an query this ora
le at any point M in themessage spa
e and obtain the result. Correspondingly we eliminate the re
eiver from the pi
ture and fo
usonly on the veri�
ation pro
ess. The adversary will eventually output a pair M;� and it is a valid forgeryas long as VK(M;�) = 1 and M was never a query to the tagging ora
le.Note the key K is not dire
tly given to the adversary, and neither are any random 
hoi
es or 
ounter usedby the tagging algorithm; the adversary sees only the generated tag �. However � is a fun
tion of the keyand the random 
hoi
es or 
ounter, so it might provide information about these, to an extent that dependson the s
heme. If the tag allows the adversary to infer the key, the s
heme will 
ertainly be inse
ure.The adversary's a
tions are thus viewed as divided into two phases. The �rst is a \learning" phase in whi
hit is given ora
le a

ess to TK(�), where K was a priori 
hosen at random a

ording to K. It 
an query thisora
le up to q times, in any manner it pleases, as long as all the queries are messages in the underlyingmessage spa
e Plaintexts asso
iated to the s
heme. On
e this phase is over, it enters a \forgery" phases,in whi
h it outputs a pair (M;�). The adversary is de
lared su

essful if VK(M;�) = 1 and M was nevera query made by the adversary to the tagging ora
le. Asso
iated to any adversary A is thus a su

essprobability. (The probability is over the 
hoi
e of key K, any probabilisti
 
hoi
es that T might make, andthe probabilisti
 
hoi
es, if any, that A makes.) The inse
urity of the s
heme is the su

ess probability of the\
leverest" possible adversary, amongst all adversaries restri
ted in their resour
es to some �xed amount.We 
hoose as resour
es the running time of the adversary, the number of queries it makes, and the totalbit-length of all queries 
ombined plus the bit-length of the output message M in the forgery.Formally we de�ne the \experiment of running the adversary" A in an atta
k on s
hemeMA = (K; T ;V)as the following.Experiment Expuf-
maMA;ALet K R KLet (M;�) ATK(�)If VK(M;�) = 1 and M was not a query of A to its ora
leThen return 1 else return 0De�nition 8.3 LetMA = (K; T ;V) be a message authenti
ation s
heme, and let A be an adversary thathas a

ess to an ora
le. Let Advuf-
maMA;A be the probability that experiment Expuf-
maMA;A returns 1. Then for
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maMA (t; q; �) = maxA fAdvuf-
maMA;A gwhere the maximum is over all A running in time t, making at most q ora
le queries, and su
h that the sumof the lengths of all ora
le queries plus the length of the message M in the output forgery is at most � bits.In pra
ti
e, the queries 
orrespond to tagged messages sent by the legitimate sender, and it would makesense that getting these examples is more expensive than just 
omputing on one's own. That is, we wouldexpe
t q to be smaller than t. That is why q; � are resour
es separate from t.8.3.3 Using the de�nition: Some examplesLet us examine some example message authenti
ation s
hemes and use the de�nition to assess their strengthsand weaknesses. We �x a PRF F : f0; 1gk�f0; 1gl ! f0; 1gL. Our �rst s
hemeMA1 = (K; T ;V) works likethis{ Algorithm TK(M)Divide M into l bit blo
ks, M = x1 : : : xnFor i = 1; : : : ; n do yi  FK(xi)�  y1�� � � �ynReturn � Algorithm VK(M;�)Divide M into l bit blo
ks, M = x1 : : : xnFor i = 1; : : : ; n do yi  FK(xi)�0  y1� � � ��ynIf � = �0 then return 1 else return 0Now let us try to assess the se
urity of this message authenti
ation s
heme.Suppose the adversary wants to forge the tag of a 
ertain given message M . A priori it is un
lear this 
anbe done. The adversary is not in possession of the se
ret key K, so 
annot 
ompute FK and hen
e will havea hard time 
omputing �. However, remember that the notion of se
urity we have de�ned says that theadversary is su

essful as long as it 
an produ
e a 
orre
t tag for some message, not ne
essarily a given one.We now note that even without a 
hosen-message atta
k (in fa
t without seeing any examples of 
orre
tlytagged data) the adversary 
an do this. It 
an 
hoose a message M 
onsisting of two equal blo
ks, sayM = xkx where x is some l-bit string, set �  0l, and output M;�. Noti
e that VK(M;�) = 1 be
auseFK(x)�FK(x) = 0l = �. So the adversary is su

essful. In more detail, the adversary is:Adversary ATK(�)1Let x be some l-bit stringLet M  xkxLet �  0lReturn (M;�)Then Advuf-
maMA1;A1 = 1. Furthermore A1 makes no ora
le queries, uses t = O(l) time, and outputs an l-bitmessage in its forgery, so we have shown thatAdvuf-
maMA1 (t; 0; l) = 1 :That is, the s
hemeMA1 is totally inse
ure.There are many other atta
ks. For example we note that if � = FK(M1)�FK(M2) is the tag of M1M2then � is also the 
orre
t tag of M2M1. So it is possible, given the tag of a message, to forge the tag of anew message formed by permuting the blo
ks of the old message. We leave it to the reader to spe
ify the
orresponding adversary and 
ompute its advantage.Let us now try to strengthen the s
heme to avoid these atta
ks. Instead of applying FK to a data blo
k, wewill �rst pre�x the data blo
k with its index. To do this we pi
k some parameter m with 1 � m � l� 1, andwrite the index as an m-bit string. The message authenti
ation s
hemeMA1 = (K; T ;V) looks like this:
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ture Notes 145Algorithm TK(M)Divide M into l�m bit blo
ks, M = x1 : : : xnFor i = 1; : : : ; n do yi  FK(hiikxi)�  y1� � � ��ynReturn � Algorithm VK(M;�)Divide M into l �m bit blo
ks, M = x1 : : : xnFor i = 1; : : : ; n do yi  FK(hiikxi)�0  y1� � � ��ynIf � = �0 then return 1 else return 0As the 
ode indi
ates, we divide M into smaller blo
ks: not of size l, but of size l �m. Then we pre�x thei-th message blo
k with the value i itself, the blo
k index, written in binary. Above hii denotes the integeri written as a binary string of m bits. It is to this padded blo
k that we apply FK before taking the XOR.Note that en
oding of the blo
k index i as an m-bit string is only possible if i < 2m. This means that we
annot authenti
ate a message M having more than 2m blo
ks. That is, the message spa
e is 
on�ned tostrings of length at most (l �m)(2m � 1), and, for simpli
ity, of length a multiple of l �m bits. Howeverthis is hardly a restri
tion in pra
ti
e sin
e a reasonable value of m, like m = 32, is large enough that typi
almessages fall in the message spa
e, and sin
e l is typi
ally at least 64, we have at least 32 bits left for thedata itself.Anyway, the question we are really 
on
erned with is the se
urity. Has this improved with respe
t toMA1?Begin by noti
ing that the atta
ks we found onMA1 no longer work. For example take the adversary A1above. (It needs a minor modi�
ation to make sense in the new setting, namely the 
hosen blo
k x shouldnot be of length l but of length l �m. Consider this modi�
ation made.) What is its su

ess probabilitywhen viewed as an adversary atta
king MA2? The question amounts to asking what is the 
han
e thatVK(M;�) = 1 where V is the veri�
ation algorithm of our amended s
heme and M;� is the output of A1.The veri�
ation algorithm will 
ompute �0 = FK(h1ikx)�FK(h2ikx) and test whether this equals 0l, thevalue of � output by A. This happens only whenFK(h1ikx) = FK(h2ikx) ;and this is rather unlikely. For example if we are using a blo
k 
ipher it never happens be
ause FK is apermutation. Even when F is not a blo
k 
ipher, this event has very low probability as long as F is a goodPRF; spe
i�
ally, Advuf-
maMA2;A1 is at most AdvprfF (t; 2) where t = O(l). (A reader might make sure they seewhy this bound is true.) So the atta
k has very low su

ess probability.Similar arguments show that the se
ond atta
k dis
ussed above, namely that based on permuting of messageblo
ks, also has low su

ess against the new s
heme. Why? In the new s
hemeTK(M1M2) = FK(h1ikM1)�FK(h2ikM2)TK(M2M1) = FK(h1ikM2)�FK(h2ikM1) :These are unlikely to be equal for the same reasons dis
ussed above. As an exer
ise, a reader might upperbound the probability that these values are equal in terms of the value of the inse
urity of F at appropriateparameter values.However,MA2 is still inse
ure. The atta
ks however require a more non-trivial usage of the 
hosen-messageatta
king ability. The adversary will query the tagging ora
le at several related points and 
ombine theresponses into the tag of a new message. We 
all it A2{Adversary ATK(�)2Let x1; x01 be distin
t, l�m bit strings, and let x2; x02 be distin
t l �m bit strings�1  TK(x1x2) ; �2  TK(x1x02) ; �3  TK(x01x2)�  �1��2��3Return (x01x02; �)We 
laim that Advuf-
maMA2;A2 = 1. Why? This requires two things. First that VK(x01x02; �) = 1, and se
ondthat x01x02 was never a query to TK(�) in the above 
ode. The latter is true be
ause we insisted above thatx1 6= x01 and x2 6= x02, whi
h together mean that x01x02 62 fx1x2; x1x2; x01x2g. So now let us 
he
k the �rst
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laim. We use the de�nition of the tagging algorithm to see that�1 = FK(h1ikx1)�FK(h2ikx2)�2 = FK(h1ikx1)�FK(h2ikx02)�3 = FK(h1ikx01)�FK(h2ikx2) :Now look how A2 de�ned � and do the 
omputation; due to 
an
ellations we get� = �1��2��3= FK(h1ikx01)�FK(h2ikx02) :This is indeed the 
orre
t tag of x01x02, meaning the value �0 that VK(x01x02; �) would 
ompute, so the latteralgorithm returns 1, as 
laimed. In summary we have shown thatAdvuf-
maMA2 (t; 3; 4(l �m)) = 1 ;where t = O(l). So the s
hemeMA2 is also totally inse
ure.Later we will see how a slight modi�
ation of the above a
tually yields a se
ure s
heme. For the momenthowever we want to stress a feature of the above atta
ks. Namely that these atta
ks did not 
ryptanalyze thePRF F . The 
ryptanalysis of the message authenti
ation s
hemes did not 
are anything about the stru
tureof F ; whether it was DES, RC6, or anything else. They found weaknesses in the message authenti
ations
hemes themselves. In parti
ular, the atta
ks work just as well when FK is a random fun
tion, or a \perfe
t"
ipher. This illustrates again the point we have been making, about the distin
tion between a tool (here thePRF) and its usage. We need to make better usage of the tool, and in fa
t to tie the se
urity of the s
hemeto that of the underlying tool in su
h a way that atta
ks like those illustrated here are provably impossibleunder the assumption that the tool is se
ure.8.4 The XOR s
hemesWe now 
onsider a family of message authenti
ation s
hemes 
alled XOR MACs due to [11℄, and show thatthey are se
ure.8.4.1 The s
hemesThe s
hemes use a similar paradigm to the se
ond example s
heme dis
ussed above. A 
ertain blo
k size lis given. We 
hoose a parameter m, this time 1 � m � l � 2. We view the message M as being dividedinto blo
ks of size l�m� 1, and denote the i-th blo
k by xi. We denote by hii the en
oding of integer i asan m-bit binary string. We assume that jM j � (l �m � 1)(2m � 1) so that the index of any blo
k 
an bewritten as an m-bit string.Both to de�ne the s
hemes and to analyze their se
urity it is helpful to �rst introdu
e an auxiliary fun
tionwhi
h we 
all XOR-Tag?(�; �). It takes an ora
le for a fun
tion f : f0; 1gl ! f0; 1gL. It also takes two inputs.The �rst is an l � 1 bit string whi
h we 
all s, and whose role will emerge later. The se
ond is the messageM dis
ussed above. It pro
esses these inputs using f as indi
ated below and returns a value we 
all � .Algorithm XOR-Tagf (s;M)Divide M into l �m� 1 bit blo
ks, M = x1 : : : xny0  f(0ks)For i = 1; : : : ; n do yi  f(1khiikxi)�  y0�y1�� � � �ynReturn �
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ture Notes 147Our auxiliary fun
tion applies f at n + 1 points, ea
h of these points being an l-bit string. The �rst pointis 0ks. Namely we pre�x the (l � 1)-bit string s with a zero bit, whi
h brings the total to l-bits, and thenapply f to get y0. The other n points on whi
h f is applied are all pre�xed with the bit 1. That is followedby an en
oding of the blo
k index and then the data blo
k itself, for a total length of 1+m+(l�m� 1) = lbits.We are now ready to des
ribe the s
heme. We �x a family of fun
tions F : f0; 1gk�f0; 1gl ! f0; 1gL, and thekey for the message authenti
ation s
heme is simply a k-bit key K for the family F , whi
h spe
i�es a spe
i�
fun
tion FK . The parties will use FK in the role of f above. There are a
tually two versions of the s
heme.One is deterministi
 and stateful, making use of a global 
ounter; the other is stateless and randomized.The di�eren
e is only in how s is 
hosen. We begin with the 
ounter version. Here the sender maintains aninteger 
ounter 
tr, initially 0. We denote by h
tri its en
oding as an l � 1 bit integer. (The 
ounter thusranges from 0 to 2l�1 � 1. Note that when i is a blo
k index, hii also denotes its binary en
oding, but as anm bit string, so that the notation h�i is a bit overloaded in that the length of the string returned depends onthe 
ontext of its argument, but hopefully this will not 
ause too mu
h 
onfusion.) The 
ounter-based XORMAC s
heme using F , denoted C-XORF = (K; T ;V), works as follows{Algorithm TK(M)�  XOR-TagFK (h
tri;M)�  (h
tri; �)
tr  
tr + 1Return � Algorithm VK(M;�)Parse � as (s; �)� 0  XOR-TagFK (s;M)If � = � 0 then return 1 else return 0In other words, the tag for message M = x1 : : : xn is a pair 
onsisting of the 
urrent 
ounter value 
tren
oded in binary, and the subtag � , where� = FK(0kh
tri)�FK(1kh1ikx1)�� � � �FK(1khnikxn) :To verify the re
eived tag � = (h
tri; �) the veri�
ation algorithm re
omputes the 
orre
t subtag, 
alling it� 0, as a fun
tion of the given 
ounter value, and then 
he
ks that this subtag mat
hes the one provided in �.The randomized version of the s
heme, namely the randomized XOR MAC s
heme using F , is denotedR-XORF = (K; T ;V). It simply substitutes the 
ounter with a random (l � 1)-bit value 
hosen anew atea
h appli
ation of the tagging algorithm. In more detail, the algorithms work as follows{Algorithm TK(M)r R f0; 1gl�1�  XOR-TagFK (r;M)�  (r; �)Return � Algorithm VK(M;�)Parse � as (r; �)� 0  XOR-TagFK (r;M)If � = � 0 then return 1 else return 0In other words, the tag for message M = x1 : : : xn is a pair 
onsisting of a random value r and the subtag �where � = FK(0kr)�FK(1kh1ikx1)� � � � �FK(1khnikxn) :To verify the re
eived tag � = (r; �) the veri�
ation algorithm re
omputes the 
orre
t subtag, 
alling it � 0,as a fun
tion of the given value r, and then 
he
ks that this subtag mat
hes the one provided in �.8.4.2 Se
urity 
onsiderationsBefore we 
onsider se
urity it is important to 
larify one thing about possible forgeries. Re
all that a forgeryis a pair M;� 
onsisting of a message M and a value � whi
h purports to be a valid tag for M . In the XORs
hemes, a tag � is a pair (s; �) where s is an (l � 1)-bit string and � is an L-bit string. Now, we knowthat the tagging algorithm itself generates the �rst 
omponent in a very spe
i�
 way. For 
on
reteness, take
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ounter-based XOR s
heme; here s is the value of a 
ounter, and thus for legitimately tagged messages,a value that never repeats from one message to the next. (We assume no more than 2l�1 messages areauthenti
ated so that the 
ounter does not wrap around.) This does not mean that the adversary is for
edto use a 
ounter value in the role of s in its attempted forgery M; (s; �). The adversary is free to try anyvalue of s, and in parti
ular to re-use an already used 
ounter value. Remember that the adversary's goalis to get the veri�
ation algorithm to a

ept the pair M; (s; �), subje
t only to the 
onstraint that M wasnot a query to the tagging ora
le. Look at the 
ode of the veri�
ation algorithm: it does not in any wayre
e
t knowledge of s as a 
ounter, or try to 
he
k any 
ounter-related property of s. In fa
t the veri�
ationalgorithm does not maintain a 
ounter at all; it is stateless. So there is nothing to 
onstrain an adversary touse the value of the 
ounter in its attempted forgery.A similar situation holds with respe
t to the randomized version of the XOR s
heme. Although the legitimateparty 
hooses r at random, so that legitimate tags have random values of r as the �rst 
omponent of theirtags, the adversary 
an attempt a forgery M; (r; �) in whi
h r is quite non-random; the adversary gets to
hoose r and 
an set it to whatever it wants. This freedom on the part of the adversary must be rememberedin analyzing the s
hemes.To get some intuition about the se
urity of these s
hemes, it is helpful to return to the atta
k that we usedto break the example s
hemeMA2 in the previous se
tion, and see that it fails here. We will look at theatta
k in the 
ontext of the 
ounter-based XOR s
heme. Remember that the atta
k, spe
i�ed by adversaryA2 above, requested the tags of three related messages and XORed the returned values to get the tag of thethird message, exploiting 
ommonality between the values to get 
an
ellations. For the same three messagesunder the new s
heme, let us look at the subtags returned by the tagging ora
le. They are:XOR-TagFK (h0i; x1x2) = FK(0kh0i)�FK(1kh1ikx1)�FK(1kh2ikx2)XOR-TagFK (h1i; x1x02) = FK(0kh1i)�FK(1kh1ikx1)�FK(1kh2ikx02)XOR-TagFK (h2i; x01x2) = FK(0kh2i)�FK(1kh1ikx01)�FK(1kh2ikx2) :Summing these three values yields a mess, something that does not look like the subtag of any message,be
ause the values 
orresponding to the 
ounter don't 
an
el. So this atta
k does not work.Is there another atta
k? It seems hard to 
ome up with one, but that does not mean mu
h; maybe theatta
k is quite 
lever. This is the point where the kind of approa
h we have been developing, namelyprovable se
urity, 
an be instrumental. We will see that the XOR s
hemes 
an be proven se
ure under theassumption that the family F is a PRF. This means that simple atta
ks like the above do not exist. And our
on�den
e in this stems from mu
h more than an inability to �nd the atta
ks; it stems from our 
on�den
ethat the underlying family F is itself se
ure.8.4.3 Results on the se
urity of the XOR s
hemesWe state the theorems that summarize the se
urity of the s
hemes, beginning with the 
ounter-based s
heme.We 
all the (nteger) parameter m in the s
heme the blo
k-indexing parameter in the following. We also letPlaintexts(l;m) denote the set of all strings M su
h that the length of M is n � (l �m� 1) for some integern in the range 1 � n � 2m � 1; this is the message spa
e for the XOR message authenti
ation s
hemes.The theorem below has (what should by now be) a familiar format. It upper bounds the inse
urity of the
ounter-based XOR message authenti
ation s
heme in terms of the inse
urity of the underlying PRF F . Inother words, it upper bounds the maximum (over all strategies an adversary might try) of the probabilitythat the adversary 
an break the XOR s
heme (namely, su

essfully forge a 
orre
t tag for an as yet un-authenti
ated message), and the upper bound is in terms of the (assumed known) maximum ability to breakthe PRF F that underlies the s
heme. It is another example of the kind of \pun
h line" we strive towards:a guarantee that there is simply no atta
k against a s
heme, no matter how 
lever, as long as we know thatthe underlying tool is good. In parti
ular we are assured that atta
ks like those we have seen above on ourexample s
hemes will not work against this s
heme.Also as usual, the bounds are quantitative, so that we 
an use them to assess the amount of se
urity we will
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ture Notes 149get when using some spe
i�
 PRF (say a blo
k 
ipher) in the role of F . The bounds are rather good: wesee that the 
han
e of breaking the message authenti
ation s
heme is hardly more than that of breaking thePRF.Theorem 8.4 [11℄ Suppose F : f0; 1gk � f0; 1gl ! f0; 1gL is a PRF, and let C-XORF = (K; T ;V) be the
orresponding 
ounter-based XOR message authenti
ation s
heme as des
ribed above, with blo
k-indexingparameter m � l � 2 and message spa
e Plaintexts(l;m). Then for any t; q; � with q < 2l�1 we haveAdvuf-
maC-XORF (t; q; �) � AdvprfF (t0; q0) + 2�L ;where t0 = t+O(�) and q0 = q + 1 + �=(l �m� 1).The result for the randomized version of the s
heme is similar ex
ept for a

ruing an extra term. This time,there is a \
ollision probability" type term of q2=2l in the upper bound, indi
ating that we are unable torule out a breaking probability of this magnitude regardless of the quality of the PRF. We will see later thatthis is an inherent feature of the s
heme, whi
h is subje
t to a sort of birthday atta
k.Theorem 8.5 [11℄ Suppose F : f0; 1gk � f0; 1gl ! f0; 1gL is a PRF, and let R-XORF = (K; T ;V) bethe 
orresponding randomized XOR message authenti
ation s
heme as des
ribed above, with blo
k-indexingparameter m � l � 2 and message spa
e Plaintexts(l;m). Then for any t; q; �Advuf-
maR-XORF (t; q; �) � AdvprfF (t0; q0) + q22l + 2�L ;where t0 = t+O(�) and q0 = q + 1 + �=(l �m� 1).We will not prove these results at this time. We will be able to do this later when we have developed somemore te
hnology.8.5 Pseudorandom fun
tions make good MACsA general method for designing MACs is to make use of the fa
t that any pseudorandom fun
tion is infa
t a MAC. The redu
tion is due to [92, 93℄ and the 
on
rete se
urity analysis that follows is from [12℄.It shows that the redu
tion is almost tight|se
urity hardly degrades at all. This relation means that toprove the se
urity of the CBC MAC as a MAC it is enough to show that the CBC transform preservespseudorandomness. For simpli
ity the domain of the MAC is restri
ted to strings of length exa
tly d forsome integer d.Theorem 8.6 Let MAC : KeysMAC �f0; 1gd! f0; 1gs be a family of fun
tions, and let q; t � 1 be integers.Then Advuf-
maMAC (t; q; dq) � AdvprfMAC (t0; q) + 12s (8.1)where t0 = t+O(s + d).The 
onstant hidden in the O-notation depends only on details of the model of 
omputation. It is a small
onstant; one should think of t0 � t.Proof: Let A by any forger atta
king the message authenti
ation 
ode MAC . Assume the ora
le in Experi-ment Forge(MAC ; A) is invoked at most q times, and the \running time" of A is at most t, these quantitiesbeing measured as dis
ussed in De�nition 8.3. We design a distinguisher BA for MAC versus Randd!s su
hthat AdvprfMAC (BA) � Advuf-
maMAC ;A � 12s : (8.2)
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le, with the time measured as dis
ussedin De�nition 5.4. This implies Equation (8.1) be
auseAdvuf-
maMAC (t; q; dq) = maxA nAdvuf-
maMAC ;A o� maxA nAdvprfMAC (BA) + 2�s o= maxA nAdvprfMAC (BA) o+ 2�s� maxB nAdvprfMAC (B) o+ 2�s= AdvprfMAC (t0; q) + 2�s :Above the �rst equality is by the de�nition of the inse
urity fun
tion in De�nition 8.3. The followinginequality uses Equation (8.2). Next we simplify using properties of the maximum, and 
on
lude by usingthe de�nition of the inse
urity fun
tion as per De�nition 5.4.So it remains to design BA su
h that Equation (8.2) is true. Remember that BA is given an ora
le for afun
tion f : f0; 1gd ! f0; 1gs. It will run A, providing it an environment in whi
h A's ora
le queries areanswered by BA. When A �nally outputs its forgery, BA 
he
ks whether it is 
orre
t, and if so bets that fmust have been an instan
e of the family MAC rather than a random fun
tion.By assumption the ora
le in Experiment Forge(MAC ; A) is invoked at most q times, and for simpli
ity weassume it is exa
tly q. This means that the number of queries made by A to its ora
le is q � 1. Here now isthe 
ode implementing BA.Distinguisher BfAFor i = 1; : : : ; q � 1 doWhen A asks its ora
le some query, Mi, answer with f(Mi)End ForA outputs (M;�)�0  f(M)If � = �0 and M 62 fM1; : : : ;Mq�1gthen return 1 else return 0Here BA initializes A with some random sequen
e of 
oins and starts running it. When A makes its �rstora
le query M1, algorithm BA pauses and 
omputes f(M1) using its own ora
le f . The value f(M1) isreturned to A and the exe
ution of the latter 
ontinues in this way until all its ora
le queries are answered.Now A will output its forgery (M;�). BA veri�es the forgery, and if it is 
orre
t, returns 1.We now pro
eed to the analysis. We 
laim thatP h BfA = 1 : f R MAC i = Advuf-
maMAC ;A (8.3)P h BfA = 1 : f R Randd!s i � 12s : (8.4)Subtra
ting, we get Equation (8.2), and from the 
ode it is evident that BA makes q ora
le queries. Takinginto a

ount our 
onventions about the running times referring to that of the entire experiment it is alsotrue that the running time of BA is t+O(d + s). So it remains to justify the two equations above.In the �rst 
ase f is an instan
e of MAC , so that the simulated environment that BA is providing for A isexa
tly that of experiment Forge(MAC ; A). Sin
e BA returns 1 exa
tly when A makes a su

essful forgery,we have Equation (8.3).
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ture Notes 151In the se
ond 
ase, A is running in an environment that is alien to it, namely one where a random fun
tionis being used to 
ompute MACs. We have no idea what A will do in this environment, but no matter what,we know that the probability that � = f(M) is 2�s, be
ause f is a random fun
tion, as long as A did notquery M of its ora
le. Equation (8.4) follows.8.6 The CBC MACThe most popular message authenti
ation 
ode in use is the CBC (Cipher Blo
k Chaining) MAC. Letf : f0; 1gl ! f0; 1gl be a fun
tion. Let f (n): f0; 1gnl ! f0; 1gl be the fun
tion whi
h on input x1 : : : xnoutputs yn where yi = f(yi�1�xi) and y0 = 0l. If F is a �nite family of fun
tions with input length l andoutput length l then let F (n) denote the family of fun
tions in whi
h the fun
tion indexed by key K is F (n)K .The new family has input length nl and output length l and is 
alled the CBC of F .When F is DES, we have the CBC 
onstru
tion used in pra
ti
e, 
alled the DES CBCMAC. This 
onstru
tionis both a US and an International Standard, extensively used in the banking and �nan
ial se
tors. Its se
urityis worth investigation.8.6.1 Se
urity of the CBC MACWe dis
ussed the CBC 
onstru
tion in Example 8.2 and Se
tion 5.11.1, and noted in Theorem 5.20 that if Fis a PRF family then so is F (n). From Theorem 8.6 we 
an now 
on
lude that the CBC 
onstru
tion makesa good MAC as long as the underlying fun
tions are pseudorandom.Theorem 8.7 [12℄ Let l;m � 1 and q; t � 1 be integers su
h that qm � 2(l+1)=2. Let F : KeysF �f0; 1gl !f0; 1gl be a family of fun
tions. ThenAdvuf-
maF (m) (t; q;mql) � AdvprfF (t0; q0) + 3q2m2 + 22l+1� Advprp-
paF (t0; q0) + 2q2m2 + 12lwhere q0 = mq and t0 = t+O(mql).In parti
ular, if F = DES we have an assessment of the strength of the DES CBC MAC in terms of thestrength of DES as a PRF. Unfortunately as we dis
ussed in Se
tion 5.6.2, DES is not too strong as a PRF.We would be better of with stronger blo
k 
iphers.8.6.2 Birthday atta
k on the CBC MACThe basi
 idea behind the atta
k, due to Preneel and Van Oors
hott [163℄ and (independently) to Kraw
zyk,is that internal 
ollisions 
an be exploited for forgery. The atta
ks presented in [163℄ are analyzed assumingthe underlying fun
tions are random, meaning the family to whi
h the CBC-MAC transform is applied isRandl!l or Perml. Here we do not make su
h an assumption. This atta
k is from [12℄ and works for anyfamily of permutations. The randomness in the atta
k (whi
h is the sour
e of birthday 
ollisions) 
omes from
oin tosses of the forger only. This makes the atta
k more general. (We fo
us on the 
ase of permutationsbe
ause in pra
ti
e the CBC-MAC is usually based on a blo
k 
ipher.)Proposition 8.8 Let l;m; q be integers su
h that 1 � q � 2(l+1)=2 and m � 2. Let F : KeysF � f0; 1gl !f0; 1gl be a family of permutations. Then there is a forger A making q + 1 ora
le queries, running for time
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hieving Advuf-
maF (m);A � 0:3 � q(q � 1)2l :As a 
onsequen
e for q � 2 Advuf-
maF (m) (t; q; qml) � 0:3 � (q � 1)(q � 2)2l :The time assessment here puts the 
ost of an ora
le 
all at one unit.Comparing the above to Theorem 8.7 we see that the upper bound is tight to within a fa
tor of the squareof the number of message blo
ks.We now pro
eed to the proof. We begin with a 
ouple of lemmas. The �rst lemma 
onsiders a slight variantof the usual birthday problem and shows that the \
ollision probability" is still the same as that of the usualbirthday problem.Lemma 8.9 Let l; q be integers su
h that 1 � q � 2(l+1)=2. Fix b1; : : : ; bq 2 f0; 1gl. ThenP h 9 i; j su
h that i 6= j and bi�ri = bj�rj : r1; : : : ; rq R f0; 1gl i � 0:3 � q(q � 1)2l :Proof: This is just like throwing q balls into N = 2l bins and lower bounding the 
ollision probability, ex
eptthat things are \shifted" a bit: the bin assigned to the i-th ball is ri�bi rather than ri as we would usuallyimagine. But with bi �xed, if ri is uniformly distributed, so is ri�bi. So the probabilities are the same as inthe standard birthday problem of Appendix A.1.The �rst part of the following lemma states an obvious property of the CBC-MAC transform. The item ofreal interest is the se
ond part of the lemma, whi
h says that in the 
ase where the underlying fun
tion isa permutation, the CBC-MAC transform has the property that output 
ollisions o

ur if and only if input
ollisions o

ur. This is 
ru
ial to the atta
k we will present later.Lemma 8.10 Let l;m � 2 be integers and f : f0; 1gl ! f0; 1gl a fun
tion. Suppose �1 � � ��m and �1 � � ��min f0; 1gml are su
h that �k = �k for k = 3; : : : ;m. Thenf(�1)��2 = f(�1)��2 ) f (m)(�1 � � ��m) = f (m)(�1 � � ��m) :If f is a permutation then, in addition, the 
onverse is true:f (m)(�1 � � ��m) = f (m)(�1 � � ��m) ) f(�1)��2 = f(�1)��2 :Proof: The �rst part follows from the de�nition of f (m). For the se
ond part let f�1 denote the inverse ofthe permutation f . The CBC-MAC 
omputation is easily unraveled using f�1. Thus the pro
edureym  f (m)(�1 � � ��m) ; For k = m downto 3 do yk�1  f�1(yk)��k End For ; Return f�1(y2)returns f(�1)��2, while the pro
edureym  f (m)(�1 � � ��m) ; For k = m downto 3 do yk�1  f�1(yk)��k End For ; Return f�1(y2)
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ture Notes 153returns f(�1)��2. But the pro
edures have the same value of ym by assumption and we know that �k = �kfor k = 3; : : : ;m, so the pro
edures return the same thing.Proof of Proposition 8.8: Before presenting the forger let us dis
uss the idea.The forger A has an ora
le g = f (m) where f is an instan
e of F . The strategy of the forger is to makeq queries all of whi
h agree in the last m � 2 blo
ks. The �rst blo
ks of these queries are all distin
t but�xed. The se
ond blo
ks, however, are random and independent a
ross the queries. Denoting the �rst blo
kof query n by an and the se
ond blo
k as rn, the forger hopes to have i 6= j su
h that f(ai)�ri = f(aj)�rj .The probability of this happening is lower bounded by Lemma 8.9, but simply knowing the event happenswith some probability is not enough; the forger needs to dete
t its happening. Lemma 8.10 enables us tosay that this internal 
ollision happens i� the output MAC values for these queries are equal. (This is truebe
ause f is a permutation.) We then observe that if the se
ond blo
ks of the two 
olliding queries aremodi�ed by the xor to both of some value a, the resulting queries still 
ollide. The forger 
an thus forge bymodifying the se
ond blo
ks in this way, obtaining the MAC of one of the modi�ed queries using the se
ond,and outputting it as the MAC of the se
ond modi�ed query.The forger is presented in detail below. It makes use of a subroutine Find that given a sequen
e �1; : : : ; �qof values returns a pair (i; j) su
h that �i = �j if su
h a pair exists, and otherwise returns (0; 0).Forger AgLet a1; : : : ; aq be distin
t l-bit stringsFor i = 1; : : : ; q do ri R f0; 1glFor i = 1; : : : ; q doxi;1  ai ; xi;2  riFor k = 3; : : : ;m do xi;k  0lXi  xi;1 : : : xi;m�i  g(Xi)End For(i; j) Find(�1; : : : ; �q)If (i; j) = (0; 0) then abortElseLet a be any l-bit string di�erent from 0lx0i;2  xi;2�a ; x0j;2  xj;2�aX 0i  xi;1x0i;2xi;3 � � �xi;m ; X 0j  xj;1x0j;2xj;3 � � �xj;m�0i  g(X 0i)Return (X 0j ; �0i)End IfTo estimate the probability of su

ess, suppose g = f (m) where f is an instan
e of F . Let (i; j) be the pairof values returned by the Find subroutine. Assume (i; j) 6= (0; 0). Then we know thatf (m)(xi;1 � � �xi;m) = f (m)(xj;1 � � �xj;m) :By assumption f is a permutation and by design xi;k = xj;k for k = 3; : : : ;m. The se
ond part of Lemma 8.10then implies that f(ai)�ri = f(aj)�rj . Adding a to both sides we get f(ai)�(ri�a) = f(aj)�(rj�a). Inother words, f(ai)�x0i;2 = f(aj)�x0j;2. The �rst part of Lemma 8.10 then implies that f (m)(X 0i) = f (m)(X 0j).Thus �0i is a 
orre
t MAC of X 0j . Furthermore we 
laim that X 0j is new, meaning was not queried of theg ora
le. Sin
e a1; : : : ; aq are distin
t, the only thing we have to worry about is that X 0j = Xj , but this isruled out be
ause a 6= 0l.We have just argued that if the Find subroutine returns (i; j) 6= (0; 0) then the forger is su

essful, so thesu

ess probability is the probability that (i; j) 6= (0; 0). This happens whenever here is a 
ollision amongst



154 Goldwasser and Bellarethe q values �1; : : : ; �q . Lemma 8.10 tells us however that there is a 
ollision in these values if and only ifthere is a 
ollision amongst the q values f(a1)�r1; : : : ; f(aq)�rq . The probability is over the random 
hoi
esof r1; : : : ; rq . By Lemma 8.9 the probability of the latter is lower bounded by the quantity 
laimed in theProposition. We 
on
lude the theorem by noting that, with a simple implementation of FindCol (say usinga balan
ed binary sear
h tree s
heme) the running time is as 
laimed.8.6.3 Length VariabilityFor simpli
ity, let us assume throughout this se
tion that strings to be authenti
ated have length whi
h is amultiple of l bits. This restri
tion is easy to dispense with by using simple and well-known padding methods:for example, always append a \1" and then append the minimal number of 0's to make the string a multipleof l bits.The CBC MAC does not dire
tly give a method to authenti
ate messages of variable input lengths. In fa
t,it is easy to \break" the CBC MAC 
onstru
tion if the length of strings is allowed to vary. You are askedto do this in a problem at the end of this 
hapter. Try it; it is a good exer
ise in MACs!One possible attempt to authenti
ate messages of varying lengths is to append to ea
h string x = x1 � � �xmthe number m, properly en
oded as the �nal l-bit blo
k, and then CBC MAC the resulting string m + 1blo
ks. (Of 
ourse this imposes a restri
tion that m < 2l, not likely to be a serious 
on
ern.) We de�nef�a (x1 � � �xm) = f (m+1)a (x1 � � �xm m).We show that f� is not a se
ure MAC. Take arbitrary l-bit words b, b0 and 
, where b 6= b0. It is easy to
he
k that given(1) tb = f�(b),(2) tb0 = f�(b0), and(3) tb1
 = f�(bk1k
)the adversary has in hand f�(b0k1ktb�tb0�
) |the authenti
ation tag of a string she has not asked aboutbefore|sin
e this is pre
isely tb1
.Despite the failure of the above method there are many suitable ways to obtain a PRF that is good onvariable input lengths. We mention three. In ea
h, let F be a �nite fun
tion family from and to l-bit strings.Let x = x1 � � �xm be the message to whi
h we will apply fa:(1) Input-length key separation. Set f�a (x) = f (m)am (x), where am = fa(m).(2) Length-prepending. Set f�a (x) = f (m+1)a (mkx).(3) En
rypt last blo
k. Set f�a1a2(x) = fa2(f (m)a1 (x)).The �rst two methods are from [12℄. The last method appears in an informational Annex of [112℄, and hasnow been analyzed by Petrank and Ra
ko� [156℄. It is the most attra
tive method of the bun
h, sin
e thelength of x is not needed until the end of the 
omputation, fa
ilitating on-line MAC 
omputation.8.7 Universal hash based MACsToday the most e�e
tive paradigm for fast message authenti
ation is based on the use of \almost universalhash fun
tions". The design of these hash fun
tions re
eives mu
h attention and has resulted in some veryfast ones [32℄, so that universal hash based MACs are the fastest MACs around. Let us begin by des
ribingthe tool, and then seeing how it 
an be used for message authenti
ation.
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ture Notes 1558.7.1 Almost universal hash fun
tionsLet H : Keys(H)�Dom(H)! f0; 1gL be a family of fun
tions. We think of them as hash fun
tions be
ausethe domain Dom(H) of any individual fun
tion HK is typi
ally large, being the message spa
e of the desiredmessage authenti
ation s
heme.De�nition 8.11 Let H : Keys(H)�Dom(H)! f0; 1gL be a family of fun
tions. LetAdvuhH = maxa1;a2 nP hHK(a1) = HK(a2) : K R Keys(H) i o ;the maximum being over all distin
t points a1; a2 2 Dom(H).The smaller the value of AdvuhH , the better the quality of H as an almost universal fun
tion. We say thatH is a universal hash fun
tion if AdvuhH = 2�L. (We will see later that this is the lowest possible value ofthe inse
urity.)A stronger property is almost xor-universality.De�nition 8.12 Let H : Keys(H)�Dom(H)! f0; 1gL be a family of fun
tions. LetAdvxuhH = maxa1;a2;bnP hHK(a1)�HK(a2) = b : K R Keys(H) i o ;the maximum being over all distin
t points a1; a2 2 Dom(H) and all strings b 2 f0; 1gL.The smaller the value of AdvxuhH , the better the quality of H as an almost xor-universal fun
tion. Wesay that H is a xor-universal hash fun
tion if AdvxuhH = 2�L. (We will see later that this is the lowestpossible value of the inse
urity.)Almost xor-universality is a stronger requierement than almost universality.Proposition 8.13 Let H : Keys(H)� Dom(H)! f0; 1gL be a family of fun
tions. ThenAdvuhH � AdvxuhH :Proof: Setting b = 0L in De�nition 8.12 yields the quantity of De�nition 8.11.The simplest example is the family of all fun
tions.Proposition 8.14 The family Randl!L of all fun
tions of l-bits to L-bits is universal and xor-universal,meaning AdvuhRandl!L = AdvxuhRandl!L = 2�L :Proof: By Proposition 8.13 we need only show that AdvxuhRandl!L = 2�L. With distin
t a1; a2 2 f0; 1gl,and b 2 f0; 1gL �xed, we 
learly haveP h h(a1)�h(a2) = b : h R Randl!L i = 2�Lbe
ause h is a random fun
tion.Another sour
e of examples is polynomials over �nite �elds.



156 Goldwasser and BellareExample 8.15 Identify f0; 1gl with GF(2l), the �nite �eld of 2l elements. We �x an irredu
ible, degree lpolynomial over GF(2) so as to be able to do arithmati
 over the �eld. The hash fun
tion H we de�ne takesas key a pair �; � of points in f0; 1gl su
h that � 6= 0. The domain is f0; 1gl and the range is f0; 1gL whereL � l. We de�ne the fun
tion by H�;�(x) = [�x+ �℄1:::L :That is, with key �; � and input x 2 f0; 1gl, �rst 
ompute, in the �nite �eld, the value �x+ �. View this asan l-bit string, and output the �rst L bits of it.Proposition 8.16 The family H : Keys(H) � f0; 1gl ! f0; 1gL de�ned above, where L � l and Keys(H) isthe set of all pairs (a; b) of l-bit strings su
h that a 6= 0, is a xor-universal hash fun
tion.Proof: We need to show that AdvH = 2�L. A

ordingly �x a1; a2 2 f0; 1gl su
h that a1 6= a2, and �xb 2 f0; 1gL. Fix any key for the fun
tion, meaning any � 6= 0 and any �. Noti
e that y = �x + � i�x = ��1(y � �). (The arithmati
 here is over the �nite �eld, and we are using the assumption that � 6= 0.)This means that the map of GF(2l) to GF(2l) given by x 7! �x + � is a permutation. The propositionfollows from this.For the following it is useful to have some terminology. Fix any two points a1; a2 in the domain Dom(H) ofthe family, the only restri
tion on them being that they are not allowed to be equal. Also �x a point b inthe range f0; 1gL of the family. With H �xed, we 
an asso
iate to these three points a probabilityUHColPrH(a1; a2; b) = P hHK(a1)�HK(a2) = b : K R Keys(H) i= P h h(a1)�h(a2) = b : h R H i ;the two expressions above being equal by de�nition.It is useful to interpret the almost xor-universal measure in another, more dynami
 way. Imagine that the
hoi
e of the points a1; a2; b is made by an adversary. This adversary C knows that H is the target family.It 
lunks along for a while and then outputs some distin
t values a1; a2 2 Dom(H), and a value b 2 f0; 1gL.Now a key K is 
hosen at random, de�ning the fun
tion HK : Dom(H) ! f0; 1gL, and we test whether ornot HK(a1)�HK(a2) = b. If so, the adversary C wins. We denote the probability that the adversary winsby AdvxuhH;C. We then 
laim that this probability is at most AdvxuhH .The reason is that there is a single best strategy for the adversary, namely to 
hoose points a1; a2; b whi
hmaximize the probability UHColPrH(a1; a2; b) de�ned above. This should be relatively 
lear, at least for the
ase when the adversary is deterministi
. But the 
laim is true even when the adversary is probabilisti
,meaning that the triple of points it outputs 
an be di�erent depending on its own 
oin tosses. (In su
h a
ase, the probability de�ning AdvxuhH;C is taken over the 
hoi
e of K and also the 
oin tosses of C.) Wejustify this 
laim in Proposition 8.17 below. We thus have two, equivalent ways of thinking about AdvxuhH ,one more \stati
" and the other more \dynami
". Depending on the setting, we may bene�t more from oneview than another.Before stating and proving Proposition 8.17, however, let us emphasize some features of this notion. Akey feature of the game is that the steps must follow a parti
ular order: �rst the adversary 
hooses pointsa1; a2; b, then K is 
hosen at random and the fun
tion HK is de�ned. The adversary is not allowed to 
hoosea1; a2; b as a fun
tion of K; it must �rst 
ommit to them, and then there is some probability of its winningthe game.This notion di�ers from others we have 
onsidered in that there is no 
omputational restri
tion on theadversary. Namely, it 
an run for as long as it likes in de
iding how to 
hoose a1; a2; b, and the se
urity
ondition is true nonetheless. Thus, it is a purely information theoreti
 notion.Here now is the promised bound.



Cryptography: Le
ture Notes 157Proposition 8.17 LetHKeys(H)�Dom(H)! f0; 1gL be a family of fun
tions and C a (possibly probabilis-ti
) algorithm that outputs a triple a1; a2; b su
h that a1; a2 are distin
t points in Dom(H) and b 2 f0; 1gL.Then AdvxuhH;C � AdvxuhH :Proof: Remember that to say C is probabilisti
 means that it has as an auxiliary input a sequen
e � ofrandom bits of some length r, and uses them in its 
omputation. Depending on the value of r, the outputtriple of C will 
hange. We 
an denote by a1(�); a2(�); b(�) the triple that C outputs when its 
oins are �.For any parti
ular value of � it is 
lear from De�nition 8.11 thatP hHK(a1(�))�HK(a2(�)) = b(�) : K R Keys(H) i� maxa1;a2;bfP hHK(a1)�HK(a2) = b : K R Keys(H) i g= AdvxuhH :Using this we getAdvxuhH;C = P hHK(a1(�))�HK(a2(�)) = b(�) : � R f0; 1gr ; K R Keys(H) i= X�2f0;1grP hHK(a1(�))�HK(a2(�)) = b(�) : K R Keys(H) i � 2�r� X�2f0;1grAdvxuhH � 2�r= AdvxuhH :The �rst equality is by de�nition of AdvxuhH;C. In the se
ond line we used the fa
t that the 
oins of C are
hosen at random from the set of all strings of length r. In the third line, we used the above observation.How low 
an AdvxuhH go? We 
laim that the lowest possible value is 2�L, the value a
hieved by a xor-universal family. The following justi�es this 
laim.Proposition 8.18 Let HKeys(H)�Dom(H)! f0; 1gL be a family of fun
tions. ThenAdvxuhH � 2�L :Proof: Fix two distin
t points a1; a2 2 Dom(H), and for any �xed key K 2 Keys(H) let
(K) = P hHK(a1)�HK(a2) = b : b R f0; 1gL i :Then 
(K) = 2�L. Why? With K; a1; a2 all �xed, HK(a1)�HK(a2) is some �xed value, 
all it b0. The aboveis then just asking what is the probability that b = b0 if we pi
k b at random, and this of 
ourse is 2�L.



158 Goldwasser and BellareNow 
onsider the adversary C that pi
ks b at random from f0; 1gL and outputs the triple a1; a2; b. (Notethis adversary is probabilisti
, be
ause of its random 
hoi
e of b.) ThenAdvxuhH;C = P hHK(a1)�HK(a2) = b : b R f0; 1gL ; K R Keys(H) i= XK2Keys(H) 
(K) �P [K 0 = K : K 0  Keys(H) ℄= XK2Keys(H) 2�L �P [K 0 = K : K 0  Keys(H) ℄= 2�L � 1 :Thus we have been able to present an adversary C su
h that AdvxuhH;C = 2�L. From Proposition 8.17 itfollows that AdvxuhH � 2�L.8.7.2 MACing using UH fun
tionsLet H : Keys(H)�Plaintexts! f0; 1gL be a family of hash fun
tions, and let F : f0; 1gk�f0; 1gl ! f0; 1gL bea PRF. We asso
iate to them the universal hash based MAC. The key will be a pair of strings, K1;K2, wherethe �rst subkey is for H and the se
ond is for F . (We 
all them the hashing and masking keys respe
tively.)The message is �rst hashed to a string x using HK1 , and this value is then \en
rypted" by applying FK2(s)to yield a value � whi
h is the tag. Here now is the full des
ription of the s
heme, UHMH;F = (K; T ;V){Algorithm TK1;K2(M)x HK1(M)�  FK2(x)Return � Algorithm VK1;K2(M;�)x HK1(M)�0  FK2(x)If � = �0 then return 1 else return 0Lemma 8.19 Let H : Keys(H)�Plaintexts! f0; 1gL be a family of fun
tions, and A an adversary atta
kingthe message authenti
ation s
heme UHMH;Randl!L . Then for any q; � we haveAdvuf-
maUHMH;Randl!L ;A � q(q � 1)2 �AdvuhH :Theorem 8.20 LetH : Keys(H)�Plaintexts! f0; 1gL be a family of fun
tions, and let F : f0; 1gk�f0; 1gl !f0; 1gL be a PRF. Then for any t; q; � we haveAdvuf-
maUHMH;F (t; q; �) � q(q � 1)2 �AdvuhH +AdvprfF (t0; q + 1)where t0 = t+O(�).8.7.3 MACing using XUH fun
tionsLet H : Keys(H) � Plaintexts! f0; 1gL be a family of hash fun
tions, and let F : f0; 1gk � f0; 1gl ! f0; 1gLbe a PRF. We asso
iate to them the xor-universal hash based MACs. There are two su
h MACs; one stateful(using 
ounters) and deterministi
, the other stateless and randomized. The key will be a pair of strings,K1;K2, where the �rst subkey is for H and the se
ond is for F . (We 
all them the hashing and maskingkeys respe
tively.) In both 
ases, the basi
 paradigm is the same. The message is �rst hashed to a string x
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ture Notes 159using HK1 , and this value is then \en
rypted" by XORing with FK2(s) to yield a value � , where s is somepoint 
hosen by the sender. The tag 
ontains � , but also s so as to permit veri�
ation. The di�eren
e in thetwo version is in how s is sele
ted. In the 
ounter version it is a 
ounter, and in the randomized version arandom number 
hosen anew with ea
h appli
ation of the tagging algorithm.Here now is the full des
ription of the 
ounter-based version of the s
heme, C-UHMH;F = (K; T ;V){Algorithm TK1;K2(M)x HK1(M)�  FK2(
tr)�x�  (
tr; �)
tr  
tr + 1Return � Algorithm VK1;K2(M;�)Parse � as (s; �)x0  FK2(s)��x HK1(M)If x = x0 then return 1 else return 0The randomized version R-UHMH;F = (K; T ;V) is like this{Algorithm TK1;K2(M)x HK1(M)r R f0; 1gl�  FK2(r)�x�  (r; �)Return �
Algorithm VK1;K2(M;�)Parse � as (s; �)x0  FK2(s)��x HK1(M)If x = x0 then return 1 else return 0Lemma 8.21 Let H : Keys(H)�Plaintexts! f0; 1gL be a family of fun
tions, and A an adversary atta
kingthe message authenti
ation s
heme C-UHMH;Randl!L . Then for any q; � with q < 2l we haveAdvuf-
maC-UHMH;Randl!L ;A � AdvxuhH :Proof of Lemma 8.21: The adversary A makes a sequen
e M1; : : : ;Mq of queries to its TK1;K2(�) ora
le,and these are answered a

ording to the above s
heme. Pi
torially:M1 =) �1 = (s1; �1)M2 =) �2 = (s2; �2)... ... ...Mq =) �q = (sq ; �q)Here si = hi � 1i is simply the (binary representation of the) 
ounter value, and �i = f(si)�h(Mi), whereh = HK1 is the hash fun
tion instan
e in use, and f = Randl!LK2 is the random fun
tion spe
i�ed by these
ond key. Following this 
hosen-message atta
k, A outputs a pair M;� where � = (s; �). We may assumewlog that M 62 fM1; : : : ;Mqg. We know that A will be 
onsidered su

essful if VK1;K2(M;�) = 1. We wishto upper bound the probability of this event.Let New be the event that s 62 fs1; : : : ; sqg, and Old the 
omplement event, namely that s = si for some valueof i 2 f1; : : : ; qg. LetP [�℄ denote the probability of event \�" in the experiment ForgeExp(C-UHMH;Randl!L ; A).We 
onsider p1 = P [VK1;K2(M;�) = 1 j Old℄p2 = P [VK1;K2(M;�) = 1 j New℄q = P [New℄ :We will use the following two 
laims.



160 Goldwasser and BellareClaim 1: p1 � AdvuhH .Claim 2: p2 � 2�L.We will prove these 
laims later. Let us �rst 
he
k that they yield the desired result:Advuf-
maC-UHMH;Randl!L ;A = P [VK1;K2(M;�) = 1℄= p1q + p2(1� q)� AdvuhH � q + 2�L � (1� q)� AdvuhH � q +AdvuhH � (1� q)� AdvuhH :The �rst line is simply by de�nition of the su

ess probability. The se
ond line is obtained by 
onditioning.In the third line we used the 
laims. In the fourth line we used Proposition 8.18.It remains to prove the 
laims. We begin with the se
ond.Proof of Claim 2: Sin
e the queries of the adversary did not result in the fun
tion f being evaluted on thepoint s, the value f(s) is uniformly distributed from the point of view of A. Or, remember the dynami
 viewof random fun
tions; we 
an imagine that f gets spe
i�ed only as it is queried. Sin
e the tagging ora
le (asinvoked by A) has not applied f at s, we 
an imagine that the 
oins to determine f(s) are tossed after theforgery is 
reated. With that view it is 
lear thatp2 = P [f(s)�h(M) = � ℄ = 2�L :Note that here we did not use anything about the hash fun
tion; the 
laim is true due only to the randomnessof f . 2Proof of Claim 2:Adversary CInitialize 
ounter 
tr to 0For i = 1; : : : ; q doA!Mi�i R f0; 1gL ; si  h
tri ; �i  (si; �i)A �i ; 
tr  
tr + 1A!M;�Parse � as (s; �)If s 62 fs1; : : : ; sqg then FAILElse let i be su
h that s = siLet b �i�� and return M;Mi; bWe 
laim that AdvuhH;C = p1.Theorem 8.22 LetH : Keys(H)�Plaintexts! f0; 1gL be a family of fun
tions, and let F : f0; 1gk�f0; 1gl !f0; 1gL be a PRF. Then for any t; q; � we haveAdvuf-
maC-UHMH;F (t; q; �) � AdvxuhH +AdvprfF (t0; q + 1)where t0 = t+O(�).
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ture Notes 1618.8 MACing with 
ryptographi
 hash fun
tionsRe
ently there has been a surge of interest in MACing using only 
ryptographi
 hash fun
tions like MD5 orSHA. It is easy to see why. The popular hash fun
tions like MD5 and SHA-1 are faster than blo
k 
iphers insoftware implementation; these software implementations are readily and freely available; and the fun
tionsare not subje
t to the export restri
tion rules of the USA and other 
ountries.The more diÆ
ult question is how best to do it. These hash fun
tions were not originally designed to beused for message authenti
ation. (One of many diÆ
ulties is that hash fun
tions are not keyed primitives,ie. do not a

ommodate naturally the notion of se
ret key.) So spe
ial 
are must be taken in using them tothis end.A variety of 
onstru
tions have been proposed and analyzed. (See Tsudik [195℄ for an early des
ription ofsu
h 
onstru
tions and Tou
h [194℄ for a list of Internet proto
ols that use this approa
h. Preneel and vanOors
hot [163, 162℄ survey existing 
onstru
tions and point out to some of their properties and weaknesses;in parti
ular, they present a detailed des
ription of the e�e
t of birthday atta
ks on iterated 
onstru
tions.They also present a heuristi
 
onstru
tion, the MDx-MAC, based on these �ndings. Kaliski and Robshaw[115℄ dis
uss and 
ompare various 
onstru
tions. Performan
e issues are dis
ussed in [194, 11℄.) Re
ently,one 
onstru
tion seems to be gaining a

eptan
e. This is the HMAC 
onstru
tion of [18℄. In parti
ularHMAC was re
ently 
hosen as the mandatory to implement authenti
ation transform for Internet se
urityproto
ols and for this purpose is des
ribed in an Internet RFC [122℄.8.8.1 The HMAC 
onstru
tionLet H be the hash fun
tion. For simpli
ity of des
ription we may assume H to be MD5 or SHA-1; howeverthe 
onstru
tion and analysis 
an be applied to other fun
tions as well (see below). H takes inputs of anylength and produ
es l-bit output (l = 128 for MD5 and l = 160 for SHA-1). Let Text denote the data towhi
h the MAC fun
tion is to be applied and let K be the message authenti
ation se
ret key shared by thetwo parties. (It should not be larger than 64 bytes, the size of a hashing blo
k, and, if shorter, zeros areappended to bring its length to exa
tly 64 bytes.) We further de�ne two �xed and di�erent 64 byte stringsipad and opad as follows (the \i" and \o" are mnemoni
s for inner and outer):ipad = the byte 0x36 repeated 64 timesopad = the byte 0x5C repeated 64 times.The fun
tion HMAC takes the key K and Text, and produ
es HMACK(Text) =H(K � opad; H(K � ipad;Text)) :Namely,(1) Append zeros to the end of K to 
reate a 64 byte string(2) XOR (bitwise ex
lusive-OR) the 64 byte string 
omputed in step (1) with ipad(3) Append the data stream Text to the 64 byte string resulting from step (2)(4) Apply H to the stream generated in step (3)(5) XOR (bitwise ex
lusive-OR) the 64 byte string 
omputed in step (1) with opad(6) Append the H result from step (4) to the 64 byte string resulting from step (5)(7) Apply H to the stream generated in step (6) and output the resultThe re
ommended length of the key is at least l bits. A longer key does not add signi�
antly to the se
urityof the fun
tion, although it may be advisable if the randomness of the key is 
onsidered weak.HMAC optionally allows trun
ation of the �nal output say to 80 bits.



162 Goldwasser and BellareAs a result we get a simple and eÆ
ient 
onstru
tion. The overall 
ost for authenti
ating a stream Text is
lose to that of hashing that stream, espe
ially as Text gets large. Furthermore, the hashing of the paddedkeys 
an be pre
omputed for even improved eÆ
ien
y.Note HMAC uses the hash fun
tion H as a bla
k box. No modi�
ations to the 
ode for H are requiredto implement HMAC. This makes it easy to use library 
ode for H , and also makes it easy to repla
e aparti
ular hash fun
tion, su
h as MD5, with another, su
h as SHA-1, should the need to do this arise.8.8.2 Se
urity of HMACThe advantage of HMAC is that its se
urity 
an be justi�ed given some reasonable assumptions about thestrength of the underlying hash fun
tion.The assumptions on the se
urity of the hash fun
tion should not be too strong, sin
e after all not enough
on�den
e has been gathered in 
urrent 
andidates like MD5 or SHA. (In parti
ular, we now know that MD5is not 
ollision-resistant [70℄. We will dis
uss the MD5 
ase later.) In fa
t, the weaker the assumed se
urityproperties of the hash fun
tion, the stronger the resultant MAC 
onstru
tion.We make assumptions that re
e
t the more standard existing usages of the hash fun
tion. The propertieswe require are mainly a 
ertain kind of weak 
ollision-freeness and some limited \unpredi
tability." What isshown is that if the hash fun
tion fun
tion has these properties the MAC is se
ure; the only way the MAC
ould fail is if the hash fun
tion fails.The analysis of [18℄ applies to hash fun
tions of the iterated type, a 
lass that in
ludes MD5 and SHA,and 
onsists of hash fun
tions built by iterating appli
ations of a 
ompression fun
tion CF a

ording to thepro
edure of Merkle [138℄ and Damg�ard [63℄. (In this 
onstru
tion a l-bit initial variable IV is �xed, andthe output of H on text x is 
omputed by breaking x into 512 bit blo
ks and hashing in stages using CF, ina simple way that the reader 
an �nd des
ribed in many pla
es, e.g. [115℄.) Roughly what [18℄ say is thatan atta
ker who 
an forge the HMAC fun
tion 
an, with the same e�ort (time and 
olle
ted information),break the underlying hash fun
tion in one of the following ways:(1) The atta
ker �nds 
ollisions in the hash fun
tion even when the IV is random and se
ret, or(2) The atta
ker is able to 
ompute an output of the 
ompression fun
tion even with an IV that is random,se
ret and unknown to the atta
ker. (That is, the atta
ker is su

essful in forging with respe
t to theappli
ation of the 
ompression fun
tion se
retly keyed and viewed as a MAC on �xed length messages.)The feasibility of any of these atta
ks would 
ontradi
t some of our basi
 assumptions about the 
ryptographi
strength of these hash fun
tions. Su

ess in the �rst of the above atta
ks means su

ess in �nding 
ollisions,the prevention of whi
h is the main design goal of 
ryptographi
 hash fun
tions, and thus 
an usually beassumed hard to do. But in fa
t, even more is true: su

ess in the �rst atta
k above is even harder than�nding 
ollisions in the hash fun
tion, be
ause 
ollisions when the IV is se
ret (as is the 
ase here) is farmore diÆ
ult than �nding 
ollisions in the plain (�xed IV) hash fun
tion. This is be
ause the former requiresintera
tion with the legitimate user of the fun
tion (in order to generate pairs of input/outputs from thefun
tion), and disallows the parallelism of traditional birthday atta
ks. Thus, even if the hash fun
tion isnot 
ollision-free in the traditional sense, our s
hemes 
ould be se
ure.Some \randomness" of hash fun
tions is assumed in their usage for key generation and as pseudo-randomgenerators. (For example the designers of SHA suggested that SHA be used for this purpose [81℄.) Ran-domness of the fun
tion is also used as a design methodology towards a
hieving 
ollision-resistan
e. Thesu

ess of the se
ond atta
k above would imply that these randomness properties of the hash fun
tions arevery poor.It is important to realize that these results are guided by the desire to have simple to state assumptions anda simple analysis. In reality, the 
onstru
tion is even stronger than the analyses indi
ates, in the sense thateven were the hash fun
tions found not to meet the stated assumptions, the s
hemes might be se
ure. Forexample, even the weak 
ollision resistan
e property is an overkill, be
ause in a
tuality, in our 
onstru
tions,the atta
ker must �nd 
ollisions in the keyed fun
tion without seeing any outputs of this fun
tion, whi
h is
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ture Notes 163signi�
antly harder.The later remark is relevant to the re
ently dis
overed 
ollision atta
ks on MD5 [70℄. While these atta
ks
ould be adapted to atta
k the weak 
ollision-resistan
e property of MD5, they do not seem to lead to abreaking of HMAC even when used with MD5.8.8.3 Resistan
e to known atta
ksAs shown in [163, 19℄, birthday atta
ks, that are the basis to �nding 
ollisions in 
ryptographi
 hash fun
tions,
an be applied to atta
k also keyed MAC s
hemes based on iterated fun
tions (in
luding also CBC-MAC,and other s
hemes). These atta
ks apply to most (or all) of the proposed hash-based 
onstru
tions of MACs.In parti
ular, they 
onstitute the best known forgery atta
ks against the HMAC 
onstru
tion. Considerationof these atta
ks is important sin
e they strongly improve on naive exhaustive sear
h atta
ks. However, theirpra
ti
al relevan
e against these fun
tions is negligible given the typi
al hash lengths like 128 or 160. Indeed,these atta
ks require the 
olle
tion of the MAC value (for a given key) on about 2l=2 messages (where l isthe length of the hash output). For values of l � 128 the atta
k be
omes totally infeasible. In 
ontrast tothe birthday atta
k on key-less hash fun
tions, the new atta
ks require intera
tion with the key owner toprodu
e the MAC values on a huge number of messages, and then allow for no parallelization. For example,when using MD5 su
h an atta
k would require the authenti
ation of 264 blo
ks (or 273 bits) of data usingthe same key. On a 1 Gbit/se
 
ommuni
ation link, one would need 250,000 years to pro
ess all the datarequired by su
h an atta
k. This is in sharp 
ontrast to birthday atta
ks on key-less hash fun
tions whi
hallow for far more eÆ
ient and 
lose-to-realisti
 atta
ks [196℄.8.9 Minimizing assumptions for MACsAs with the other primitives of private key 
ryptography, the existen
e of se
ure message authenti
ations
hemes is equivalent to the existen
e of one-way fun
tions. That one-way fun
tions yield message authen-ti
ation s
hemes follows from Theorem 5.19 and Theorem 8.6. The other dire
tion is [110℄. In summary:Theorem 8.23 There exists a se
ure message authenti
ation s
heme for message spa
e f0; 1g� if and onlyif there exists a one-way fun
tion.8.10 Problems and exer
isesProblem 8.24 Let F : f0; 1gk � f0; 1gl ! f0; 1gl be a PRF. Re
all that the CBC MAC based on F is themessage authenti
ation s
hemeMA whose tagging and verifying algorithms are as follows:Algorithm TK(x1 : : : xn)y0  0lFor i = 1; : : : ; n do yi  FK(yi�1�xi)Return yn Algorithm VK(x1 : : : xn; �)y0  0lFor i = 1; : : : ; n do yi  FK(yi�1�xi)If yn = � then return 1 else return 0Let the message spa
e be the set of all strings x whose length is a multiple of l bits. (Meaning the number ofmessage blo
ks n may vary in the above.) Show that the s
heme is inse
ure over this message spa
e. Namelypresent an adversary A atta
king the s
heme using time t, making q ora
le queries, these totalling � bits,and a
hieving Advuf-
maMA;A = 1, where t; q; � are some small values that you will spe
ify.



C h a p t e r 9Digital signatures

The notion of a digital signature may prove to be one of the most fundamental and useful inventions of modern
ryptography. A signature s
heme provides a way for ea
h user to sign messages so that the signatures 
anlater be veri�ed by anyone else. More spe
i�
ally, ea
h user 
an 
reate a mat
hed pair of private and publi
keys so that only he 
an 
reate a signature for a message (using his private key), but anyone 
an verify thesignature for the message (using the signer's publi
 key). The veri�er 
an 
onvin
e himself that the message
ontents have not been altered sin
e the message was signed. Also, the signer 
an not later repudiate havingsigned the message, sin
e no one but the signer possesses his private key.By analogy with the paper world, where one might sign a letter and seal it in an envelope, one 
an signan ele
troni
 message using one's private key, and then seal the result by en
rypting it with the re
ipient'spubli
 key. The re
ipient 
an perform the inverse operations of opening the letter and verifying the signatureusing his private key and the sender's publi
 key, respe
tively. These appli
ations of publi
-key te
hnologyto ele
troni
 mail are quite widespread today already.If the dire
tory of publi
 keys is a

essed over the network, one needs to prote
t the users from being sentfraudulent messages purporting to be publi
 keys from the dire
tory. An elegant solution is the use of a
erti�
ate { a 
opy of a user's publi
 key digitally signed by the publi
 key dire
tory manager or othertrusted party. If user A keeps lo
ally a 
opy of the publi
 key of the dire
tory manager, he 
an validate allthe signed 
ommuni
ations from the publi
-key dire
tory and avoid being tri
ked into using fraudulent keys.Moreover, ea
h user 
an transmit the 
erti�
ate for his publi
 key with any message he signs, thus removingthe need for a 
entral dire
tory and allowing one to verify signed messages with no information other thanthe dire
tory manager's publi
 key. Some of the proto
ol issues involved in su
h a network organization, aredis
ussed in the se
tion on key distribution in these le
ture notes.9.1 The Ingredients of Digital SignaturesA digital signature s
heme within the publi
 key framework, is de�ned as a triple of algorithms (G; �; V )su
h that� Key generation algorithm G is a probabilisti
, polynomial-time algorithm whi
h on input a se
urityparameter 1k, produ
es pairs (P; S) where P is 
alled a publi
 key and S a se
ret key. (We use thenotation (P; S) 2 G(1k) indi
ates that the pair (P; S) is produ
ed by the algorithm G.)� Signing algorithm � is a probabilisti
 polynomial time algorithm whi
h is given a se
urity parameter1k, a se
ret key S in range G(1k), and a messagem 2 f0; 1gk and produ
es as output string s whi
h we164
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all the signature of m. (We use notation s 2 �(1k; S;m) if the signing algorithm is probabilisti
 ands = �(1k; S;m) otherwise. As a shorthand when the 
ontext is 
lear, the se
ret key may be omittedand we will write s 2 �(S;m) to mean meaning that s is the signature of message m.)� Veri�
ation algorithm V is a probabilisti
 polynomial time algorithm whi
h given a publi
 key P , adigital signature s, and a message m, returns 1 (i.e "true") or 0 (i.e "false") to indi
ate whether or notthe signature is valid. We require that V (P; s;m) = 1 if s 2 �(m) and 0 otherwise. (We may omit thepubli
 key and abbreviate V (P; s;m) as V (s;m) to indi
ate verifying signature s of message m whenthe 
ontext is 
lear.)� The �nal 
hara
teristi
 of a digital signature system is its se
urity against a probabilisti
 polynomial-time forger. We delay this de�nition to later.Note that if V is probabilisti
, we 
an relax the requirement on V to a

ept valid signatures and reje
t invalidsignatures with high probability for all messages m, all suÆ
iently large se
urity parameters k, and all pairsof keys (P; S) 2 G(1k). The probability is taken over the 
oins of V and S. Note also that the message tobe signed may be plain text or en
rypted, be
ause the message spa
e of the digital signature system 
an beany subset of f0; 1g�.9.2 Digital Signatures: the Trapdoor Fun
tion ModelDiÆe and Hellman [68℄ propose that with a publi
 key 
ryptosystem (G;E;D) based on the trapdoor fun
tionmodel, user A 
an sign any message M by appending as a digital signature D(M) = f�1(M) to M where fis A's trapdoor publi
 fun
tion for whi
h A alone knows the 
orresponding trapdoor information. Anyone
an 
he
k the validity of this signature using A's publi
 key from the publi
 dire
tory, sin
e E(D(M)) =f�1(f(M)). Note also that this signature be
omes invalid if the message is 
hanged, so that A is prote
tedagainst modi�
ations after he has signed the message, and the person examining the signature 
an be surethat the message he has re
eived that was originally signed by A.Thus, in their original proposal DiÆe and Hellman linked the two tasks of en
ryption and digital signatures.We, however, separate these two tasks. It turns out that just as some 
ryptographi
 s
hemes are suitedfor en
ryption but not signatures, many proposals have been made for signature-only s
hemes whi
h a
hievehigher se
urity.The RSA publi
-key 
ryptosystem whi
h falls in the DiÆe and Hellman paradigm allows one to implementdigital signatures in a straightforward manner. The private exponent d now be
omes the signing exponent ,and the signature of a message M i whi
h falls in the DiÆe and Hellman paradigm s now the quantityMd mod n. Anyone 
an verify that this signature is valid using the 
orresponding publi
 veri�
ation exponente by 
he
king the identity M = (Md)e mod n. If this equation holds, then the signatureMd must have been
reated from M by the possessor of the 
orresponding signing exponent d. (A
tually, it is possible that thereverse happened and that the \message" M was 
omputed from the \signature" Md using the veri�
ationequation and the publi
 exponent e. However, su
h a message is likely to be unintelligible. In pra
ti
e,this problem is easily avoided by always signing f(M) instead of M , where f is a standard publi
 one-wayfun
tion.)Cast in our notation for digital signature s
hemes, the DiÆe-Hellman proposal is the following triple ofalgorithms (G; �; V ):� Key Generation: G(1k) pi
ks pairs (fi; ti) from F where i 2 I \ f0; 1gk.� Signing Algorithm: �(1k; fi; ti;m) outputs f�1i (m).� Veri�
ation Algorithm: V (fi; s;m) outputs 1 if fi(s) = m and 0 otherwise.We will 
onsider the se
urity of this proposal and others. We �rst de�ne se
urity for digital signatures.
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urity for Signature S
hemesA theoreti
al treatment of digital signatures se
urity was started by Goldwasser, Mi
ali and Yao in [103℄and 
ontinued in [101, 14, 145, 171, 74℄.9.3.1 Atta
ks Against Digital SignaturesWe distinguish three basi
 kinds of atta
ks, listed below in the order of in
reasing severity.� Key-Only Atta
k: In this atta
k the adversary knows only the publi
 key of the signer and thereforeonly has the 
apability of 
he
king the validity of signatures of messages given to him.� Known Signature Atta
k: The adversary knows the publi
 key of the signer and has seen mes-sage/signature pairs 
hosen and produ
ed by the legal signer. In reality, this the minimum an adversary
an do.� Chosen Message Atta
k: The adversary is allowed to ask the signer to sign a number of messages ofthe adversary's 
hoi
e. The 
hoi
e of these messages may depend on previously obtained signatures.For example, one may think of a notary publi
 who signs do
uments on demand.For a �ner subdivision of the adversary's possible atta
ks see [101℄.What does it mean to su

essfully forge a signature?We distinguish several levels of su

ess for an adversary, listed below in the order of in
reasing su

ess forthe adversary.� Existential Forgery: The adversary su

eeds in forging the signature of one message, not ne
essarily ofhis 
hoi
e.� Sele
tive Forgery: The adversary su

eeds in forging the signature of some message of his 
hoi
e.� Universal Forgery: The adversary, although unable to �nd the se
ret key of the The forger, is able toforge the signature of any message.� Total Break : The adversary 
an 
ompute the signer's se
ret key.Clearly, di�erent levels of se
urity may be required for di�erent appli
ations. Sometimes, it may suÆ
e toshow that an adversary who is 
apable of a known signature atta
k 
an not su

eed in sele
tive forgery, whilefor other appli
ations (for example when the signer is a notary-publi
 or a tax-return preparer) it may berequired that an adversary 
apable of a 
hosen signature atta
k 
an not su

eed even at existential forgerywith non-negligible probability.The se
urity that we will aim at, in these notes are that with high probability a polynomial time adversarywould not be able to even existentially forge in the presen
e of a 
hosen message atta
k.We say that a digital signature is se
ure if an enemy who 
an use the real signer as \an ora
le" 
an notin time polynomial in the size of the publi
 key forge a signature for any message whose signature was notobtained from the real signer. Formally, let B be a bla
k box whi
h maps messages m to valid signatures,i.e , V (P;B(m);m) = 1 for all messages m. Let the forging algorithm F on input the publi
 key P havea

ess to B, denoted as FB(P ). The forging algorithm runs in two stages: it �rst laun
hes a 
hosen messageatta
k, and then outputs a \new forgery" whi
h is de�ned to be any message-signature pair su
h that themessage was not signed before and that signature is valid. We require that for all forging algorithms F , for allpolynomials Q, for all suÆ
iently large k, Prob(V (P; s;m) = 1 : (P; S) R G(1k) ; (m; s) R FB(P )) � 1Q(k) .
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ture Notes 167The probability is taken over the 
hoi
e of the keys (P; S) 2 G(1k) , the 
oin tosses of the forgery algorithmF , and the 
oins of B.DiÆe and Hellman's original proposal does not meet this stri
t de�nition of se
urity; it is possible to existen-tially forge with just the publi
 information: Choose an s at random. Apply the publi
 key to s to produ
em = f(s). Now s is a valid signature of m.Many digital signature systems have been proposed. For a fairly exhaustive list we refer to the paper [101℄handed out.We examine the se
urity of three systems here.9.3.2 The RSA Digital Signature S
hemeThe �rst example is based on the RSA 
ryptosystem.The publi
 key is a pair of numbers (n; e) where n is the produ
t of two large primes and e is relativelyprime to �(n), and the se
ret key is d su
h that ed = 1 mod �(n). Signing is to 
ompute �(m) = mdmodn.Verifying is to raise the signature to the power e and 
ompare it to the original message.Claim 9.1 RSA is universallly forgable under a 
hosen-message atta
k. (alternatively, existentially forgableunder known message atta
k)Proof: If we are able to produ
e signatures for two messages, the signature of the the produ
t of the twomessages is the produ
t of the signatures. Let m1 and m2 be the two messages. Generate signatures forthese messages with the bla
k box: �(m1) = m1d mod n, �(m2) = m2d mod n. Now we 
an produ
e thesignature for the produ
t of these two messages: �(m1m2) = (m1m2)d = m1dm2d = �(m1)�(m2) mod nTo produ
e a signature for a message m, begin by 
hoosing a random number r 2 2n�. Now de�ne m1 andm2 as follows: m1 = mr mod n, and m2 = r�1 mod n Using the strategy above, we 
an �nd a signature forthe produ
t of these messages, whi
h is the original message m, as follows: m1m2 = (mr)r�1 = m.9.3.3 El Gamal's S
hemeThis digital signature system se
urity relies on the diÆ
ulty of solving a a problem 
alled the DiÆe-Hellman-key-ex
hange (DHKE)problem, whi
h is related to the dis
rete log problem. The DHKE problem is on inputa prime p, a generator g, and gy; gx 2 Z�p , 
ompute output gxy mod p. The best way 
urrently known tosolve the DHKE is to �rst solve the dis
rete log problem. Whether 
omputing a dis
rete log is as hard asthe DiÆe-Hellman problem is 
urrently an open question.The following digital signature s
heme is probabilisti
. A 
lose variant of it 
alled DSS has been endorsedas a national standard.Idea of the s
heme:� Publi
 key: A triple (y; p; g), where y = gx mod p, p is prime and g is a generator for Z�p .� Se
ret key: x su
h that y = gx mod p.� Signing: The signature of message m is a pair (r; s) su
h that 0 6= r; s 6= p� 1 and gm = yrrs mod p.� Verifying: Che
k that gm = yrrs mod p a
tually holds.In order to generate a pair (r; s) whi
h 
onstitutes a signature, the signer begins by 
hoosing a randomnumber k su
h that 0 6= k 6= p�1 and GCD(k; p�1) = 1. Let r = gk(modp). Now we want to 
ompute an s
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h that gm = yrrs = gxr+ksmodp. In terms of the exponents, this relationship is m = xr + ks(modp� 1).Hen
e s = (m� xr)k�1modp� 1. The signature of m is the pair (r; s).Clearly, If an atta
ker 
ould solve the dis
rete logarithm problem, he 
ould break the s
heme 
ompletely by
omputing the se
ret key x from the information in the publi
 �le. Moreover, if an atta
ker �nds k for onemessage, he 
an solve the dis
rete logarithm problem, so the pseudo random number generator employed togenerate k's has to be of superior quality.Claim 9.2 This s
heme is existentially forgable in the presen
e of a known message atta
k.Exer
ise.Note on a key ex
hange proto
ol based on dis
rete log: It is interesting to note that it is possible for twopeople to ex
hange a se
ret key without prior se
ret meeting using the DL problem whi
h is not known toyield a trapdoor fun
tion. This 
an be done by Persons A and B agree on a prime p and a generator g.Person A 
hooses a se
ret number x and sends gx(modp) to B. Person B 
hooses a se
ret number y andsends gy(modp) to A. Now ea
h user 
an readily 
ompute gxy(modp); let this be the shared se
ret key. It isnot known if 
omputing xy is as diÆ
ult as DLP .9.3.4 Rabin's S
hemeRabin [164℄ proposed a method where the signature for a message M was essentially the square root of M ,modulo n, the produ
t of two large primes. Sin
e the ability to take square roots is provably equivalentto the ability to fa
tor n, an adversary should not be able to forge any signatures unless he 
an fa
tor n.For our purpose let's 
onsider the variant of it when n = pq and p = q = 3 mod 4, so that the signature isuniquely determined.This argument assumes that the adversary only has a

ess to the publi
 key 
ontaining the modulus nof the signer. An enemy may break this s
heme with an a
tive atta
k by asking the real signer to signM = x2 mod n, where x has been 
hosen randomly. If the signer agrees and produ
es a square root y of M ,there is half a 
han
e that g
d(n; x� y) will yield a nontrivial fa
tor of n | the signer has thus betrayed hisown se
rets! Although Rabin proposed some pra
ti
al te
hniques for 
ir
umventing this problem, they havethe e�e
t of eliminating the 
onstru
tive redu
tion of fa
toring to forgery.Let us look at this in some detail.This digital signature s
heme is based on the diÆ
ulty of 
omputing square roots modulo a 
ompositenumber.� Publi
 key: n = pq� Se
ret key: primes p; q� Signing: s = pm mod n (assume WLOG that all m are squares)� Veri�
ation: Che
k that s2 = m mod n.Claim 9.3 This system is existentially forgable with key-only atta
k.Proof: Choose a signature and square it to produ
e a 
orresponding message.Claim 9.4 The system is totally breakable in the fa
e of a 
hosen message atta
k.Proof: We know that if we 
an �nd two distin
t square roots of a message, we 
an fa
tor the modulus.Choose a value s and let m = s2. Now s is a valid signature of m. Submit m to the bla
k box. There is aone in two 
han
e that it will produ
e the same signature s. If so, repeat this pro
ess. If not, we have bothsquare roots of m and 
an re
over the fa
tors of n.
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urity when \Breaking" is Equivalent to Fa
toringGiven the inse
urity of Rabin's s
heme in the fa
e of a 
hosen message atta
k, one might hypothesize thatthere exists no se
ure digital signature system based on fa
toring. That is, a s
heme wherein:� \Breaking" the s
heme is equivalent to fa
toring.� The signature s
heme is se
ure against a 
hosen message atta
k.False proof: We assume (1) and show that (2) is impossible. Sin
e the �rst statement is that "breaking"the s
heme is equivalent to fa
toring, we know that the following redu
tion must be possible on input of a
omposite number n.� Generate a publi
 key P .� Produ
e a message m.� Produ
e a valid signature s 2 �(P;m) using the "breaker" algorithm. (Repeat these three steps up toa polynomial number of times.)� Fa
tor n.Con
lude that the system must be inse
ure in the fa
e of a 
hosen message atta
k, sin
e we 
an substitutethe CMA for the "breaker" algorithm in step 3. QEDWhat is wrong with this argument? First, there is only a vague de�nition of the publi
 information P ;it need not 
ontain the number n. Se
ond, the CMA will always produ
e signatures with respe
t to �xedpubli
 information, whereas in the above redu
tion it may be ne
essary to use di�erent publi
 informationin every 
all to the "breaker".9.4 Probabilisti
 SignaturesProbabilisti
 te
hniques have also been applied to the 
reation of digital signatures. This approa
h waspioneered by Goldwasser, Mi
ali, and Yao [103℄, who presented signature s
hemes based on the diÆ
ulty offa
toring and on the diÆ
ulty of inverting the RSA fun
tion for whi
h it is provably hard for the adversaryto existentially forge using a known signature atta
k.Goldwasser, Mi
ali, and Rivest [101℄ have strengthened this result by proposing a signature s
heme whi
h isnot existentially forgable under a 
hosen message atta
k. Their s
heme is based on the diÆ
ulty of fa
toring,and more generally on the existen
e of 
law-free trapdoor permutations (that is, pairs f0; f1 of trapdoorpermutations de�ned on a 
ommon domain for whi
h it is hard to �nd x; y su
h that f0(x) = f1(y)).The s
heme, as originally des
ribed,although attra
tive in theory, is quite ineÆ
ient. However, it 
an bemodi�ed to allow more 
ompa
t signatures, to make no use of memory between signatures other than for thepubli
 and se
ret keys, and even to remove the need of making random 
hoi
es for every new signature. Inparti
ular, Goldrei
h [90℄ has made suggestions that make the fa
toring-based version of this s
heme morepra
ti
al while preserving its se
urity properties.Bellare and Mi
ali in [14℄ have shown a digital signature s
heme whose se
urity 
an be based on the existen
eof any trapdoor permutation (a weaker requirement than 
law-freeness). Then Naor and Yung [145℄ haveshown how, starting with any one-way permutation, to design a digital signature s
heme whi
h is se
ureagainst existential forgery by a 
hosen signature atta
k. Finally, Rompel [171℄ has shown how to sign givenany one-way fun
tion. These works build on an early idea due to Lamport on how to sign a single bit in[125℄. The idea is as follows. If f is a one-way fun
tion, and Ali
e has published the two numbers f(x0) = y0and f(x1) = y1, then she 
an sign the message 0 by releasing x0 and she 
an similarly sign the message 1



170 Goldwasser and Bellareby releasing the message x1. Merkle [139℄ introdu
ed some extensions of this basi
 idea, involving buildinga tree of authenti
ated values whose root is stored in the publi
 key of the signer.We now pro
eed to des
ribe in detail some of these theoreti
al developments.9.4.1 Claw-free Trap-door PermutationsWe introdu
e the notion of 
law-free trap-door permutations and show how to 
onstru
t a signature s
hemeassuming the existen
e of a 
law-free pair of permutations.De�nition 9.5 [f-
law℄ Let f0, f1 be permutation over a 
ommon domain D. We say that (x; y; z) is f-
lawif f0(x) = f1(y) = z.De�nition 9.6 [A family of 
law-free permutations℄ A family F = ff0;i; f1;i : Di ! Digi2I is 
alled afamily of 
law-free trap-door permutations if:1. There exists an algorithm G su
h that G(1k) outputs two pairs (f0; t0), (f1; t1) where where ti is thetrapdoor information for fi.2. There exists PPT an algorithm that given fi and x 2 Di 
omputes fi(x).3. 8 (inverting algorithm) I , there exists some negligible fun
tion �I su
h that for all suÆ
iently large k,Prob(f0(x) = f1(y) = z : ((f0; t0); (f1; t1)) R G(1k) ; (x; y; z) R I(f0; f1)) < �I(k)The following observation shows that the existen
e of a pair of trap-door permutations does not immediatelyimply the existen
e of a 
law-free permutation. For example, de�ne a family of (\RSA") permutations byf0;n(x) � x3 mod n f1;n(x) � x5 mod n(g
d(x; n) = 1, and g
d(15;�(n)) = 1). Sin
e the two fun
tions 
ommute, it is easy to 
reate a 
law by
hoosing w at random and de�ning x = f1;n(w); y = f0;n(w), andz = f0;n(x) = f1;n(y) = w15 mod nIn general, the following question isOpen Problem 9.7 Does the existen
e of a family of trap-door permutations imply the existen
e of afamily of 
law-free trap-door permutations ?The 
onverse of the above is 
learly true: Given a 
law-free permutations generator, it is easy to generatea trap-door permutation. If ff0; f1g is a pair of 
law-free permutations over a 
ommon domain, that is,it is 
omputationally infeasible to �nd a triple x; y; z su
h that f0(x) = f1(y) = z, then (f0; f�10 ) is trap-door. (Otherwise, give the inverting algorithm I , z = f1(y); z is also distributed uniformly over D, so withnon-negligible probability, I 
an produ
e x = f�10 (z). Therefore (x; y; z) is a 
law, 
ontradi
tion.)9.4.2 Example: Claw-free permutations exists if fa
toring is hardLet n = pq, where p and q are primes (p; q 2 Hk) and p � 3 mod 8, q � 7 mod 8. Observe that about 1/16of odd prime pairs �t this requirement. Let QRn denote the set of quadrati
 residues modn.We �rst note that:
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ture Notes 1711. (Jn(�1)) = +1, but �1 62 QRn2. (Jn(2)) = �1, (and 2 62 QRn) .3. x 2 QRn has exa
tly one square root y 2 QRn (x is a Blum integer), but has four square rooty;�y; w;�w in general. Roots w;�w have Ja
obi symbol �1, y and �y have Ja
obi symbol +1.We now de�ne a family of pairs of fun
tions, and prove, assuming the intra
tability of fa
toring, that it is afamily of 
law-free trap-door permutations over QRn.De�ne, for x 2 QRn: f0;n(x) = x2 mod n f1;n(x) = 4x2 mod nIt follows from the above notes that the fun
tions f0;n, f1;n are permutations of QRn.Claim: ff0;n, f1;ng is 
law-free.Proof: Suppose that the pair is not 
law-free. Assume x; y 2 QRn satisfyx2 � 4y2 mod nThis implies that (x� 2y)(x+ 2y) � 0 mod n. However, 
he
king the Ja
obi symbol of both sides we have:(Jn(x)) = +1 (Jn(2y)) = ( yn )( 2n ) = �1 (Jn(�2y)) = (�1n ) = �1That is, x is a quadrati
 residue, but �2y are not. Sin
e x 6� �2y mod n g
d(x � 2y; n) will produ
e anontrivial fa
tor on n.9.4.3 How to sign one bitWe �rst des
ribe the basi
 building blo
k of the signature s
heme: signing one bit.Let D be the 
ommon domain of the 
law-free pair ff0; f1g, and assume x is sele
ted randomly in D.Publi
 Se
retx 2 D; f0; f1 f�10 ; f�11To sign the bit b 2 f0; 1g let s = �(b) = f�1b (x).To verify the signature s, 
he
k that fb(s) = x.Claim 9.8 The above s
heme is existentially se
ured against Chosen Message Atta
k.Proof: Suppose, by way of 
ontradi
tion, that the s
heme is not se
ure. That is, 9 a forging algorithmFCMA(P ) that 
an forge the signature (given the publi
 information); F asks for the signature of b and(8 polynomial Q and in�nitely many k's) 
an sign b 
orre
tly with probability > 1=Q(k). To derive the
ontradi
tion, we design an algorithm that, given FCMA, 
an make 
laws:input: f0, f1.output: x; y; z, su
h that f0(x) = f1(y) = z (with probability > 1=Q(k)).
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t randomly x 2 D; 
ip a 
oin and put in the publi
 �le: z = f
oin(x) 2 D; f0; f1. (Note that f0; f1are permutations, so z is uniform in D).(2) Run algorithm FCMA(P ):1. If F asks for signature of b = 
oin, go ba
k to (1).2. If F asks for signature of b = 
oin, answer with x = f�1b (f
oin(x)).(3) By the assumption, F 
an produ
e now a signature for b, y = f�1b (f
oin(x)), i.e. z = fb(x) = fb(y).That is, we have a 
law:
9.4.4 How to sign a messageAs before, D is the 
ommon domain of the 
law-free pair ff0; f1g, and x is sele
ted randomly in D.Publi
 Se
retx 2 D; f0; f1 f�10 ; f�11For x 2 D, we sign the �rst message m1 by:s1 = �(m1) = f�1m1 (x)and verify by: V (s1;m1) = � 1 if fm1(s1) = x0 otherwisewhere, for m1 = m11m12 : : :m1k: f�1m1 (x) = f�1m1k(: : : (f�1m12 (f�1m11 (x))))fm1(x) = fm11(: : : (fm1k�1(fm1k(x))))Clearly fm is a permutation on D, and is easy to 
ompute. To sign the next message m2, we apply the newpermutation on the previous signature: s2 = �(m2) = (f�1m2 (s1);m1)and verify by: V (s2;m2) = � 1 if fm2(s2) = s1 and fm1(s1) = x0 otherwiseNotes:1. With this s
heme, the length of the signature grows linearly with the number of messages signed sofar.2. It is 
learly easy to forge signatures for pre�x of a message we have already seen. We therefore assumehere that we pre-pro
ess the messages to be presented in a pre�x-free en
oding s
heme. (i.e no messagesis a pre�x of another message).
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ture Notes 173Claim: The s
heme is not existentially se
ure with respe
t to a Known Message Atta
k.Proof: Assume 9F (H;P ) that (8 polynomial Q and suÆ
iently large k), given the publi
 information Pand the history H = ((m1; �(m1)); : : : ; (ml; �(ml))), for messages m1;m2; :::;ml sele
ted by running M(1k),
an �nd a message m̂ 6= mi, (1 � i � l), 
an produ
e a signature �(m̂) su
h thatProbfV (�(m̂); m̂) = 1g > 1Q(k)where the probability is taken over all publi
 �les and 
oin tosses of F .We now design an algorithm A that uses F to 
ome up with a 
law:input: f0, f1.output: a; b; 
, su
h that f0(a) = f1(b) = 
 (with probability > 1=Q(k)).(1) Choose m1;m2; : : : ;mi 2 M(1k); x 2R D. Let z = fml(: : : (fm1(x))). Let P = ff0; f1; xg be the publi
�le. (Noti
e that z is also sele
ted uniformly in D).(2) Generate the history H = (m1; fm1(z)); : : : (ml; (fml(: : : (fm1(z)))), Denote m = m1 Æm2 Æ : : : Æml, thestring of all messages generated.(3) Run the forging algorithm F (H;P ) to produ
e (m̂; �(m̂)).(4) With non negligible probability, �(m̂) is a valid signature; that is, "walking ba
k" with fm̂ from �(m̂),a

ording to the history it supplies, will get to x, and therefore must meet the path going ba
k from�(mi) Let l be the lo
ation at whi
h the two paths meet, that is, m agrees with m̂ on the �rst l � 1bits, and denote w = f�1ml�1(: : : (f�1m0 (z))). Assume, w.l.o.g that the l � th bit of m is 0, the l � th bitof m̂ is 1, and let u; v be the 
orresponding f�10 (w); f�11 (w). Output (u; v; w).Clearly (u; v; w) is a 
law. Thus, applying the publi
 f0; f1 on the output of the forging algorithm F resultsin a 
law, with non-negligible probability; 
ontradi
tion.However, this s
heme does not seem to be se
ure against a Chosen Message Atta
k. At least we do not knowhow to prove that it is. In the next se
tion we modify it to a
hieve this.9.4.5 A se
ure signature s
heme based on 
law free permutationsLet Df be the 
ommon domain of the 
law-free permutations pair Consider the following s
heme, for signingmessages mi 2 f0; 1gk where i 2 f1; � � � ; B(k)g and B(k) is a polynomial in k:Choose two pairs of 
law-free permutations, (f0; f1) and (g0; g1) for whi
h we know f�10 ; f�11 ; g�10 ; g�11 .ChooseX 2 Df . Let the publi
 key 
ontainDf ; X; f0; f1; g0; g1 and let the se
ret key 
ontain f�10 ; f�11 ; g�10 ; g�11 .PK SKDf ; X; f0; f1 f�10 ; f�11g0; g1 g�10 ; g�11Let Æ be the 
on
atenation fun
tion and set the history H1 = ;. To sign mi, for i 2 f1; � � � ; B(k)g:1. Choose Ri 2 Dg uniformly.



174 Goldwasser and Bellare2. Set zi1 = f�1HiÆRi(X).3. Set zi2 = g�1mi (Ri).4. Set signature �(mi) = (zi1; zi2; Hi).5. Set Hi+1 = Hi ÆRi.To verify a message-signature pair (m; s) where s = (z1; z2; H),1. Let R = gm(z2).2. Che
k that fHÆR(z1) = X .If so, then the signature is valid and the veri�
ation fun
tion V (m; s) = 1. Otherwise, V (m; s) = 0. Thiss
heme takes advantage of the fa
t that a new random element zi1 
an be used in pla
e of X for ea
h messageso that the forger is unable to gain information by requesting signatures for a polynomial number of messages.It is 
lear that the signing and veri�
ation pro
edures 
an be performed in polynomial time as required. Thefollowing theorem also shows that it is se
ure:Theorem 9.9 The 
law-free permutation signature s
heme is existentially se
ure against CMA if 
law-freepermutations exist.Proof: (by 
ontradi
tion) Suppose not. Then there is a forger FCMA(f0; f1; g0; g1; X) whi
h 
onsists of thefollowing two stages:Stage 1: F obtains signatures �(mi) for up to B(k) messages mi of its 
hoi
e.Stage 2: F outputs (m̂; ŝ) where ŝ = (ẑ1; ẑ2; Ĥ) su
h that m̂ is di�erent than all mi's requested in stage 1and V (m̂; ŝ) = 1.We show that if su
h an F did exist, then there would be a PTM A whi
h would:Input: Uniformly 
hosen (h0; h1; Dh) 
law-free su
h that h�10 and h�11 are not known.Output: Either a h-
law with probability greater than 1Q(k) where Q(k) is a polynomial in k.This is a 
ontradi
tion by the de�nition of h0 and h1.PTM A is based on the fa
t that when F is su

essful it does one of the following in stage 2:Type 1 forgery: Find a g-
lawType 2 forgery: Find a f -
lawType 3 forgery: Find f�10 (!) or f�11 (!) for ! = zB(k)1 the last point in the history provided by the signerPTM A 
onsists of two PTM's A1 and A2 whi
h are run one after the other. A1 attempts to �nd an h-
lawbased on the assumption that F produ
es a g-
law. A2 attempts to �nd a h-
law based on the assumptionthat F produ
es a f -
law. Both A1 and A2 will use h0 and h1 in their publi
 keys. In order to sign a messageusing h0 and h1, these PTM's will 
ompute v = hi(R) for some R 2 Dh and use R as h�1b (v). Thus, neitherA1 nor A2 will need to invert hb when answering F 's requests. Note that sin
e hb is a permutation, v willbe random if R is.Des
ription of A1:
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ture Notes 1751. Choose (f0; f1; Df ) 
law-free su
h that we know f�10 and f�11 . Let the publi
 key 
ontainDf ; X; f0; f1; g0 =h0; and g1 = h1. Let the se
ret key 
ontain f�10 and f�11 .PK SKDf ; X; f0; f1 f�10 ; f�11g0 = h0; g1 = h12. Set history H1 = ; and run F (f0; f1; g0; g1; X). When F asks for the signature of a message mi,(a) Choose zi2 2 Dg at random.(b) Set Ri = gmi(zi2).(
) Set zi1 = f�1HiÆRi(X).(d) Output (zi1; zi2; Hi).(e) Set Hi+1 = Hi ÆRi.F then outputs (m̂; ŝ) where ŝ = (ẑ1; ẑ2; Ĥ).3. Test to see that V (m̂; ŝ) = 1. If not then A1 fails.4. Let R̂ = gm̂(ẑ2). If R̂ 6= Ri for any i, then A1 fails sin
e F did not produ
e a type 1 forgery5. Otherwise, let j be su
h that R̂ = Rj . We now have hm̂(ẑ2) = hmj (zj2) = Rj . From this we easilyobtain a h-
law.Des
ription of A2:1. Choose (g0; g1; Dg) 
law-free su
h that we know g�10 and g�11 . Let f0 = h0 and f1 = h1. ChooseR1; R2; � � � ; RB(k) 2 Dg, 
 2 f0; 1g and z 2 Df uniformly and independently. SetX = fR1ÆR2Æ���ÆRB(k)Æ
(z).Let the publi
 key 
ontain Df ; X; f0; f1; g0 and g1. Let the se
ret key 
ontain g�10 and g�11 .PK SKDf ; X; g0; g1 g�10 ; g�11f0 = h0; f1 = h12. Set history H1 = ; and run F (f0; f1; g0; g1; X). When F asks for signature of message mi,(a) Set zi1 = fRi+1Æ���ÆRB(k)(X).(b) Set zi2 = g�1mi (Ri).(
) Output (zi1; zi2; Hi).(d) Set Hi+1 = Hi ÆRi.F then outputs (m̂; ŝ) where ŝ = (ẑ1; ẑ2; Ĥ).3. Let R̂ = gm̂(ẑ2).4. There are three possibilities to 
onsider:F made type 1 forgery: This means Ĥ Æ R̂ = Hi for some i. In this 
ase A2 fails.



176 Goldwasser and BellareF made type 2 forgery: There is some �rst bit in Ĥ Æ R̂ whi
h di�ers from A2's �nal history HN . Asa result, Ĥ Æ R̂ = H Æ b Æ Ŝ and HN = H Æ�b ÆS for some b 2 f0; 1g and strings H; Ŝ; S. From thiswe obtain fb(fŜ(ẑ1)) = f�b(fS(zN1 )) whi
h provides A2 with a h-
law.F made type 3 forgery: Ĥ Æ R̂ = HN Æ b ÆS for some bit b and string S. Sin
e the bit d 
hosen by A2to follow HN if another request were made is random, b will be di�erent from d with probability1/2. In this 
ase, A2 will have h�10 (h�1HN (X)) and h�11 (h�1HN (X)) providing A2 with a h-
law.Suppose that with probability p1 F (f0; f1; g0; g1; X) provides a type 1 forgery, with probability p2 F (f0; f1; g0; g1; X)provides a type 2 forgery, and with probability p3 F (f0; f1; g0; g1; X) provides a type 3 forgery. Sin
ef0; f1; g0; g1; h0; h1 are 
hosen uniformly over 
law-free permutations, A1 will su

eed with probability p1and A2 will su

eed with probability p2 + p32 . Thus, A1 or A2 will su

eed with probability at leastmax(p1; p2 + p32 ) � 13Q(k) .Notes:1. Unlike the previous s
heme, the signature here need not 
ontain all the previous messages signed bythe s
heme; only the elements Ri 2 Dg are atta
hed to the signature.2. The length of the signature need not be linear with the number of messages signed. It is possibleinstead of linking the Ri together in a linear fashion, to build a tree stru
ture, where R1 authenti
atesR2 and R3, and R2 authenti
ates R4 and R5 and so forth till we 
onstru
t a full binary tree of depthlogarithmi
 in B(k) where B(k) is a bound on the total number of signatures ever to be signed. Then,relabel the Rj 's in the leafs of this tree as r1; :::; rB(k).In the 
omputation of the signature of the i-th message, we let zi2 = g�1mi (ri), and let zi1 = f�1ri (R)where R is the father of ri in the tree of authenti
ated R's. The signature of the ith message needs to
ontain then all R0s on the path from the leaf ri to the root, whi
h is only logarithmi
 in the numberof messages ever to be signed.3. The 
ost of 
omputing a f�1m (x) is jmj(
ost of 
omputing f�1). Next we show that for the implemen-tation of 
law-free fun
tions based on fa
toring, the m fa
tor 
an be saved.Example: EÆ
ient way to 
ompute f�1m (z)As we saw in Example 9.4.2, if fa
toring is hard, a parti
ular family of trap-door permutations is 
law free.Let n = pq, where p and q are primes and p � 3 mod 8, q � 7 mod 8. for x 2 QRn:f0;n(x) = x2 mod n f1;n(x) = 4x2 mod nis this family of 
law-free trap-door permutations.Notation: We write px = y when that y2 = x and y 2 QRn.To 
ompute f�1m (z) we �rst 
ompute (all 
omputations below are modn):f�100 (z) =ppzf�101 (z) =qpz4 = 1p4ppzf�110 (z) =qp z4 = 1pp4ppzf�111 (z) =q 14p z4Let i(m) be the integer 
orresponding to the string m reversed. It is easy to see that in the general 
ase weget: f�1m (z) = ( z4i(m) ) 12jmjNow, all we need is to 
ompute the 2jmjth root modn on
e, and this 
an be done eÆ
iently, by raising to apower mod�(n).
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ture Notes 1779.4.6 A se
ure signature s
heme based on trapdoor permutationsThis se
tion 
ontains the trapdoor permutation signature s
heme. We begin by showing the method forsigning a single bit b:1. Choose a trapdoor permutation f for whi
h we know the inverse. Choose X0; X1 2 Df uniformly andindependently. Let the publi
 key 
ontain f; f(X0); and f(X1). Let the se
ret key 
ontain X0 and X1.PK SKf; f(X0); f(X1) X0; X12. The signature of b, �(b) = Xb.To verify (b; s) simply test f(s) = f(Xb).The s
heme for signing multiple messages, uses the s
heme above as a building blo
k. The problem withsigning multiple messages is that f 
annot be reused. Thus, the trapdoor permutation signature s
heme gen-erates and signs a new trapdoor permutation for ea
h message that is signed. The new trapdoor permutation
an then be used to sign the next message.Des
ription of the trapdoor permutation signature s
heme:1. Choose a trapdoor permutation f1 for whi
h we know the inverse. Choose �j0; �j1 2 f0; 1gk for j 2f1; � � � ; kg and �j0 ; �j1 2 f0; 1gk for j 2 f1; � � � ;K(k)g where K(k) is a polynomial in k uniformly andindependently. Let the publi
 key 
ontain f1 and all �'s and �'s. Let the se
ret key 
ontain f�11 . Lethistory H1 = ;. PK SKf1; �ib; �jb f�11for b 2 f0; 1g; i 2 1; � � � ; k; j 2 1; � � � ;K(k)To sign message mi = m1m2 � � �mk:2. Set AUTH�;fimi = (f�1i (�1m1); f�1i (�2m2); � � � ; f�11 (�kmk)). AUTH�;fimi is the signature of mi using fi andthe �'s.3. Choose a new trapdoor fun
tion fi+1 su
h that we know f�1i+1.4. Set AUTH�;fifi+1 = (f�1i (�1fi+1;1); (f�1i (�2fi+1;2)); � � � ; (f�1i (�Kfi+1;k(k))))where fi+1 = fi+1;1 Æ fi+1;2 Æ � � � Æ fi+1;K(k) is the binary representation of fi+1.5. The signature of mi is �(mi) = (AUTH�;fimi ; AUTH�;fifi+1 ; Hi). AUTH�;fifi+1 is the signature of fi+1 usingfi and �'s.6. Set Hi+1 = Hi Æ (AUTH�;fimi ; AUTH�;fifi+1).Note: We assume that to des
ribe fi+1, K(k) bits are suÆ
ient.Theorem 9.10 The trapdoor permutation signature s
heme is existentially se
ure against CMA if trapdoorpermutations exist.
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ontradi
tion) Suppose not. Then there is a forger F whi
h 
an request messages of its 
hoi
eand then forge a message not yet requested with probability at least 1Q(k) where Q(k) is a polynomial in k.We show that if su
h an F did exist, we 
ould �nd a PTM A0 whi
h would:Input: Trapdoor fun
tion h for whi
h inverse is unknown and ! 2 f0; 1gk.Output: h�1(!) with probability at least 1Q0(k) where Q0(k) is a polynomial in k. Probability is taken overh's, !'s, 
oins of A0.The 
onstru
tion of A0 is as follows:1. A0 will attempt to use h as one of its trapdoor permutations in answering a signature request by F .Sin
e A0 does not know h�1, it generates an appropriate set of �'s and �'s as follows: Randomly anduniformly 
hoose 
jb ; Æjb 2 f0; 1gk for all b 2 f0; 1g and j 2 f1; � � � ; kg. Let �jb = h(
jb ) and �jb = h(Æjb)for the same range of b and j. Choose n 2 f1; � � � ; B(k)g uniformly. For the �rst phase, A0 will a
tvery mu
h like a trapdoor permutation signature s
heme with one ex
eption. When it is time for A0to 
hoose its one way permutation fn, it will 
hoose h. If A0 were to leave the �'s and �'s un
hangedat this point, it would be able to sign F 's request for mn though it does not know h�1. However A0does 
hange one of the �'s or �'s, as follows:2. Randomly 
hoose one of the �'s or �'s and set it equal to the input !. Let the publi
 key 
ontain f1(this is h if n = 1), the �'s and �'s:3. Run F using the 
urrent s
heme. Note that with probability at least 1B(k) , F will make at least nmessage requests. Note also that when F does request a signature for message mn, A0 will be able tosign mn with probability 1/2. This is be
ause with probability 1/2 A0 will not have to 
al
ulate (usingh) the inverse of the � (or �) whi
h was set to !.4. With probability 1Q(k) , F will su

essfully output a good forgery (m̂; ŝ). In order for ŝ to be a goodforgery it must not only be veri�able, but it must diverge from the history of requests made to A0.With probability at least 1B(k) the forger will 
hoose to diverge from the history pre
isely at request n.Thus, F will use h as its trapdoor permutation.5. If this is the 
ase, the probability is 12(k+K(k)) that the forger will invert the � (or �) whi
h was set to!.6. If so, A0 outputs h�1(!).The probability that A0 su

eeds is therefore at least 1Q0(k) = 14(k+K(k))B2(k) and sin
e 4(k +K(k))B2(k) isa polynomial in k we have a 
ontradi
tion.9.5 Con
rete se
urity and Pra
ti
al RSA based signaturesIn pra
ti
e, the most widely employed paradigm for signing with RSA is \hash then de
rypt:" First \hash"the message into a domain point of RSA and then de
rypt (ie. exponentiate with the RSA de
ryptionexponent). The attra
tion of this paradigm is 
lear: signing takes just one RSA de
ryption, and veri�
ationjust one RSA en
ryption. Furthermore it is simple to implement. Thus, in parti
ular, this is the basis ofseveral existing standards.In this se
tion we analyze this paradigm. We will see that, unfortunately, the se
urity of the standardizeds
hemes 
annot be justi�ed under standard assumptions about RSA, even assuming the underlying hashfun
tions are ideal. S
hemes with better justi�ed se
urity would be re
ommended.
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ture Notes 179We have already seen that su
h s
hemes do exist. Unfortunately, none of them mat
h the s
hemes of thehash then de
rypt paradigm in eÆ
ien
y and simpli
ity. (See Se
tion 9.5.12 for 
omparisons). So what 
anwe do?We present here some s
hemes that mat
h \hash then de
rypt" ones in eÆ
ien
y but are provably se
ureassuming we have a

ess to ideal hash fun
tions. (As dis
ussed in Se
tion 7.4.6, this means that formally,the hash fun
tions are modeled as random ora
les, and in implementation, the hash fun
tions are derivedfrom 
ryptographi
 hash fun
tions. This represents a pra
ti
al 
ompromise under whi
h we 
an get eÆ
ien
ywith reasonable se
urity assuran
es. See [15℄ for a full dis
ussion of this approa
h.)We present and analyze two s
hemes. The �rst is the FDH s
heme of [15℄. The se
ond is the PSS of [24℄.Furthermore we present a s
heme 
alled PSS-R whi
h has the feature of message re
overy. This is a usefulway to e�e
tively shorten signature sizes.Let us now expand on all of the above. We begin by looking at 
urrent pra
ti
e. Then we 
onsider the fulldomain hash s
heme of [15, 24℄ and dis
uss its se
urity. Finally we 
ome to PSS and PSS-R, and their exa
tse
urity.We present these s
hemes for RSA. The same 
an be done for the Rabin s
heme.The materiel of this se
tion is taken largely from [24℄.In order to make this se
tion self-
ontained, we repeat some of the basi
s of previous parts of this 
hapter.Still the viewpoint is di�erent, being that of 
on
rete se
urity, so the materiel is not entirely redundant.9.5.1 Digital signature s
hemesIn the publi
 key setting, the primitive used to provide data integrity is a digital signature s
heme. It isjust like a message authenti
ation s
heme ex
ept for an asymmetry in the key stru
ture. The key sk used togenerate tags (in this setting the tags are often 
alled signatures) is di�erent from the key pk used to verifysignatures. Furthermore pk is publi
, in the sense that the adversary knows it too. So while only a signerin possession of the se
ret key 
an generate signatures, anyone in possession of the 
orresponding publi
 key
an verify the signatures.De�nition 9.11 A digital signature s
heme DS = (K;S;V) 
onsists of three algorithms, as follows:� The key generation algorithm K is a randomized algorithm that returns a pair (pk; sk) of keys, thepubli
 key and mat
hing se
ret key, respe
tively; we write (pk; sk) R K� The signing algorithm S is a (possibly randomized) algorithm that takes the se
ret key sk and amessage M to return a tag or signature �; we write �  Ssk(M)� The veri�
ation algorithm V is a deterministi
 algorithm that takes the publi
 key pk, a message M ,and a 
andidate signature � for M to return a bit; we write d Vpk(M;�).Asso
iated to ea
h publi
 key pk is a message spa
e Plaintexts(pk) from whi
h M is allowed to be drawn.We require that Vpk(M;Ssk(M)) = 1 for all M 2 Plaintexts(pk).Let S be an entity that wants to have a digital signature 
apability. The �rst step is key generation: S runsK to generate a pair of keys (pk; sk) for itself. The key generation algorithm is run lo
ally by S. S willprodu
e signatures using sk, and others will verify these signatures using pk. The latter requires that anyonewishing to verify S's signatures must be in possession of this key pk whi
h S has generated. Furthermore,the veri�er must be assured that the publi
 key is authenti
, meaning really is the key of S and not someoneelse.There are various me
hanisms used to ensure that a prospe
tive veri�er is in possession of an authenti
publi
 key of the signer. These usually go under the name of key management. Very brie
y, here are a fewoptions. S might \hand" its publi
 key to the veri�er. More 
ommonly S registers pk in S's name with



180 Goldwasser and Bellaresome trusted server who a
ts like a publi
 phone book, and anyone wishing to obtain S's publi
 key requestsit of the server by sending the server the name of S and getting ba
k the publi
 key. Steps must be taken toensure that this 
ommuni
ation too is authenti
ated, meaning the veri�er is really in 
ommuni
ation withthe legitimate server, and that the registration pro
ess itself is authenti
.In fa
t key management is a topi
 in its own right, and needs an in-depth look. We will address it later. Forthe moment, what is important to grasp is the separation between problems. Namely, the key managementpro
esses are not part of the digital signature s
heme itself. In 
onstru
ting and analyzing the se
urityof digital signature s
hemes, we make the assumption that any prospe
tive veri�er is in possession of anauthenti
 
opy of the publi
 key of the signer. This assumption is made in what follows.On
e the key stru
ture is in pla
e, S 
an produ
e a digital signature on some do
ument M by runningSsk(M) to return a signature �. The pair (M;�) is then the authenti
ated version of the do
ument. Uponre
eiving a do
ument M 0 and tag �0 purporting to be from S, a re
eiver B veri�es the authenti
ity of thesignature by using the spe
i�ed veri�
ation pro
edure, whi
h depends on the message, signature, and publi
key key. Namely he 
omputes Vpk(M 0; �0), whose value is a bit. If this value is 1, it is read as saying thedata is authenti
, and so B a

epts it as 
oming from S. Else it dis
ards the data as unauthenti
.A viable s
heme of 
ourse requires some se
urity properties. But these are not our 
on
ern now. First wewant to pin down what 
onstitutes a spe
i�
ation of a s
heme, so that we know what are the kinds of obje
tswhose se
urity we want to assess.The last part of the de�nition says that tags that were 
orre
tly generated will pass the veri�
ation test.This simply ensures that authenti
 data will be a

epted by the re
eiver.The signature algorithm might be randomized, meaning internally 
ip 
oins and use these 
oins to determineits output. In this 
ase, there may be many 
orre
t tags asso
iated to a single message M . The algorithmmight also be stateful, for example making use of a 
ounter that is maintained by the sender. In that 
asethe signature algorithm will a

ess the 
ounter as a global variable, updating it as ne
essary.Unlike en
ryption s
hemes, whose en
ryption algorithms must be either randomized or stateful for the s
hemeto be se
ure, a deterministi
, stateless signature algorithm is not only possible, but 
ommon.9.5.2 A notion of se
urityDigital signatures aim to provide the same se
urity property as message authenti
ation s
hemes; the only
hange is the more 
exible key stru
ture. A

ordingly, we 
an build on our past work in understanding andpinning down a notion of se
urity for message authenti
ation; the one for digital signatures di�ers only inthat the adversary has a

ess to the publi
 key.The goal of the adversary F is forgery: It wants to produ
e do
ument M and tag � su
h that Vpk(M;�) = 1,but M did not originate with the sender S. The adversary is allowed a 
hosen-message atta
k in the pro
essof trying to produ
e forgeries, and the s
heme is se
ure if even after su
h an atta
k the adversary has lowprobability of produ
ing forgeries.Let DS = (K;S;V) be an arbitrary digital signature s
heme. Our goal is to formalize a measure a inse
urityagainst forgery under 
hosen-message atta
k for this s
heme. The adversary's a
tions are viewed as dividedinto two phases. The �rst is a \learning" phase in whi
h it is given ora
le a

ess to Ssk(�), where (pk; sk)was a priori 
hosen at random a

ording to K. It 
an query this ora
le up to q times, in any manner itpleases, as long as all the queries are messages in the underlying message spa
e Plaintexts(pk) asso
iatedto this key. On
e this phase is over, it enters a \forgery" phases, in whi
h it outputs a pair (M;�) withM 2 Plaintexts(pk). The adversary is de
lared su

essful if Vpk(M;�) = 1 and M was never a query madeby the adversary to the signing ora
le. Asso
iated to any adversary F is thus a su

ess probability. (Theprobability is over the 
hoi
e of keys, any probabilisti
 
hoi
es that S might make, and the probabilisti

hoi
es, if any, that F makes.) The inse
urity of the s
heme is the su

ess probability of the \
leverest"possible adversary, amongst all adversaries restri
ted in their resour
es to some �xed amount. We 
hoose asresour
es the running time of the adversary, the number of queries it makes, and the total bit-length of allqueries 
ombined plus the bit-length of the output message M in the forgery.
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ture Notes 181Formally we de�ne the \experiment of running the adversary" F in an atta
k on digital signature s
hemeDS = (K;S;V) as the following. Noti
e that the publi
 key is provided as an input to F .Experiment Expuf-
maDS;FLet (pk; sk) R KLet (M;�) FSsk(�)(pk)If Vpk(M;�) = 1 and M was not a query of F to its ora
leThen return 1 else return 0De�nition 9.12 Let DS = (K;S;V) be a digital signature s
heme, and let F be an adversary that hasa

ess to an ora
le. Let Advuf-
maDS;F be the probability that experiment Expuf-
maDS;F returns 1. Then for anyt; q; � let Advuf-
maDS (t; q; �) = maxF fAdvuf-
maDS;F gwhere the maximum is over all F su
h that the exe
ution time of experiment Expuf-
maDS;F is at most t, thenumber of ora
le queries made by F is at most q, and the sum of the lengths of all ora
le queries plus thelength of the message M in the output forgery is at most � bits.In pra
ti
e, the queries 
orrespond to messages signed by the legitimate sender, and it would make sensethat getting these examples is more expensive than just 
omputing on one's own. That is, we would expe
tq to be smaller than t. That is why q; � are resour
es separate from t.The RSA trapdoor permutation is widely used as the basis for digital signature s
hemes. Let us see how.9.5.3 Key generation for RSA systemsWe will 
onsider various methods for generating digital signatures based on the presumed one-wayness ofthe RSA fun
tion. While these methods di�er in how the signature and veri�
ation algorithms operate,they all use the same standard RSA key setup. Namely the publi
 key of a user is a RSA modulus N andan en
ryption exponent e, where N = pq is the produ
t of two distin
t primes, ea
h of length k=2, andg
d(e; '(N)) = 1. The 
orresponding se
ret is the de
ryption exponent d where ed � 1 (mod '(N)). Forsignatures it is 
onvenient to put N into the se
ret key, viewing it as a pair (N; d), even though N is not, of
ourse, really \se
ret". Here is the key generation algorithm in full:Algorithm KPi
k at random two distin
t primes p; q ea
h k=2 bits longN  pq ; e R Z�'(N) ; d e�1 mod '(N)pk  (N; e) ; sk  (N; d)Return pk; skRe
all that '(N) = (p � 1)(q � 1) so that having generated p; q, the above key generation algorithm 
an
ompute '(N) and thus is able to 
omplete the rest of the steps whi
h depend on knowledge of this value.The 
omputation of d is done using the extended GCD algorithm.Re
all that the map RSAN;e(x) = xe mod N is a permutation on Z�N with inverse RSA�1N;d(y) = yd mod N .We will make the well-believed assumption that RSA is one-way.Below we will 
onsider various signature s
hemes all of whi
h use the above key generation algorithm andtry to build in di�erent ways on the one-wayness of RSA in order to se
urely sign.9.5.4 Trapdoor signaturesTrapdoor signatures represent the most dire
t way in whi
h to attempt to build on the one-wayness of RSAin order to sign. We believe that the signer, being in possession of the se
ret key N; d, is the only one who
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an 
ompute the inverse RSA fun
tion RSA�1N;d; for anyone else, knowing only the publi
 key N; d, thistask is 
omputationally infeasible. A

ordingly, the signer signs a message by performing on it this \hard"operation. This requires that the message be a member of Z�N , whi
h, for 
onvenien
e, is assumed. It ispossible to verify a signature by performing the \easy" operation of 
omputing RSAN;e on the 
laimedsignature and seeing if we get ba
k the message. More pre
isely, the s
heme DS = (K;S;V) has the abovekey generation algorithm, and the following signing and verifying algorithms:Algorithm SN;d(M)x Md mod NReturn x Algorithm VN;e(M;x)M 0  xe mod NIf M =M 0 then return 1 else return 0The message spa
e for this publi
 key is Plaintexts(N; e) = Z�N , meaning the only allowed messages that thesigner 
an sign are those whi
h are elements of the group Z�N . In this s
heme we have denoted the signatureof M by x.How se
ure is this s
heme? As we said above, the intuition behind it is that the signing operation shouldbe something only the signer 
an perform, sin
e 
omputing RSA�1N;e(M) is hard without knowledge of d.However, what one should remember is that one-wayness is under a very di�erent model and setting thanthat of se
urity for signatures. One-wayness tells us that if we sele
t M at random and then feed it to anadversary (who knows N; e but not d) and ask the latter to �nd x = RSA�1N;e(M), then the adversary willhave a hard time su

eeding. But the adversary in a signature s
heme is not given a random message M onwhi
h to forge a signature. Keep in mind that the goal of the adversary is to 
reate a pair (M;x) su
h thatVN;e(M;x) = 1. It does not have to try to imitate the signing algorithm; it must only do something thatsatis�es the veri�
ation algorithm. In parti
ular it is allowed to 
hooseM rather than having to sign a givenor random M . It is also allowed to obtain a valid signature on any message other than the M it eventuallyoutputs, via the signing ora
le, 
orresponding in this 
ase to having an ora
le for RSA�1N;e(�). These featuresmake it easy for an adversary to forge signatures.The simplest forgery strategy is simply to 
hoose the signature �rst, and de�ne the message as a fun
tion ofit. That is illustrated by the following forger.Forger FSN;e(�)(N; e)x R Z�N ; M  xe mod NReturn (M;x)This forger makes no queries of its signing ora
le, and simply outputs the forgery (M;x) derived as shown. To
ompute its su

ess probability we note that VN;e(M;x) = 1, be
ause xe mod N = M . So Advuf-
maDS;F = 1.This implies Advuf-
maDS (t; 0; k) = 1, where t = O(k3) is the time to do an exponentiation modulo N , whi
his the 
omputation time of F , and � = k be
ause the length of M is k. The values t; q; � here being verysmall, we are saying the s
heme is totally inse
ure.The message M whose signature the above forger managed to forge is random. This is enough to break thes
heme as per our de�nition of se
urity, be
ause we made a very strong de�nition of se
urity. A
tually forthis s
heme it is possible to even forge the signature of a given message M , but this time one has to use thesigning ora
le. The atta
k relies on the multipli
ativity of the RSA fun
tion.Forger FSN;e(�)(N; e)M1 R Z�N � f1;Mg ; M2  MM�11 mod Nx1  SN;e(M1) ; x2  SN;e(M2)x x1x2 mod NReturn (M;x)Given M the forger wants to 
ompute a valid signature x for M . It 
reates M1;M2 as shown, and obtainstheir signatures x1; x2. It then sets x = x1x2 mod N . Now the veri�
ation algorithm will 
he
k whether
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ture Notes 183xe mod N =M . But note thatxe � (x1x2)e � xe1xe2 �M1M2 �M (mod N) :Here we used the multipli
ativity of the RSA fun
tion and the fa
t that xi is a valid signature of Mi fori = 1; 2. This means that x is a valid signature of M . Sin
e M1 is 
hosen to not be 1 or M , the same is trueof M2, and thus M was not an ora
le query of F . So F su

eeds with probability one.These atta
ks indi
ate that there is more to signatures than one-wayness of the underlying fun
tion.9.5.5 The hash-then-invert paradigmReal-world RSA based signature s
hemes need to surmount the above atta
ks, and also attend to otherimpra
ti
alities of the trapdoor setting. In parti
ular, messages are not usually group elements; they arepossibly long �les, meaning bit strings of arbitrary lengths. Both issues are typi
ally dealt with by pre-pro
essing the given message M via a hash fun
tion Hash to yield a \domain point" y, whi
h is theninverted under RSA�1N;e to yield the a
tual signature. The hash fun
tion Hash: f0; 1g� ! Z�N is publi
,meaning its des
ription is known, and anyone 
an 
ompute it. (It may or may not use a key, but if it does,the key is publi
.) More pre
isely the s
heme DS = (K;S;V) has the above key generation algorithm, andthe following signing and verifying algorithms:Algorithm SN;d(M)y  Hash(M)x yd mod NReturn x Algorithm VN;e(M;x)y  Hash(M)y0  xe mod NIf y = y0 then return 1 else return 0Let us see why this might help resolve the weaknesses of trapdoor signatures, and what requirements se
urityimposes on the hash fun
tion.Let us return to the atta
ks presented on the trapdoor signature s
heme above. Begin with the �rst forgerwe presented, who simply set M to xe mod N for some random x 2 Z�N . What is the su

ess probabilityof this strategy under the hash-then-invert s
heme? The forger wins if xe mod N = Hash(M) (rather thanmerely xe mod N = M as before). The hope is that with a \good" hash fun
tion, it is very unlikely thatxe mod N = Hash(M).Consider now the se
ond atta
k we presented above, whi
h relied on the multipli
ativity of the RSA fun
tion.For this atta
k to work under the hash-then-invert s
heme, it would have to be true thatHash(M1) �Hash(M2) � Hash(M) (mod N) : (9.1)Again, with a \good" hash fun
tion, we would hope that this is unlikely to be true.The hash fun
tion is thus supposed to \destroy" the algebrai
 stru
ture that makes atta
ks like the abovepossible. How we might �nd one that does this is something we have not addressed.While the hash fun
tion might prevent some atta
ks that worked on the trapdoor s
heme, its use leads to anew line of atta
k, based on 
ollisions in the hash fun
tion. If an adversary 
an �nd two distin
t messagesM1;M2 that hash to the same value, meaning Hash(M1) = Hash(M2), then it 
an easily forge signatures, asfollows:Forger FSN;e(�)(N; e)x1  SN;e(M1)Return (M2; x1)This works be
ause M1;M2 have the same signature. Namely be
ause x1 is a valid signature of M1, andbe
ause M1;M2 have the same hash value, we havexe1 � Hash(M1) � Hash(M2) (mod N) ;
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ation pro
edure will a

ept x1 as a signature of M2. Thus, a ne
essary requirementon the hash fun
tion is that it be 
ollision-resistant, meaning it should be 
omputationally infeasible to �nddistin
t values M;M 0 su
h that Hash(M) = Hash(M 0).Below we will go on to more 
on
rete instantiations of the hash-then-invert paradigm. But before we dothat, it is important to try to assess what we have done so far. Above, we have pin-pointed some featuresof the hash fun
tion that are ne
essary for the se
urity of the signature s
heme. Collision-resistan
e is one.The other requirement is not so well formulated, but roughly we want to destroy algebrai
 stru
ture in su
ha way that Equation (9.1), for example, should fail with high probability. Classi
al design fo
uses on theseatta
ks and asso
iated features of the hash fun
tion, and aims to implement suitable hash fun
tions. Butif you have been understanding the approa
hes and viewpoints we have been endeavoring to develop in this
lass and notes, you should have a more 
riti
al perspe
tive. The key point to note is that what we needis not really to pin-point ne
essary features of the hash fun
tion to prevent 
ertain atta
ks, but rather topin-point suÆ
ient features of the hash fun
tion, namely features suÆ
ient to prevent all atta
ks, even onesthat have not yet been 
on
eived. And we have not done this. Of 
ourse, pinning down ne
essary featuresof the hash fun
tion is useful to gather intuition about what suÆ
ient features might be, but it is only that,and we must be 
areful to not be sedu
ed into thinking that it is enough, that we have identi�ed all the
on
erns. Pra
ti
e proves this 
ompla
en
e wrong again and again.How 
an we hope to do better? Return to the basi
 philosophy of provable se
urity. We want assuran
ethat the signature s
heme is se
ure under the assumption that its underlying primitives are se
ure. Thuswe must try to tie the se
urity of the signature s
heme to the se
urity of RSA as a one-way fun
tion, andsome se
urity 
ondition on the hash fun
tion. With this in mind, let us pro
eed to examine some suggestedsolutions.9.5.6 The PKCS #1 s
hemeRSA 
orporation has been one of the main sour
es of software and standards for RSA based 
ryptography.RSA Labs (now a part of Se
urity Dynami
s Corporation) has 
reated a set of standards 
alled PKCS (Publi
Key Cryptography Standards). PKCS #1 is about signature (and en
ryption) s
hemes based on the RSAfun
tion. This standard is in wide use, and a

ordingly it will be illustrative to see what they do.The standard uses the hash-then-invert paradigm, instantiatingHash via a parti
ular hash fun
tion PKCS-Hash.Before spe
ifying it we need to attend to some implementation issues. So far we have been thinking of thehash fun
tion as returning a group element, namely a point in the set Z�N . This is ne
essary be
ause theoutput of the hash fun
tion must be something to whi
h we 
an apply RSA�1N;e. However, in an implemen-tation, we 
an only pro
ess bit-strings. So in a
tuality the hash fun
tion must return a sequen
e of bits thatwe 
an interpret as an element of Z�N . This is not a big deal. The modulus N has length k bits (an examplevalue of k is k = 1024) and Z�N is a subset of f1; : : : ; Ng, 
onsisting of those elements of f1; : : : ; Ng whi
hare relatively prime to N . Ea
h element of Z�N 
an thus be written as a k-bit string. So if the hash fun
tionreturns a k-bit string y, we 
an interpret it as an element of Z�N simply by interpreting it as an integer. Well,almost. There are a 
ouple of 
aveats. First, the integer must be relatively prime to N ; se
ond it must beat most N . The se
ond 
an be ensured if the high-order bit of the k-bit string y is 0, meaning as an integery is at most 2k�1 � 1 < N . The �rst we simply don't worry about. The reason is that very few integers inthe range f1; : : : ; Ng are not relatively prime to N . Indeed, the fra
tion of su
h integers in f1; : : : ; Ng is atmost N � '(N)N = 1� (p� 1)(q � 1)pq = p+ q � 1pq < 21+k=22k�1 = 4 � 2�k=2 :We used here the fa
t that jpj = jqj = k=2. Thus with typi
al modulus sizes like k = 1024, the fra
tionof points non-relatively prime to N is negligible. Not only do we not expe
t to hit these points by 
han
e,but even the possibility of an adversary doing so on purpose is small be
ause any su
h point is a multipleof either p or q, and taking the g
d of su
h a point with N would lead to fa
toring N , whi
h is assumed
omputationally infeasible.These te
hni
alities having been dispensed with, let us pro
eed to des
ribe the PKCS #1 hash fun
tion.
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all we have already dis
ussed 
ollision-resistant hash fun
tions. Let us �x a fun
tion h: f0; 1g�! f0; 1glwhere l � 128 and whi
h is \
ollision-resistant" in the sense that nobody knows how to �nd any pair ofdistin
t points M;M 0 su
h that h(M) = h(M 0). Currently the role tends to be played by SHA-1, so thatl = 160. Prior to that it was MD5, whi
h has l = 128. The RSA PKCS #1 standard de�nesPKCS-Hash(M) = 0x 00 01 FF FF � � � FF FF 00kh(M) :Here k denotes 
on
atenation, and enough FF-bytes are inserted that the length of PKCS-Hash(M) is equalto k bits. Note the the �rst four bits of the hash output are zero, meaning as an integer it is 
ertainly atmost N , and by the above thus a group element. Also note that PKCS-Hash is 
ollision-resistant simplybe
ause h is 
ollision-resistant, so that it ful�lls the �rst of our ne
essary 
onditions.Re
all that the signature s
heme is exa
tly that of the hash-then-invert paradigm. For 
on
reteness, let usrewrite the signing and verifying algorithms:Algorithm SN;d(M)y  PKCS-Hash(M)x yd mod NReturn x Algorithm VN;e(M;x)y  PKCS-Hash(M)y0  xe mod NIf y = y0 then return 1 else return 0Now what about the se
urity of this signature s
heme? Our �rst 
on
ern is the kinds of algebrai
 atta
ks wesaw on trapdoor signatures. As dis
ussed in Se
tion 9.5.5, we would like that relations like Equation (9.1)fail. This we appear to get; it is hard to imagine how PKCS-Hash(M1) �PKCS-Hash(M2) mod N 
ould havethe spe
i�
 stru
ture required to make it look like the PKCS-hash of some message. This isn't a proof thatthe atta
k is impossible, of 
ourse, but at least it is not evident.This is the point where our approa
h departs from the 
lassi
al atta
k-based design one. Under the latter,the above s
heme is a

eptable be
ause known atta
ks fail. But looking deeper there is 
ause for 
on
ern.The approa
h we want to take is to see how the desired se
urity of the signature s
heme relates to theassumed or understood se
urity of the underlying primitive, in this 
ase the RSA fun
tion.We are assuming RSA is one-way, meaning it is 
omputationally infeasible to 
ompute RSA�1N;e(y) for arandomly 
hosen point y 2 Z�N . On the other hand, the points on whi
h RSA�1N;e is applied in the signatures
heme are those in the range S = f PKCS-Hash(M) : M 2 f0; 1g� g of the PKCS hash fun
tion. The sizeof S is at most 2l sin
e h outputs l bits and the other bits of PKCS-Hash(�) are �xed. With SHA-1 thismeans jSj � 2160. This may seem like quite a big set, but within the RSA domain Z�N it is tiny:jSjjZ�N j � 216021023 = 12863 :This is the probability with whi
h a point 
hosen randomly from Z�N lands in S. For all pra
ti
al purposes,it is zero. So RSA 
ould very well be one-way and still be easy to invert on S, sin
e the 
han
e of arandom point landing in S is so tiny. So the se
urity of the PKCS s
heme 
annot be guaranteed solely underthe standard one-wayness assumption on RSA. Note this is true no matter how \good" is the underlyinghash fun
tion h (in this 
ase SHA-1) whi
h forms the basis for PKCS-Hash. The problem is the design ofPKCS-Hash itself, in parti
ular the padding.The se
urity of the PKCS signature s
heme would require the assumption that RSA is hard to invert onthe set S, a minis
ule fra
tion of its full range. (And even this would be only a ne
essary, but not suÆ
ient
ondition for the se
urity of the signature s
heme.)Let us try to 
larify and emphasize the view taken here. We are not saying that we know how to atta
k thePKCS s
heme. But we are saying that an absen
e of known atta
ks should not be deemed a good reason tobe satis�ed with the s
heme. We 
an identify \design 
aws," su
h as the way the s
heme uses RSA, whi
his not in a

ordan
e with our understanding of the se
urity of RSA as a one-way fun
tion. And this is 
ausefor 
on
ern.
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hemeFrom the above we see that if the hash-then-invert paradigm is to yield a signature s
heme whose se
urity
an be based on the one-wayness of the RSA fun
tion, it must be that the points y on whi
h RSA�1N;e isapplied in the s
heme are random ones. In other words, the output of the hash fun
tion must always \lookrandom". Yet, even this only highlights a ne
essary 
ondition, not (as far as we know) a suÆ
ient one.We now ask ourselves the following question. Suppose we had a \perfe
t" hash fun
tion Hash. In that
ase, at least, is the hash-then-invert signature s
heme se
ure? To address this we must �rst de
ide whatis a \perfe
t" hash fun
tion. The answer is quite natural: one that is random, namely returns a randomanswer to any query ex
ept for being 
onsistent with respe
t to past queries. (We will explain more howthis \random ora
le" works later, but for the moment let us 
ontinue.) So our question be
omes: in a modelwhere Hash is perfe
t, 
an we prove that the signature s
heme is se
ure if RSA is one-way?This is a basi
 question indeed. If the hash-then-invert paradigm is in any way viable, we really must beable to prove se
urity in the 
ase the hash fun
tion is perfe
t. Were it not possible to prove se
urity in thismodel it would be extremely inadvisable to adopt the hash-then-invert paradigm; if it doesn't work for aperfe
t hash fun
tion, how 
an we expe
t it to work in any real world setting?A

ordingly, we now fo
us on this \thought experiment" involving the use of the signature s
heme with aperfe
t hash fun
tion. It is a thought experiment be
ause no spe
i�
 hash fun
tion is perfe
t. Our \hashfun
tion" is no longer �xed, it is just a box that 
ips 
oins. Yet, this thought experiment has somethingimportant to say about the se
urity of our signing paradigm. It is not only a key step in our understandingbut will lead us to better 
on
rete s
hemes as we will see later.Now let us say more about perfe
t hash fun
tions. We assume that Hash returns a random member of Z�Nevery time it is invoked, ex
ept that if twi
e invoked on the same message, it returns the same thing bothtimes. In other words, it is an instan
e of a random fun
tion with domain f0; 1g� and range Z�N . We haveseen su
h obje
ts before, when we studied pseudorandomness: remember that we de�ned pseudorandomfun
tions by 
onsidering experiments involving random fun
tions. So the 
on
ept is not new. We 
all Hasha random ora
le, and denote it by H in this 
ontext. It is a

essible to all parties, signer, veri�ers andadversary, but as an ora
le. This means it is only a

essible a
ross a spe
i�ed interfa
e. To 
ompute H(M)a party must make an ora
le 
all. This means it outputs M together with some indi
ation that it wantsH(M) ba
k, and an appropriate value is returned. Spe
i�
ally it 
an output a pair (hash;M), the �rst
omponent being merely a formal symbol used to indi
ate that this is a hash-ora
le query. Having outputthis, the 
alling algorithm waits for the answer. On
e the value H(M) is returned, it 
ontinues its exe
ution.The best way to think about H is as a dynami
 pro
ess whi
h maintains a table of input-output pairs. Everytime a query (hash;M) is made, the pro
ess �rst 
he
ks if its table 
ontains a pair of the form (M; y) forsome y, and if so, returns y. Else it pi
ks a random y in Z�N , puts (M; y) into the table, and returns y asthe answer to the ora
le query.We 
onsider the above hash-then-invert signature s
heme in the model where the hash fun
tion Hash is arandom ora
le H . This is 
alled the Full Domain Hash (FDH) s
heme. This s
heme DS = (K;S;V) has theusual RSA key generation algorithm K of Se
tion 9.5.3. We write the signing and verifying algorithms asfollows: Algorithm SHN;d(M)y  H(M)x yd mod NReturn x Algorithm VHN;e(M;x)y  H(M)y0  xe mod NIf y = y0 then return 1 else return 0The only 
hange with respe
t to the way we wrote the algorithms for the generi
 hash-then-invert s
hemeof Se
tion 9.5.5 is notational: we write H as a supers
ript to indi
ate that it is an ora
le a

essible only viathe spe
i�ed ora
le interfa
e. The instru
tion y  H(M) is implemented by making the query (hash;M)and letting y denote the answer returned, as dis
ussed above.We now ask ourselves whether the above signature s
heme is se
ure under the assumption that RSA isone-way. To 
onsider this question we �rst need to extend our de�nitions to en
ompass the new model. The
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e is the the su

ess probability of an adversary is taken over the random 
hoi
e of H in additionto the random 
hoi
es previously 
onsidered. The forger F as before has a

ess to a signing ora
le, but nowalso has a

ess to H . Furthermore, S itself has a

ess to H . Let us �rst write the experiment that measuresthe su

ess of forger F and then dis
uss it more.Experiment ForgeExpro(DS ; F )Let ((N; e); (N; d)) R KPi
k H : f0; 1g� ! Z�N at randomLet (M;x) FH;SHN;d(�)(N; e)If VHN;e(M;�) = 1 and M was not a query of F to its signing ora
leThen return 1 else return 0The supers
ript of \ro" to the name of the experiment indi
ates it is in the random ora
le model. For
on
reteness we have written the experiment spe
i�
 to the 
ase of RSA based s
hemes su
h as FDH-RSA,but it is easily generalized. We begin by pi
king the RSA publi
 key (N; e) and se
ret key (N; d) as per thestandard RSA key generation algorithm. Next a random hash fun
tion is 
hosen. This 
hoi
e is best thoughtof dynami
ally as dis
ussed above. Don't think of H as 
hosen all at on
e, but rather think of the pro
essimplementing the table we des
ribed, so that random 
hoi
es are made only at the time the H ora
le is
alled. The forger is given ora
le a

ess to H . To model a 
hosen-message atta
k it is also given a

ess to asigning ora
le SHN;d(�) to whi
h it 
an give any messageM and re
eive a signature, this being H(M)d mod Nin the 
ase of FDH-RSA. In order to return a signature, the signing ora
le itself must invoke the H ora
le,so that there are two ways in whi
h the H ora
le might be invoked: either dire
tly by F or indire
tly, bySHN;d(�) when the latter is invoked by F . After querying its ora
les some number of times the forger outputsa message M and 
andidate signature x for it. We say that F is su

essful if the veri�
ation pro
ess woulda

ept M;x, but F never asked the signing ora
le to sign M . (F is 
ertainly allowed to make hash queryM , and indeed it is hard to imagine how it might hope to su

eed in forgery otherwise, but it is not allowedto make sign query M .)We let Advuf-
maDS;F be the probability that experiment ForgeExpro(DS ; F ) returns 1. The notation is thesame as we have used before; we will know whether or not we are in the random ora
le model from thedes
ription of the s
heme. Then for any t; qsig; qhash; � letAdvuf-
maDS (t; qsig; qhash; �) = maxF fAdvuf-
maDS;F g :The resour
es t; qsig; qhash; � are measured in a spe
i�
 way as we now des
ribe. Rather than referring tothe resour
es used by the adversary F itself, they measure the resour
es used by the entire experiment. We�rst de�ne the exe
ution time as the time taken by the entire experiment ForgeExpro(DS ; F ). This means itin
ludes the time to 
ompute answers to ora
le queries, to generate the keys, and even to verify the forgery.Then t is supposed to upper bound the exe
ution time plus the size of the 
ode of F . The number of signqueries made by F must be at most qsig. In 
ounting hash queries we again look at the entire experimentand ask that the total number of queries to H here be at most qhash. In
luded in the 
ount are the dire
thash queries of F , the indire
t hash queries made by the signing ora
le, and even the hash query madeby the veri�
ation algorithm in the last step. (The latter means that qhash is always at least the numberof hash queries required for a veri�
ation, whi
h for FDH-RSA is one. In fa
t for FDH-RSA we will haveqhash � qsig + 1, something to be kept in mind when interpreting later results.) Finally � is the sum of thelengths of all messages in sign queries plus the length of the �nal output message M .In this setting we 
laim that the FDH-RSA s
heme is se
ure. The following theorem upper bounds itsinse
urity solely in terms of the inse
urity of RSA as a one-way fun
tion.Theorem 9.13 [24℄ Let DS be the FDH-RSA s
heme with se
urity parameter k. Then for any t; qsig; �and any qhash � 1 + qsig we haveAdvuf-
maDS (t; qsig; qhash; �) � qhash �AdvowfRSA(t0)where t0 = t+ qhash �O(k3).
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heme is to try to invert theRSA fun
tion on random points. There is some loss in se
urity: it might be that the 
han
e of breakingthe signature s
heme is larger than that of inverting RSA in 
omparable time, by a fa
tor of the numberof hash queries made in the forging experiment. But we 
an make AdvowfRSA(t0) small enough that evenqhash �AdvowfRSA(t0) is small, by 
hoosing a larger modulus size k.One must remember the 
aveat: this is in a model where the hash fun
tion is random. Yet, even this tells ussomething, namely that the hash-then-invert paradigm itself is sound, at least for \perfe
t" hash fun
tions.This puts us in a better position to explore 
on
rete instantiations of the paradigm.Let us now pro
eed to the proof of Theorem 9.13. The paradigm is the usual one. Let F be some forgeratta
king the FDH-RSA s
heme. Assume that the resour
e parameters asso
iated to it are t; qsig; qhash; �,measured relative to the experiment ForgeExpro(DS ; F ) as we dis
ussed above. We will design an inverterI for the RSA fun
tion su
h that AdvowfRSA;I � Advuf-
maDS;Fqhash : (9.2)Furthermore I will have running time bounded by the value t0 given in the theorem statement. Now thetheorem follows as usual by some arithmeti
 and the taking of maximums.Remember that inverter I takes as input (N; e), des
ribing an instan
e RSAN;e of the RSA fun
tion, andalso a point y 2 Z�N . Its job is to try to output RSA�1N;e(y) = yd mod N , the inverse of y under the RSAfun
tion, where d is the de
ryption exponent 
orresponding to en
ryption exponent e. Of 
ourse, neitherd nor the fa
torization of N are available to I . The su

ess of I is measured under a random 
hoi
e of(N; e); (N; d) as given by the standard RSA key generation algorithm, and also a random 
hoi
e of y fromZ�N . In order to a

omplish its task, I will run F as a subroutine, on input publi
 key N; e, hoping somehowto use F 's ability to forger signatures to �nd RSA�1N;e(y). Before we dis
uss how I might hope to use theforger to determine the inverse of point y, we need to take a 
loser look at what it means to run F as asubroutine.Re
all that F has a

ess to two ora
les, and makes 
alls to them. At any point in its exe
ution it mightoutput (hash;M). It will then wait for a return value, whi
h it interprets as H(M). On
e this is re
eived, it
ontinues its exe
ution. Similarly it might output (sign;M) and then wait to re
eive a value it interprets asSHN;d(M). Having got this value, it 
ontinues. The important thing to understand is that F , as an algorithm,merely 
ommuni
ates with ora
les via an interfa
e. It does not 
ontrol what these ora
les return. Youmight think of an ora
le query like a system 
all. Think of F as writing an ora
le query M at some spe
i�
pres
ribed pla
e in memory. Some pro
ess is expe
ted to put in another pres
ribed pla
e a value that F willtake as the answer. F reads what is there, and goes on.When I exe
utes F , no ora
les are a
tually present. F does not know that. It will at some point make anora
le query, assuming the ora
les are present, say query (hash;M). It then waits for an answer. If I wantsto run F to 
ompletion, it is up to I to provide some answer to F as the answer to this ora
le query. F willtake whatever it is given and go on exe
uting. If I 
annot provide an answer, F will not 
ontinue running;it will just sit there, waiting. We have seen this idea of \simulation" before in several proofs: I is 
reating a\virtual reality" under whi
h F 
an believe itself to be in its usual environment.The strategy of I will be to take advantage of its 
ontrol over responses to ora
le queries. It will 
hoose themin strange ways, not quite the way they were 
hosen in Experiment ForgeExpro(DS ; F ). Sin
e F is just analgorithm, it pro
esses whatever it re
eives, and eventually will halt with some output, a 
laimed forgery(M;x). By 
lever 
hoi
es of replies to ora
le queries, I will ensure that F is fooled into not knowing that itis not really in ForgeExpro(DS ; F ), and furthermore x will be the desired inverse of y. Not always, though;I has to be lu
ky. But it will be lu
ky often enough.We begin by 
onsider the 
ase of a very simple forger F . It makes no sign queries and exa
tly one hashquery (hash;M). It then outputs a pair (M;x) as the 
laimed forgery, the message M being the same in thehash query and the forgery. (In this 
ase we have qsig = 0 and qhash = 2, the last due to the hash query of Fand the �nal veri�
ation query in the experiment.) Now if F is su

essful then x is a valid signature of M ,meaning xe � H(M) mod N , or, equivalently, x � H(M)d mod N . Somehow, F has found the inverse ofH(M), the value returned to it as the response to ora
le query M . Now remember that I 's goal had been to
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ompute yd mod N where y was its given input. A natural thought suggests itself: If F 
an invert RSAN;eat H(M), then I will \set" H(M) to y, and thereby obtain the inverse of y under RSAN;e. I 
an set H(M)in this way be
ause it 
ontrols the answers to ora
le queries. When F makes query (hash;M), the inverter Iwill simply return y as the response. If F then outputs a valid forgery (M;x), we have x = yd mod N , andI 
an output x, its job done.But why would F return a valid forgery when it got y as its response to hash query M? Maybe it will refusethis, saying it will not work on points supplied by an inverter I . But this will not happen. F is simply analgorithm and works on whatever it is given. What is important is solely the distribution of the response. InExperiment ForgeExpro(DS ; F ) the response to (hash;M) is a random element of Z�N . But y has exa
tly thesame distribution, be
ause that is how it is 
hosen in the experiment de�ning the su

ess of I in breakingRSA as a one-way fun
tion. So F 
annot behave any di�erently in this virtual reality than it 
ould in itsreal world; its probability of returning a valid forgery is still Advuf-
maDS;F . Thus for this simple F the su

essprobability of the inverter in �nding yd mod N is exa
tly the same as the su

ess probability of F in forgingsignatures. Equation (9.2) 
laims less, so we 
ertainly satisfy it.However, most forgers will not be so obliging as to make no sign queries, and just one hash query 
onsistingof the very message in their forgery. I must be able to handle any forger.Inverter I will de�ne a pair of subroutines, H -Sim (
alled the hash ora
le simulator) and S-Sim (
alled thesign ora
le simulator) to play the role of the hash and sign ora
les respe
tively. Namely, whenever F makesa query (hash;M) the inverter I will return H -Sim(M) to F as the answer, and whenever F makes a query(sign;M) the inverter I will return S-Sim(M) to F as the answer. (The S-Sim routine will additionallyinvoke H -Sim.) As it exe
utes, I will build up various tables (arrays) that \de�ne" H . For j = 1; : : : ; qhash,the j-th string on whi
h H is 
alled in the experiment (either dire
tly due to a hash query by F , indire
tlydue to a sign query by F , or due to the �nal veri�
ation query) will be re
orded as Msg [j℄; the responsereturned by the hash ora
le simulator to Msg [j℄ is stored as Y [j℄; and if Msg [j℄ is a sign query then theresponse returned to F as the \signature" is X [j℄. Now the question is how I de�nes all these values.Suppose the j-th hash query in the experiment arises indire
tly, as a result of a sign query (sign;Msg [j℄) byF . In Experiment ForgeExpro(DS ; F ) the forger will be returned H(Msg [j℄)d mod N . If I wants to keepF running it must return something plausible. What 
ould I do? It 
ould attempt to dire
tly mimi
 thesigning pro
ess, setting Y [j℄ to a random value (remember Y [j℄ plays the role of H(Msg [j℄)) and returning(Y [j℄)d mod N . But it won't be able to 
ompute the latter sin
e it is not in possesion of the se
ret signingexponent d. The tri
k, instead, is that I �rst pi
ks a valueX [j℄ at random in Z�N and sets Y [j℄ = (X [j℄)e modN . Now it 
an return X [j℄ as the answer to the sign query, and this answer is a

urate in the sense that theveri�
ation relation (whi
h F might 
he
k) holds: we have Y [j℄ � (X [j℄)e mod N .This leaves a 
ouple of loose ends. One is that we assumed above that I has the liberty of de�ning Y [j℄ atthe point the sign query was made. But perhaps Msg [j℄ = Msg [l℄ for some l < j due to there having beena hash query involving this same message in the past. Then the hash value Y [j℄ is already de�ned, as Y [l℄,and 
annot be 
hanged. This 
an be addressed quite simply however: for any hash query Msg [l℄, the hashsimulator 
an follow the above strategy of setting the reply Y [l℄ = (X [l℄)e mod N at the time the hash queryis made, meaning it prepares itself ahead of time for the possibility that Msg [l℄ is later a sign query. Maybeit will not be, but nothing is lost.Well, almost. Something is lost, a
tually. A reader who has managed to stay awake so far may noti
e thatwe have solved two problems: how to use F to �nd yd mod N where y is the input to I , and how to simulateanswers to sign and hash queries of F , but that these pro
esses are in 
on
i
t. The way we got yd mod Nwas by returning y as the answer to query (hash;M) where M is the message in the forgery. However, wedo not know beforehand whi
h message in a hash query will be the one in the forgery. So it is diÆ
ult toknow how to answer a hash query Msg [j℄; do we return y, or do we return (X [j℄)e mod N for some X [j℄? Ifwe do the �rst, we will not be able to answer a sign query with message Msg [j℄; if we do the se
ond, and ifMsg [j℄ equals the message in the forgery, we will not �nd the inverse of y. The answer is to take a guess asto whi
h to do. There is some 
han
e that this guess is right, and I su

eeds in that 
ase.Spe
i�
ally, noti
e that Msg [qhash℄ = M is the message in the forgery by de�nition sin
e Msg [qhash℄ is themessage in the �nal veri�
ation query. The messageM might o

ur more than on
e in the list, but it o

urs
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e. Now I will 
hoose a random i in the range 1 � i � qhash and respond by y to hash query(hash;Msg [i℄). To all other queries j it will respond by �rst pi
king X [j℄ at random in Z�N and settingH(Msg [j℄) = (X [j℄)e mod N . The forged message M will equal Msg [i℄ with probability at least 1=qhash andthis will imply Equation (9.2). Below we summarize these ideas as a proof of Theorem 9.13.It is tempting from the above des
ription to suggest that we always 
hoose i = qhash, sin
e Msg [qhash℄ =Mby de�nition. Why won't that work? Be
ause M might also have been equal to Msg [j℄ for some j < qhash,and if we had set i = qhash then at the time we want to return y as the answer to M we �nd we have alreadyde�ned H(M) as something else and it is too late to 
hange our minds.Proof of Theorem 9.13: Let F be some forger atta
king the FDH-RSA s
heme, with resour
e parameterst; qsig; qhash; �, measured relative to the experiment ForgeExpro(DS ; F ) as we dis
ussed above. We will designan inverter I for the RSA fun
tion su
h that Equation (9.2) is true and the running time of I is boundedby the value t0 given in the theorem statement. The theorem follows.We �rst de
ribe I in terms of two subroutines: a hash ora
le simulator H -Sim(�) and a sign ora
le simulatorS-Sim(�). It maintains three tables, Msg , X and Y , ea
h an array with index in the range from 1 to qhash.It pi
ks a random index i. All these are global variables whi
h will be used also be the subroutines. Theintended meaning of the array entries is the following, for j = 1; : : : ; qhash{Msg [j℄ { The j-th hash query in the experimentY [j℄ { The reply of the hash ora
le simulator to the above, meaning the value playing therole of H(Msg [j℄)X [j℄ { For j 6= i, the response to sign query Msg [j℄, meaning it satis�es (X [j℄)e � Y [j℄(mod N). For j = i it is the value y.The 
ode for the inverter is below.Inverter I(N; e; y)Initialize arrays Msg [1 : : : qhash℄, X [1 : : : qhash℄, Y [1 : : : qhash℄ to emptyj  0 ; i R f1; : : : ; qhashgRun F on input N; eIf F makes ora
le query (hash;M)then h H -Sim(M) ; return h to F as the answerIf F makes ora
le query (sign;M)then x S-Sim(M) ; return x to F as the answerUntil F halts with output (M;x)y0  H -Sim(M)Return xThe inverter responds to ora
le queries by using the appropriate subroutines. On
e it has the 
laimed forgery,it makes the 
orresponding hash query and then returns the signature x.We now des
ribe the hash ora
le simulator. It makes referen
e to the global variables instantiated in in themain 
ode of I . It takes as argument a value v whi
h is simply some message whose hash is requested eitherdire
tly by F or by the sign simulator below when the latter is invoked by F .We will make use of a subroutine Find that given an array A, a value v and index m, returns 0 if v 62fA[1℄; : : : ; A[m℄g, and else returns the smallest index l su
h that v = A[l℄.Subroutine H -Sim(v)l Find(Msg ; v; j) ; j  j + 1 ; Msg [j℄ vIf l = 0 then
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ture Notes 191If j = i then Y [j℄ yElse X [j℄ R Z�N ; Y [j℄ (X [j℄)e mod NEnd IfReturn Y [j℄ElseIf j = i then abortElse X [j℄ X [l℄ ; Y [j℄ Y [l℄ ; Return Y [j℄End IfEnd IfThe manner in whi
h the hash queries are answered enables the following sign simulator.Subroutine S-Sim(M)h H -Sim(M)If j = i then abortElse return X [j℄End IfInverter I might abort exe
ution due to the \abort" instru
tion in either subroutine. The �rst su
h situationis that the hash ora
le simulator is unable to return y as the response to the i-th hash query be
ause thisquery equals a previously replied to query. The se
ond 
ase is that F asks for the signature of the messagewhi
h is the i-th hash query, and I 
annot provide that sin
e it is hoping the i-th message is the one in theforgery and has returned y as the hash ora
le response.Now we need to lower bound the su

ess probability of I in inverting RSA, namely the quantityAdvowfRSA;I = P h xe � y (mod N) : ((N; e); (N; d)) R K ; y R Z�N ; x I(N; e; y) i :There are a few observations involved in verifying the bound 
laimed in Equation (9.2). First that the \view"of F at any time at whi
h I has not aborted is the \same" as in Experiment ForgeExpro(DS ; F ). This meansthat the answers being returned to F by I are distributed exa
tly as they would be in the real experiment.Se
ond, F gets no information about the value i that I 
hooses at random. Now remember that the last hashsimulator query made by I is the messageM in the forgery, so M is 
ertainly in the array Msg at the end ofthe exe
ution of I . Let l = Find(Msg ;M; qhash) be the �rst index at whi
h M o

urs, meaning Msg [l℄ =Mbut no previous message is M . The random 
hoi
e of i then means that there is a 1=qhash 
han
e that i = l,whi
h in turn means that Y [i℄ = y and the hash ora
le simulator won't abort. If x is a 
orre
t signature ofM we will have xe � Y [i℄ (mod N) be
ause Y [i℄ is H(M) from the point of view of F . So I is su

essfulwhenever this happens.9.5.8 PSS0: A se
urity improvementThe FDH-RSA signature s
heme has the attra
tive se
urity attribute of possessing a proof of se
urity underthe assumption thatRSA is a one-way fun
tion, albeit in the random ora
le model. However the quantitativese
urity as given by Theorem 9.13 
ould be better. The theorem leaves open the possibility that one 
ouldforge signatures with a probability that is qhash times the probability of being able to invert theRSA fun
tionat a random point, the two a
tions being measured with regard to adversaries with 
omparable exe
utiontime. Sin
e qhash 
ould be quite large, say 260, there is an appre
iable loss in se
urity here. We now present as
heme in whi
h the se
urity relation is mu
h tighter: the probability of signature forgery is not appre
iablyhigher than that of being able to invert RSA in 
omparable time.The s
heme is 
alled PSS0, for \probabilisti
 signature s
heme, version 0", to emphasize a key aspe
t of it,namely that it is randomized: the signing algorithm pi
ks a new random value ea
h time it is invoked and
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ompute signatures. The s
heme DS = (K;S;V) has the usual RSA key generation algorithm Kof Se
tion 9.5.3. Like FDH-RSA it makes use of a publi
 hash fun
tion H : f0; 1g� ! Z�N whi
h is modeledas a random ora
le. Additonally it has a parameter s whi
h is the length of the random value 
hosen by thesigning algorithm. We write the signing and verifying algorithms as follows:Algorithm SHN;d(M)r R f0; 1gsy  H(rkM)x yd mod NReturn (r; x) Algorithm VHN;e(M;�)Parse � as (r; x) where jrj = sy  H(rkM)If xe mod N = yThen return 1 else return 0Obvious \range 
he
ks" are for simpli
ity not written expli
itly in the veri�
ation 
ode; for example in areal implementation the latter should 
he
k that 1 � x < N and g
d(x;N) = 1.This s
heme may still be viewed as being in the \hash-then-invert" paradigm, ex
ept that the hash israndomized via a value 
hosen by the signing algorithm. If you twi
e sign the same message, you are likelyto get di�erent signatures. Noti
e that random value r must be in
luded in the signature sin
e otherwiseit would not be possible to verify the signature. Thus unlike the previous s
hemes, the signature is not amember of Z�N ; it is a pair one of whose 
omponents is an s-bit string and the other is a member of Z�N .The length of the signature is s+ k bits, somewhat longer than signatures for deterministi
 hash-then-invertsignature s
hemes. It will usually suÆ
e to set l to, say, 160, and given that k 
ould be 1024, the lengthin
rease may be tolerable.The su

ess probability of a forger F atta
king DS is measured in the random ora
le model, via experimentForgeExpro(DS ; F ). Namely the experiment is the same experiment as in the FDH-RSA 
ase; only thes
heme DS we plug in is now the one above. A

ordingly we have the inse
urity fun
tion asso
iated to thes
heme. Now we 
an summarize the se
urity property of the PSS0 s
heme.Theorem 9.14 [24℄ Let DS be the PSS0 s
heme with se
urity parameters k and s. Then for any t; qsig; �and any qhash � 1 + qsig we haveAdvuf-
maDS (t; qsig; qhash; �) � AdvowfRSA(t0) + (qhash � 1) � qsig2swhere t0 = t+ qhash �O(k3).Say qhash = 260 and qsig = 240. With l = 160 the additive term above is about 2�60, whi
h is very small. Sofor all pra
ti
al purposes the additive term 
an be negle
ted and the se
urity of the PSS0 signature s
hemeis tightly related to that of RSA.We pro
eed to the proof of Theorem 9.14. Given a foger F atta
king DS in the random ora
le model, withresour
es t; qsig; qhash; �, we 
onstru
t an inverter I for RSA su
h thatAdvowfRSA;I � Advuf-
maDS;F � (qhash � 1) � qsig2s : (9.3)Furthermore I will have running time bounded by the value t0 given in the theorem statement. Now thetheorem follows as usual by some arithmeti
 and the taking of maximums.The design of I follows the same framework used in the proof of Theorem 9.13. Namely I , on input N; e; y,will exe
ute F on input N; e, and answer F 's ora
le queries so that F 
an 
omplete its exe
ution. From theforgery, I will somehow �nd yd mod N . I will respond to hash ora
le queries of F via a subroutine H -Sim
alled the hash ora
le simulator, and will respond to sign queries of F via a subroutine S-Sim 
alled thesign ora
le simulator. A large part of the design is the design of these subroutines. To get some intuition itis helpful to step ba
k to the proof of Theorem 9.13.We see that in that proof, the multipli
ative fa
tor of qhash in Equation (9.2) 
ame from I 's guessing atrandom a value i 2 f1; : : : ; qhashg, and hoping that i = Find(Msg ;M; qhash) where M is the message in the
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ture Notes 193forgery. That is, it must guess the time at whi
h the message in the forgery is �rst queried of the hash ora
le.The best we 
an say about the 
han
e of getting this guess right is that it is at least 1=qhash. However ifwe now want I 's probability of su

ess to be as in Equation (9.3), we 
annot a�ord to guess the time atwhi
h the forgery message is queried of the hash ora
le. Yet, we 
ertainly don't know this time in advan
e.Somehow, I has to be able to take advantage of the forgery to return yd mod N nonetheless.A simple idea that 
omes to mind is to return y as the answer to all hash queries. Then 
ertainly a forgeryon a queried message yields the desired value yd mod N . Consider this strategy for FDH. In that 
ase, twoproblems arise. First, these answers would then not be random and indpendent, as required for answers tohash queries. Se
ond, if a message in a hash query is later a sign query, I would have no way to answer thesign query. (Remember that I 
omputed its reply to hash query Msg [j℄ for j 6= i as (X [j℄)e mod N exa
tlyin order to be able to later return X [j℄ if Msg [j℄ showed up as a sign query. But there is a 
on
i
t here: I
an either do this, or return y, but not both. It has to 
hoose, and in FDH 
ase it 
hooses at random.)The �rst problem is a
tually easily settled by a small algebrai
 tri
k, exploiting what is 
alled the self-redu
ibility of RSA. When I wants to return y as an answer to a hash ora
le query Msg [j℄, it pi
ks a randomX [j℄ in Z�N and returns Y [j℄ = y �(X [j℄)e mod N . The value X [j℄ is 
hosen randomly and independently ea
htime. Now the fa
t that RSAN;e is a permutation means that all the di�erent Y [j℄ values are randomly andindependently distributed. Furthermore, suppose (M; (r; x)) is a forgery for whi
h hash ora
le query rkMhas been made and got the reponse Y [l℄ = y � (X [l℄)e mod N . Then we have (x � X [l℄�1)e � y (mod N),and thus the inverse of y is x �X [l℄�1 mod N .The se
ond problem however, 
annot be resolved for FDH. That is exa
tly why PSS0 pre-pends the randomvalue r to the message before hashing. This e�e
tively \separates" the two kinds of hash queries: the dire
tqueries of F to the hash ora
le, and the indire
t queries to the hash ora
le arising from the sign ora
le. Thedire
t hash ora
le queries have the form rkM for some l-bit string r and some message M . The sign queryis just a message M . To answer it, a value r is �rst 
hosen at random. But then the value rkM has lowprobability of having been a previous hash query. So at the time any new dire
t hash query is made, I 
anassume it will never be an indire
t hash query, and thus reply via the above tri
k.Here now is the full proof.Proof of Theorem 9.13: Let F be some forger atta
king the PSS0 s
heme, with resour
e parameterst; qsig; qhash; �, measured relative to the experiment ForgeExpro(DS ; F ) as we dis
ussed above. We will designan inverter I for the RSA fun
tion su
h that Equation (9.3) is true and the running time of I is boundedby the value t0 given in the theorem statement. The theorem follows.We �rst de
ribe I in terms of two subroutines: a hash ora
le simulator H -Sim(�) and a sign ora
le simulatorS-Sim(�). It maintains four tables, R, V , X and Y , ea
h an array with index in the range from 1 to qhash.All these are global variables whi
h will be used also be the subroutines. The intended meaning of the arrayentries is the following, for j = 1; : : : ; qhash{V [j℄ { The j-th hash query in the experiment, having the form R[j℄kMsg [j℄R[j℄ { The �rst l-bits of V [j℄Y [j℄ { The value playing the role of H(V [j℄), 
hosen either by the hash simulator or thesign simulatorX [j℄ { If V [j℄ is a dire
t hash ora
le query of F this satis�es Y [j℄�X [j℄�e � y (mod N). IfV [j℄ is an indire
t hash ora
le query this satis�es X [j℄e � Y [j℄ (mod N), meaningit is a signature of Msg [j℄.Note that we don't a
tually need to store the array Msg ; it is only referred to above in the explanation ofterms.We will make use of a subroutine Find that given an array A, a value v and index m, returns 0 if v 62fA[1℄; : : : ; A[m℄g, and else returns the smallest index l su
h that v = A[l℄.



194 Goldwasser and BellareInverter I(N; e; y)Initialize arrays R[1 : : : qhash℄, V [1 : : : qhash℄, X [1 : : : qhash℄, Y [1 : : : qhash℄, to emptyj  0Run F on input N; eIf F makes ora
le query (hash; v)then h H -Sim(v) ; return h to F as the answerIf F makes ora
le query (sign;M)then �  S-Sim(M) ; return � to F as the answerUntil F halts with output (M; (r; x))y  H -Sim(rkM) ; l Find (V; rkM; qhash)w  x �X [l℄�1 mod N ; Return wWe now des
ribe the hash ora
le simulator. It makes referen
e to the global variables instantiated in in themain 
ode of I . It takes as argument a value v whi
h is assumed to be at least s bits long, meaning of theform rkM for some s bit strong r. (There is no need to 
onsider hash queries not of this form sin
e they arenot relevant to the signature s
heme.)Subroutine H -Sim(v)Parse v as rkM where jrj = sl Find(V; v; j) ; j  j + 1 ; R[j℄ r ; V [j℄ vIf l = 0 thenX [j℄ R Z�N ; Y [j℄ y � (X [j℄)e mod N ; Return Y [j℄ElseX [j℄ X [l℄ ; Y [j℄ Y [l℄ ; Return Y [j℄End IfEvery string v queried of the hash ora
le is put by this routine into a table V , so that V [j℄ is the j-th hashora
le query in the exe
ution of F . The following sign simulator does not invoke the hash simulator, but ifne
essary �lls in the ne
essary tables itself.Subroutine S-Sim(M)r R f0; 1gsl Find(R; r; j)If l 6= 0 then abortElsej  j + 1 ; R[j℄ r ; V [j℄ rkM ; X [j℄ R Z�N ; Y [j℄ (X [j℄)e mod NReturn X [j℄End IfNow we need to lower bound the su

ess probability of I in inverting RSA, namely the quantityAdvowfRSA;I = P h xe � y (mod N) : ((N; e); (N; d)) R K ; y R Z�N ; x I(N; e; y) i :Inverter I might abort exe
ution due to the \abort" instru
tion in the sign ora
le simulator. This happensif the random value r 
hosen in the sign ora
le simulator is already present in the set fR[1℄; : : : ; R[j℄g. Thisset has size at most qhash � 1 at the time of an sign query, so the probability that r falls in it is at most(qhash�1)=2s. The sign ora
le simulator is invoked at most qsig times, so the probability of abortion at sometime in the exe
ution of I is at most (qhash � 1)qsig=2s.The \view" of F at any time at whi
h I has not aborted is the \same" as the view of F in ExperimentForgeExpro(DS ; F ). This means that the answers being returned to F by I are distributed exa
tly as they
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?w r� g2(w)0 g1(w)�?�?h g1- 6g2Figure 9.1: PSS: Components of image y = 0kwkr�kg2(w) are darkened. The signature of M is yd mod N .would be in the real experiment. Now remember that the last hash simulator query made by I is rkM whereM is the message in the forgery, so rkM is 
ertainly in the array V at the end of the exe
ution of I . Sol = Find(V; rkM; qhash) 6= 0. We know that rkM was not put in V by the sign simulator, be
ause F is notallowed to have made sign query M . This means the hash ora
le simulator has been invoked on rkM . Thismeans that Y [l℄ = y � (X [l℄)e mod N be
ause that is the way the hash ora
le simulator 
hooses its replies.The 
orre
tness of the forgery means that xe � H(rkM) (mod N), and the role of the H value here isplayed by Y [l℄, so we get xe � Y [l℄ � y �X [l℄ (mod N). Solving this gives (x � X [l℄�1)e mod N = y, andthus the inverter is 
orre
t in returning x �X [l℄�1 mod N .9.5.9 The Probabilisti
 Signature S
heme { PSSPSS0 obtained improved se
urity over FDH-RSA but at the 
ost of an in
rease in signature size. The s
hemepresented here redu
es the signature size, so that it has both high se
urity and the same signature size asFDH-RSA. This is the probabilisti
 signature s
heme (PSS) of [24℄.Signature s
heme PSS[k0; k1℄ = (K;SignPSS ;VerifyPSS ) is parameterized by k0 and k1, whi
h are numbersbetween 1 and k satisfying k0 + k1 � k � 1. To be 
on
rete, the reader may like to imagine k = 1024,k0 = k1 = 128. The s
heme has the usual RSA key generation algorithm K of Se
tion 9.5.3. The signingand verifying algorithms make use of two hash fun
tions. The �rst, h, 
alled the 
ompressor, maps ash: f0; 1g� ! f0; 1gk1 and the se
ond, g, 
alled the generator, maps as g: f0; 1gk1 ! f0; 1gk�k1�1. (Theanalysis assumes these to be ideal. In pra
ti
e they 
an be implemented in simple ways out of 
ryptographi
hash fun
tions like MD5, as dis
ussed in Appendix 9.5.11.) Let g1 be the fun
tion whi
h on input w 2 f0; 1gk1returns the �rst k0 bits of g(w), and let g2 be the fun
tion whi
h on input w 2 f0; 1gk1 returns the remainingk � k0 � k1 � 1 bits of g(w). We now des
ribe how to sign and verify. Refer to Figure 9.1 for a pi
ture. Wewrite the signing and verifying algorithms as follows:Algorithm SignPSSg;hN;d(M)r R f0; 1gk0 ; w  h(Mkr)r�  g1(w)�ry  0kwkr�kg2(w)x yd mod NReturn x

Algorithm VerifyPSS g;hN;e(M;x)y  xe mod NParse y as bkwkr�k
 wherejbj = 1, jwj = k1, jr�j = k0r  r��g1(w)If ( h(Mkr) = w and g2(w) = 
 and b = 0 )Then return 1 else return 0Obvious \range 
he
ks" are for simpli
ity not written expli
itly in the veri�
ation 
ode; for example in areal implementation the latter should 
he
k that 1 � x < N and g
d(x;N) = 1.The step r R f0; 1gk0 indi
ates that the signer pi
ks at random a seed r of k0 bits. He then 
on
atenates thisseed to the messageM , e�e
tively \randomizing" the message, and hashes this down, via the \
ompressing"fun
tion, to a k1 bit string w. Then the generator g is applied to w to yield a k0 bit string r� = g1(w) and



196 Goldwasser and Bellarea k � k0 � k1 � 1 bit string g2(w). The �rst is used to \mask" the k0-bit seed r, resulting in the maskedseed r�. Now wkr� is pre-pended with a 0 bit and appended with g2(w) to 
reate the image point y whi
his de
rypted under the RSA fun
tion to de�ne the signature. (The 0-bit is to guarantee that y is in Z�N .)Noti
e that a new seed is 
hosen for ea
h message. In parti
ular, a given message has many possiblesignatures, depending on the value of r 
hosen by the signer.Given (M;x), the veri�er �rst 
omputes y = xe mod N and re
overs r�; w; r. These are used to 
he
k thaty was 
orre
tly 
onstru
ted, and the veri�er only a

epts if all the 
he
ks su

eed.Note the eÆ
ien
y of the s
heme is as 
laimed. Signing takes one appli
ation of h, one appli
ation of g,and one RSA de
ryption, while veri�
ation takes one appli
ation of h, one appli
ation of g, and one RSAen
ryption.The following theorem proves the se
urity of the PSS based on the one-wayness of RSA. The relation betweenthe two se
urities is pretty mu
h the same as that for PSS0 that we saw in Theorem 9.14, meaning essentiallytight, and mu
h tighter than the one we saw for the FDH s
heme. This time however it was a
hieved withoutin
rease in signature size.Theorem 9.15 [24℄ Let DS be the PSS s
heme with se
urity parameters k0 and k1. Then for any t; qsig; �and any qhash � 1 + qsig we haveAdvuf-
maDS (t; qsig; qhash; �) � AdvowfRSA(t0) + [3(qhash � 1)2℄ � (2�k0 + 2�k1) ;where t0 = t+ qhash � k0 � O(k3).The proof is in [24℄. It extends the proof of Theorem 9.14 given above.9.5.10 Signing with Message Re
overy { PSS-RMessage re
overy. In a standard signature s
heme the signer transmits the message M in the 
lear,atta
hing to it the signature x. In a s
heme whi
h provides message re
overy, only an \enhan
ed signature"� is transmitted. The goal is to save on the bandwidth for a signed message: we want the length of thisenhan
ed signature to be smaller than jM j+ jxj. (In parti
ular, when M is short, we would like the lengthof � to be k, the signature length.) The veri�er re
overs the message M from the enhan
ed signature and
he
ks authenti
ity at the same time.We a

omplish this by \folding" part of the message into the signature in su
h a way that it is \re
overable"by the veri�er. When the length n of M is small, we 
an in fa
t fold the entire message into the signature,so that only a k bit quantity is transmitted. In the s
heme below, if the se
urity parameter is k = 1024, we
an fold up to 767 message bits into the signature.Definition. Formally, the key generation and signing algorithms are as before, but V is repla
ed by Re
over ,whi
h takes pk and x and returns Re
overpk(x) 2 f0; 1g� [ fREJECTg. The distinguished point REJECT isused to indi
ate that the re
ipient reje
ted the signature; a return value of M 2 f0; 1g� indi
ates that theveri�er a

epts the messageM as authenti
. The formulation of se
urity is the same ex
ept for what it meansfor the forger to be su

essful : it should provide an x su
h that Re
overpk(x) =M 2 f0; 1g�, where M wasnot a previous signing query. We demand that if x is produ
ed via x Ssk(M) then Re
overpk(x) =M .A simple variant of PSS a
hieves message re
overy. We now des
ribe that s
heme and its se
urity.The s
heme. The s
heme PSS-R[k0; k1℄ = (K;SignPSSR;Re
PSSR) is parameterized by k0 and k1, asbefore. The key generation algorithm is K, the same as before. As with PSS, the signing and verifyingalgorithms depend on hash fun
tions h: f0; 1g� ! f0; 1gk1 and g: f0; 1gk1 ! f0; 1gk�k1�1, and we use thesame g1 and g2 notation. For simpli
ity of expli
ation, we assume that the messages to be signed have lengthn = k � k0 � k1 � 1. (Suggested 
hoi
es of parameters are k = 1024, k0 = k1 = 128 and n = 767.) In this
ase, we produ
e \enhan
ed signatures" of only k bits from whi
h the veri�er 
an re
over the n-bit message
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he
k authenti
ity. Signature generation and veri�
ation pro
eed as follows. Refer toFigure 9.2 for a pi
ture.Algorithm SignPSSRg;hN;d(M)r R f0; 1gk0 ; w  h(Mkr)r�  g1(w)�rM�  g2(w)�My  0kwkr�kM�x yd mod NReturn x

Algorithm Re
PSSRg;hN;e(x)y  xe mod NParse y as bkwkr�kM� wherejbj = 1, jwj = k1, jr�j = k0r  r��g1(w)M  M��g2(w)If ( h(Mkr) = w and b = 0 )Then return M else return REJECTThe di�eren
e in SignPSSR with respe
t to SignPSS is that the last part of y is not g2(w). Instead, g2(w)is used to \mask" the message, and the masked message M� is the last part of the image point y.The above is easily adapted to handle messages of arbitrary length. A fully-spe
i�ed s
heme would use aboutminfk; n+ k0 + k1 + 16g bits.Se
urity. The se
urity of PSS-R is the same as for PSS.Theorem 9.16 [24℄ Let DS be the PSS with re
overy s
heme with se
urity parameters k0 and k1. Thenfor any t; qsig; � and any qhash � 1 + qsig we haveAdvuf-
maDS (t; qsig; qhash; �) � AdvowfRSA(t0) + [3(qhash � 1)2℄ � (2�k0 + 2�k1) ;where t0 = t+ qhash � k0 � O(k3).The proof of this theorem is very similar to that of Theorem 9.15.9.5.11 How to implement the hash fun
tionsIn the PSS we need a 
on
rete hash fun
tion h with output length some given number k1. Typi
ally we will
onstru
t h from some 
ryptographi
 hash fun
tion H su
h as H = MD5 or H = SHA-1. Ways to do thishave been dis
ussed before in [15, 23℄. For 
ompleteness we qui
kly summarize some of these possibilities.The simplest is to de�ne h(x) as the appropriate-length pre�x ofH(
onst:h0i:x)kH(
onst:h1i:x)kH(
onst:h2i:x)k � � � :The 
onstant 
onst should be unique to h; to make another hash fun
tion, g, simply sele
t a di�erent
onstant.



198 Goldwasser and Bellare9.5.12 Comparison with other s
hemesWe have already dis
ussed the PKCS standards [173, 174℄ and the ISO standard [1℄ and seen that theirse
urity 
annot be justi�ed based on the assumption that RSA is trapdoor one-way. Other standards, su
has [9℄, are similar to [173℄, and the same statement applies.The s
hemes we dis
uss in the remainder of this se
tion do not use the hash-then-de
rypt paradigm.Signature s
hemes whose se
urity 
an be provably based on the RSA assumption in
lude [101, 14, 145,171, 74℄. The major plus of these works is that they do not use an ideal hash fun
tion (random ora
le)model| the provable se
urity is in the standard sense. On the other hand, the se
urity redu
tions are quiteloose for ea
h of those s
hemes. On the eÆ
ien
y front, the eÆ
ien
y of the s
hemes of [101, 14, 145, 171℄is too poor to seriously 
onsider them for pra
ti
e. The Dwork-Naor s
heme [74℄, on the other hand, is
omputationally quite eÆ
ient, taking two to six RSA 
omputations, although there is some storage overheadand the signatures are longer than a single RSA modulus. This s
heme is the best 
urrent 
hoi
e if one iswilling to allow some extra 
omputation and storage, and one wants well-justi�ed se
urity without assumingan ideal hash fun
tion.Ba
k among signature s
hemes whi
h assume an ideal hash, a great many have been proposed, based on thehardness of fa
toring or other assumptions. Most of these s
hemes are derived from identi�
ation s
hemes,as was �rst done by [79℄. Some of these methods are provable (in the ideal hash model), some not. In someof the proven s
hemes exa
t se
urity is analyzed; usually it is not. In no 
ase that we know of is the se
uritytight. The eÆ
ien
y varies. The 
omputational requirements are often lower than a hash-then-de
rypt RSAsignature, although key sizes are typi
ally larger.Finally we note related new work. Point
heval and Stern [159℄ 
onsider the provable se
urity of signaturesin the random ora
le model and show that a modi�ed version of the El Gamal s
heme [85℄, as well as theS
hnorr [178℄ s
heme, 
an be proven se
ure. (And the s
heme of [79℄ 
an be proven se
ure against atta
ksin whi
h there are no signature queries.) But they don't 
onsider exa
t se
urity. An interesting question isto 
onsider, and possibly improve, the exa
t se
urity of their redu
tions (making, if ne
essary, modi�
ationsto the s
hemes).More re
ently, some quite simple RSA based signature s
hemes have appeared that have a proof of se
uritybased on a stronger and less standard assumption about RSA, but whi
h do not rely on random ora
les[87, 61℄.9.6 Threshold Signature S
hemesUsing a threshold signature s
heme, digital signatures 
an be produ
ed by a group of players rather than byone party. In 
ontrast to the regular signature s
hemes where the signer is a single entity whi
h holds these
ret key, in threshold signature s
hemes the se
ret key is shared by a group of n players. In order to produ
ea valid signature on a given message m, individual players produ
e their partial signatures on that message,and then 
ombine them into a full signature on m. A distributed signature s
heme a
hieves threshold t < n,if no 
oalition of t (or less) players 
an produ
e a new valid signature, even after the system has produ
edmany signatures on di�erent messages. A signature resulting from a threshold signature s
heme is the sameas if it was produ
ed by a single signer possessing the full se
ret signature key. In parti
ular, the validity ofthis signature 
an be veri�ed by anyone who has the 
orresponding unique publi
 veri�
ation key. In otherwords, the fa
t that the signature was produ
ed in a distributed fashion is transparent to the re
ipient ofthe signature.Threshold signatures are motivated both by the need that arises in some organizations to have a group ofemployees agree on a given message (or a do
ument) before signing it, as well as by the need to prote
tsignature keys from the atta
k of internal and external adversaries. The latter be
omes in
reasingly impor-tant with the a
tual deployment of publi
 key systems in pra
ti
e. The signing power of some entities, (e.g.,a government agen
y, a bank, a 
erti�
ation authority) inevitably invites atta
kers to try and \steal" thispower. The goal of a threshold signature s
heme is twofold: To in
rease the availability of the signing agen
y,
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ture Notes 199and at the same time to in
rease the prote
tion against forgery by making it harder for the adversary to learnthe se
ret signature key. Noti
e that in parti
ular, the threshold approa
h rules out the naive solution basedon traditional se
ret sharing (see Chapter 11), where the se
ret key is shared in a group but re
onstru
ted bya single player ea
h time that a signature is to be produ
ed. Su
h proto
ol would 
ontradi
t the requirementthat no t (or less) players 
an ever produ
e a new valid signature. In threshold s
hemes, multiple signaturesare produ
ed without an exposure or an expli
it re
onstru
tion of the se
ret key.Threshold signatures are part of a general approa
h known as threshold 
ryptography. This approa
h hasre
eived 
onsiderable attention in the literature; we refer the reader to [66℄ for a survey of the work in thisarea. Parti
ular examples of solutions to threshold signatures s
hemes 
an be found in [65, 177℄ for RSAand in [105℄ for ElGamal-type of signatures.A threshold signature s
heme is 
alled robust if not only t or less players 
annot produ
e a valid signature,but also 
annot prevent the remaining players from 
omputing a signature on their own. A robust s
hemebasi
ally foils possible denial of servi
e atta
ks on the part of 
orrupted servers. The solutions mentinedabove are not robust. In this 
hapter we will 
on
entrate on robust s
hemes. We will not go into te
hni
aldetails. The goal of this se
tion is to present the reader with the relevant notions and point to the sour
esin the literature.In the following we will refer to the signing servers with the letters P1; : : : ; Pn.9.6.1 Key Generation for a Threshold S
hemeThe task of generating a key for a threshold signature s
heme is more 
ompli
ated than when we are in thepresen
e of a single signer. Indeed we must generate a publi
 key PK whose mat
hing se
ret key SK isshared in some form among the servers P1; : : : ; Pn.A way of doing this is to have some trusted dealer who generates a key pair (PK;SK) for the given signatures
heme, makes PK publi
 and shares SK among the Pi's using a se
ret sharing proto
ol (see Chapter 11.)However noti
e that su
h a key generation me
hanisms 
ontradi
ts the requirement that no single entityshould be able to sign, as now the dealer knows the se
ret key SK and he is able to sign on his own. Thisis why people have been trying to avoid the use of su
h a dealer during the key generation phase.For the 
ase of dis
rete-log based signature s
hemes, this quest has been su

essful. Robust thresholdsignature s
hemes for the El Gamal, S
hnorr and DSS signature s
hemes (see [85, 178, 81℄) 
an be found in[49, 153, 89℄, all using underlying results of Feldman and Pedersen [78, 154, 155℄.Yet, in some 
ases the dealer solution is the best we 
an do. For example, if the underlying signature s
hemeis RSA, then we do not know how to generate a key in a shared form without the use of a dealer.9.6.2 The Signature Proto
olOn
e the key is generated and in some way shared among the servers P1; : : : ; Pn we need a signature proto
ol.The idea is that on input a message M , the servers will engage in some form of 
ommuni
ation that willallow them to 
ompute a signature � for M , without revealing the se
ret key. Su
h proto
ol should not leakany information beyond su
h signature �. Also in order to obtain the robustness property, su
h proto
olsshould 
orre
tly 
ompute the signature even if up to t servers Pi's are 
orrupted and behave in any wayduring the proto
ol. If possible the 
omputation required by a server Pi to sign in this distributed mannershould be 
omparable to the e�ort required if Pi were signing on his own. Intera
tion should be redu
ed toa minimumFor El Gamal-like s
hemes robust threshold signature s
hemes 
an be found in [49, 153℄. The spe
i�
 
aseof DSS turned out to be very diÆ
ult to handle. The best solution is in [89℄.RSA turned out to be even less amenable to the 
onstru
tion of robust s
hemes. A somewhat ineÆ
ientsolution (requires mu
h more 
omputation and a lot of intera
tion between servers) 
an be found in [82℄. Avery eÆ
ient and non-intera
tive solution was independently proposed in [88℄.
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We have looked extensively at en
ryption and data authenti
ation and seen lots of ways to design s
hemes forthese tasks. We must now address one of the assumptions underlying these s
hemes. This is the assumptionthat the parties have available 
ertain kinds of keys.This 
hapter examines various methods for key distribution and key management. A good deal of our e�ortwill be expended in understanding the most important pra
ti
al problem in the area, namely session keydistribution.Let us begin with the 
lassi
 se
ret key ex
hange proto
ol of DiÆe and Hellman.10.1 DiÆe Hellman se
ret key ex
hangeSuppose Ali
e and Bob have no keys (shared or publi
), and want to 
ome up with a joint key whi
h theywould use for private key 
ryptography. The DiÆe-Hellman (DH) se
ret key ex
hange (SKE) proto
ol [68℄enables them to do just this.10.1.1 The proto
olWe �x a prime p and a generator g 2 Z�p . These are publi
, and known not only to all parties but also tothe adversary E.A pi
ks x 2 Zp�1 at random and lets X = gx mod p. She sends X to BB pi
ks y 2 Zp�1 at random and lets Y = gy mod p. He sends Y to A.Now noti
e that Xy = (gx)y = gxy = (gy)x = Y x ;the operations being in the group Z�p . Let's 
all this 
ommon quantity K. The 
ru
ial fa
t is that bothparties 
an 
ompute it! Namely A 
omputes Y x, whi
h is K, and B 
omputes Xy, whi
h is also K, and nowthey have a shared key. 200
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ture Notes 20110.1.2 Se
urity against eavesdropping: The DH problemIs this se
ure? Consider an adversary that is sitting on the wire and sees the 
ows that go by. She wants to
ompute K. What she sees is X and Y . But she knows neither x nor y. How 
ould she get K? The naturalatta
k is to �nd either x or y (either will do!) from whi
h she 
an easily 
ompute K. However, noti
e that
omputing x given X is just the dis
rete logarithm problem in Z�p , whi
h is widely believed to be intra
table(for suitable 
hoi
es of the prime p). Similarly for 
omputing y from Y . A

ordingly, we would be justi�edin having some 
on�den
e that this atta
k would fail.A number of issues now arise. The �rst is that 
omputing dis
rete logarithms is not the only possibleatta
k to try to re
over K from X;Y . Perhaps there are others. To examine this issue, let us formulate the
omputational problem the adversary is trying to solve. It is the following:The DH Problem: Given gx and gy for x; y 
hosen at random from Zp�1, 
ompute gxy.Thus the question is how hard is this problem? We saw that if the dis
rete logarithm problem in Z�p is easythen so is the DH problem; ie. if we 
an 
ompute dis
rete logs we 
an solve the DH problem. Is the 
onversetrue? That is, if we 
an solve the DH problem, 
an we 
ompute dis
rete logarithms? This remains an openquestion. To date it seems possible that there is some 
lever approa
h to solving the DH problem without
omputing dis
rete logarithms. However, no su
h approa
h has been found. The best known algorithm forthe DH problem is to 
ompute the dis
rete logarithm of either X or Y . This has lead 
ryptographers tobelieve that the DH problem, although not known to be equivalent to the dis
rete logarithm one, is still a
omputationally hard problem, and that as a result the DH se
ret key ex
hange is se
ure in the sense thata 
omputationally bounded adversary 
an't 
ompute the key K shared by the parties.The DH Assumption: The DH problem is 
omputationally intra
table.These days the size of the prime p is re
ommended to be at least 512 bits and preferably 1024. As we havealready seen, in order to make sure the dis
rete logarithm problem modulo p is intra
table, p � 1 shouldhave at least one large fa
tor. In pra
ti
e we often take p = 2q + 1 for some large prime q.The relationship between the DH problem and the dis
rete logarithm problem is the subje
t of mu
h inves-tigation. See for example Maurer [135℄.10.1.3 The DH 
ryptosystemThe DH se
ret key ex
hange gives rise to a very 
onvenient publi
 key 
ryptosystem. A party A will 
hooseas its se
ret key a random point x 2 Zp�1, and let X = gx be its publi
 key. Now if party B wants toprivately send A a message M , it would pro
eed as follows.First, the parties agree on a private key 
ryptosystem (E ;D) (
f. Chapter 6). For 
on
reteness assume it is aDES based 
ryptosystem, so that it needs a 56 bit key. Now B pi
ks y at random from Zp�1 and 
omputesthe DH key K = Xy = gxy. From this, he extra
ts a 56 bit key a for the private key 
ryptosystem a

ordingto some �xed 
onvention, for example by letting a be the �rst 56 bits of K. He now en
rypts the plaintextM under a using the private key 
ryptosystem to get the 
iphertext C = Ea(M), and transmits the pair(Y;C) where Y = gy.A re
eives (Y;C). Using her se
ret key x she 
an 
ompute the DH key K = Y x = gxy, and thus re
over a.Now she 
an de
rypt the 
iphertext C a

ording to the private key 
ryptosystem, via M = Da(C), and thusre
over the plaintext M .Intuitively, the se
urity would lie in the fa
t that the adversary is unable to 
ompute K and hen
e a. This,however, is not quite right, and brings us to the issue of the bit se
urity of the DH key.
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urity of the DH keyAbove the �rst 56 bits of the key K = gxy is used as the key to a private key 
ryptosystem. What we know(are willing to assume) is that given gx; gy the adversary 
annot re
over K. This is not enough to make theusage of K as the key to the private key 
ryptosystem se
ure. What if the adversary were able to re
over the�rst 56 bits of K, but not all of K? Then 
ertainly the above 
ryptosystem would be inse
ure. Yet, havingthe �rst 56 bits of K may not enable one to �nd K, so that we have not 
ontradi
ted the DH assumption.This is an issue we have seen before in many 
ontexts, for example with one-way fun
tions and with en
ryp-tion. It is the problem of partial information. If f is one-way it means given f(x) I 
an't �nd x; it doesn'tmean I 
an't �nd some bits of x. Similarly, here, that we 
an't 
ompute K doesn't mean we 
an't 
omputesome bits of K.Indeed, it turns out that 
omputing the last bit (ie. LSB) of K = gxy given gx; gy is easy. To date theredo not seem to be other dete
table losses of partial information. Nonetheless it would be unwise to just usesome subset of bits of the DH key as the key to a private key 
ryptosystem. Assuming that these bits arese
ure is a mu
h stronger assumption than the DH assumption.So what 
ould we do? In pra
ti
e, we might hash the DH key K to get a symmetri
 key a. For example,applying a 
ryptographi
 hash fun
tion like SHA-1 to K yields 160 bits that might have better \randomness"properties than the DH key. Now use the �rst 56 bits of this if you need a DES key.However, while the above may be a good heuristi
 in pra
ti
e, it 
an't be validated without very strongassumptions on the randomness properties of the hash fun
tion. One possibility that 
an be validated is toextra
t hard bits from the DH key via an analogue of Theorem 2.49. Namely, let r be a random string oflength jpj and let b be the dot produ
t of K and r. Then predi
ting b given gx; gy is infeasible if 
omputingK = gxy given gx; gy is infeasible. The drawba
k of this approa
h is that one gets very few bits. To get 56bits one would need to ex
hange several DH keys and get a few bits from ea
h.We saw in Chapter 2 that for 
ertain one way fun
tions we 
an present hard
ore predi
ates, the predi
tionof whi
h 
an be redu
ed to the problem of inverting the fun
tion itself. A theorem like that for the DH keywould be ni
e, and would indi
ate how to extra
t bits to use for a symmetri
 key. Re
ently results of thiskind have been proved by Boneh and Venkatesan [42℄.10.1.5 The la
k of authenti
ityAt �rst glan
e, the DH se
ret key ex
hange might appear to solve in one stroke the entire problem of gettingkeys to do 
ryptography. If A wants to share a key with B, they 
an just do a DH key ex
hange to get one,and then use private key 
ryptography.Don't do it. The problem is authenti
ity. The se
urity of the DH key is against a passive adversary, oreavesdropper. It is assumed that the adversary will re
over the transmitted data but not try to inje
t dataon the line. In pra
ti
e, of 
ourse, this is an untenable assumption. It is quite easy to inje
t messages onnetworks, and ha
kers 
an mount a
tive atta
ks.What damage 
an this do? Here is what the adversary does. She 
alls up B and simply plays the role of A.That is, she 
laims to be A, who is someone with whom B would like to share a key, and then exe
utes theDH proto
ol like A would. Namely she pi
ks x at random and sends X = gx to B. B returns Y = gy andnow B and the adversary share the key K = gxy. But B thinks the key is shared with A. He might en
rypt
on�dential data using K, and then the adversary would re
over this data.Thus in the realisti
 model of an a
tive adversary, the DH key ex
hange is of no dire
t use. The real problemis to ex
hange a key in an authenti
ated manner. It is this that we now turn to.However, we remark that while the DH key ex
hange is not a solution, by itself, to the key distributionproblem in the presen
e of an a
tive adversary, it is a useful tool. We will see how to use it in 
onjun
tionwith other tools we will develop to add to session key distribution proto
ols ni
e features like \forwardse
re
y."
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ture Notes 20310.2 Session key distributionAssume now we are in the presen
e of an a
tive adversary. The adversary 
an inje
t messages on the lineand alter messages sent by legitimate parties, in addition to eavesdropping on their 
ommuni
ations. Wewant to get shared keys.A little thought will make it 
lear that if the legitimate parties have no information the adversary does notknow, it will not be possible for them to ex
hange a key the adversary does not know. This is be
ause theadversary 
an just impersonate one party to another, like in the atta
k on DH above. Thus, in order toget o� the ground, the legitimate parties need an \information advantage." This is some information, pre-distributed over a trusted 
hannel, whi
h the adversary does not know, and whi
h enables them to se
urelyex
hange keys in the future.We now dis
uss various ways to realize this information advantage, and the session key distribution problemsto whi
h they give rise. Then we explain the problem in more depth. We largely follow [16, 17℄.10.2.1 Trust models and key distribution problemsWhat forms might the information advantage take? There are various di�erent trust models and 
orrespond-ing key distribution problems.The three party modelThis model seems to have been �rst mentioned by Needham and S
hroeder [148℄. It has sin
e been popu-larized largely by the Kerberos system [193℄.In this model there is a trusted party 
alled the authenti
ation server , and denoted S. Ea
h party A in thesystem has a key KA whi
h it shares with the server. This is a private key between these two parties, notknown to any other party. When two parties A;B, sharing, respe
tively, keys KA and KB with S, wantto engage in a 
ommuni
ation session, a three party proto
ol will be exe
uted, involving A;B and S. Theresult will be to issue a 
ommon key K to A and B. They 
an then use this key to en
rypt or authenti
atethe data they send ea
h other.The distributed key is supposed to be a se
ure session key. When the parties have 
ompleted their 
ommu-ni
ation session, they will dis
ard the key K. If later they should desire another 
ommuni
ation session, thethree party proto
ol will be re-exe
uted to get a new, fresh session key.What kinds of se
urity properties should this distributed session key have? We will look at this question indepth later. It is an important issue, sin
e, as we will see, session key distribution proto
ols must resist avariety of novel atta
ks.The two party asymmetri
 modelWhen publi
 key 
ryptography 
an be used, the authenti
ation server's a
tive role 
an be eliminated. Inthis trust model, the assumption is that A has the publi
 key pkB of B, and B has the publi
 key pkA ofA. These keys are assumed authenti
. That is, A is assured the key he holds is really the publi
 key of Band not someone else, and analogously for B.1Now, suppose A and B want to engage in a se
ure 
ommuni
ation session. The problem we want to 
onsideris how they 
an get a shared, private and authenti
 session key based on the publi
 keys, via a two partyproto
ol.1 How is this situation arrived at? That isn't a problem we really want to dis
uss yet: it falls under the issue of keymanagement and will be dis
ussed later. But, brie
y, what we will have is trusted servers whi
h provide publi
, 
erti�eddire
tories of users and their publi
 keys. The server maintains for ea
h user identity a publi
 key, and provides this uponrequest to any other user, with a signature of the server that serves as a 
erti�
ate of authenti
ity. Barring this dire
toryservi
e, however, the server plays no a
tive role.



204 Goldwasser and BellareQuestions pertaining to what exa
tly is the problem, and why, may arise here. We already know that we
an authenti
ate and en
rypt data with publi
 keys. That is, the parties already have the means to se
ure
ommuni
ation. So why do they need a shared session key?There are several reasons. One is that private key 
ryptography, at least under 
urrent te
hnology, is
onsiderable more eÆ
ient than publi
 key 
ryptography. The se
ond, however, probably more important,is that it is 
onvenient to have session keys. They allow one to asso
iate a key uniquely to a session. Thisis an advantage for the following reasons.Keys a
tually used to en
rypt or authenti
ate data get greater exposure. They are used by appli
ations inways that may not be known, or 
ontrollable, beforehand. In parti
ular, an appli
ation might mis-use akey, or expose it. This might (or might not) 
ompromise the 
urrent session, but we would not like it to
ompromise the long lived se
ret key and thus other uses and sessions. Similarly, the long lived se
ret keyof a user A (namely the se
ret key skA 
orresponding to her publi
 key pkA) may be stored in prote
tedhardware and a

essed only via a spe
ial interfa
e, while the session key lies on a more exposed ma
hine.The two party symmetri
 modelProbably the simplest model is of two parties who already share a long lived key. Ea
h time they wish toengage in a 
ommuni
ation session they will run a proto
ol to derive a session key.Again, the motivation is the 
onvenien
e and se
urity advantages of session keys. We stress the main one.A host of appli
ations might be run by the users, all wanting keys for one reason or another. We don't wantto make assumptions about how they use the key. Some might use it in ways that are se
ure for their ownpurposes but 
ompromise the key globally. In order for this not to a�e
t the global se
urity, we assign ea
hrun of ea
h appli
ation a separate session key.10.2.2 History of session key distributionAlthough session key distribution is an old problem, it is only re
ently that a 
ryptographi
ally soundtreatment of it, in the \provable se
urity" or \redu
tionist" tradition that these le
ture notes are des
ribing,has emerged [16, 17℄. Via this approa
h we now have models in whi
h to dis
uss and prove 
orre
t proto
ols,and several proto
ols proven se
ure under standard 
ryptographi
 assumptions.The history prior to this was troubled. Session key distribution is an area in whi
h a large number of papersare published, proposing proto
ols to solve the problem. However, many of them are later broken, or su�erfrom dis
ernible design 
aws.The problem is de
eptively simple. It is easy to propose proto
ols in whi
h subtle se
urity problems lateremerge.In the three party 
ase, Needham and S
hroeder [148℄ des
ribe a number of 
andidate proto
ols. Theyhad propheti
ally ended their paper with a warning on this approa
h, saying that \proto
ols su
h as thosedeveloped here are prone to extremely subtle errors that are unlikely to be dete
ted in normal operations.The need for te
hniques to verify the 
orre
tness of su
h proto
ols is great : : :". Eviden
e of the authors'
laim 
ame unexpe
tedly when a bug was pointed out in their own \Proto
ol 1" (Denning and Sa

o, [64℄).2Many related proto
ols were eventually to su�er the same fate.As a result of a long history of su
h atta
ks there is �nally a general 
onsensus that session key distributionis not a goal adequately addressed by giving a proto
ol for whi
h the authors 
an �nd no atta
ks.A large body of work, beginning with Burrows, Abadi and Needham [45℄, aims to improve on this situation viathe use of spe
ial-purpose logi
s. The aim is to demonstrate a la
k of \reasoning problems" in a proto
ol beinganalyzed. The te
hnique has helped to �nd errors in various proto
ols, but a proof that a proto
ol is \logi
ally
orre
t" does not imply that it is is right (on
e its abstra
t 
ryptographi
 operations are instantiated). Indeed2 Insofar as there were no formal statements of what this proto
ol was supposed to do, it is not entirely fair to 
all it buggy;but the authors themselves regarded the proto
ol as having a problem worthy of �xing [149℄.



Cryptography: Le
ture Notes 205it is easy to 
ome up with 
on
rete proto
ols whi
h are logi
ally 
orre
t but blatantly inse
ure.Examining the work on the session key distribution problem, one �nds that the bulk of it is divor
ed frombasi
 
ryptographi
 prin
iples. For example one �nd over and over again a 
onfusion between data en
ryptionand data authenti
ation. The most prevalent problem is a la
k of spe
i�
ation of what exa
tly is the problemthat one is trying to solve. There is no model of adversarial 
apabilities, or de�nition of se
urity.In
uential works in this area were Bird et. al. [31℄ and DiÆe et. al. [69℄. In parti
ular the former pointedto new 
lasses of atta
ks, 
alled \interleaving atta
ks," whi
h they used to break existing proto
ols, andthey suggested a proto
ol (2PP) defeated by none of the interleaving atta
ks they 
onsidered. Buildingon this, Bellare and Rogaway provide a model and a de�nition of se
urity for two party symmetri
 sessionkey distribution [16℄ and for three party session key distribution [17℄, just like we have for primitives likeen
ryption and signatures. Based on this they derive proto
ols whose se
urity 
an be proven based onstandard 
ryptographi
 assumptions. It turns out the proto
ols are eÆ
ient too.Now other well justi�ed proto
ols are also emerging. For example, the SKEME proto
ol of Kraw
zyk [121℄is an elegant and multi-purpose two party session key distribution proto
ol dire
ted at ful�lling the keydistribution needs of Internet se
urity proto
ols. Even more re
ently, a proven-se
ure proto
ol for sessionkey distribution in smart 
ards was developed by Shoup and Rubin [189℄.10.2.3 An informal des
ription of the problemWe normally think of a party in a proto
ol as being devoted to that proto
ol alone; it is not doing doing otherthings alongside. The main element of novelty in session key distribution is that parties may simultaneouslymaintain multiple sessions. A party has multiple instan
es. It is these instan
es that are the logi
al endpointsof a session, not the party itself.We let fP1; : : : ; PNg denote the parties in the distributed system. As dis
ussed above, a given pair ofplayers, Pi and Pj may simultaneously maintain multiple sessions (ea
h with its own session key). Thus itis not really Pi and Pj whi
h form the logi
al endpoints of a se
ure session; instead, it is an instan
e �si;jof Pi and an instan
e �tj;i of Pj . We emphasize instan
es as a 
entral aspe
t of the session key distributionproblem, and one of the things that makes session key distribution di�erent from many other problems.It is the goal of a session-key distribution proto
ol to provide �si;j and �tj;i with a session key �s;ti;j to prote
ttheir session. Instan
es �si;j and �tj;i must 
ome up with this key without knowledge of s, t, or whateverother instan
es may 
urrently exist in the distributed system.An a
tive adversary atta
ks the network. She 
ontrols all the 
ommuni
ation among the players: she 
andeliver messages out of order and to unintended re
ipients, 
on
o
t messages entirely of her own 
hoosing,and start up entirely new instan
es of players. Furthermore, she 
an mount various atta
ks on session keyswhi
h we will dis
uss.10.2.4 Issues in se
urityUltimately, what we want to say is that the adversary 
annot 
ompromise a session key ex
hanged betweena pair of instan
es of the legitimate parties. We must worry about two (related) issues: authenti
ation, andkey se
re
y. The �rst means, roughly, that when an instan
e of i a

epts B then it must have been \talkingto" an instan
e of j. The se
ond, roughly, means that if �si;j and �tj;i share a session key then this key mustbe se
ure.It is an important requirement on session keys that the key of one session be independent of another. Thisis be
ause we 
annot make assumptions about how a session key will be used in an appli
ation. It mightend up exposing it, and we want this not to 
ompromise other session keys. We model this in a worst 
aseway by allowing the adversary to expose session keys at will. Then we will say that a key shared betweenpartners who are unexposed must remain se
ure even if keys of other sessions are exposed.One of the most important issues is what is meant by se
urity of the key. The way it has traditionally been
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ure if the adversary 
annot 
ompute it. We have by now, however, seen timeand again, in a variety of settings, that this is not the right notion of se
re
y. We must also prevent partialinformation from leaking. (Examples of why this is important for session keys are easy to �nd, analogous tothe many examples we have seen previously illustrating this issue.) A

ordingly, the de�nitions ask that asession key be unpredi
table in the sense of a probabilisti
ally en
rypted message.We note that insuÆ
ient prote
tion of the session key is a 
aw that is present in all session key distributionproto
ols of whi
h we are aware barring those of [16, 17℄. In fa
t, this inse
urity is often built in by a desireto have a property that is 
alled \key 
on�rmation." In order to \
on�rm" that it has re
eived the sessionkey, one party might en
rypt a �xed message with it, and its ability to do so 
orre
tly is read by the otherparty as eviden
e that it has the right session key. But this reveals partial information about the key. Itmight seem un-important, but one 
an �nd examples of usages of the session key whi
h are rendered inse
ureby this kind of key 
on�rmation. In fa
t \key 
on�rmation," if needed at all, 
an be a
hieved in other ways.10.2.5 Entity authenti
ation versus key distributionThe goal of the key distributions we are 
onsidering is for the parties to simultaneously authenti
ate oneanother and 
ome into possession of a se
ure, shared session key. There are several ways one might interpretthe notion of authenti
ation.The literature has 
onsidered two ways. The �rst is authenti
ation in a very strong sense, 
onsidered in [16℄for the two party 
ase. This has been relaxed to a weaker notion in [17℄, 
onsidered for the three party 
ase.The weaker notion for the two party 
ase is still under resear
h and development.Whi
h to prefer depends on the setting. The approa
h we will follow here is to follow the existing literature.Namely we will 
onsider the stronger notion for the two party setting, and the weaker one for the three partysetting. It may perhaps be more 
orre
t to use the weaker notion throughout, and in a future version ofthese notes we would hope to do so; the situation at present is simply that the formalizations of the weakernotion for the two party 
ase have not yet appeared.10.3 Authenti
ated key ex
hangesWe begin by looking at the two party 
ase, both symmetri
 and asymmetri
. We look at providing authenti
ex
hange of a session key, meaning the parties want to authenti
ate one another and simultaneously 
omeinto possession of a shared se
ret session key. The formal model, and the de�nition of what 
onstitutes ase
ure authenti
ated session key distribution proto
ol, are provided in [16℄. Here we will only des
ribe someproto
ols.First however let us note some 
onventions. We assume the parties want to 
ome into possession of a l-bit, random shared se
ret key, eg. l = 56. (More generally we 
ould distribute a key from some arbitrarysamplable distribution, but for simpli
ity let's sti
k to what is after all the most 
ommon 
ase.) The sessionkey will be denoted by �.Whenever a party A sends a 
ow to another party B, it is understood that her identity A a

ompanies the
ow, so that B knows who the 
ow purports to 
ome from. (This has nothing to do with 
ryptography orse
urity: it is just a servi
e of the 
ommuni
ation medium. Note this identity is not se
ured: the adversary
an 
hange it. If the parties want the 
laim se
ured, it is their responsibility to use 
ryptography to thisend, and will see how they do this.)10.3.1 The symmetri
 
aseLet K be the (long-lived) key shared between the parties. We �x a private key en
ryption s
heme (E ;D)and a private key message authenti
ation s
heme (T ;V). The key K is divided into two parts, Ke andKm, the �rst to be used for en
ryption and the se
ond for message authenti
ation. The proto
ol, 
alled
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ture Notes 207Authenti
ated Key Ex
hange Proto
ol 1, is depi
ted in Figure 10.1, and a more 
omplete des
ription of the
ows follows.
A RA - BRBkEKe(�)kTKm(BkAkRAkRBkEKe(�))� TKm(AkRB) -Figure 10.1: Proto
ol AKEP1: Session key distribution in symmetri
 setting.Here is a more 
omplete des
ription of the 
ows:(1) A pi
ks at random a string RA and sends it to B(2) B pi
ks at random a string RB . She also pi
ks at random an l-bit session key �. She en
rypts it underKe to produ
e the 
iphertext C = EKe(�). She now 
omputes the tag � = TKm(BkAkRAkRBkC). Shesends RB ; C; � to A.(3) A veri�es that VKm(BkAkRAkRBkC; �) = 1. If this is the 
ase she 
omputes the tag TKm(AkRB) andsends it to B. She also de
rypts C via � = DKe(C) to re
over the session key.(4) B veri�es the last tag and a

epts (outputting session key �) if the last tag was valid.Remark 10.1 Noti
e that both en
ryption and message authenti
ation are used. As we mentioned above,one of the 
ommonly found falla
ies in session key distribution proto
ols is to try to use en
ryption to provideauthenti
ation. One should really use a message authenti
ation 
ode.Remark 10.2 It is important that the en
ryption s
heme (E ;D) used above be se
ure in the sense wehave dis
ussed in Chapter 6. Re
all in parti
ular this means it is probabilisti
. A single plaintext hasmany possible 
iphertexts, depending on the probabilisti
 
hoi
es made by the en
ryption algorithms. Theseprobabilisti
 
hoi
es are made by S when the latter en
rypts the session key, independently for the twoen
ryptions it performs. This is a 
ru
ial element in the se
urity of the session key.These remarks apply also to the proto
ols that follow, appropriately modi�ed, of 
ourse, to re
e
t a 
hangein setting. We will not repeat the remarks.10.3.2 The asymmetri
 
aseWe will be using publi
 key 
ryptography. Spe
i�
ally, we will be using both publi
 key en
ryption anddigital signatures.Fix a publi
 key en
ryption s
heme, and let E ;D denote, respe
tively, the en
ryption and the de
ryptionalgorithms for this s
heme. The former takes a publi
 en
ryption key pke and message to return a 
iphertext,and the latter takes the se
ret de
ryption key ske and 
iphertext to return the plaintext. This s
heme shouldbe se
ure in the sense we have dis
ussed in Chapter 7.
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heme, and let S;V denote, respe
tively, the signature and veri�
ation algorithmsfor this s
heme. The former takes a se
ret signing key skd and message to return a signature, and the lattertakes the publi
 veri�
ation key pkd, message, and 
andidate signature to return an indi
ation of whetheror not the signature is valid. This s
heme should be se
ure in the sense we have dis
ussed in Chapter 9.Every user I in the system has a publi
 key pkI whi
h is in fa
t a pair of publi
 keys, pkI = (pkeI ; pkdI ),one for the en
ryption s
heme and the other for the signature s
heme. These keys are known to all otherusers and the adversary. However, the user keeps privately the 
orresponding se
ret keys. Namely he holdsskI = (skeI ; skdI ) and nobody else knows these keys.Re
all the model is that A has B's publi
 key pkB and B has A's publi
 key pkA. The proto
ol for theparties to get a joint, shared se
ret key � is depi
ted in Figure 10.2, and a more 
omplete explanation follows.
A RA - BRBkEpkeA(�)kSskdB (BkAkRAkRBkEpkeA(�))� SskdA(AkRB) -Figure 10.2: Proto
ol for ex
hange of symmetri
 key in asymmetri
 setting.Here is a more 
omplete des
ription of the 
ows:(1) A pi
ks at random a string RA and sends it to B(2) B pi
ks at random a string RB . She also pi
ks at random an l-bit session key �. She en
rypts itunder A's publi
 key pkeA to produ
e the 
iphertext C = EpkeA(�). She now 
omputes the signature� = SskdB (AkRAkRBkC), under her se
ret signing key skdB . She sends RB ; C; � to A.(3) A veri�es that VpkdB (AkRAkRBkC; �) = 1. If this is the 
ase she 
omputes the signature SskdA(RB) andsends it to B. She also de
rypts C via � = DskeA(C) to re
over the session key.(4) B veri�es the last signature and a

epts (outputting session key �) if the last signature was valid.10.4 Three party session key distributionFix a private key en
ryption s
heme (E ;D) whi
h is se
ure in the sense dis
ussed in Chapter 6. Also �xa message authenti
ation s
heme (T ;V) whi
h is se
ure in the sense dis
ussed in Chapter 8. The key KIshared between the server S and party I is a pair (KeI ;KmI ) of keys, one a key for the en
ryption s
hemeand the other a key for the message authenti
ation s
heme. We now 
onsider parties A;B, whose keys KAand KB , respe
tively have this form. A terse representation of the proto
ol of [17℄ is is given in Figure 10.3,and a more 
omplete explanation follows.Here now is a more 
omplete des
ription of the 
ows and a

ompanying 
omputations:(1) In Step 1, party A 
hooses a random 
hallenge RA and sends it to B.
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ture Notes 209Flow 1. A! B: RAFlow 2. B ! S: RAkRBFlow 3A. S ! A: EKeA(�) k TKmA (AkBkRAkEKeA(�))Flow 3B. S ! B: EKeB (�) k TKmB (AkBkRBkEKeB(�))Figure 10.3: Three party session key distribution proto
ol.(2) In Step 2, party B 
hooses a random 
hallenge RB and sends RAkRB to S.(3) In Step 3, S pi
ks a random l-bit session key � whi
h he will distribute. Then S en
rypts this sessionkey under ea
h of the parties' shared keys. Namely he 
omputes the 
iphertexts �A = EKeA(�) and�B = EKeB(�). Then S 
omputes �A = TKmA (AkBkRAk�A) and �B = TKmB (AkBkRBk�B). In 
ow 3A(resp. 3B) S sends A (resp. B) the message �Ak�A (resp. �Bk�B).(4) In Step 4A (resp. 4B) Party A (resp. B) re
eives a message �0Ak�0A (resp. �0Bk�0B) and a

epts, withsession key DKeA(�0A) (resp. DKeB (�0B)), if and only if VKmA (AkBkRAk�0A; �0A) = 1 (resp. VKmB (AkBkRBk�0B ; �0A) = 1).Remark 10.3 This proto
ol has four 
ows. Typi
ally, the three party key distribution proto
ols you willsee in the literature have �ve. In fa
t, four suÆ
es.10.5 Forward se
re
yForward se
re
y is an extra se
urity property that a session key 
an have and whi
h seems very desirable.Consider, for 
on
reteness, the proto
ol of Figure 10.2 for ex
hange of a symmetri
 key in the asymmetri
setting. Suppose A and B have run this proto
ol and ex
hanged a session key �, and used it to en
ryptdata. Suppose the adversary re
orded the trans
ript of this ex
hange. This means she has in her possessionC = EpkeA(�), the en
rypted session key, and also any 
iphertexts en
rypted under � that the parties mayhave transmitted, 
all them C1; C2; : : :. Sin
e the session key distribution proto
ol is se
ure, the informationshe has doesn't give her anything; 
ertainly she does not learn the session key �.Now that session is over. But now suppose, for some reason, the long lived key of A is exposed. Meaningthe adversary, somehow, gets hold of skA = (skeA; skdA).Certainly, the adversary 
an 
ompromise all future sessions of A. Yet in pra
ti
e we would expe
t that Awould soon realize her se
ret information is lost and revoke her publi
 key pkA = (pkeA; pkdA) to mitigatethe damage. However, there is another issue. The adversary now has ske and 
an de
rypt the 
iphertext Cto get �. Using this, she 
an de
rypt C1; C2; : : : and thereby read the 
on�dential data that the parties sentin the past session.This does not 
ontradi
t the se
urity of the basi
 session key distribution proto
ol whi
h assumed that theadversary does not gain a

ess to the long-lived keys. But we might ask for a new and stronger property.Namely that even if the adversary got the long-lived keys, at least past sessions would not be 
ompromised.This is 
alled forward se
re
y.Forward se
re
y 
an be a

omplished via the DiÆe-Hellman key ex
hange with whi
h we began this 
hapter.Let us give a proto
ol. We do so in the asymmetri
, two party setting; analogous proto
ols 
an be givenin the other settings. The proto
ol we give is an extension of the STS proto
ol of [69℄. It is depi
ted inFigure 10.4 and a more 
omplete explanation follows.
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A gx - BgykSskdB (BkAkgxkgy)� SskdA(Akgy) -Figure 10.4: Proto
ol for ex
hange of symmetri
 key with forward se
re
y.Here is a more 
omplete des
ription of the 
ows:(1) A pi
ks at random a string x, 
omputes X = gx, and sends it to B(2) B pi
ks at random a string y and lets Y = gy. She now 
omputes the signature � = SskdB (AkXkY ),under her se
ret signing key skdB . She sends Y; � to A.(3) A veri�es that VpkdB (AkXkY; �) = 1. If this is the 
ase she 
omputes the signature SskdA(Y ) and sendsit to B. She also de
rypts outputs the DH key gxy = Y x as the session key.(4) B veri�es the last signature and a

epts (outputting session key gxy = Xy) if the last signature wasvalid.The use of the DH se
ret key ex
hange proto
ol here is intriguing. Is that the only way to get forwardse
re
y? It turns out it is. Bellare and Rogaway have noted that se
ret key ex
hange is not only suÆ
ientbut also ne
essary for the forward se
re
y property [22℄.As we noted in Se
tion 10.1.4, the DH key is not by itself a good key be
ause we 
annot guarantee bitse
urity. A

ordingly, the session key in the above should a
tually be set to, say, H(gxy) rather than gxyitself, for a \good" hash fun
tion H .
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ols

Classi
al 
ryptography is 
on
erned with the problem of se
urity 
ommuni
ation between users by providingpriva
y and authenti
ity. The need for an underlying infrastru
ture for key management leads naturally intothe topi
 of key distribution. For many years this is all there was to 
ryptography.One of the major 
ontributions of modern 
ryptography has been the development of advan
ed proto
ols.These proto
ols enable users to ele
troni
ally solve many real world problems, play games, and a

omplishall kinds of intriguing and very general distributed tasks. Amongst these are zero-knowledge proofs, se
uredistributed 
omputing, and voting proto
ols. The goal of this 
hapter is to give a brief introdu
tion to thisarea.11.1 Some two party proto
olsWe make referen
e to some number theoreti
 fa
ts in Se
tion C.6.11.1.1 Oblivious transferThis proto
ol was invented by M. Rabin [166℄.An oblivious transfer is an unusual proto
ol wherein Ali
e transfers a se
ret bit m to Ali
e in su
h a waythat the bit is transferred to Bob with probability 1=2;Bob knows when he gets the bit, but Ali
e doesn'tknow whether it was transferred or not.This strange-sounding proto
ol has a number of useful appli
ations (see, for example [166, 29℄). In fa
t,Kilian has shown [119℄ that the ability to perform oblivious transfers is a suÆ
iently strong primitive toenable any two-party proto
ol to be performed.The following implementation for oblivious transfer has been proposed in the literature (related ideas dueto Rabin and Blum.)(1) Ali
e pi
ks two primes p; q at random and multiplies them to produ
e the modulus N = pq. Sheen
rypts the message m under this modulus in some standard way, having the property that if youknow p; q then you 
an de
rypt, else you 
an't. She sends N and the 
iphertext C to Bob.(2) Bob pi
ks a 2 Z�N at random and sends w = a2 mod N to Ali
e.(3) Ali
e 
omputes the four square roots x;�x; y;�y of w, pi
ks one at random and sends it ba
k to Bob211



212 Goldwasser and Bellare(4) If Bob got ba
k the root whi
h is not �a he 
an fa
tor N and re
over m. Else he 
an't.And Ali
e doesn't know whi
h happened sin
e a was random.It is fairly 
lear that there is no way for A to 
heat in this proto
ol, sin
e A does not know whi
h square rootof z B knows, as x was 
hosen at random. On �rst sight it looks like B 
annot get anything either, sin
ehe only obtains a square root of a random square. However, a formal proof of this fa
t is not known. It isnot 
lear whether B 
an 
heat or not. For example, if B 
hooses a parti
ular value of z instead of 
hoosingx at random and setting z = x2 (mod n), then this may lead to an advantage in fa
toring n. It is 
on
eiv-able, for example, that knowing a square root of (n-1)/2 mod n (or some other spe
ial value) 
ould allowB to fa
tor n. Thus 
ondition ii) is satis�ed, but we 
an't prove whether or not the �rst 
ondition is satis�ed.If we had a method by whi
h B 
ould prove to A that he indeed followed the proto
ol and 
hoose x atrandom without revealing what x is, the proto
ol 
ould be modi�ed to provably work. We will see in a laterse
tion on zero-knowledge proofs on how su
h proofs 
an be done.There is another form of OT 
alled 1 out of 2 OT. Here Ali
e has two se
rets, m0 and m1. Bob has asele
tion bit 
. At the end of the proto
ol, Bob gets b
 and Ali
e still does not know 
. See [77℄.11.1.2 Simultaneous 
ontra
t signingAli
e and Bob want to sign the 
ontra
t, but only if the other person does as well. That is, neither wantsto be left in the position of being the only one who signs. Thus, if Ali
e signs �rst, she is worried Bob willthen not sign, and vi
e versa. (Maybe easier to think of having two 
ontra
ts, the �rst promising somethingto Ali
e, the se
ond to Bob. It is a trade. Obviously, ea
h wants the other one to sign.) This problem wasproposed in [77℄.One approa
h is that Ali
e signs the �rst letter of her name and sends the 
ontra
t to Bob. He does likewise,and sends it ba
k. And so on. Assume their names have the same length. Then this makes some progresstowards a solution. Of 
ourse the problem is the person who must go last 
an stop. But you 
an make thisa negligible di�eren
e. For example, not a letter at a time, but a few millimeters of the letter at a time. Noparty is ever mu
h ahead of the other. If at some point they both stop, they both are at about the samepoint.Ele
troni
ally, we are ex
hanging strings, whi
h are digital signatures of the 
ontra
t. Ali
e has signed it toprodu
e �A and Bob has signed it to produ
e �B . Now they ex
hange these strings a bit at a time, ea
htime sending one more bit.There is a problem with this. What if one person does not send the signature, but just some garbage string?The other will not know until the end. Even, Goldrei
h and Lempel [77℄ show how oblivious transfer 
an beused to �x this.Ali
e 
reates LA whi
h is the signature of the 
ontra
t together with the phrase \this is my signature of theleft half of the 
ontra
t." Similarly she 
reates RA whi
h is the signature of the 
ontra
t together with thephrase \this is my signature of the right half of the 
ontra
t." Similarly, Bob 
reates LB and RB .Also Ali
e pi
ks two DES keys,KLA andKRA , and en
rypts L;R respe
tively to produ
e CLA and CRA . Similarlyfor Bob, repla
ing As by Bs.The 
ontra
t is 
onsidered signed if you have both halves of the other person's signature.All the 
iphertexts are sent to the other party.Ali
e 1 out of two OTs (KLA;KRA ) to Bob with the latter 
hoosing a random sele
tion bit, and vi
e versa.Say Bob gets KLA and Ali
e gets KRB .Ali
e and Bob send ea
h the �rst bits of both DES keys. Keep repeating until all bits of all keys are sent.In this phase, if a party 
at
hes a mistake in the bits 
orresponding to the key it already has, it aborts, elseit 
ontinues.
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ture Notes 21311.1.3 Bit CommitmentBob wants Ali
e to 
ommit to some value, say a bid, so that she 
an't 
hange this at a later time as afun
tion of other things. On the other hand, Ali
e does not want Bob to know, at this time, what is thevalue she is 
ommitting to, but will open it up later, at the right time.Ali
e makes up an \ele
troni
 safe." She has a key to it. She puts the value in the safe and sends the safeto Bob. The latter 
an't open it to extra
t the 
ontents. This is a 
ommittal. Later, Ali
e will de
ommitby sending the key. Now Bob 
an open it. What must be true is that Ali
e 
an't produ
e a safe having twokeys, su
h that either open it, and when you look inside, you see di�erent values.One way to implement this is via 
ollision-free hashing. To 
ommit to x Ali
e sends yH(x). From this Bob
an't �gure out x, sin
e H is one-way. To de
ommit, Ali
e sends x and Bob 
he
ks that H(x) = y. ButAli
e 
an't �nd x0 6= x su
h that H(x0) = y, so 
an't 
heat.This however has poor bit se
urity. You 
an �x it with hard
ore bits.Another way is to use quadrati
 residues. First, we �x a parti
ular number y 2 Z�N whi
h is known to bea non-residue. Commit to a 0 by sending a random square mod N , namely x2, and to a 1 by sending arandom non-square mod N , in the form yx2. The QRA says Bob 
an't tell whi
h is whi
h. To de
ommit,reveal x in either 
ase.Noti
e the QR 
ommitment s
heme is se
ure even against a sender who has unbounded 
omputing power.But not the re
eiver.Can you do the opposite? Yes, use dis
rete logarithms. Let p be a known prime, g 2 Z�p a known generatorof Z�p , and s 2 Z�p a known element of unknown dis
rete logarithm, namely logg(s) is not known. Committo 0 by pi
king x at random and sending y = gx; to a 1 by sending sgx. Noti
e that to the re
eiver, ea
h isa random element of the range. But what if the sender 
ould 
reate a y that 
ould be opened both ways? Itwould have the dis
rete logarithm of s.Commitment s
hemes are useful for lots of things. In parti
ular, ZK proofs, but also 
oin 
ipping.11.1.4 Coin 
ipping in a wellBlum [36℄ has proposed the problem of 
oin 
ipping over the telephone. Ali
e and Bob want a fair, 
ommon,
oin. They want to take a random 
hoi
e, but neither should be able to di
tate it. Heads Ali
e wins, andtails Bob wins.What if Bob says, \I'll 
ip the 
oin and send you the value." No good. Bob will just 
ip to win. They mustboth in
uen
e the value.Here is a thought. Ali
e pi
ks a random bit a and sends it to Bob, and Bob pi
ks a random bit b and send itto Ali
e, and the value of the 
oin is a�b. The problem is who goes �rst. If Ali
e goes �rst, Bob will 
hooseb to make the 
oin whatever he wants. Not fair.So what Ali
e does is �rst 
ommit to her 
oin. She sends y = Committ(a) to Bob. Now Bob 
an't make ba fun
tion of a. He sends ba
k b, in the 
lear. Ali
e may want to make a a fun
tion of b, but it is too latesin
e a is 
ommitted to. She de
ommits, and the 
oin is a�b.11.1.5 Oblivious 
ir
uit evaluationAli
e and Bob want to know whi
h of them is older. But neither wants to reveal their age. (Whi
h meansthey also don't want the reveal the age di�eren
e, sin
e from this and their own age, ea
h gets the other'sage too!) They just want a single bit to pop out, pointing to the older one.Sometimes 
alled the Millionaires problem, with the values being the earning of ea
h millionaire.In general, the problem is that Ali
e has an input xA and Bob has an input xB and they want to 
omputef(xA; xB) where f is some known fun
tion, for example f(xA; xB) = 1 if xA � xB and 0 otherwise. They
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ompute it obliviously, so that at the end of the game they both have the value v = f(xA; xB) butneither knows anything else.There are proto
ols for this task, and they are quite 
omplex. We refer the reader to [10, 43℄11.1.6 Simultaneous Se
ret Ex
hange Proto
olThis has been studied in [37, 198, 132, 203℄.The proto
ol given here is an example of a proto
ol that seems to work at �rst glan
e, but is in a
tualityopen to 
heating for similar reasons that the above oblivious transfer proto
ol was open to 
heating. The
ommon input 
onsists of 1k; � 2 EnA(sA); � 2 EnB (sB); nA, and nB , where nA and nB are ea
h produ
ts oftwo equal size primes 
ongruent to 3 mod 4; EnA (EnB ) are the same en
ryption as in the oblivious transferproto
ol above with respe
t to nA (nB respe
tively). A's private input has in it the prime fa
torizationnA = pAqA of nA and B's 
ontains the same for nB . What we want is for A and B to be able to �gureout sB and sA at the \same time". We assume equal 
omputing power and knowledge of algorithms. Thesuggested proto
ol of Blum [37℄ follows .Step 1: A pi
ks a1; a2; :::; aK at random in Z�nB and then 
omputes bi = a2i (mod nB) for 1 � i � k. B pi
ksw1; w2; :::; wk at random in ZnB and then 
omputes xi = wi� (mod nA) for 1 � i � k.Step 2: A sends all the bi's to B and B sends all the xi's to A.Step 3: For ea
h xi A 
omputes yi and zi su
h that y2i = z2i = xi (mod nA) but yi 6= �zi mod nB . (Note:either yi or zi equals �wi.) For ea
h bi, B 
omputes 
i and di with similar restri
tions. (Note: either 
i ordi equal �ai.Step 4: While 1 � j � k A sends B the jth signi�
ant bit of yi and zi for 1 � i � k. B sends A the jthsigni�
ant bit of 
i and di for 1 � i � k.Step 5: After 
ompleting the above loop, A (and B) �gure out the fa
torization of nB (and nA) with theinformation obtained in Step 4. (A 
omputes g
d(
i � di; nB) for ea
h i and B 
omputes g
d (yi � zi; nA)for ea
h i. Using this information, they �gure out sB and sA by de
rypting � and �.Why are k numbers 
hosen rather that just one? This is to prevent the following type of 
heating on theA and B's behalf. Suppose only one x was sent to A. A 
ould �gure out y and z and then send the jthsigni�
ant bits of y and a junk string to B in Step 4, hoping that y = �w and A will not noti
e that junkis being sent. If y = �w then B has no way of knowing that A is 
heating until the last step, at whi
htime A has all the information he needs to �nd sB , but B has not gained any new information to �nd sA.So A 
an 
heat with a 50% 
han
e of su

ess. If, on the other hand, k di�erent x's are sent to A, A hasan exponentially vanishing 
han
e of su

essfully 
heating in this fashion. Namely Prob(yi = �wi8i) � ( 12 )k.Unfortunately, Shamir, and H�astad pointed out a way to su

essfully 
heat at this proto
ol. If, instead of
hoosing the wi's at random, A 
hooses w1 at random, sets x1 = w21 (mod nB), and then sets xi = x1=2i�1(mod nB), then after one iteration of Step 4, A has all of the information that he needs to fa
tor nB by theredu
tion of [102℄. So, a seemingly good proto
ol fails, sin
e B has no way to 
he
k whether A 
hose the xisat random independently from ea
h as spe
i�ed in the proto
ol or not. Note: that this problem is similarto the problem whi
h arose in the oblivious transfer proto
ol and 
an be 
orre
ted if A and B 
ould 
he
kthat ea
h other was following the proto
ol.
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ture Notes 21511.2 Zero-Knowledge Proto
olsThe previous se
tions listed a number of 
ryptographi
 proto
ol appli
ations and some problems they su�erfrom. In this se
tion we review the theory that has been developed to prove that these proto
ols are se
ure,and to design proto
ols that are \provably se
ure by 
onstru
tion". The key idea is to redu
e the generalproblem of two-party proto
ols to a simpler problem: How 
an A prove to B that x is in a language L sothat no more knowledge than x 2 L is revealed. If this 
ould be done for any L 2 NP A 
ould prove to Bthat he followed the proto
ol steps. We pro
eed to de�ne the loose terms \intera
tive proof" (or \proof bya proto
ol") and \zero knowledge".11.2.1 Intera
tive Proof-Systems(IP)Before de�ning notion of intera
tive proof-systems, we de�ne the notion of intera
tive Turing ma
hine.De�nition 11.1 An intera
tive Turing ma
hine (ITM) is a Turing ma
hine with a read-only input tape, aread-only random tape, a read/write worktape, a read-only 
ommuni
ation tape, a write-only 
ommuni
ationtape, and a write-only output tape. The random tape 
ontains an in�nite sequen
e of bits whi
h 
an bethought of as the out
ome of unbiased 
oin tosses, this tape 
an be s
anned only from left to right. Wesay that an intera
tive ma
hine 
ips a 
oin to mean that it reads the next bit from its random tape. The
ontents of the write-only 
ommuni
ation tape 
an be thought of as messages sent by the ma
hine; whilethe 
ontents of the read-only 
ommuni
ation tape 
an be thought of as messages re
eived by the ma
hine.De�nition 11.2 An intera
tive proto
ol is an ordered pair of ITMs (A;B) whi
h share the same input tape;B's write-only 
ommuni
ation tape is A's read-only 
ommuni
ation tape and vi
e versa. The ma
hinestake turns in being a
tive with B being a
tive �rst. During its a
tive stage, the ma
hine �rst performssome internal 
omputation based on the 
ontents of its tapes, and se
ond writes a string on its write-only
ommuni
ation tape. The ith message of A(B) is the string A(B) writes on its write-only 
ommuni
ationtape in ith stage. At this point, the ma
hine is dea
tivated and the other ma
hine be
omes a
tive, unless theproto
ol has terminated. Either ma
hine 
an terminate the proto
ol, by not sending any message in its a
tivestage. Ma
hine B a

epts (or reje
ts) the input by entering an a

ept (or reje
t) state and terminating theproto
ol. The �rst member of the pair, A, is a 
omputationally unbounded Turing ma
hine. The 
omputationtime of ma
hine B is de�ned as the sum of B's 
omputation time during its a
tive stages, and it is boundedby a polynomial in the length of the input string.De�nition 11.3 Let L 2 f0; 1g� We say thatL has an intera
tive proof-system if 9 ITM V s:t.1. 9 ITM P s:t (P; V ) is an intera
tive proto
ol and 8x 2 L s:t jxj is suÆ
iently large the prob(V a

epts) >23 (when probabilities are taken over 
oin tosses of V and P ).2. 8 ITM P s:t (P; V ) is an intera
tive proto
ol 8x =2 L s:t. jxj is suÆ
iently large Prob(V a

epts) > 13(when probabilities are taken over 
oin tosses of V and P 's).Note that it does not suÆ
e to require that the veri�er 
annot be fooled by the predetermined prover (su
ha mild 
ondition would have presupposed that the \prover" is a trusted ora
le). NP is a spe
ial 
ase ofintera
tive proofs, where the intera
tion is trivial and the veri�er tosses no 
oins.We say that (P; V ) (for whi
h 
ondition 1 holds) is an intera
tive proof-system for L.De�ne IP = fL j L has intera
tive proofg .
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ture notes, whenever an intera
tive proto
ol is demonstrated, we let B �! A : denote ana
tive stage of ma
hine B, in the end of whi
h B sends A a message. Similarly, A �! B : denotes an a
tivestage of ma
hine A.Example 1: (From Number Theory)Let Z�n = fx < n; ; (x; n) = 1gQR = f(x; n) j x < n; (x; n) and 9y s:t y2 � x mod ngQNR = f(x; n) j x < n; (x; n) and 9=y s:t y2 � x mod ngWe demonstrate an intera
tive proof-system for QNR.On input (x; n) to intera
tive proto
ol (A;B):B �! A : B sends to A the list w1 � � �wk where k =j n j andwi = � z2i mod n if bi = 1x � z2i mod n if bi = 0where B sele
ted zi 2 Z�n; bi 2 f0; 1g at random.A �! B : A sends to B the list 
1 � � � 
k s:t:
i = � 1 if wi is a quadrati
 residue mod n0 otherwiseB a

epts i� 81�i�k; 
i = biB interprets bi = 
i as eviden
e that (x; n) 2 QRN ;while bi 6= 
i leads him to reje
t.We 
laim that (A;B) is an intera
tive proof-system for QNR. If (x; n) 2 QNR, then wi is a quadrati
residue modn i� bi = 1. Thus, the all powerful A 
an easily 
ompute whether wi is a quadrati
 residuemodn or not, 
ompute 
i 
orre
tly and make B a

ept with probability 1. If (x; n) =2 QNR and (x; n) 2 QRthen wi is a random quadrati
 residue modn regardless of whether bi = 0 or 1. Thus, the probability thatA (no matter how powerful he is) 
an send 
i s:t 
i = bi, is bounded by 12 for ea
h i and probability that Ba

epts is at most ( 12 )k.Example 2: (From Graph Theory)To illustrate the de�nition of an intera
tive proof, we present an intera
tive proof forGraph Non-Isomorphism.The input is a pair of graphs G1 and G2, and one is required to prove that there exists no 1-1 edge-invariantmapping of the verti
es of the �rst graph to the verti
es of the se
ond graph. (A mapping � from the verti
esof G1 to the verti
es G2 is edge-invariant if the nodes v and u are adja
ent in G1 i� the nodes �(v) and �(u)are adja
ent in G2.) It is interesting to note that no short NP-proofs are known for this problem; namelyGraph Non-isomorphism is not known to be in NP.The intera
tive proof (A;B) on input (G1; G2) pro
eeds as follows:B �! A : B 
hooses at random one of the two input graphs, G�iwhere �i 2 f1; 2g. B 
reates a random isomorphi
 
opy of G�i and sends it to A. (This is repeated k times,for 1 � i � k, with independent random 
hoi
es.)A �! B : A sends B �i 2 f1; 2g for all 1 � i � k.B a

epts i� �i = �i for all 1 � i � k.B interprets �i = �i as eviden
e that the graphs are not isomorphi
; while �i 6= �i leads him to reje
t.



Cryptography: Le
ture Notes 217If the two graphs are not isomorphi
, the prover has no diÆ
ulty to always answer 
orre
tly (i.e., a � equalto �), and the veri�er will a

ept. If the two graphs are isomorphi
, it is impossible to distinguish a randomisomorphi
 
opy of the �rst from a random isomorphi
 
opy of the se
ond, and the probability that theprover answers 
orre
tly to one \query" is at most 12 . The probability that the prover answers 
orre
tly allk queries is � ( 12 )k.11.2.3 Zero-KnowledgeNow that we have extended the notion of what is an eÆ
ient proof-system, we address the question of howmu
h \knowledge" need to be transferred in order to 
onvin
e a polynomial-time bounded veri�er, of thetruth of a proposition. What do we mean by \knowledge"? For example, 
onsider SAT, the NP -
ompletelanguage of satis�able senten
es of propositional 
al
ulus. The most obvious proof-system is one in whi
hon logi
al formula F the prover gives the veri�er a satisfying assignment I , whi
h the veri�er 
an 
he
k inpolynomial time. If �nding this assignment I by himself would take the veri�er more than polynomial time(whi
h is the 
ase if P 6= NP ), we say that the veri�er gains additional knowledge to the mere fa
t thatF 2 SAT .Goldwasser, Mi
ali and Ra
ko� [99℄ make this notion pre
ise. They 
all an intera
tive proof-system forlanguage L zero-knowledge if 8x 2 L whatever the veri�er 
an 
ompute after parti
ipating in the intera
tionwith the prover, 
ould have been 
omputed in polynomial time on the input x alone by a probabilisti
polynomial time Turing ma
hine.We give the te
hni
al de�nition of zero-knowledge proof-systems and its variants in se
tion 11.2.4, and brie
ymention a few interesting results shown in this area.11.2.4 De�nitionsLet (A;B) be an intera
tive proto
ol. Let view be a random variable denoting the veri�er view during theproto
ol on input x. Namely, for �xed sequen
e of 
oin tosses for A and B, view is the sequen
es of messagesex
hanged between veri�er and prover, in addition to the string of 
oin tosses that the veri�er used. Thestring h denotes any private input that the veri�er may have with the only restri
tion that its length isbounded by a polynomial in the length of the 
ommon input. (view is distributed over both A's and B's
oin tosses).We say that (A;B) is perfe
t zero-knowledge for L if there exists a probabilisti
, polynomial time Turingma
hine M s:t 8x 2 L, for all a > 0, for all strings h su
h that jhj < jxja, the random variable M(x; h) andview are identi
ally distributed. (M(x; h) is distributed over the 
oin tosses of M on inputs x and h).We say that (A;B) is statisti
ally zero-knowledge for L if there exists a probabilisti
 polynomial time Turingma
hine M s:t 8x 2 L, for all a > 0, for all strings h su
h that jhj < jxja,X� jprob(M(x; h) = �)� prob(view = �)j < 1jxj
for all 
onstants 
 > 0 and suÆ
iently large jxj.Intuitively the way to think of statisti
ally zero-knowledge proto
ols, is that an in�nite power \examiner"who is given only polynomially large samples of fM(x; h)jM 's 
oin tosses g and fview jA's and B's 
ointossesg 
an't tell the two sets apart.Finally, we say that a proto
ol (A;B) is 
omputationally zero-knowledge if a probabilisti
 polynomial timebounded \examiner" given a polynomial number of samples from the above sets 
an not tell them apart.Formally,We say that (A;B) is 
omputationally zero-knowledge for L if 9 probabilisti
, polynomial time Turing ma
hineM s:t 8 polynomial size 
ir
uit families C = fCjxjg;8 
onstants a; d > 0, for all suÆ
iently large jxj s.t x 2 L,and for all strings h su
h that jhj < jxja,
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prob(Cjxj(�) = 1j� random in M(x; h))� prob(Cjxj(�) = 1j� random in view(x))j < 1jxjdWe say that L has (
omputational/statisti
al/perfe
t) zero-knowledge proof-system if1. 9 intera
tive proof-system (A;B) for L.2. 8 ITM's B0, intera
tive proto
ol (A;B0) is (
omputational/statisti
al/perfe
t) zero-knowledge for L.Clearly,the last de�nition is the most general of the three. We thus letKC[0℄ = fLjL has 
omputational zero-knowledge proof-systemg.11.2.5 If there exists one way fun
tions, then NP is in KC[0℄By far, the most important result obtained about zero-knowledge is by Goldrei
h, Mi
ali and Wigderson[95℄. They show the following result.Theorem[95℄: if there exist (non-unifrom) polynomial-time indistinguishable en
ryption s
heme then everyNP language has a 
omputational zero-knowledge intera
tive proof-system.The non uniformity 
ondition is ne
essary for te
hni
al reasons (i.e the en
ryption s
heme should be se
ureagainst non-uniform adversary. see se
tion 3.7). The latest assumption under whi
h su
h en
ryption s
hemeexists is the existen
e of one-way fun
tions (with respe
t to non-uniform adversary) by results of Imagliazzo-Levin-Luby and Naor.The proof outline is to show a zero-knowledge proof system for an NP-
omplete language, graph three
olorability. We outline the proto
ol here. Suppose the prover wish to 
onvin
e the veri�er that a 
ertaininput graph is three-
olorable, without revealing to the veri�er the 
oloring that the prover knows. Theprover 
an do so in a sequen
e of jEj2 stages, ea
h of whi
h goes as follows.� The prover swit
hs the three 
olors at random (e.g., swit
hing all red nodes to blue, all blue nodes toyellow, and all yellow nodes to red).� The prover en
rypts the 
olor of ea
h node, using a di�erent probabilisti
 en
ryption s
heme for ea
hnode, and show the veri�er all these en
ryptions, together with the 
orresponden
e indi
ating whi
h
iphertext goes with whi
h vertex.� The veri�er sele
ts an edge of the graph at random.� The prover reveals the de
ryptions of the 
olors of the two nodes that are in
ident to this edge byrevealing the 
orresponding de
ryption keys.� The veri�er 
on�rms that the de
ryptions are proper, and that the two endpoints of the edge are
olored with two di�erent but legal 
olors.(any private probabilisti
 en
ryption s
heme whi
h is polynomial time indistinguishable will work here) Ifthe graph is indeed three-
olorable (and the prover know the 
oloring), then the veri�er will never dete
tany edge being in
orre
tly labeled. However, if the graph is not three-
olorable, then there is a 
han
e ofat least jEj�1 on ea
h stage that the prover will be 
aught trying to fool the veri�er. The 
han
e that theprover 
ould fool the veri�er for jEj2 stages without being 
aught is exponentially small.Note that the history of our 
ommuni
ations|in the 
ase that the graph is three-
olorable|
onsists of the
on
atenation of the messages sent during ea
h stage. It is possible to prove (on the assumption that se
ureen
ryption is possible) that the probability distribution de�ned over these histories by our set of possibleintera
tions is indistinguishable in polynomial time from a distribution that the veri�er 
an 
reate on thesehistories by itself, without the provers parti
ipation. This fa
t means that the veri�er gains zero (additional)knowledge from the proto
ol, other than the fa
t that the graph is three-
olorable.The proof that graph three-
olorability has su
h a zero-knowledge intera
tive proof system 
an be used toprove that every language in NP has su
h a zero-knowledge proof system.
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ture Notes 21911.2.6 Appli
ations to User Identi�
ationZero knowledge proofs provide a revolutionary new way to realize passwords [100, 79℄. The idea is for everyuser to store a statement of a theorem in his publi
ly readable dire
tory, the proof of whi
h only he knows.Upon login, the user engages in a zero-knowledge proof of the 
orre
tness of the theorem. If the proof is
onvin
ing, a

ess permission is granted. This guarantees that even an adversary who overhears the zero-knowledge proof 
an not learn enough to gain unauthorized a

ess. This is a novel property whi
h 
an notbe a
hieved with traditional password me
hanisms. Fiat and Shamir [79℄ have developed variations on someof the previously proposed zero-knowledge proto
ols [100℄ whi
h are quite eÆ
ient and parti
ularly usefulfor user identi�
ation and passwords.11.3 Multi Party proto
olsIn a typi
al multi-party proto
ol problem, a number of parties wish to 
oordinate their a
tivities to a
hievesome goal, even though some (suÆ
iently small) subset of them may have been 
orrupted by an adversary.The proto
ol should guarantee that the \good" parties are able to a
hieve the goal even though the 
orruptedparties send misleading information or otherwise mali
iously misbehave in an attempt to prevent the goodparties from su

eeding.11.3.1 Se
ret sharingSe
ret Sharing proto
ols were invented independently by Blakley and Shamir [33, 181℄. In the multi-partysetting, se
ret sharing is a fundamental proto
ol and tool.The basi
 idea is prote
tion of priva
y of information by distribution. Say you have a key to an importantsystem. You are afraid you might loose it, so you want to give it to someone else. But no single person 
anbe trusted with the key. Not just be
ause that person may be
ome untrustworthy, but be
ause the pla
ethey keep the key may be 
ompromised. So the key is shared amongst a bun
h of people.Let's 
all the key the se
ret s. A way to share it amongst �ve people is split it up as s = s1�� � � �s5 andgive si to person i. No one person 
an �gure out s. Even more, no four people 
an to it: it takes all �ve. Ifthey all get together they 
an re
over s. (On
e that is done, they may dis
ard it, ie it may be a one timekey! Be
ause now everyone knows it.)We 
all si a share. Who 
reates the shares? The original holder of s. Sometimes it is one of the n players,sometimes not. We 
all this person the dealer.Noti
e that si must be given privately to the i-th player. If other players see it, then, of 
ourse, this doesn'twork.We may want something more 
exible. Say we have n people. We want that any t+ 1 of them 
an re
overthe se
ret but no t of them 
an �nd out anything about it, for some parameter t. For example, say n = 5and t = 2. Any three of your friends 
an open your system, but no two of them 
an. This is better sin
eabove if one of them looses their share, the system 
an't be opened.Shamir's idea is to use polynomials [181℄. Let F be a �nite �eld, like Z�p . A degree t polynomial is of theform f(x) = a0 + a1x + � � � + atxt for 
oeÆ
ients a0; : : : ; at 2 F . It has t + 1 terms, not t! One more termthan the degree. Polynomials have the following ni
e properties:Interpolation: Given t+1 points on the polynomial, namely (x1; y1); : : : ; (xt+1; yt+1) where x1; : : : ; xt=1are distin
t and yi = f(xi), it is possible to �nd a0; : : : ; at. The algorithm to do this is 
alled interpo-lation. You 
an �nd it in many books.Se
re
y: Given any t points on the polynomial, namely (x1; y1); : : : ; (xt; yt) where x1; : : : ; xt are distin
tand yi = f(xi), one 
an't �gure out anything about a0. More pre
isely, for any value v, the number ofpolynomials satisfying these t 
onstraints does not depend on v. (In fa
t there is exa
tly one of them.)
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ret sharing. Asso
iate to ea
h player i a point xi 2 F , these points being alldistin
t. (So jF j � n). To share se
ret s, the dealer pi
ks a1; : : : ; at at random, sets a0 = s and forms thepolynomial f(x) = a0 + a1x + � � �+ atxt. Now he 
omputes si = f(xi) and sends this privately to player i.Now if t+ 1 players get together they 
an �gure out f and hen
e s; any set of at most t players 
an't �gureout anything about s.11.3.2 Veri�able Se
ret SharingShamir's s
heme su�ers from two problems. If the dealer of the se
ret is dishonest, he 
an give pie
es whi
hwhen put together do not uniquely de�ne a se
ret. Se
ondly, if some of the players are dishonest, at there
onstru
tion stage they may provide other players with di�erent pie
es than they re
eived and again 
ausean in
orre
t se
ret to be re
onstru
ted.Chor, Goldwasser, Mi
ali, and Awerbu
h [55℄ have observed the above problems and showed how to a
hievese
ret sharing based on the intra
tability of fa
toring whi
h does not su�er from the above problems. They
all the new proto
ol veri�able se
ret sharing sin
e now every party 
an verify that the pie
e of the se
rethe re
eived is indeed a proper pie
e. Their proto
ol tolerated up to O(logn) 
olluders. Benaloh [26℄, andothers [95, 78℄ showed how to a
hieve veri�able se
ret sharing if any one-way fun
tion exists whi
h toleratesa minority of 
olluders. In [25℄ it has been re
ently shown how to a
hieve veri�able se
ret sharing againsta third of 
olluders using error 
orre
ting 
odes, without making 
ryptographi
 assumptions. This wasimproved to a minority of 
olluders in [167℄.11.3.3 Anonymous Transa
tionsChaum has advo
ated the use of anonymous transa
tions as a way of prote
ting individuals from the main-tenan
e by \Big Brother" of a database listing all their transa
tions, and proposes using digital pseudonymsto do so. Using pseudonyms, individuals 
an enter into ele
troni
 transa
tions with assuran
e that thetransa
tions 
an not be later tra
ed to the individual. However, sin
e the individual is anonymous, the otherparty may wish assuran
e that the individual is authorized to enter into the transa
tion, or is able to pay.[50, 53℄.11.3.4 Multiparty Ping-Pong Proto
olsOne way of demonstrating that a 
ryptographi
 proto
ol is se
ure is to show that the primitive operationsthat ea
h party performs 
an not be 
omposed to reveal any se
ret information.Consider a simple example due to Dolev and Yao [73℄ involving the use of publi
 keys. Ali
e sends a messageM to Bob, en
rypting it with his publi
 key, so that the 
iphertext C is EB(M) where EB is Bob's publi
en
ryption key. Then Bob \e
hos" the message ba
k to Ali
e, en
rypting it with Ali
e's publi
 key, so thatthe 
iphertext returned is C 0 = EA(M). This 
ompletes the des
ription of the proto
ol.Is this se
ure? Sin
e the messageM is en
rypted on both trips, it is 
learly infeasible for a passive eavesdrop-per to learn M . However, an a
tive eavesdropper X 
an defeat this proto
ol. Here's how: the eavesdropperX overhears the previous 
onversation, and re
ords the 
iphertext C = EB(M). Later, X starts up a 
on-versation with Bob using this proto
ol, and sends Bob the en
rypted message EB(M) that he has re
orded.Now Bob dutifully returns to X the 
iphertext EX(M), whi
h gives X the message M he desires!The moral is that an adversary may be able to \
ut and paste" various pie
es of the proto
ol together tobreak the system, where ea
h \pie
e" is an elementary transa
tion performed by a legitimate party duringthe proto
ol, or a step that the adversary 
an perform himself.It is sometimes possible to prove that a proto
ol is invulnerable to this style of atta
k. Dolev and Yao[73℄ pioneered this style of proof; additional work was performed by Dolev, Even, and Karp [72℄, Yao [202℄,and Even and Goldrei
h [76℄. In other 
ases a modi�
ation of the proto
ol 
an eliminate or alleviate the
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ture Notes 221danger; see [168℄ as an example of this approa
h against the danger of an adversary \inserting himself intothe middle" of a publi
-key ex
hange proto
ol.11.3.5 Multiparty Proto
ols When Most Parties are HonestGoldrei
h, Mi
ali, and Wigderson [95℄ have shown how to \
ompile" a proto
ol designed for honest partiesinto one whi
h will still work 
orre
tly even if some number less than half of the players try to \
heat".While the proto
ol for the honest parties may involve the dis
losure of se
rets, at the end of the 
ompiledproto
ol none of the parties know any more than what they knew originally, plus whatever information isdis
losed as the \oÆ
ial output" of the proto
ol. Their 
ompiler 
orre
tness and priva
y is based on theexisten
e of trapdoor fun
tions.Ben-Or, Goldwasser and Wigderson [25℄ and Chaum, Cr�epeau, and Damg_ard [51℄ go one step further. Theyassume se
ret 
ommuni
ation between pairs of users as a primitive. Making no intra
tability assumption,they show a \
ompiler" whi
h, given a des
ription (e.g., a polynomial time algorithm or 
ir
uit) of any polyno-mial time fun
tion f , produ
es a proto
ol whi
h always 
omputes the fun
tion 
orre
tly and guarantees thatno additional information to the fun
tion value is leaked to dishonest players . The \
ompiler" withstands upto 1=3 of the parties a
ting dishonestly in a manner dire
ted by a worst-
ase unbounded-
omputation-timeadversary.These \master theorems" promise to be very powerful tool in the future design of se
ure proto
ols.11.4 Ele
troni
 Ele
tionsEle
troni
 Ele
tions 
an be 
onsidered the typi
al example of se
ure multiparty 
omputations. The generalinstan
e of su
h a problem is that there are m people, ea
h of them with their own private input xi and wewant to 
ompute the result of a n-ary fun
tion f over su
h values, without revealing them.In the 
ase of ele
troni
 ele
tions the parties are the voters, their input a binary value, the fun
tion being
omputed is just a simple sum and the result is the tally.In general, these are the properties that we would like our Ele
tion Proto
ols to have:1. Only authorized voters 
an vote.2. No one 
an vote more than on
e.3. Se
re
y of votes is maintained.4. No one 
an dupli
ate anyone else's vote.5. The tally is 
omputed 
orre
tly.6. Anybody should be able to 
he
k 5.7. The proto
ol should be fault-tolerant, meaning it should be able to work even in the presen
e of anumber of \bad" parties.8. It should be impossible to 
oer
e a voter into revealing how she voted (e.g. vote-buying)Usually in in ele
tion proto
ols it is not desirable to involve all the voters Vi in the 
omputation pro
ess. Sowe assume that there are n government 
enters C1; : : : ; Cn whose task is to 
olle
t votes and 
ompute thetally.
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tion Proto
olConsider the following s
heme by Mi
hael Merritt [140℄.Ea
h 
enter Ci publishes a publi
 key Ei and keeps se
ret the 
orresponding se
ret key. In order to 
ast hervote vj , ea
h voter Vj 
hooses a random number sj and 
omputes,E1(E2(: : : En(vj ; sj))) = yn+1;j (11.1)(The need for the se
ond index n+ 1 will be
ome 
lear in a minute, for now it is just irrelevant.)Now we have the values y's posted. In order from 
enter Cn to 
enter C1, ea
h 
enter Ci does the following.For ea
h yi+1;j , Ci 
hooses a random value ri;j and broad
asts yi;j0 = Ei(yi+1;j ; j). The new index j0 is
omputed by taking a random permutation �i of the integers [1::n℄. That is j0 = �i(j). Ci keeps thepermutation se
ret.At the end we have y1;j = E1(E2(: : : En(yn+1;j ; rn;j) : : : r2;j)r1;j)At this point, the veri�
ation 
y
le begins. It 
onsists of two rounds of de
ryption in the order C1 �!C2 : : : �! Cn.The de
rypted values are posted and the tally 
omputed by taking the sums of the votes vj 's.(1) and (2) are 
learly satis�ed. (3) is satis�ed, as even if the votes are revealed, what is kept hidden is the
onne
tion between the vote and the voter who 
asted it. Indeed in order to re
onstru
t su
h link we need toknow all the permutations �i. (4) is not satis�ed as voter V1 
an easily 
opy voter V2, by for example 
astingthe same en
rypted string. (5) and (6) are satis�ed using the random strings: during the �rst de
ryptionrounds ea
h 
enter 
he
ks that his random strings appear in the de
rypted values, making sure that all his
iphertexts are being 
ounted. Also at the end of the se
ond de
ryption round ea
h voter looks for herstring sj to make sure her vote is being 
ounted (
hoosing a large enough spa
e for the random string shouldeliminate the risk of dupli
ates.) Noti
e that in order to verify the 
orre
tness of the ele
tion we need the
ooperation of all the voters (a negative feature espe
ially in large proto
ols.)(7) requires a longer dis
ussion. If we are 
on
erned about the se
re
y of the votes being lost be
ause ofparties going \bad", then the proto
ol is ideal. Indeed even if n� 1 of the 
enters 
ooperate, they will notbe able to learn who 
asted what vote. Indeed they need to know all the permutations �i. However evenif one of the government agen
ies fails, by for example 
rashing, the entire system falls apart. The wholeele
tion needs to be repeated.(8) is not satis�ed. Indeed the voter 
an be for
ed to reveal both vj and sj and she tries to lie about thevote she will be dis
overed sin
e the de
lared values will not mat
h the 
iphertext yn+1;j .11.4.2 A fault-tolerant Ele
tion Proto
olIn this se
tion we des
ribe a proto
ol whi
h has the following features� satis�es (4), meaning it will be impossible to 
opy other people vote (the proto
ol before did not)� Does not require the 
ooperation of ea
h voter to publi
ly verify the tally (better solution to (6) thanthe above)� introdu
es fault-toleran
e: we �x a threshold t and we assume that if there are less than t \bad" 
entersthe proto
ol will 
orre
tly 
ompute the tally and the se
re
y of ea
h vote will be preserved (bettersolution to (7) than the above.)This proto
ol is still sus
eptible to 
oer
ion (requirement (8)). We will dis
uss this point at the end.The ideas behind this approa
h are due to Josh Benaloh [28℄. The proto
ol des
ribed in the following se
tionis the most eÆ
ient one in the literature due to Cramer, Franklin, S
hoemakers and Yung [60℄.
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 CommitmentsLet B be a 
ommitment s
heme (a one-way fun
tion basi
ally.)We say that a 
ommitment s
heme B is (+;�)-homomorphi
 ifB(X + Y ) = B(X)�B(Y )One possible example of su
h 
ommitment is the following (invented by Pedersen [155℄):Dis
rete-Log based Homomorphi
 Commitment: Let p be a prime of the form p = kq+1 and let g; hbe two elements in the subgroup of order q. We assume nobody knows the dis
rete log in base g of h. To
ommit to a number m in [1::q℄: Ba(m) = ga hm (11.2)for a randomly 
hosen a modulo q. To open the 
ommitment a and m must be revealed.Noti
e that this is a (+;�)-homomorphi
 
ommitment as:Ba1(m1)Ba2(m2) = ga1hm1ga2hm2 = ga1+a2hm1+m2 = Ba1+a2(m1 +m2)For now on let E be an (+;�)-homomorphi
 
ommitment s
heme.11.4.3 The proto
olFor ease of presentation we will show the proto
ol in two version. First we assume that there is only one
enter. Then we show how to generalize the ideas to the 
ase of many 
enters.Vote Casting { 1 
enterAssume for now that there is only one 
enter C and let E be his en
ryption fun
tion.Assuming the votes are either -1 or 1, ea
h voter Vj en
rypts his vote vj by 
omputing and posting Baj (vj)for a randomly 
hosen aj . Vj also sends the values aj and vj to C en
rypted.The voter now must prove that the vote is 
orre
t (i.e. it's the en
ryption of a -1 or of a 1.) He does this byperforming a zero-knowledge proof of validity.For the dis
rete-log based homomorphi
 
ommitment s
heme des
ribed above, here is a very eÆ
ient proto
ol.Let us drop the index j for simpli
ity.For v = 1:1. The voter V 
hooses at random a; r1; d1; w2 modulo q. He posts Ba(v) = gah and also posts �1 =gr1(Ba(v)h)�d1 , �2 = gw2 .2. The 
enter C sends a random 
hallenge 
 modulo q3. The voter V responds as follows: V 
omputes d2 = 
� d1 and r2 = w2 + ad2 and posts d1; d2; r1; r24. The 
enter C 
he
ks that� d1 + d2 = 
� gr1 = �1(Ba(v)h)d1� gr2 = �2(Ba(v)=h)d2For v = �1:
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hooses at random a; r2; d2; w1 modulo q. He posts Ba(v) = ga=h and also posts �1 = gw1 ,�2 = gr2(Ba(v)=h)�d22. The 
enter C sends a random 
hallenge 
 modulo q3. The voter V responds as follows: V 
omputes d1 = 
� d2 and r1 = w1 + ad1 and posts d1; d2; r1; r24. The 
enter C 
he
ks that� d1 + d2 = 
� gr1 = �1(Ba(v)h)d1� gr2 = �2(Ba(v)=h)d2For now on we will refer to the above proto
ol as Proof(Ba(v)).Tally Computation { 1 
enterAt the end of the previous phase we were left with Baj (vj) for ea
h voter Vj . The 
enter reveals the tallyT =Pj vj and also the value A =Pj aj . Everybody 
an 
he
k that the tally is 
orre
t by performing thefollowing operation: BA(T ) =Yj Baj (vj)whi
h should be true for the 
orre
t tally, be
ause of the homomorphi
 property of B.The 1-
enter version of the proto
ol however has the drawba
k that this 
enter learns everybody's vote.Vote Casting { n 
entersAssume n 
enters C1; : : : ; Cn and let Ei be the en
ryption fun
tion of Ci.In this 
ase voter Vj en
rypts the vote vj in the following manner. First he 
ommits to the vote by postingBj = Baj (vj)for a randomly 
hosen aj modulo q. He also proves that this is a 
orre
t vote by performing Proof(Baj (vj)).Then he shares the values aj and vj among the 
enters using Shamir's (t; n) threshold se
ret sharing. Thatis, he 
hooses random polynomials Hj(X) and Aj(X) of degree t su
h that Hj(0) = vj and Aj(0) = aj . LetRj(X) = vj + r1;jX + : : :+ rt;jXtSj(X) = aj + s1;jX + : : :+ st;jXtThe 
oeÆ
ients are all modulo q.Now the voter sends the value ui;j = Rj(i) and wi;j = Sj(i) to the 
enter Ci (en
rypted with Ei.)Finally he 
ommits to the 
oeÆ
ients of the polynomial Hj by postingB`;j = Bs`;j (r`;j)The 
enters perform the following 
he
k gwi;jhui;j = Bj tỲ=1(B`;j)i` (11.3)to make sure that the shares he re
eived en
rypted are 
orre
t.
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ture Notes 225Tally 
ounting { n 
entersEa
h 
enter Ci posts the partial sums: Ti =Xj ui;jthis is the sum of the shares of the votes re
eived by ea
h player.Ai =Xj wi;jthis is the sum of the shares of the random string aj used to 
ommit to the vote by ea
h player.Anybody 
an 
he
k that the 
enter is revealing the right stu� by using the homomorphi
 property of the
ommitment s
heme B. Indeed it must hold thatgAihTi = mYj=1 Bj tỲ=1(B`;j)j`! (11.4)Noti
es that the 
orre
t Ti's are shares of the tally T in a (t; n) Shamir's se
ret sharing s
heme. So it isenough to take t+ 1 of them to interpolate the tally.Noti
e: Equations (11.3) and (11.4) are valid only under the assumption that nobody knows the dis
retelog in base g of h. Indeed who knows some value 
an open the 
ommitment B in both ways and so revealin
orre
t values that satis�es su
h equations.Analysis: Let's go through the properties one by one. (1) and (2) are 
learly satis�ed. (3) is satis�edassuming that at most t 
enters 
an 
ooperate to learn the vote. If t+1 
enters 
ooperate, then the priva
yof the votes is lost. (4) is true for the following reason: assume that V1 is trying to 
opy the a
tion of V2.When it 
omes to the point of proving the 
orre
tness of the vote (i.e. perform Proof(B)), V1 will probablyre
eive a di�erent 
hallenge 
 than V2. He will not be able to answer it and he will be eliminated from theele
tion. (5) is true under the dis
rete-log assumption (see note above.) (6) is true as anybody 
an 
he
kon the the ZK proofs and Equations (11.3) and (11.4). (7) is true as we need only t + 1 good 
enters tore
onstru
t the tally.It is easy to see that be
ause we need t + 1 good 
enters and at most t 
enters 
an be bad, the maximumnumber of 
orrupted 
enters being tolerated by the proto
ol is n2 � 1.(8) is not satis�ed. This is be
ause somebody 
ould be 
oer
ed into revealing both a and v when postingthe 
ommitment Ba(v).11.4.4 Un
oer
ibilityThe problem of 
oer
ion of voters is probably the most 
ompli
ated one. What exa
tly does it mean? Inhow many ways 
an a 
oer
er, try to for
e a voter to 
ast a given vote.Let's try to simplify the problem. We will 
onsider two possible kinds of 
oer
er. One who 
onta
ts thevoter before the ele
tion starts and one who 
onta
ts the voter after the ele
tion is 
on
luded.The \before" 
oer
er has a greater power. He 
an tell the voter what vote to 
ast and also what randomnessto use during the proto
ol. This basi
ally would amount to �x the behavior of the voter during the proto
ol.If the voter does not obey, it will be easy for the 
oer
er to dete
t su
h o

urren
e. There have been somesolutions proposed to this problem that use some form of physi
al assumption. For example one 
ould allowthe voter to ex
hange a limited number of bits over a se
ure 
hannel with the voting 
enters [27, 175℄.This would hopefully prevent the 
oer
er from noti
ing that the voter is not following his instru
tions. Orone 
ould for
e the voter to use some tamper-proof devi
e that en
rypts messages for him, 
hoosing therandomness. This would prevent the 
oer
er from for
ing the user to use some �xed 
oin tosses as the userhas no 
ontrol on what 
oins the tamper-proof devi
e is going to generate.
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oer
er has a smaller power. He 
an only go to the voter and ask to see the vote v and therandomness � used by the voter during the proto
ol. Maybe there 
ould be a way for the voter to 
onstru
tdi�erent v0 and �0 that \mat
h" his exe
ution of the proto
ol. This is not possible in the proto
ol above(unless the voter solves the dis
rete log problem.) Re
ently however a proto
ol for this purpose has beenproposed by Canetti and Gennaro [47℄. They use a new tool 
alled deniable en
ryption (invented by Canetti,Dwork, Naor and Ostrovsky [46℄), whi
h is a new form of publi
 key probabilisti
 en
ryption E with thefollowing property.Let m be the message and r the 
oin tosses of the sender. The sender 
omputes the 
iphertext 
 = Er(m).After if somebody approa
hes him and asks for the value of m, the sender will be able to produ
e m0 and r0su
h that Er0(m0) = 
.11.5 Digital CashThe primary means of making monetary transa
tions on the Internet today is by sending 
redit 
ard infor-mation or establishing an a

ount with a vendor ahead of time.The major opposition to 
redit 
ard based Internet shopping is that it is not anonymous. Indeed it issus
eptible to monitoring, sin
e the identity of the 
ustomer is established every time he/she makes apur
hase. In real life we have the alternative to use 
ash whenever we want to buy something withoutestablishing our identity. The term digital 
ash des
ribes 
ryptographi
 te
hniques and proto
ols that aimto re
reate the 
on
ept of 
ash-based shopping over the Internet.First we will des
ribe a general approa
h to digital 
ash based on publi
-key 
ryptography. This approa
hwas originally suggested by David Chaum [50℄. S
hemes based on su
h approa
h a
hieve the anonymityproperty.11.5.1 Required properties for Digital CashThe properties that one would like to have from Digital Cash s
hemes, are at least the following:� forgery is hard� dupli
ation should be either prevented or dete
ted� preserve 
ustomers' anonymity� minimize on-line operations on large database11.5.2 A First-Try Proto
olA Digital Cash s
heme 
onsists usually of three proto
ols. The withdrawal proto
ol whi
h allows a Usertoobtain a digital 
oin from the Bank. A payment proto
ol during whi
h the Userbuys goods from a Vendorinex
hange of the digital 
oin. And �nally a deposit proto
ol where the Vendorgives ba
k the 
oin to theBankto be 
redited on his/her a

ount.In the proto
ol below we assume that the Bankhas a se
ret key SKB to sign messages and that the 
orre-sponding publi
 key PKB is known to everybody else. With the notation fMgSK we denote the messageM together with its signature under key SK.Let's look at this possible digital 
ash proto
ol.Withdrawal Proto
ol:1. Usertells Bankshe would like to withdraw $100.
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ture Notes 2272. Bankreturns a $100 bill whi
h looks like this:fI am a $100 bill, #4527)gSKBand withdraws $100 from Usera

ount3. User
he
ks the signature and if it is valid a

epts the billPayment Proto
ol:1. The Userpays the Vendorwith the bill.2. The Vendor
he
ks the signature and if it's valid a

epts the bill.Deposit Proto
ol:1. The Vendorgives the bill to the Bank2. The Bank
he
ks the signature and if it's valid, 
redits the Vendor's a

ount.Given some suitable assumption on the se
urity of the signature s
heme, it is 
lear that it is impossibleto forge digital 
oins. However it is very easy to dupli
ate and double-spend the same digital 
oin severaltimes. It is also 
leat that anonymity is not preserved as the Bank
an link the name of the Userwith theserial number appearing on the bill and know where the Userspent the 
oin.11.5.3 Blind signaturesLet's try to solve the anonymity problem �rst. This approa
h involves |em blind signatures. The userpresents the bank with a bill inside a 
ontainer. The bank signs the bill without seeing the 
ontents of thebill. This way, the bank 
annot determine the sour
e of a bill when a mer
hant presents it for deposit.A useful analogy: The user 
overs a 
he
k with a pie
e of 
arbon paper and then seals both of them insidean envelope. The user gives the envelope to the bank. The bank then signs the outside of the envelope witha ball-point pen and returns the envelope to the user (without opening it - a
utally the bank is unable toopen the envelope in the digital version). The user then removes the signed 
he
k from the envelope and 
anspend it. The bank has never seen what it signed, so it 
annot asso
iate it with the user when it is returnedto be deposited, but it 
an verify the signature on the 
he
k and thus guarantee the validity of the 
he
k.There is, of 
ourse, a problem with this: The bank 
an be fooled into signing phony bills. For example,a user 
ould tell the bank he's making a $1 withdrawal and then present a $100 bill to be signed. The bankwill, unknowingly, sign the $100 bill and allow the user to 
heat the bank out of $99. We will deal with thisproblem later, for now let us show how to 
onstru
t blind signatures.11.5.4 RSA blind signaturesRe
all the RSA signature s
heme: if M is the message to be signed, then its signature is s = Me�1 mod nwhere n and e are publi
ly known values. The se
ret information that the bank possesses is the inverse ofe mod �(n), whi
h we will denote by d. The signature 
an be veri�ed by 
al
ulating se mod n and verifyingthat it is equal to M mod n.In the 
ase of blind signatures, the Userwants the Bankto provide him with s, without revealing M to thebank. Here is a possible anonymous withdrawal proto
ol. Let M be a $100 bill.Withdrawal Proto
ol:1. User
hooses some random number, r mod n.
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al
ulates M 0 =M � re mod n.3. Usergives the BankM .4. The Bankreturns a signature for M 0, say s0 = (M 0)d mod n. Note thats0 = (M 0)d =Md � (re)d =Md � r5. The Bankdebits the Usera

ount for $100.6. Sin
e the Userknows r, he 
an divide s0 by r to obtains =MdThe payment and deposit proto
ol remain the same as above. This solves the problem of preserving theUseranonymity, as when the 
oin 
omes ba
k to the Bankthere is no link between it and the Userit was issuedto.We still have two problems.1. The bank 
an still be fooled into signing something that it shouldn't (like a $100 bill that it thinks isa $1 bill)2. Coins 
an still be dupli
ated and double-spent11.5.5 Fixing the dollar amountOne possible solution to the above problem is to have only one denomination (per publi
 key, for example.)That is the Bankwould have several publi
 keys PK1B; : : : and the signature using PKiB would be validonly on bills of i dollars.Another possibility is to use a \
ut and 
hoose" pro
edure:1. Usermakes up 100 $20 bills2. blinds them all3. gives them to the Bank4. The Bankpi
ks one to sign (at random), and requires that the Userunblind all of the rest (by revealingthe r's). Before the signature is returned, the Bankensures that all of the bills that were unblindedwere 
orre
t.This way the Userhas only 1100 probability of 
heating. Of 
ourse, one 
ould set up the proto
ol to 
reate ansmaller 
heating 
han
e (by requiring that the user provided more blinded messages, for example).So, now we have a proto
ol that satis�es the anonymity requirement and 
an provide suÆ
iently smallpossibilities for 
heating. We still have to deal with the double-spending problem.11.5.6 On-line digital 
ashIn the on-line version of digital 
ash s
hemes, one requires the Bankto re
ord all of the bills it re
eives in adatabase. During the payment proto
ol the Vendorwould transmit the bill to the Bankand ask if the bill wasalready re
eived. If this is the �rst time the bill is being used then the Vendora

epts it, otherwise he willreje
t it.
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ture Notes 229Although this is a simple solution it in
urs in a high 
ommuni
ation overhead as now the payment proto
ollooks a lot like a 
redit 
ard transa
tion, when the Vendorawaits for authorization to �nish the trade. Alsothe size of the database to be managed by the Bank
ould be problemati
.Noti
e that we are preventing double-spending this way. We are going to show now a way to dete
t double-spending whi
h does not require on-line veri�
ation.11.5.7 O�-line digital 
ashThe idea behind o�-line digital 
ash is the following. During the payment proto
ol the Useris for
ed to writea \random identity string", or RIS, on the bill.The RIS must have the following properties:� must be di�erent for every payment of the 
oin.� only the User
an 
reate a valid RIS.� two di�erent RIS on the same 
oin should allow the Bankto retrieve the Username.If the Bankre
eives two identi
al bills with di�erent RIS values, then the Userhas 
heated and the bank 
anidentify him. If the Bankre
eives two identi
al bills with the same RIS values, then the Vendorhas 
heated.The above idea appeared �rst in [52℄.Here is a possible solution. Let H to be a one-way hash fun
tion.Withdrawal Proto
ol:1. The Userprepares 100 bills of $20 whi
h look like this:Mi = (I'm $20 bill, #4527i,yi;1; y0i;1; yi;2; y0i;2; : : : ; yi;K ; y0i;K)where yi;j = H(xi;j), y0i;j = H(x0i;j), where xi;j and x0i;j are randomly 
hosen under the 
ondition thatxi;j � x0i;j = Username 8i; j2. The Userblinds all the Mi to random messages M 0i (using the blinding proto
ol outlined above) andsends them to the Bank.3. The Bankasks the Userto unblind 99 of the 100 blinded bills.4. When the Userunblinds them, he also reveals the appropriate xi;j and x0i;j .5. The Bank
he
ks not only that the bills are indeed $20 bills, but also that yi;j = H(xi;j), y0i;j = H(x0i;j)and xi;j � x0i;j = Username, for the unblinded bills.6. The Bankreturns a signature on the only blind message (say M 017)7. The Userretrieves the signature s17 on M17.From now on let us drop the index i = 17 for simpli
ity. The payment proto
ol is modi�ed to for
e theUserto produ
e a RIS on the 
oin. The RIS is going to be one of xj or x0j for ea
h j = 1; : : : ;K. Whi
h oneis going to be depends on a random 
hallenge from the Vendor.Payment Proto
ol:1. The Usergives M; s to the Vendor.
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he
ks the Banksignature on the bill and if it is valid, answers with a random bit string oflength K, b1 : : : bK .3. If bj = 0 Userreveals xj , otherwise he reveals x0j4. The Vendor
he
ks that yj = H(xj) or y0j = H(x0j), whi
hever is the 
ase. If the above equalities hold,he a

epts the bill.Noti
e that the above properties or RIS are satis�ed. Indeed the probability that in a di�erent payment thesame RIS is produ
ed is 2�K sin
e the Vendor
hooses the \
hallenge" at random. Only the User
an produ
ea valid RIS sin
e the fun
tion H is one-way. Finally two di�erent RIS on the same 
oin leak the name ofthe User, as if two RIS are di�erent there must be an index j for whi
h we have both xj and x0j .Deposit Proto
ol:1. The Vendorbrings the 
oin M; s;RIS ba
k to the Bank.2. The Bankveri�es the signature and 
he
k if the 
oin M; s has already been returned to the Bank3. If the 
oin is already in the database, the Bank
ompares the RIS's of the two 
oins. If the RIS aredi�erent then the Userdouble-spent the 
oin, otherwise it is the Vendorwho is trying to deposit the 
ointwi
e.
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C h a p t e r ASome probabilisti
 fa
ts

A.1 The birthday problemSome of our estimates in Chapters 6, 8 and 5 require pre
ise bounds on the birthday probabilities, whi
hfor 
ompleteness we derive here, following [12℄.The setting is that we have q balls. View them as numbered, 1; : : : ; q. We also have N bins, where N � q.We throw the balls at random into the bins, one by one, beginning with ball 1. At random means that ea
hball is equally likely to land in any of the N bins, and the probabilities for all the balls are independent. A
ollision is said to o

ur if some bin ends up 
ontaining at least two balls. We are interested in C(N; q), theprobability of a 
ollision.The birthday phenomenon takes its name from the 
ase when N = 365, when
e we are asking what isthe 
han
e that, in a group of q people, there are two people with the same birthday, assuming birthdaysare randomly and independently distributed over the 365 days of the year. It turns out that when q hitsp365 � 19:1 the 
han
e of a 
ollision is already quite high; for example at q = 20 the 
han
e of a 
ollisionis at least 0:328.The birthday phenomenon 
an seem surprising when �rst heard; that's why it is 
alled a paradox. Thereason it is true is that the 
ollision probability C(N; q) grows roughly proportional to q2=N . This is thefa
t to remember. The following gives a more exa
t rendering, providing both upper and lower bounds onthis probability.Proposition A.1 Let C(N; q) denote the probability of at least one 
ollision when we throw q � 1 balls atrandom into N � q bu
kets. Then C(N; q) � q(q � 1)2N :Also C(N; q) � 1� e�q(q�1)=2N ;and for 1 � q � p2N C(N; q) � 0:3 � q(q � 1)N :242



Cryptography: Le
ture Notes 243In the proof we will �nd the following inequalities useful to make estimates.Proposition A.2 For any real number x 2 [0; 1℄|�1� 1e� � x � 1� e�x � x :Proof of Proposition A.1: Let Ci be the event that the i-th ball 
ollides with one of the previous ones.Then P [Ci℄ is at most (i � 1)=N , sin
e when the i-th ball is thrown in, there are at most i � 1 di�erento

upied slots and the i-th ball is equally likely to land in any of them. NowC(N; q) = P [C1 _ C2 _ � � � _ Cq ℄� P [C1℄ +P [C2℄ + � � �+P [Cq ℄� 0N + 1N + � � �+ q � 1N= q(q � 1)2N :This proves the upper bound. For the lower bound we let Di be the event that there is no 
ollision afterhaving thrown in the i-th ball. If there is no 
ollision after throwing in i balls then they must all be o

upyingdi�erent slots, so the probability of no 
ollision upon throwing in the (i + 1)-st ball is exa
tly (N � i)=N .That is, P [Di+1 j Di℄ = N � iN = 1� iN :Also note P [D1℄ = 1. The probability of no 
ollision at the end of the game 
an now be 
omputed via1� C(N; q) = P [Dq ℄= P [Dq j Dq�1℄ �P [Dq�1℄... ...= q�1Yi=1P [Di+1 j Di℄= q�1Yi=1 �1� iN� :Note that i=N � 1. So we 
an use the inequality 1� x � e�x for ea
h term of the above expression. Thismeans the above is not more thanq�1Yi=1 e�i=N = e�1=N�2=N�����(q�1)=N = e�q(q�1)=2N :Putting all this together we get C(N; q) � 1� e�q(q�1)=2N ;whi
h is the se
ond inequality in Proposition A.1. To get the last one, we need to make some more estimates.We know q(q � 1)=2N � 1 be
ause q � p2N , so we 
an use the inequality 1� e�x � (1� e�1)x to getC(N; q) � �1� 1e� � q(q � 1)2N :A 
omputation of the 
onstant here 
ompletes the proof.



C h a p t e r BSome 
omplexity theory ba
kground

As of today, we do not even know how to prove a linear lower bound on the time required to solve an NP-
omplete problem. Thus, in our development of a theory of 
ryptography in the presen
e of a 
omputationallybounded adversary we must resort to making assumptions about the existen
e of hard problems. In fa
t, animportant 
urrent resear
h topi
 in 
ryptography (on whi
h mu
h progress has been made in re
ent years)is to �nd the minimal assumptions required to prove the existen
e of \se
ure" 
ryptosystems.Our assumptions should enable us to qui
kly generate instan
es of problems whi
h are hard to solve foranyone other than the person who generated the instan
e. For example, it should be easy for the sender ofa message to generate a 
iphertext whi
h is hard to de
rypt for any adversary (naturally, in this example,it should also be easy for the intended re
ipient of the message to de
rypt the 
iphertext). To formallydes
ribe our assumptions (the existen
e of one way fun
tions and trapdoor fun
tion) we �rst need to re
allsome 
omplexity theory de�nitions.B.1 Complexity Classes and Standard De�nitionsB.1.1 Complexity Class PA language L is in P if and only if there exists a Turing ma
hine M(x) and a polynomial fun
tion Q(y) su
hthat on input string x1. x 2 L i� M a

epts x (denoted by M(x)).2. M terminates after at most Q(jxj) steps.The 
lass of languages P is 
lassi
ally 
onsidered to be those languages whi
h are `easily 
omputable'. Wewill use this term to refer to these languages and the term `eÆ
ient algorithm' to refer to a polynomial timeTuring ma
hine.B.1.2 Complexity Class NPA language L is in NP if and only if there exists a Turing ma
hine M(x; y) and polynomials p and l su
hthat on input string x 244
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ture Notes 2451. x 2 L) 9y with jyj � l(jxj) su
h that M(x; y) a

epts and M terminates after at most p(jxj) steps.2. x 62 L) 8y with jyj � l(jxj), M(x; y) reje
ts.Note that this is equivalent to the (perhaps more familiar) de�nition of L 2 NP if there exists a non-deterministi
 polynomial time Turing ma
hine M whi
h a

epts x if and only if x 2 L. The string y above
orresponds to the guess of the non-determinsti
 Turing ma
hine.B.1.3 Complexity Class BPPA language L is in BPP if and only if there exists a Turing ma
hine M(x; y) and polynomials p and l su
hthat on input string x1. x 2 L) Prjyj<l(jxj)[M(x; y)a

epts℄ � 23 .2. x 62 L) Prjyj<l(jxj)[M(x; y)a

epts℄ � 13 .3. M(x; y) always terminates after at most p(jxj) steps.As an exer
ise, you may try to show that if the 
onstants 23 and 13 are repla
ed by 12 + 1p(jxj) and 12 � 1p(jxj)where p is any �xed polynomial then the 
lass BPP remains the same.Hint: Simply run the ma
hine M(x; y) on \many" y's and a

ept if and only if the majority of the runsa

ept. The magnitude of \many" depends on the polynomial p.We know that P � NP and P � BPP. We do not know if these 
ontainments are stri
t although it is often
onje
tured to be the 
ase. An example of a language known to be in BPP but not known to be in P is thelanguage of all prime integers (that is, primality testing). It is not known whether BPP is a subset of NP.B.2 Probabilisti
 AlgorithmsThe 
lass BPP 
ould be alternatively de�ned using probabilisti
 Turing ma
hines (probabilisti
 algorithms).A probabilisti
 polynomial time Turing ma
hine M is a Turing ma
hine whi
h 
an 
ip 
oins as an additionalprimitive step, and on input string x runs for at most a polynomial in jxj steps. We 
ould have de�ned BPPby saying that a language L is in BPP if there exists a probabilisti
 polynomial time Turing ma
hine M(x)su
h that when x 2 L, the probability (over the 
oin tosses of the ma
hine) that M(x) a

epts is greaterthan 23 and when x =2 L the probability (over the 
oin tosses of the ma
hine) that M(x) reje
ts is greaterthan 23 . The string y in the previous de�nition 
orresponds to the sequen
e of 
oin 
ips made by the ma
hineM on input x.From now on we will 
onsider probabilisti
 polynomial time Turing ma
hines as \eÆ
ient algorithms" (ex-tending the term previously used for deterministi
 polynomial time Turing ma
hines). We also 
all the 
lassof languages in BPP \easily 
omputable". Note the di�eren
e between a non-deterministi
 Turing ma
hineand a probabilisti
 Turing ma
hine. A non-deterministi
 ma
hine is not something we 
ould implement inpra
ti
e (as there may be only one good guess y whi
h will make us a

ept). A probabilisti
 ma
hine issomething we 
ould implement in pra
ti
e by 
ipping 
oins to yield the string y (assuming of 
ourse thatthere is a sour
e of 
oin 
ips in nature). Some notation is useful when talking about probabilisti
 Turingma
hines.B.2.1 Notation For Probabilisti
 Turing Ma
hinesLet M denote a probabilisti
 Turing ma
hine (PTM). M(x) will denote a probability spa
e of the out
omeofM during its run on x. The statement z 2M(x) indi
ates that z was output byM when running on input



246 Goldwasser and Bellarex. Pr[M(x) = z℄ is the probability of z being the output of M on input x (where the probability is takenover the possible internal 
oin tosses made by M during its exe
ution). M(x; y) will denote the out
ome ofM on input x when internal 
oin tosses are y.B.2.2 Di�erent Types of Probabilisti
 AlgorithmsMonte Carlo algorithms and Las Vegas algorithms are two di�erent types of probabilisti
 algorithms. Thedi�eren
e between these two types is that a Monte Carlo algorithm always terminates within a polynomialnumber of steps but its output is only 
orre
t with high probability whereas a Las Vegas algorithm terminateswithin an expe
ted polynomial number of steps and its output is always 
orre
t. Formally, we de�ne thesealgorithms as follows.De�nition B.1 A Monte Carlo algorithm is a probabilisti
 algorithm M for whi
h there exists a polynomialP su
h that for all x, M terminates within P (jxj) steps on input x. Further,Pr[M(x) is 
orre
t ℄ > 23(where the probability is taken over the 
oin tosses of M).A Las Vegas algorithm is a probabilisti
 algorithm M for whi
h there exists a polynomial p su
h that for allx, E(running time) = 1Xt=1 t � Pr[M(x) takes exa
tly t steps℄ < p(jxj). Further, the output of M(x) is always
orre
t.All Las Vegas algorithms 
an be 
onverted to Monte Carlo algorithms but it is unknown whether all MonteCarlo algorithms 
an be 
onverted to Las Vegas algorithms. Some examples of Monte Carlo algorithms areprimality tests su
h as Solovay Strassen (see [191℄) or Miller-Rabin (see [165℄) and testing the equivalen
e ofmultivariate polynomials and some examples of Las Vegas algorithms are 
omputing square roots modulo aprime p, 
omputing square roots modulo a 
omposite n (if the fa
tors of n are known) and primality testsbased on ellipti
 
urves (see [4℄ or [96℄).B.2.3 Non-Uniform Polynomial TimeAn important 
on
ept is that of polynomial time algorithms whi
h 
an behave di�erently for inputs ofdi�erent size, and may even be polynomial in the size of the input (rather than 
onstant as in the traditionalde�nition of a Turing ma
hine).De�nition B.2 A non-uniform algorithm A is an in�nite sequen
e of algorithms fMig (one for ea
h inputsize i) su
h that on input x, Mjxj(x) is run. We say that A(x) a

epts if and only if Mjxj(x) a

epts. Wesay that A is a polynomial time non-uniform algorithm if there exist polynomials P and Q su
h that Mjxj(x)terminates within P (jxj) steps and the size of the des
ription of Mi (a

ording to some standard en
odingof all algorithms ) is bounded by Q(jij).De�nition B.3 We say that a language L is in P=poly if 9 a polynomial time non-uniform algorithmA = fMig su
h that x 2 L i� Mjxj(x) a

epts.There are several relationships known about P=poly. It is 
lear that P � P=poly and it has been shown byAdleman that BPP � P=poly.We will use the term `eÆ
ient non-uniform algorithm' to refer to a non-uniform polynomial time algorithmand the term `eÆ
iently non-uniform 
omputable' to refer to languages in the 
lass P=poly.
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ture Notes 247B.3 AdversariesWe will model the 
omputational power of the adversary in two ways. The �rst is the (uniform) adversary(we will usually drop the \uniform" when referring to it). A uniform adversary is any polynomial timeprobabilisti
 algorithm. A non-uniform adversary is any non-uniform polynomial time algorithm. Thus,the adversary 
an use di�erent algorithms for di�erent sized inputs. Clearly, the non-uniform adversary isstronger than the uniform one. Thus to prove that \something" is \se
ure" even in presen
e of a non-uniformadversary is a better result than only proving it is se
ure in presen
e of a uniform adversary.B.3.1 Assumptions To Be MadeThe weakest assumption that must be made for 
ryptography in the presen
e of a uniform adversary is thatP 6= NP. Namely, 9L 2 NP su
h that L 62 P. Unfortunately, this is not enough as we assumed that ouradversaries 
an use probabilisti
 polynomial time algorithms. So we further assume that BPP 6= NP. Is thatsuÆ
ient? Well, we a
tually need that it would be hard for an adversary to 
ra
k our systems most of thetime. It is not suÆ
ient that our adversary 
an not 
ra
k the system on
e in a while. Assuming that BPP 6=NP only means that there exists a language in L 2 NP su
h that every uniform adversary makes (with highprobability) the wrong de
ision about in�nitely many inputs x when de
iding whether x 2 L. These wrongde
isions, although in�nite in number, may o

ur very infrequently (su
h as on
e for ea
h input size).We thus need yet a stronger assumption whi
h will guarantee the following. There exists a language L 2NP su
h that for every suÆ
iently large input size n, every uniform adversary makes (with high probability)the wrong de
ision on many inputs x of length n when de
iding whether x is in L. Moreover, we want itto be possible, for every input size n, to generate input x of length n su
h that with high probability everyuniform adversary will make the wrong de
ision on x.The assumption that will guarantee the above is the existen
e of (uniform) one way fun
tions. The assump-tion that would guarantee the above in the presen
e of non-uniform adversary is the existen
e non-uniformone way fun
tions. For de�nitions, properties, and possible examples of one-way fun
tions see Chapter 2.B.4 Some Inequalities From Probability TheoryProposition B.4 [Markov's Inequality℄ If Z is a random variable that takes only non-negative values, thenfor any value a > 0, Pr[Z � a℄ � E[Z℄a .Proposition B.5 [Weak Law of Large Numbers℄ Let z1; : : : ; zn be independent 0-1 random variables (Bernoullirandom variables) with mean �. Then Pr[jPni=1 zin � �j < �℄ > 1� Æ provided that n > 14�2Æ .



C h a p t e r CSome number theory ba
kground

Many important 
onstru
tions of 
ryptographi
 primitives are based on problems from number theory whi
hseem to be 
omputationally intra
table. The most well-known of these problems is that of fa
toring 
ompositeintegers. In order to work with these problems, we need to develop some basi
 materiel on number theoryand number theoreti
 algorithms. A

ordingly, we provide here a mini-
ourse on this subje
t. The materielhere will be used later when we dis
uss 
andidate example one-way and trapdoor fun
tions.There are many sour
es for information on number theory in the literatures. For example try Angluin'snotes [7℄ and Chapter 33 of Cormen, Leiserson and Rivest [59℄.C.1 Groups: Basi
sA group is a set G together with some operation, whi
h we denote �. It takes pairs of elements to anotherelement, namely a � b is the result of � applied to a; b. A group has the following properties:(1) If a; b 2 G so is a � b(2) The operation is asso
iative: (a � b) � 
 = a � (b � 
)(3) There is an identity element I su
h that I � a = a � I = a for all a 2 G(4) Every a 2 G has an inverse, denoted a�1, su
h that a � a�1 = a�1 � a = I .We will en
ounter this kind of stru
ture a lot. First re
all Z;N and R. Now, for example:Integers under addition: I = 0; a�1 = �a.Real numbers under multipli
ation: I = 1; a�1 = 1=a.What about N under addition? Not a group!What about Z under multipli
ation? Not a group!Notation: am is a multiplied by itself m times. Et
. Namely, notation is what you expe
t. What is a�m?It is (a�1)m. Note that it \works" like it should.These groups are all in�nite. We are usually interested in �nite ones. In su
h a 
ase:Def: We 
all jGj the order of G. 248
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ture Notes 249Fa
t C.1 Let m = jGj. Then am = I for any a 2 G.We will use this later.a � b (mod n) means that if we divide a by n then the remainder is b. (In C, this is a%n = b).An important set is the set of integers modulo an integer n. This is Zn = f0; : : : ; n� 1g. We will see it is agroup under addition modulo n. Another related important set is Z�n = fm : 1 � m � n and g
d(m;n) = 1g,the set of integers less than n whi
h are relatively prime to n. We will see this is a group under multipli
ationmodulo n. We let �(n) = jZ�nj. This is the Euler totient fun
tion.A subset S � G is 
alled a sub-group if it is a group in its own right, under the operation making G a group.In parti
ular if x; y 2 S so is xy and x�1, and 1 2 S.Fa
t C.2 Suppose S is a subgroup of G. Then jSj divides jGj.C.2 Arithmati
 of numbers: +, *, GCDComplexity of algorithms operating of a number a is measured in terms of the size (length) of a, whi
h isjaj � lg(a). How long do basi
 operations take? In terms of the number of bits k in the number:Addition is linear time. Ie. two k-bit numbers 
an be added in O(k) time.Multipli
ation of a and b takes O(jaj � jbj) bit operations. Namely it is an O(k2) algorithm.Division of a by b (integer division: we get ba
k the quotient and remainder) takes time O((1 + jqj)jbj)where q is the quotient obtained. Thus this too is a quadrati
 time algorithm.Eu
lid's algorithm 
an be used to 
ompute GCDs in polynomial time. The way it works is to repeatedly usethe identity g
d(a; b) = g
d(b; a mod b). For examples, see page 10 of [7℄.What is the running time? Ea
h division stage takes quadrati
 time and we have k stages, whi
h would sayit is a O(k3) algorithm. But see Problem 33-2, page 850, of [59℄. This yields the following:Theorem C.3 Eu
lid's algorithm 
an be implemented to use only O(jaj � jbj) bit operations to 
omputeg
d(a; b). That is, for k-bit numbers we get a O(k2) algorithm.Fa
t C.4 g
d(a; b) = 1 if and only if there exist integers u; v su
h that 1 = au+ bv.The Extended Eu
lid Algorithm is given a; b and it returns not only d = g
d(a; b) but integers u; v su
h thatd = au+ bv. It is very similar to Eu
lid's algorithm. We 
an keep tra
k of some extra information at ea
hstep. See page 11 of [7℄.C.3 Modular operations and groupsC.3.1 Simple operationsNow we go to modular operations, whi
h are the main ones we are interested inAddition is now the following: Given a; b; n with a; b 2 Zn 
ompute a + b mod n. This is still lineartime. Ie. two k-bit numbers 
an be added in O(k) time. Why? You 
an't go mu
h over N . If you do,just subtra
t n. That too is linear time.Taking a mod n means divide a by n and take remainder. Thus, it takes quadrati
 time.



250 Goldwasser and BellareMultipli
ation of a and b modulo n: First multiply them, whi
h takes O(jaj � jbj) bit operations. Thendivide by n and take the remainder. We saw latter too was quadrati
. So the whole thing is quadrati
.Zn is a group under addition modulo N . This means you 
an add two elements and get ba
k an element ofthe set, and also subtra
tion is possible. Under addition, things work like you expe
t.We now move to Z�n. We are interested in the multipli
ation operation here. We want to see that it is agroup, in the sense that you 
an multiply and divide. We already saw how to multiply.Theorem C.5 There is a O(k2) algorithm whi
h given a; n with a 2 Z�n outputs b 2 Z�n satisfying ab � 1(mod n), where k = jnj.See page 12 of [7℄. The algorithms uses the extended Eu
lid. We know that 1 = g
d(a; n). Hen
e it 
an�nd integers u; v su
h that 1 = au + nv. Take this modulo n and we get au � 1 (mod n). So 
an setb = u mod n. Why is this an element of Z�n? Claim that g
d(u; n) = 1. Why? By Fa
t C.4, whi
h says that1 = au+ nv means g
d(u; n) = 1.The b found in the theorem 
an be shown to be unique. Hen
e:Notation: The b found in the theorem is denoted a�1.C.3.2 The main groups: Zn and Z�nTheorem C.6 For any positive integer n, Z�n forms a group under multipli
ation modulo n.This means that a; b 2 Z�n implies ab mod n is in Z�n, something one 
an verify without too mu
h diÆ
ulty.It also means we 
an multiply and divide. We have an identity (namely 1) and a 
an
ellation law.Notation: We typi
ally stop writing modn everywere real qui
k. It should just be understood.The way to think about Z�n is like the real numbers. You 
an manipulate things like you are used to. Thefollowing is a 
orollary of Fa
t C.1.Theorem C.7 For any a 2 Z�n it is the 
ase that a�(n) = 1.Corollary C.8 (Fermat's little theorem) If p is prime then ap�1 � 1 (mod p) for any a 2 f1; : : : ; p� 1g.Why? Be
ause �(p) = p� 1.C.3.3 ExponentiationThis is the most basi
 operation for publi
 key 
ryptography. The operation is just that given a; n;m wherea 2 Zn and m is an integer, 
omputes am mod n.Example C.9 Compute 221 mod 22. Naive way: use 21 multipli
ations. What's the problem with this? Itis an exponential time algorithm. Be
ause we want time poly(k) where k = jnj. So we do it by repeatedsquaring: 21 � 222 � 424 � 1628 � 14216 � 20
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ture Notes 251Now 221 = 216+4+1 = 216 � 24 � 21 = 20 � 16 � 2 � 10 mod 21.This is the repeated squaring algorithm for exponentiation. It takes 
ubi
 time.Theorem C.10 There is an algorithm whi
h given a; n;m with a;m 2 Zn outputs am mod n in time O(k3)where k = jnj. More pre
isely, the algorithm uses at most 2k modular multipli
ations of k-bit numbers.Algorithm looks at binary expansion of m. In example above we have 21 = 10101. What we did is 
olle
tall the powers of two 
orresponding to the ones and multiply them.4 3 2 1 0a16 a8 a4 a2 a11 0 1 0 1Exponentiate(a; n;m)Let bk�1:::b1b0 be the binary representation of mLet x0 = aLet y = 1For i = 0; : : : ; k � 1 doIf bi = 1 let y = y � xi mod nLet xi+1 = x2i mod nOutput yC.4 Chinese remaindersLet m = m1m2. Suppose y 2 Zm. Consider the numbersa1 = y mod m1 2 Zm1a2 = y mod m2 2 Zm2The 
hinese remainder theorem 
onsiders the question of re
ombining a1; a2 ba
k to get y. It says there isa unique way to do this under some 
onditions, and under these 
onditions says how.Example C.11 m = 6 = 3 � 2 0! (0; 0)1! (1; 1)2! (2; 0)3! (0; 1)4! (1; 0)5! (2; 1)Example C.12 m = 4 = 2 � 2 0! (0; 0)1! (1; 1)2! (0; 0)3! (1; 1)The di�eren
e here is that in the �rst example, the asso
iation is unique, in the se
ond it is not. It turnsout uniqueness happens when the m1;m2 are relatively prime. Here is a simple form of the theorem.



252 Goldwasser and BellareTheorem C.13 [Chinese Remainder Theorem℄ Let m1;m2; : : : ;mk be pairwise relatively prime integers.That is, g
d(mi;mj) = 1 for 1 � i < j � k. Let ai 2 Zmi for 1 � i � k and set m = m1m2 � � �mk. Thenthere exists a unique y 2 Zm su
h that y � ai mod mi for i = 1 : : : k. Furthermore there is an O(k2) timealgorithm to 
ompute y given a1; a2;m1;m2, where k = max(jm1j; jm2j).Proof: For ea
h i, let ni = � mmi� 2 Z. By hypothesis, g
d(mi; ni) = 1 and hen
e 9bi 2 Zmi su
h thatnibi � 1 mod mi. Let 
i = bini. Then 
i = � 1 mod mi0 mod mj for j 6= i .Set y = kXi=1 
iai mod m. Then y � ai mod mi for ea
h i.Further, if y0 � ai mod mi for ea
h i then y0 � y mod mi for ea
h i and sin
e the mi's are pairwise relativelyprime it follows that y � y0 mod m, proving uniqueness.Remark C.14 The integers 
i appearing in the above proof will be referred to as the Chinese RemainderTheorem 
oeÆ
ients. Note that the proof yields a polynomial time algorithm for �nding y be
ause theelements bi 2 Zmi 
an be determined by using the Eu
lidean algorithm and the only other operationsinvolved are division, multipli
ation, and addition.A more general form of the Chinese Remainder Theorem is the following result.Theorem C.15 Let ai 2 Zmi for 1 � i � k. A ne
essary and suÆ
ient 
ondition that the system of
ongruen
es x � ai mod mi for 1 � i � k be solvable is that g
d(mi;mj)j(ai � aj) for 1 � i < j � k. If asolution exists then it is unique modulo l
m(m1;m2; : : : ;mk).Solution Of The Quadrati
 Congruen
e a � x2 mod n When a 2 Zn.First observe that for p an odd prime and a 2 Z�p2 so that a � x2 mod p for some x 2 Z�p there are exa
tly twosolutions to a � x2 mod p be
ause x and �x are two distin
t solutions modulo p and if y2 � a � x2 mod pthen pj[(x � y)(x + y)℄ =) pj(x � y) or pj(x + y) so that y � �x mod p. (Note that x 6� �x mod p forotherwise, 2x � 0 mod p) pjx as p is odd.) Thus, for a 2 Z�p, a � x2 mod p has either 0 or 2 solutions.Next 
onsider the 
ongruen
e a � x2 mod p1p2 where p1 and p2 are distin
t odd primes. This has a solutionif and only if both a � x2 mod p1 and a � x2 mod p2 have solutions. Note that for ea
h pair (x1; x2) su
hthat a � x21 mod p1 and a � x22 mod p2 we 
an 
ombine x1 and x2 by using the Chinese Remainder Theoremto produ
e a solution y to a � x2 mod p1p2 su
h that y � x1 mod p1 and y � x2 mod p2. Hen
e, the
ongruen
e a � x2 mod p1p2 has either 0 or 4 solutions.More generally, if p1; p2; : : : ; pk are distin
t odd primes then the 
ongruen
e a � x2 mod p�11 p�22 : : : p�kk haseither 0 or 2k solutions. Again, these solutions 
an be found by applying the Chinese Remainder Theoremto solutions of a � x2 mod p�ii . Furthermore, for a prime p a solution to the 
ongruen
e a � x2 mod pk 
anbe found by �rst �nding a solution x0 to a � x2 mod p by using algorithm A of Lemma 2.39 and viewingit as an approximation of the desired square root. Then the approximation is improved by the iterationxj � 12 (xj�1 + axj�1 ) mod p2j for j � 1.Claim C.16 For ea
h integer j � 0, a � x2j mod p2j . Proof: The 
laim is 
ertainly true for j = 0. Supposethat for j > 0, a � x2j mod p2j .Then xj � ax�1j � 0 mod p2j ) (xj � ax�1j )2 � 0 mod p2j+1 .
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ture Notes 253Expanding and adding 4a to both sides gives x2j+2a+a2x�2j � 4a mod p2j+1 and therefore, �12 (xj + axj )�2 �a mod p2j+1 or x2j+1 � a mod p2j+1 .Hen
e, the 
laim follows by indu
tion.From the 
laim, it follows that after dlog ke iterations we will obtain a solution to a � x2 mod pk.C.5 Primitive elements and Z�pC.5.1 De�nitionsLet G be a group. Let a 2 G. Look at the powers of a, namely a0; a1; a2; : : : ;. We lethai = f ai : i � 0 g :Let m = jGj be the order of G. We know that a0 is the identity, 
all it 1, and am = 1 also. So the sequen
erepeats after m steps, ie. am+1 = a, et
. But it 
ould repeat before too. Let's look at an example.Example C.17 Z�9 = f1; 2; 4; 5; 7; 8g. Size �(9) = 6. Then:h1i = f1gh2i = f1; 2; 4; 8; 7; 5gh4i = f1; 4; 7gh5i = f1; 5; 7; 8; 4; 2gWhat we see is that sometimes we get everything, sometimes we don't. It might wrap around early.Fa
t C.18 hai is a subgroup of G, 
alled the subgroup generated by a.Let t = jhaij. Then we know that t divides m. And we know that in fa
t hai = fa0; a1; : : : ; at�1g. That is,these are the distin
t elements. All others are repeats.De�nition C.19 The order of an element a is the least positive integer t su
h that at = 1. That is,order(a) = jhaij.Computation in the indi
es 
an be done modulo t. That is, ai = ai mod t. This is be
ause at = a0 = 1.What's the inverse of ai? Think what it \should" be: a�i. Does this make sense? Well, think of it as (a�1)i.This is 
orre
t. On the other hand, what is it as member of the subgroup? It must be aj for some j. Wellj = t� i. In parti
ular, inverses are pretty easy to 
ompute if you are given the index.Similarly, like for real numbers, multipli
ation in the base 
orresponds to addition in the exponent. Namelyai+j = ai � aj . Et
.De�nition C.20 An element g 2 G is said to be a primitive element, or generator, of G if the powers of ggenerate G. That is, hgi = G is the whole group G. A group G is 
alled 
y
li
 if it has a primitive element.Note this means that for any y 2 G there is a unique i 2 f0; : : : ;m� 1g su
h that gi = y, where m = jGj.Notation: This unique i is denoted logg(y) and 
alled the dis
rete logarithm of x to base g.



254 Goldwasser and BellareConsider the following problem. Given g; y, �gure out logg(y). How 
ould we do it? One way is to gothrough all i = 0; : : : ;m � 1 and for ea
h i 
ompute gi and 
he
k whether gi = y. But this pro
ess takesexponential time.It turns out that 
omputing dis
rete logarithms is hard for many groups. Namely, there is no knownpolynomial time algorithm. In parti
ular it is true for Z�p where p is a prime.C.5.2 The group Z�pFa
t C.21 [7, Se
tion 9℄ The group Z�p is 
y
li
.Remark C.22 What is the order of Z�p? It is �(p), the number of positive integers below p whi
h arerelatively prime to p. Sin
e p is prime this is p� 1. Note the order is not prime! In parti
ular, it is even (forp � 3).A one-way fun
tion: Let p be prime and let g 2 Z�p be a generator. Then the fun
tion fp;g: Zp ! Z�p de�nedby x 7! gxis 
onje
tured to be one-way as long as some te
hni
al 
onditions hold on p. That is, there is no eÆ
ientalgorithm to invert it, for large enough values of the parameters. See Chapter 2.Homomorphi
 properties: A useful property of the fun
tion fp;g is that ga+b = ga � gb.Now, how 
an we use this fun
tion? Well, �rst we have to set it up. This requires two things. First that we
an �nd primes; se
ond that we 
an �nd generators.C.5.3 Finding generatorsWe begin with the se
ond. We have to look inside Z�p and �nd a generator. How? Even if we have a
andidate, how do we test it? The 
ondition is that hgi = G whi
h would take jGj steps to 
he
k.In fa
t, �nding a generator given p is in general a hard problem. In fa
t even 
he
king that g is a generatorgiven p; g is a hard problem. But what we 
an exploit is that p = 2q + 1 with q prime. Note that the orderof the group Z�p is p� 1 = 2q.Fa
t C.23 Say p = 2q + 1 is prime where q is prime. Then g 2 Z�p is a generator of Z�p i� gq 6= 1 andg2 6= 1.In other words, testing whether g is a generator is easy given q. Now, given p = 2q + 1, how do we �nd agenerator?Fa
t C.24 If g is a generator and i is not divisible by q or 2 then gi is a generator.Proof: giq = gq+(i�1)q = gq � (g2q)(i�1)=2 = gq � 1 = gq whi
h is not 1 be
ause g is not a generator. Similarlylet i = r + jq and we have g2i = g2r � g2jq = g2r. But 2r < 2q sin
e r < q so g2r 6= 1.So how many generators are there in Z�p? All things of form gi with i not divisible by 2 or q and i = 1; : : : ; 2q.Namely all i in Z�2q. So there are �(2q) = q � 1 of them.So how do we �nd a generator? Pi
k g 2 Z�p at random, and 
he
k that gq 6= 1 and g2 6= 1. If it fails, tryagain, up to some number of times. What's the probability of failure? In one try it is (q+1)=2q so in l triesit is �q + 12q �lwhi
h is rougly 2�l be
ause q is very large.
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ture Notes 255C.6 Quadrati
 residuesAn element x 2 Z�N is a square, or quadrati
 residue, if it has a square root, namely there is a y 2 Z�N su
hthat y2 � x mod N . If not, it is a non-square or non-quadrati
-residue. Note a number may have lots ofsquare roots.It is easy to 
ompute square roots modulo a prime. It is also easy modulo a 
omposite whose primefa
torization you know, via Chinese remainders. (In both 
ases, you 
an 
ompute all the roots.) But it ishard modulo a 
omposite of unknown fa
torization. In fa
t 
omputing square roots is equivalent to fa
toring.Also, it is hard to de
ide quadrati
 residuosity modulo a 
omposite.Fa
t C.25 If N is the produ
t of two primes, every square w 2 Z�N has exa
tly four square roots, x;�x andy;�y for some x; y 2 Z�N . If you have two square roots x; y su
h that x 6= �y, then you 
an easily fa
tor N .The �rst fa
t is basi
 number theory. The se
ond is seen like this. Say x > y are the roots. Considerx2 � y2 = (x � y)(x + y) � 0 mod N . Let a = x � y and b = x + y mod N . So N divides ab. So p dividesab. Sin
e p is prime, this means either p divides a or p divides b. Sin
e 1 � a; b < N this means eitherg
d(a;N) = p or g
d(b;N) = p. We 
an 
ompute the g
ds and 
he
k whether we get a divisor of N .C.7 Ja
obi SymbolWe previously de�ned the Legendre symbol to indi
ate the quadrati
 
hara
ter of a 2 Z�p where p is a prime.Spe
i�
ally, for a prime p and a 2 ZpJp(a) = 8<: 1 if a is a square in Z�p0 if a = 0�1 if a is not a square in Z�pFor 
omposite integers, this de�nition is extended, as follows, giving the Ja
obi Symbol. Let n = Qki=1 pi�ibe the prime fa
torization of n. For a 2 Zn de�neJn(a) = kYi=1Jpi(a)�i :However, the Ja
obi Symbol does not generalize the Legendre Symbol in the respe
t of indi
ating thequadrati
 
hara
ter of a 2 Z�n when n is 
omposite. For example, J9(2) = J3(2)J3(2) = 1, although theequation x2 � 2 mod 9 has no solution.The Ja
obi Symbol also satis�es identities similar to those satis�ed by the Legendre Symbol. We list thesehere. For proofs of these refer to [150℄.1. If a � b mod n then Jn(a) = Jn(b).2. Jn(1) = 1.3. Jn(�1) = (�1)n�12 .4. Jn(ab) = Jn(a)Jn(b).5. Jn(2) = (�1)n2�18 .6. If m and n are relatively prime odd integers then Jn(m) = (�1)n�12 m�12 Jm(n).



256 Goldwasser and BellareUsing these identities, the Ja
obi Symbol Jn(a) where a 2 Zn 
an be 
al
ulated in polynomial time evenwithout knowing the fa
torization of n. Re
all that to 
al
ulate the Legendre Symbol in polynomial timewe 
an 
all upon Euler's Theorem; namely, for a 2 Z�p, where p is prime, we have Jp(a) � a p�12 mod p.However, for a 
omposite integer n it is not ne
essarily true that Jn(a) � an�12 mod n for a 2 Z�n. In fa
t,this statement is true for at most half of the elements in Z�n. From this result, we 
an derive a Monte Carloprimality test as we shall see later.C.8 RSAHere we have a 
omposite modulus N = pq produ
t of two distin
t primes p and q of roughly equal length.Let k = jN j; this is about 1024, say. It is generally believed that su
h a number is hard to fa
tor.Re
all that �(N) = jZ�N j is the Euler Phi fun
tion. Note that �(N) = (p� 1)(q� 1). (To be relatively primeto N , a number must be divisible neither by p nor by q. Eliminating multiples of either yields this. Note weuse here that p 6= q.)Now let e be su
h that g
d(e; �(N)) = 1. That is, e 2 Z��(N). The RSA fun
tion is de�ned byf : Z�N ! Z�Nx 7! xe mod N :We know that Z��(N) is a group. So e has an inverse d 2 Z��(N). Sin
e d is an inverse of e it satis�esed � 1 (mod �(N))Now let x 2 Z�N be arbitrary and look at the following 
omputation:(xe)d mod N = xed mod �(N) mod N = x1 mod N = x :In other words, the fun
tion y 7! yd is an inverse of f . That is, f�1(y) = yd mod N .Can we �nd d? Easy: 
omputing inverses 
an be done in quadrati
 time, as we already say, using theextended GCD algorithm! But note a 
ru
ial thing. We are working modulo �(N). So �nding d this wayrequires that we know �(N). But the latter involves knowing p; q.It seems to be the 
ase that given only N and e it is hard to �nd d. Certainly we agreed it is hard to �ndp; q; but even more, it seems hard to �nd d. This yields the 
onje
ture that RSA de�nes a trapdoor one-waypermutation. Namely given N; e de�ning f , x 7! f(x) is easy; y 7! f�1(y) is hard; but f�1 is easy given p; q(or d). Note that this trapdoorness is a property the dis
rete logarithm problem did not have.Computation of f is 
alled en
ryption, and 
omputation of f�1 is 
alled de
ryption.Both en
ryption and de
ryption are exponentiations, whi
h a priori are 
ubi
 in k time operations. However,one often 
hooses e to be small, so en
ryption is faster. In hardware, RSA is about 1000 times slower thanDES; in software it is about 100 times slower, this with small en
ryption exponent.Formally, RSA de�nes a family of trapdoor permutations. The family is indexed by a se
urity parameter kwhi
h is the size of the modulus. The RSA generator is an algorithm G whi
h on input 1k pi
ks two distin
t,random (k=2)-bit primes p; q, multiplies them to produ
e N = pq, and also 
omputes e; d. It outputs N; eas the des
ription of f and N; d as the des
ription of f�1. See Chapter 2.RSA provides the ability to do publi
 key 
ryptography.C.9 Primality TestingFor many 
ryptographi
 purposes, We need to �nd primes. There is no known polynomial time algorithmto test primality of a given integer n. What we use are probabilisti
, polynomial time (PPT) algorithms.
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ture Notes 257We will �rst show that the problem of de
iding whether an integer is prime is in NP. Then we will dis
uss theSolovay-Strassen and Miller-Rabin probabilisti
 primality tests whi
h eÆ
iently �nd proofs of 
ompositeness.Finally, we will give a primality test due to Goldwasser and Kilian whi
h uses ellipti
 
urves and whi
heÆ
iently �nds a proof of primality.C.9.1 PRIMES 2 NPWe will �rst present two algorithms for testing primality, both of whi
h are ineÆ
ient be
ause they requirefa
toring as a subroutine. However, either algorithm 
an be used to show that the problem of de
idingwhether an integer is prime is in NP. In fa
t, the se
ond algorithm that is presented further demonstratesthat de
iding primality is in UP\
oUP. Here UP denotes the 
lass of languages L a

epted by a polynomialtime nondeterministi
 Turing ma
hine having a unique a

epting path for ea
h x 2 L.De�nition C.26 Let PRIMES = fp : p is a prime integerg.C.9.2 Pratt's Primality TestPratt's primality testing algorithm is based on the following result.Proposition C.27 For an integer n > 1, the following statements are equivalent.1. jZ�nj = n� 1.2. The integer n is prime.3. There is an element g 2 Z�n su
h that gn�1 � 1 mod n and for every prime divisor q of n � 1,g n�1q 6� 1 mod n.Pratt's algorithm runs as follows on input a prime p and outputs a proof (or 
erti�
ate) that p is indeedprime.1. Find an element g 2 Z�p whose order is p� 1.2. Determine the prime fa
torization kYi=1 q�ii of p� 1.3. Prove that p is prime by proving that g is a generator of Z�p. Spe
i�
ally, 
he
k that gp�1 � 1 mod pand for ea
h prime qi 
he
k that g p�1qi 6� 1 mod p.4. Re
ursively show that qi is prime for 1 � i � k.Note that if p is a prime, then Z�p has '(p � 1) = 
( plog log p ) generators (see [172℄). Thus, in order to�nd a generator g by simply 
hoosing elements of Z�p at random, we expe
t to have to 
hoose O(log log p)
andidates for g. If we �nd a generator g of Z�p and if we 
an fa
tor p�1 and re
ursively prove that the primefa
tors of p � 1 are indeed primes then we have obtained a proof of the primality of p. Unfortunately, it isnot known how to eÆ
iently fa
tor p�1 for general p. Pratt's primality testing algorithm does demonstrate,however, that PRIMES 2 NP be
ause both the generator g in step 1 and the required fa
torization in step 2
an be guessed. Moreover, the fa
t that the fa
torization is 
orre
t 
an be veri�ed in polynomial time andthe primality of ea
h qi 
an be veri�ed re
ursively by the algorithm. Note also, as Pratt showed in [161℄ bya simple indu
tive argument, that the total number of primes involved is O(log p). Thus, verifying a Pratt
erti�
ate requires O(log2 p) modular multipli
ations with moduli at most p.



258 Goldwasser and BellareC.9.3 Probabilisti
 Primality TestsC.9.4 Solovay-Strassen Primality TestWe 
an derive a Monte Carlo primality test. This algorithm, whi
h we state next, is due to Solovay andStrassen (see [191℄).The Solovay-Strassen primality test runs as follows on input an odd integer n and an integer k, indi
atingthe desired reliability.1. Test if n = be for integers b; e > 1; if so, output 
omposite and terminate.2. Randomly 
hoose a1; a2; : : : ; ak 2 f1; 2; : : : ; n� 1g.3. If g
d(ai; n) 6= 1 for any 1 � i � k then output 
omposite and terminate.4. Cal
ulate �i = an�12i mod n and �i = Jn(ai).5. If for any 1 � i � k, �i 6= �i mod n then output 
omposite. If for all 1 � i � k, �i = �i mod n thenoutput probably prime.Sin
e the 
al
ulations involved in the Solovay-Strassen primality test are all polynomial time 
omputable(verify that this statement is indeed true for step 1), it is 
lear that the algorithm runs in time polynomialin logn and k. The following result guarantees that if n is 
omposite then in step 5 of the algorithm,Pr[�i = �i mod n℄ � 12 and thus, Pr[�i = �i mod n for 1 � i � k℄ � � 12�k.Proposition C.28 Let n be an odd 
omposite integer whi
h is not a perfe
t square and letG = fa 2 Z�n su
h that Jn(a) � an�12 mod ng. Then jGj � 12 jZ�nj.Proof: Sin
e G is a subgroup of Z�n it suÆ
es to show that G 6= Z�n.Sin
e n is 
omposite and not a perfe
t square, it has a nontrivial fa
torization n = rp� where p is prime, �is odd, and g
d(r; p) = 1.Suppose that an�12 � Jn(a) mod n for all a 2 Z�n. Thenan�12 � �1 mod n for all a 2 Z�n: (C.1)We �rst show that in fa
t an�12 � 1 mod n for all su
h a. If not, then there is an a 2 Z�n with an�12 ��1 mod n. By the Chinese Remainder Theorem there is a unique element b 2 Zn su
h that b � 1 mod rand b � a mod p�. Then b 2 Z�n and bn�12 � 1 mod r and bn�12 � �1 mod p� 
ontradi
ting equation (C:1).Therefore, Jn(a) = 1 for all a 2 Z�n.However, by the Chinese Remainder Theorem, there is a unique element a 2 Zrp su
h that a � 1 mod rand a � z mod p where z is one of the p�12 quadrati
 nonresidues modulo p. Then a 2 Z�n and thus,Jn(a) = Jr(1)Jp(z)� = �1 be
ause � is odd. This is a 
ontradi
tion.Note that if we rea
h step 5 of the Solovay-Strassen algorithm then n is not a perfe
t square and ea
hai 2 Z�n be
ause the algorithm 
he
ks for perfe
t powers in step 1 and 
omputes g
d(ai; n) in step 3. Thus,the hypotheses of Proposition C.28 are satis�ed and for ea
h 1 � i � k, Pr[�i = �i mod n℄ � 12 .Remark The assertion in Proposition C.28 is in fa
t true even if n is a perfe
t square. The proof of themore general statement is very similar to the proof of Proposition C.28. For details refer to [7℄.
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ture Notes 259Finally, it follows from Proposition C.28 that the Solovay-Strassen algorithm runs 
orre
tly with high prob-ability. Spe
i�
ally,Pr[Solovay-Strassen outputs probably prime j n is 
omposite℄ � (12)kand Pr[Solovay-Strassen outputs probably prime j n is prime℄ = 1:C.9.5 Miller-Rabin Primality TestFermat's Little Theorem states that for a prime p and a 2 Z�p, ap�1 � 1 mod p. This suggests that perhapsa possible way to test if n is prime might be to 
he
k, for instan
e, if 2n�1 � 1 mod n. Unfortunately,there are 
omposite integers n (
alled base-2 pseudoprimes) for whi
h 2n�1 � 1 mod n. For example,2340 � 1 mod 341 and yet 341 = 11 �31. In fa
t, repla
ing 2 in the above exponentiation by a random a 2 Z�nwould not help for some values of n be
ause there are 
omposite integers n (
alled Carmi
hael numbers) forwhi
h an�1 � 1 mod n for all a 2 Z�n. 561, 1105, and 1729 are the �rst three Carmi
hael numbers.The Miller-Rabin primality test over
omes the problems of the simple suggestions just mentioned by 
hoosingseveral random a 2 Z�n for whi
h an�1 mod n will be 
al
ulated by repeated squaring. While 
omputingea
h modular exponentiation, it 
he
ks whether some power of a is a nontrivial square root of 1 modulo n(that is, a root of 1 not 
ongruent to �1 modulo n). If so, the algorithm has determined n to be 
omposite.The quality of this test relies on Proposition C.30 whi
h Rabin proved in [165℄. For a simpler proof whi
honly yields jfb : Wn(b) holds gj � 12 (n�1) (but is nevertheless suÆ
ient for the purposes of the Miller-Rabinalgorithm) see Chapter 33, pages 842-843 of [59℄.De�nition C.29 Let n be an odd positive integer. Denote the following 
ondition on an integer b by Wn(b):1. 1 � b < n and2. (i) bn�1 6� 1 mod n or(ii) there is an integer i su
h that 2i j (n� 1) and b(n�1)=2i 6� �1 mod n but �b(n�1)=2i�2 � 1 mod n.An integer b for whi
h Wn(b) holds will be 
alled a witness to the 
ompositeness of n.Remark Rabin originally de�ned the 
ondition Wn(b) to hold if 1 � b < n and either bn�1 6� 1 mod nor for some integer i su
h that 2i j (n � 1), 1 < g
d(b(n�1)=2i � 1; n) < n. In [165℄ Rabin proves that thetwo de�nitions for Wn(b) are equivalent. This 
ondition was in fa
t �rst 
onsidered by Miller (see [142℄),who used it to give a nonprobabilisti
 test for primality assuming the 
orre
tness of the extended Riemannhypothesis. Rabin's results, however, do not require any unproven assumptions.Proposition C.30 If n is an odd 
omposite integer then jfb : Wn(b) holdsgj � 34 (n� 1).The Miller-Rabin algorithm runs as follows on input an odd integer n and an integer k, indi
ating the desiredreliability.1. Randomly 
hoose b1; b2; : : : ; bk 2 f1; 2; : : : ; n� 1g.2. Let n� 1 = 2lm where m is odd.3. For 1 � i � k 
ompute bmi mod n by repeated squaring.4. Compute b2jmi mod n for j = 1; 2; : : : ; l. If for some j, b2j�1mi 6� �1 mod n but b2jmi � 1 mod n thenWn(bi) holds.



260 Goldwasser and Bellare5. If bn�1i 6� 1 mod n then Wn(bi) holds.6. If for any 1 � i � k, Wn(bi) holds then output 
omposite. If for all 1 � i � k, Wn(bi) does not holdthen output probably prime.Proposition C.30 shows that the Miller-Rabin algorithm runs 
orre
tly with high probability. Spe
i�
ally,Pr[Miller-Rabin outputs probably prime j n is 
omposite℄ � (14)kand Pr[Miller-Rabin outputs probably prime j n is prime℄ = 1:Furthermore, Miller-Rabin runs in time polynomial in logn and k as all the 
omputations involved 
an beperformed in polynomial time.C.9.6 Polynomial Time Proofs Of PrimalityEa
h of the two algorithms dis
ussed in the previous se
tion su�ers from the de�
ien
y that whenever thealgorithm indi
ates that the input n is prime, then it is prime with high probability, but no 
ertainty isprovided. (In other words, the algorithms are Monte Carlo algorithms for testing primality.) However, wheneither algorithm outputs that the input n is 
omposite then it has determined that n is indeed 
omposite.Thus, the Solovay-Strassen and Miller-Rabin algorithms 
an be viewed as 
ompositeness provers. In thisse
tion we will dis
uss a primality test whi
h yields in expe
ted polynomial time a short (veri�able indeterministi
 polynomial time) proof that a prime input is indeed prime. Therefore, for a general integralinput we 
an run su
h a primality prover in parallel with a 
ompositeness prover and one of the two willeventually terminate either yielding a proof that the input is prime or a proof that the input is 
omposite.This will provide us with a Las Vegas algorithm for determining whether an integer is prime or 
omposite.C.9.7 An Algorithm Whi
h Works For Some PrimesSuppose that we 
ould �nd a prime divisor q of p� 1 su
h that q > pp. Then the following algorithm 
anbe used to prove the primality of p.1. Determine a prime divisor q of p� 1 for whi
h q > pp.2. Randomly 
hoose a 2 Z�p � f1g.3. If 1 < g
d(a� 1; p) < p then output that p is 
omposite.4. Che
k that aq � 1 mod p.5. Re
ursively prove that q is prime.The 
orre
tness of this algorithm follows from the next result.Claim C.31 If q >pp is a prime and for some a 2 Z�p g
d(a�1; p) = 1 and aq � 1 mod p then p is a prime.Proof: Suppose p is not prime. Then there is a prime d � pp su
h that d j p and therefore, by thehypothesis, a 6� 1 mod d and aq � 1 mod d. Thus, in Z�d, ord(a) j q. But q is prime and a does not haveorder 1. Hen
e, q = ord(a) � jZ�dj = d� 1 < pp and this 
ontradi
ts the assumption that q > pp.Note that if p is prime then in step 4, the 
ondition aq � 1 mod p will be veri�ed with probability at leastq�1p�2 > 1pp (sin
e q > pp). However, in order for the algorithm to su

eed, there must exist a prime divisor
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h that q > pp, and this must o

ur at every level of the re
ursion. Namely, there must bea sequen
e of primes q = q0; q1; : : : ; qk, where qk is small enough to identify as a known prime, su
h thatqi j (qi�1 � 1) and qi > pqi�1 for i = 1; : : : ; k and this is very unlikely.This obsta
le 
an be over
ome by working with ellipti
 
urves modulo primes p instead of Z�p. This will allowus to randomly generate for any prime modulus, ellipti
 groups of varying orders. In the following se
tions,we will exploit this additional freedom in a manner similar to Lenstra's ellipti
 
urve fa
toring algorithm.C.9.8 Goldwasser-Kilian Primality TestThe Goldwasser-Kilian primality test is based on properties of ellipti
 
urves. The idea of the algorithm issimilar to the primality test presented in Se
tion C.9.7, ex
ept that we work with ellipti
 
urves Ea;b(Zp)instead of Z�p. By varying a and b we will be able to �nd an ellipti
 
urve whi
h exhibits 
ertain desiredproperties.The Goldwasser-Kilian algorithm runs as follows on input a prime integer p 6= 2; 3 of length l and outputs aproof that p is prime.1. Randomly 
hoose a; b 2 Zp, reje
ting 
hoi
es for whi
h g
d(4a3 + 27b2; p) 6= 1.2. Compute jEa;b(Zp)j using the polynomial time algorithm due to S
hoof (see [179℄).3. Use a probabilisti
 pseudo-primality test (su
h as Solovay-Strassen or Miller-Rabin) to determine ifjEa;b(Zp)j is of the form 
q where 1 < 
 � O(log2 p) and q is a probable prime. If jEa;b(Zp)j is not ofthis form then repeat from step 1.4. Sele
t a point M = (x; y) on Ea;b(Zp) by 
hoosing x 2 Zp at random and taking y to be the squareroot of x3 + ax + b, if one exists. If x3 + ax + b is a quadrati
 nonresidue modulo p then repeat thesele
tion pro
ess.5. Compute q �M .(i) If q �M = O output (a; b; q;M). Then, if q > 2l( 1log logl ) , [5℄), re
ursively prove that q is prime(spe
i�
ally, repeat from step 1 with p repla
ed by q). Otherwise, use the deterministi
 test dueto Adleman, Pomeran
e, and Rumely (see [5℄) to show that q is prime and terminate.(ii) If q �M 6= O then repeat from step 4.Remark The test mentioned in step 5i is 
urrently the best deterministi
 algorithm for de
iding whetheran input is prime or 
omposite. It terminates within (logn)O(log log log n) steps on input n.C.9.9 Corre
tness Of The Goldwasser-Kilian AlgorithmNote �rst that as we saw in Se
tion C.9.3, the probability of making a mistake at step 3 
an be madeexponentially small. The 
orre
tness of the Goldwasser-Kilian algorithm follows from Theorem C.32. Thisresult is analogous to Claim C.31.Theorem C.32 Let n > 1 be an integer with g
d(n; 6) = 1. Let Ea;b(Zn) be an ellipti
 
urve modulo nand let M 6= O be a point on Ea;b(Zn). If there is a prime integer q su
h that q > (n1=4+1)2 and q �M = Othen n is prime.
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omposite. Then there is a prime divisor p of n su
h that p < pn.Let ordE(M) denote the order of the point M on the ellipti
 
urve E. If q �M = O then q �Mp = Op. Thus,ordEp(Mp) j q.However, ordEp(Mp) � jEa;b(Zp)j � p+ 1 + 2pp (by Hasse's Inequality)< n1=2 + 1+ 2n1=4< qand sin
e q is prime, we have that ordEp(Mp) = 1. Therefore, Mp = Op whi
h implies that M = O, a
ontradi
tion.Theorem C.33 By using the sequen
e of quadruples output by the Goldwasser-Kilian algorithm, we 
anverify in time O(log4 p) that p is indeed prime.Proof: Let p0 = p. The sequen
e of quadruples output by the algorithm will be of the form (a1; b1; p1;M1); (a2; b2; p2;M2); : : : ; (ak; bk; pk;Mk)where g
d(4a3i + 27b2i ; pi�1) 6= 1, Mi 6= O is a point on Eai;bi(Zpi�1), pi > p1=2i�1 + 1+ 2p1=4i�1, and pi �Mi = Ofor 1 � i � k. These fa
ts 
an all be veri�ed in O(log3 p) time for ea
h value of i. By Theorem C.32 itfollows that pi prime ) pi�1 prime for 1 � i � k. Further, note that in step 3 of the algorithm, 
 � 2 andhen
e, pi � pi�1+2ppi�12 . Therefore, the size of k will be O(log p) giving a total of O(log4 p) steps. Finally,pk 
an be veri�ed to be prime in O(log p) time due to its small size.C.9.10 Expe
ted Running Time Of Goldwasser-KilianThe algorithm due to S
hoof 
omputes jEa;b(Zp)j in O(log9 p) time. Then to 
he
k that jEa;b(Zp)j = 
qwhere 1 < 
 � O(log2 p) and q is prime requires a total of O(log6 p) steps if we use Solovay-Strassen orMiller-Rabin with enough iterations to make the probability of making a mistake exponentially small (thealgorithm may have to be run for ea
h possible value of 
 and ea
h run of the algorithm requires O(log4 p)steps).Next, sele
ting the point M = (x; y) requires 
hoosing an expe
ted number of at most 2pjEa;b(Zp)j�1 � 2 valuesfor x before �nding one for whi
h x3 + ax+ b is a quadrati
 residue modulo p. Note that the 
omputationof square roots modulo a prime p (to �nd y) 
an be done in O(log4 p) expe
ted time. Sin
e jEa;b(Zp)j = 
qwhere q is prime, Ea;b(Zp) is isomorphi
 to Z
1q � Z
2 where 
 = 
1
2 and 
2j
1. Therefore, Ea;b(Zp) hasat least q � 1 points of order q and hen
e with probability at least q�1
q � 1
 , the point M sele
ted in step 4will have order q. Thus, the expe
ted number of points that must be examined before �nding a point M oforder q will be 
 = O(log2 p). Further, the 
omputation of q �M requires O(log p) additions, using repeateddoubling and so 
an be done in O(log3 p) time. Therefore, dealing with steps 4 and 5 requires O(log5 p)expe
ted time.As remarked previously, the re
ursion depth is O(log p). Therefore, the only remaining 
onsideration is todetermine how often an ellipti
 
urve Ea;b(Zp) has to be sele
ted before jEa;b(Zp)j = 
q where 
 = O(log2 p)and q is prime. By the result of Lenstra 
on
erning the distribution of jEa;b(Zp)j in (p+1�pp; p+1+pp)(see [126℄) this is O(pp log pjSj�2 ) where S is the set of integers in (p + 1 �pp; p + 1 +pp) of the desired form
q. Note that jSj � �(p+1+pp2 )� �(p+1�pp2 ) be
ause S 
ontains those integers in (p+ 1�pp; p+ 1 +pp)whi
h are twi
e a prime. Therefore, if one assumes that the asymptoti
 distribution of primes holds in smallintervals, then the expe
ted number of ellipti
 
urves that must be 
onsidered is O(log2 p). However, thereis only eviden
e to assume the following 
onje
ture 
on
erning the number of primes in small intervals.
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ture C.34 There is a positive 
onstant s su
h that for all x 2 R�2, the number of primes betweenx and x+p2x is 
� pxlogs x�.Under this assumption, the Goldwasser-Kilian algorithm proves the primality of p in O((log p)11+s) expe
tedtime.C.9.11 Expe
ted Running Time On Nearly All PrimesAlthough the analysis presented in Se
tion C.9.10 relies on the unproven result stated in Conje
ture C.34, atheorem due to Heath-Brown 
on
erning the density of primes in small intervals 
an be used to show that thefra
tion of primes of length l for whi
h the Goldwasser-Kilian algorithm runs in expe
ted time polynomialin l is at least 1�O(2�l 1log log l ). The Heath-Brown result is the following.Theorem C.35 Let #p[a; b℄ denote the number of primes x satisfying a � x � b.Let i(a; b) = � 1 if #p[a; b℄ � b�a2blog a
0 otherwise : Then there exists a positive 
onstant � su
h thatXx�a�2x i(a; a+pa) � x 56 log� x.Using this theorem, Goldwasser and Kilian were able to prove in [96℄ that their algorithm terminates inexpe
ted time O(l12) on at least a 1� O(2l 1log log l ) fra
tion of those primes of length l. In [4℄ Adleman andHuang showed, by a more 
areful analysis of the Goldwasser-Kilian algorithm, that in fa
t the fra
tion ofprimes of length l for whi
h Goldwasser-Kilian may not terminate in expe
ted polynomial time is stri
tlyexponentially vanishing. Further, they proposed a new algorithm for proving primality based on hyperellipti

urves whi
h they showed will terminate in exponential polynomial time on all prime inputs. Thus, the goalof obtaining a Las Vegas algorithm has been �nally a
hieved.C.10 Fa
toring AlgorithmsIn this le
ture we dis
uss some general properties of ellipti
 
urves and present Lenstra's ellipti
 
urvefa
toring algorithm whi
h uses ellipti
 
urves over Zn to fa
tor integers.Pollard's p� 1 MethodWe begin by introdu
ing a prede
essor of the ellipti
 
urve fa
toring algorithm whi
h uses ideas analogousto those used in the ellipti
 
urve fa
toring algorithm. This algorithm, known as Pollard's p � 1 method,appears in [160℄. Let n be the 
omposite number that we wish to split. Pollard's algorithm uses the ideathat if we 
an �nd integers e and a su
h that ae � 1 mod p and ae 6� 1 mod q for some prime fa
tors p andq of n then, sin
e p j (ae � 1) and q 6 j (ae � 1), g
d(ae � 1; n) will be a nontrivial fa
tor of n divisible by pbut not by q.The algorithm pro
eeds as follows on input n.1. Choose an integer e that is a multiple of all integers less than some bound B. For example, e mightbe the least 
ommon multiple of all integers � B. To simplify this, we might even let e = Q�(B)i=1 p�iiwhere p1; p2; : : : ; p�(B) are the primes � B and �i is 
hosen minimally so that p�ii � pn > minpjn fp�1g.2. Choose a random integer a between 2 and n� 2.



264 Goldwasser and Bellare3. Compute ae mod n by repeated squaring.4. Compute d = g
d(ae � 1; n) by the Eu
lidean algorithm. If 1 < d < n output the nontrivial fa
tor d.Otherwise, repeat from step 2 with a new 
hoi
e for a.To explain when this algorithm works, assume that the integer e is divisible by every integer � B and thatp is a prime divisor of n su
h that p� 1 is the produ
t of prime powers � B. Then e = m(p � 1) for someinteger m and hen
e ae = �a(p�1)�m � 1m = 1 mod p. Therefore, p j g
d(ae � 1; n) and the only way thatwe 
ould fail to obtain a nontrivial fa
tor of n in step 4 is if ae � 1 mod n. In other words, we 
ould onlyfail here if for every prime fa
tor q of n the order of a mod q divides e and this is unlikely.Unfortunately, it is not true that for general n there is a prime divisor p of n for whi
h p� 1 is divisible byno prime power larger than B for a bound B of small size. If p� 1 has a large prime power divisor for ea
hprime divisor p of n, then Pollard's p�1 method will work only for a large 
hoi
e of the bound B and so willbe ineÆ
ient be
ause the algorithm runs in essentially O(B) time. For example, if n is the produ
t of twodi�erent primes p and q where jpj � jqj are primes and p� 1 and q � 1 are O(pn)-smooth then the methodwill likely require a bound B of size O(pn).Reiterating, the problem is that given input n = Q pi�i where the pi's are the distin
t prime fa
tors of n,we are restri
ted by the possibility that none of the integers pi � 1 are suÆ
iently smooth. However, we
an ameliorate this restri
tion by working with the group of points de�ned over ellipti
 
urves. For ea
hprime p we will obtain a large 
olle
tion of groups whose orders essentially vary \uniformly" over the interval(p + 1 � pp; p + 1 + pp). By varying the groups involved we 
an hope to always �nd one whose order issmooth. We will then show how to take advantage of su
h a 
olle
tion of groups to obtain a fa
torization ofn.C.11 Ellipti
 CurvesDe�nition C.36 An ellipti
 
urve over a �eld F is the set of points (x; y) with x, y 2 F satisfying theWeierstrass equation y2 = x3 + ax + b where a; b 2 F and 4a3 + 27b2 6= 0 together with a spe
ial point O
alled the point at in�nity. We shall denote this set of points by Ea;b(F ).Remark The 
ondition 4a3 + 27b2 6= 0 ensures that the 
urve is nonsingular. That is, when the �eld F isR, the tangent at every point on the 
urve is uniquely de�ned.Let P , Q be two points on an ellipti
 
urve Ea;b(F ). We 
an de�ne the negative of P and the sum P +Qon the ellipti
 
urve Ea;b(F ) a

ording to the following rules.1. If P is the point at in�nity O then we de�ne �P to be O.Otherwise, if P = (x; y) then �P = (x;�y).2. O + P = P +O = P .3. Let P;Q 6= O and suppose that P = (x1; y1), Q = (x2; y2).(i) If P = �Q (that is, x1 = x2 and y1 = �y2) then we de�ne P +Q = O(ii) Otherwise, let � = y1 � y2x1 � x2 if P 6= Q (C.2)or � = 3x21 + ay1 + y2 if P = Q (C.3)
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ture Notes 265That is, if the �eld F = R, � is the slope of the line de�ned by P and Q,if P 6= Q, or the slope of the tangent at P , if P = Q.Then P +Q = R where R = (x3; y3) with x3 = �2 � (x1 + x2) andy3 = �(x1 � x3)� y1.It 
an be shown that this de�nition of addition on the ellipti
 
urve is asso
iative and always de�ned, andthus it imposes an additive abelian group stru
ture on the set Ea;b(F ) with O serving as the additive identityof the group. We will be interested in F = Zp where p 6= 2; 3 is a prime. In this 
ase, addition in Ea;b(Zp)
an be 
omputed in time polynomial in jpj as equations (C:2) and (C:3) involve only additions, subtra
tions,and divisions modulo p. Note that to 
ompute z�1 mod p where z 2 Z�p we 
an use the extended Eu
lideanalgorithm to 
ompute an integer t su
h that tz � 1 mod p and then set z�1 = t mod p.To illustrate negation and addition, 
onsider the ellipti
 
urve y2 = x3 � x over R as shown in Figure C.1.Figure C.1: Addition on the ellipti
 
urve y2 = x3 � x.The graph is symmetri
 about the x-axis so that the point P is on the 
urve if and only if �P is on the
urve. Also, if the line l through two points P;Q 6= O on the 
urve E(R) is not verti
al then there is exa
tlyone more point where this line interse
ts the 
urve. To see this, let P = (x1; y1), Q = (x2; y2) and lety = �x+ � be the equation of the line through P and Q where � = y1�y2x1�x2 if P 6= Q or � = 3x21+ay1+y2 if P = Qand � = y1 � �x1. Note that in the 
ase where P = Q, we take l to be the tangent at P in a

ordan
e withthe rules of addition on the 
urve E(R). A point (x; �x + �) on the line l lies on the ellipti
 
urve if andonly if (�x + �)2 = x3 + ax + b. Thus, there is one interse
tion point for ea
h root of the 
ubi
 equationx3 � (�x + �)2 + ax+ b = 0. The numbers x1 and x2 are roots of this equation be
ause (x1; �x1 + �) and(x2; �x2+�) are, respe
tively, the points P and Q on the 
urve. Hen
e, the equation must have a third rootx3 where x1 + x2 + x3 = �2. This leads to the expression for x3 mentioned in the rules of addition for the
urve E(R). Thus, geometri
ally, the operation of addition on E(R) 
orresponds to drawing the line throughP and Q, letting the third inter
ept of the line with the 
urve be �R = (x; y) and taking R = (x;�y) to bethe sum P +Q.C.11.1 Ellipti
 Curves Over ZnLenstra's ellipti
 
urve fa
toring algorithm works with ellipti
 
urves Ea;b(Zn) de�ned over the ring Zn wheren is an odd, 
omposite integer. The nonsingularity 
ondition 4a3+27b2 6= 0 is repla
ed by g
d(4a3+27b2; n) =1. The negation and addition rules are given as was done for ellipti
 
urves over �elds. However, the additionof two points involves a division (refer to equations (C:2) and (C:3) in the rules for arithmeti
 on ellipti

urves given at the beginning of this se
tion) whi
h is not always de�ned over the ring Zn. For addition to bede�ned the denominators in these equations must be prime to n. Consequently, Ea;b(Zn) is not ne
essarilya group. Nevertheless, we may de�ne a method for 
omputing multiples e � P of a point P 2 Ea;b(Zn) asfollows.1. Let a0 + a12 + � � �+ am�12m�1 be the binary expansion of e. Let j = 0, S = 0.2. If aj = 1 then S  S + 2jP . If this sum is not de�ned (namely, the division in equation (C:2) orequation (C:3) has failed) then output unde�ned and terminate.3. j  j + 1. If j = m then output S as the de�ned value for e � P and terminate.4. Cal
ulate 2jP := 2j�1P +2j�1P . If this sum is not de�ned then output that e �P 
annot be 
al
ulatedand terminate. Otherwise, repeat from step 2.
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urve algorithm will use1 this method whi
h will be referred to as repeated doubling. Note thatif the repeated doubling method is unable to 
al
ulate a given multiple e � P and outputs unde�ned thenwe have en
ountered points Q1 = (x1; y1) and Q2 = (x2; y2) on Ea;b(Zn) su
h that Q1 + Q2 is not de�nedmodulo n (the division in equation (C:2) or equation (C:3) has failed) and hen
e, either g
d(x1 � x2; n) org
d(y1 + y2; n) is a nontrivial fa
tor of n.Next, we state some fa
ts 
on
erning the relationship between ellipti
 
urves de�ned over Zn and ellipti

urves de�ned over Zp when p is a prime divisor of n. Let a; b 2 Zn be su
h that g
d(4a3 + 27b2; n) = 1.Let p be a prime divisor of n and let ap = a mod p, bp = b mod p.Fa
t C.37 Eap;bp(Zp) is an additive abelian group.Further, given P = (x; y) 2 Ea;b(Zn), de�ne Pp = (x mod p; y mod p). Pp is a point on the ellipti
 
urveEap;bp(Zp).Fa
t C.38 Let P and Q be two points on Ea;b(Zn) and let p be a prime divisor of n. If P + Q is de�nedmodulo n then Pp+Qp is de�ned on Ea;b(Zp) and Pp+Qp = (P +Q)p. Moreover, if P 6= �Q then the sumP +Q is unde�ned modulo n if and only if there is some prime divisor q of n su
h that the points Pq andQq add up to the point at in�nity O on Eaq;bq (Zq) (equivalently, Pq = �Qq on Eaq ;bq (Zq)).C.11.2 Fa
toring Using Ellipti
 CurvesThe main idea in Lenstra's ellipti
 
urve fa
toring algorithm is to �nd points P and Q in Ea;b(Zn) su
h thatP +Q is not de�ned in Ea;b(Zn). We will assume throughout that n has no fa
tors of 2 or 3 be
ause these
an be divided out before the algorithm 
ommen
es.The algorithm runs as follows on input n.1. Generate an ellipti
 
urve Ea;b(Zn) and a point P = (x; y) on Ea;b(Zn) by randomly sele
ting x, y anda in Zn and setting b = y2 � x3 � ax mod n.2. Compute g
d(4a3 + 27b2; n). If 1 < g
d(4a3 + 27b2; n) < n then we have found a divisor of n andwe stop. If g
d(4a3 + 27b2; n) = 1 then 4a3 + 27b2 6� 0 mod p for every prime divisor p of n andhen
e Ea;b is an ellipti
 
urve over Zp for ea
h prime divisor p of n and we may pro
eed. But ifg
d(4a3 + 27b2; n) = n then we must generate another ellipti
 
urve Ea;b.3. Set e = Q�(B)i=1 p�ii where p1; p2; : : : ; p�(B) are the primes � B and �i is 
hosen maximally so thatp�ii � C. B and C are bounds that will be determined later so as to optimize the running time andensure that the algorithm will most likely su

eed.4. Compute e � P in Ea;b(Zn) by repeated doubling. Every time before adding two intermediate pointsP1 = (x1; y1) and P2 = (x2; y2) 
he
k if g
d(x1 � x2; n) or g
d(y1 + y2; n) is a nontrivial fa
tor of n. Ifso, output the fa
tor and stop. Otherwise, repeat from step 1.An ellipti
 
urve Ea;b(Zn) will lead to a nontrivial fa
torization of n if for some prime fa
tors p and q ofn, e � Pp = O on Eap;bp(Zp) but Pq does not have order dividing e on Eaq;bq (Zq). Noti
e the analogy herebetween Lenstra's ellipti
 
urve algorithm and Pollard's p � 1 algorithm. In Pollard's algorithm we seekprime divisors p and q of n su
h that e is a multiple of the order of a 2 Z�p but not a multiple of the orderof a 2 Z�q . Similarly, in Lenstra's algorithm we seek prime divisors p and q of n su
h that e is a multipleof the order of Pp 2 Eap;bp(Zp) but not a multiple of the order of Pq 2 Eaq ;bq (Zq). However, there is a key1This statement is in
orre
t and will soon be 
orre
ted in these notes. For the method used in the algorithm, see se
tion 2.3of [129℄
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ture Notes 267di�eren
e in versatility between the two algorithms. In Pollard's algorithm, the groups Z�p where p rangesover the prime divisors of n are �xed so that if none of these groups have order dividing e then the methodfails. In Lenstra's ellipti
 
urve algorithm the groups Eap;bp(Zp) 
an be varied by varying a and b. Hen
e,if for every prime divisor p of n, jEap;bp(Zp)j 6 j e, then we may still pro
eed by simply working over anotherellipti
 
urve; that is, 
hoosing new values for a and b.C.11.3 Corre
tness of Lenstra's AlgorithmSuppose that there are prime divisors p and q of n su
h that e is a multiple of jEap;bp(Zp)j but in Eaq ;bq (Zq),Pq does not have order dividing e. Then e �Pp = O in Eap;bp(Zp) but e �Pq 6= O in Eaq ;bq (Zq) and thus thereexists an intermediate addition of two points P1 = (x1; y1) and P2 = (x2; y2) in the 
al
ulation of e � P su
hthat x1 � x2 mod p but x1 6� x2 mod q if P1 6= P2or y1 � �y2 mod p but y1 6� �y2 mod q if P1 = P2:Hen
e, either g
d(x1 � x2; n) or g
d(y1 + y2; n) is a nontrivial fa
tor of n. The points P1, and P2 will been
ountered when (P1)p + (P2)p = O in Eap;bp(Zp) but (P1)q + (P2)q 6= O in Eaq ;bq (Zq).C.11.4 Running Time AnalysisThe time needed to perform a single addition on an ellipti
 
urve 
an be taken to be M(n) = O(log2 n) ifone uses the Eu
lidean algorithm. Consequently, sin
e the 
omputation of e � P uses repeated doubling, thetime required to pro
ess a given ellipti
 
urve is O((log e)(M(n)). Re
all that e =Q�(B)i=1 p�ii where p�ii � C.Then e � C�(B) and therefore, log e � �(B) logC. Now, let p be the smallest prime divisor of n and 
onsiderthe 
hoi
e B = L�(p) = exp[�(log p)1=2(log log p)1=2℄ where � will be optimized. ThenlogB = �(log p)1=2(log log p)1=2 = e[log �+ 12 (log log p)+ 12 (log log log p)℄and thus �(B) � BlogB � O �e[�(log p)1=2(log log p)1=2� 12 (log log p)℄� � O(L�(p)):Hen
e, the time required for ea
h iteration of the algorithm is O(L�(p)M(n)(logC)). In 
hoosing C, notethat we would like e to be a multiple of jEap;bp(Zp)j for some prime divisor p of n and thus it is suÆ
ientto take C = jEap;bp(Zp)j where p is some prime divisor of n, provided that jEap;bp(Zp)j is B-smooth. Thevalue of p is unknown, but if p is the smallest prime divisor of n then p < pn. We also know by Hasse'sInequality (see, for example, page 131 of [190℄) that p + 1 � 2pp < jEap;bp(Zp)j < p + 1 + 2pp and thusjEap;bp(Zp)j < pn+ 1 + 2 4pn. Hen
e, it is safe to take C = pn+ 1 + 2 4pn.The only remaining 
onsideration is to determine the expe
ted number of ellipti
 
urves that must beexamined before we obtain a fa
torization of n and this part of the analysis relies on the following result dueto Lenstra whi
h appears as Proposition 2.7 in [129℄.Proposition C.39 Let S = fs 2 Z : js � (p + 1)j < pp and s is L(p)�-smoothg. Let n be a 
ompositeinteger that has at least two distin
et prime divisors ex
eeding 3. ThenPr[Lenstra's algorithm fa
tors n℄ � 
� jSj � 22pp �� 1log p�(where the probability is taken over x, y, and a in Zn).



268 Goldwasser and BellareIn other words, the proposition asserts that the probability that a random triple (x; y; a) leads to a fa
tor-ization of n is essentially the probability that a random integer in the interval (p + 1�pp; p + 1 +pp) isL(p)�-smooth; the latter probability being jSj2bpp
+1 .Re
all that we dealt earlier with the smoothness of integers less than some bound and saw that a theoremdue to Can�eld, Erd�os and Pomeran
e (see [48℄) implies thatPr[m � x is L(x)�-smooth℄ = L� 12� (x):However, as we have just seen, we require here the unproven 
onje
ture that the same result is valid if m isa random integer in the small interval (p+ 1�pp; p+ 1 +pp); spe
i�
ally, thatPr[m 2 (p+ 1�pp; p+ 1 +pp) is L(p)�-smooth℄ = L� 12� (p):Consequently, the lower bound on the probability of su

ess in Proposition C.39 
an be made expli
it. Hen
e,we have Pr[Lenstra's algorithm fa
tors n℄ � 
�L� 12� (p)� 1log p:Therefore, we expe
t to have to try L 12� (p)(log p) ellipti
 
urves before en
ountering one of L�(p)-smoothorder. Thus, the total running time required is expe
ted to be O(L 12� (p)(log p)L�(p)M(n)(logC)) =O(L�+ 12� (p)(log4 n)). This a
hieves a minimum of O(Lp2(p)(log4 n)) when � = 1p2 .Remark In step 3 of Lenstra's algorithm a minor pra
ti
al problem arises with the 
hoi
e of B = L�(p)be
ause the smallest prime divisor p of n is not known before the algorithm begins. This problem 
an beresolved by taking B = L�(v) and performing the algorithm for a gradually in
reasing sequen
e of values forv while fa
torization 
ontinues to be unsu

essful and de
laring failure if v eventually ex
eeds pn be
ausethe smallest prime divisor of n is less than pn.



C h a p t e r DAbout PGP

PGP is a free software pa
kage that performs 
ryptographi
 tasks in asso
iation with email systems. In thisshort appendix we will review some of its features. For a 
omplete des
ription of its fun
tioning readers arereferred to Chapter 9 in [192℄.D.1 Authenti
ationPGP performs authenti
ation of messages using a hash-and-sign paradigm. That is given a message M , thepro
ess is as following:� The message is timestamped, i.e. date and time are appended to it;� it is then hashed using MD5 (see [169℄);� the resulting 128-bit digest is signed with the sender private key using RSA [170℄;� The signature is prepended to the message.D.2 Priva
yPGP uses a hybrid system to ensure priva
y. That is ea
h message is en
rypted using a fast symmetri
en
ryption s
heme under a one-time key. Su
h key is en
rypted with the re
eiver publi
-key and senttogether with the en
rypted message.In detail, assume A wants to send an en
rypted message to B.� A 
ompresses the message using the ZIP 
ompression pa
kage; let M be the resulting 
ompressedmessage.� A generates a 128-bit random key k;� The message M is en
rypted under k using the symmetri
 en
ryption s
heme IDEA (see [124℄ orChapter 7 of [192℄); let C be the 
orresponding 
iphertext;� k is en
rypted under B's publi
 key using RSA; let 
 be the 
orresponding 
iphertext.269



270 Goldwasser and Bellare� The pair (
; C) is sent to B.If both authenti
ation and priva
y are required, the message is �rst signed, then 
ompressed and thenen
rypted.D.3 Key SizePGP allows for three key sizes for RSA� Casual 384 bits� Commer
ial 512 bits� Military 1024 bitsD.4 E-mail 
ompatibilitySin
e e-mail systems allow only the transmission of ASCII 
hara
ters, PGP needs to re
overt eventualen
rypted parts of the message (a signature or the whole 
iphertext) ba
k to ASCII.In order to do that PGP applies the radix-64 
onversion to bring ba
k a binary stream into the ASCII 
har-a
ter set. This 
onversion expands the message by 33%. However be
ause of the original ZIP 
ompression,the resulting 
iphertext is still one-third smaller than the original message.In 
ase the resulting 
iphertext is still longer than the limit on some e-mail systems, PGP breaks into pie
esand send the messages separately.D.5 One-time IDEA keys generationNoti
e that PGP does not have session keys, indeed ea
h message is en
rypted under a key k generated adho
 for that message.The generation of su
h key is done using a pseudo-random number generator that uses IDEA as a buildingblo
k. The seed is derived from the keystrokes of the user. That is, form the a
tual keys being typed andthe time intervals between them.D.6 Publi
-Key ManagementSuppose you think that PK is the publi
 key of user B, while instead it is C who knows the 
orrespondingse
ret key SK.This 
an 
reate two major problems:1. C 
an read en
rypted messages that A thinks she is sending to B2. C 
an have A a

ept messages as 
oming from B.The problem of establishing trust in the 
onne
tion between a publi
-key and its owner is at the heart ofpubli
-key systems, no just of PGP.There are various ways of solving this problem:
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ture Notes 271� Physi
al ex
hange B 
ould give the key to A in person, stored in a 
oppy disk.� Veri�
ation A 
ould 
all B on the phone and verify the key with him� Certi�
ation Authorithy There 
ould be a trusted 
enter AUTH that signs publi
 keys for the users,establishing the 
onne
tion between the key and the ID of the user (su
h a signature is usually referredto as a 
erti�
ate.)Only the last one seems reasonable and it appears to be the way people are a
tually implementing publi
key systems in real life.PGP does not use any of the above systems, but it rather uses a de
entralized trust system. Users re
ipro
ally
ertify ea
h other's keys and one trusts a key to the extent that he/she trusts the user who 
ertify it for it.Details 
an be found in [192℄



C h a p t e r EProblems

This 
hapter 
ontains some problems for you to look at.E.1 Se
ret Key En
ryptionE.1.1 DESLet �m be the bitwise 
omplement of the string m. Let DESK(m) denote the en
ryption of m under DESusing key K. It is not hard to see that if 
 = DESK(m)then �
 = DES �K( �m)We know that a brute{for
e atta
k on DES requires sear
hing a spa
e of 256 keys. This means that we haveto perform that many DES en
ryptions in order to �nd the key, in the worst 
ase.1. Under known plaintext atta
k (i.e., you are given a single pair (m; 
) where 
 = DESK(m)) do theequations above 
hange the number of DES en
ryption you perform in a brute{for
e atta
k to re
overK?2. What is the answer to the above question in the 
ase of 
hosen plaintext atta
k (i.e., when you areallowed to 
hoose many m's for whi
h you get the pair (m; 
) with 
 = DESK(m))?E.1.2 Error Corre
tion in DES 
iphertextsSuppose that n plaintext blo
ks x1,: : :,xn are en
rypted using DES produ
ing 
iphertexts y1; : : : ; yn. Supposethat one 
iphertext blo
k, say yi, is transmitted in
orre
tly (i.e. some 1's are 
hanged into 0's and vi
eversa.)How many plaintext blo
ks will be de
rypted in
orre
tly if the ECB mode was used for en
ryption? Whatif CBC is used?E.1.3 Brute for
e sear
h in CBC modeA brute-for
e key sear
h for a known-plaintext atta
k for DES in the ECB mode is straightforward: giventhe 64-bit plaintext and the 64 bit 
iphertext, try all of the possible 256 keys until one is found that generates272
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ture Notes 273the known 
iphertext from the known plaintext. The situation is more 
omplex for the CBC mode, whi
hin
ludes the use of a 64-bit IV. This seems to introdu
e an additional 64 bits of un
erntainty.1. Suggest strategies for known-plaintext atta
k on the CBC mode that are of the same order of magnitudeof e�ort as the ECB atta
k.2. Now 
onsider a 
iphertext only atta
k. For ECB mode the strategy is to try to de
rypt the given
iphertext with all possible 256 keys and test ea
h result to see if it appears to be a synta
ti
ally
orre
t plaintext. Will this strategy work for the CBC mode? If so, explain. If not, des
ribe an atta
kstrategy for the CBC mode and estimate its level of e�ort.E.1.4 E-mailEle
troni
 mail systems di�er in the way in whi
h multiple re
ipients are handled. In some systems theoriginating mail handler makes all the ne
essary 
opies, and these are sent out independently. An alterantiveapproa
h is to determine the route for ea
h destination �rst. Then a single message is sent out on a 
ommonportion of the route and 
opies are made when the routes diverge (this system is known as mail-bagging.)1. Leaving aside se
urity 
onsiderations, dis
uss the relative advantages and disadvantages of the twomethods.2. Dis
uss the se
urity requirements and impli
ations of the two methodsE.2 PasswordsThe framework of (a simpli�ed version of) the Unix password s
heme is this. We �x some fun
tionh: f0; 1gk ! f0; 1gL. The user 
hooses a k-bit password, and the system stores the value y = h(K) inthe password �le. When the user logs in he must supply K. The system then 
omputes h(K) and de
laresyou authenti
 if this value equals y.We assume the atta
ker has a

ess to the password �le and hen
e to y. The intuition is that it is 
omputa-tionally infeasible to re
over K from y. Thus h must be 
hosen to make this true.The spe
i�
 
hoi
e of h made by Unix is h(K) = DESK(0) where \0" represents the 64 bit string of all zeros.Thus k = 56 and L = 64.In this problem you will analyze the generi
 s
heme and the parti
ular DES based instantiation. The goalis to see how, given a s
heme like this, to use the models we have developed in 
lass, in parti
ular to thinkof DES as a pseudorandom fun
tion family.To model the s
heme, let F : f0; 1gk � f0; 1gl ! f0; 1gL be a pseudorandom fun
tion family, having somegiven inse
urity fun
tion AdvprfF (�; �), and with L > k. We let TF denote the time to 
ompute F . (Namelythe time, given K;x, to 
ompute FK(x).) See below for the de�nition of a one-way fun
tion, whi
h we willrefer to now.(a) De�ne h: f0; 1gk ! f0; 1gL by h(K) = FK(0), where \0" represents the l-bit string of all zeros. Provethat h is a one-way fun
tion with Advowf( h; t) � 2 �AdvprfF (t0; 1) ;where t0 = t+O(l + L+ k + TF ).Hints: Assume you are given an inverter I for h, and 
onstru
t a distinguisher D su
h thatAdvprfF (D) � 12 �Advowfh;I :Use this to derive the 
laimed result.



274 Goldwasser and Bellare(b) Can you think of possible threats or weaknesses that might arise in a real world usage of su
h a s
heme,but are not 
overed by our model? Can you think of how to prote
t against them? Do you think thisis a good password s
heme \in pra
ti
e"?We now provide the de�nition of se
urity for a one-way fun
tion to be used above.Let h: f0; 1gk ! f0; 1gL be a fun
tion. It is one-way, if, intuitively speaking, it is hard, given y, to 
ompute apoint x0 su
h that h(x0) = y, when y was 
hosen by drawing x at random from f0; 1gk and setting y = h(x).In formalizing this, we say an inverter for h is an algorithm I that given a point y 2 f0; 1gL tries to 
omputethis x0. We let Advowfh;I = P h h(x0) = y : x R f0; 1gk ; y  h(x) ; x0  I(y) ibe the probability that the inverter is su

essful, taken over a random 
hoi
e of x and any 
oins the invertermight toss. We let Advowfh (t0) = maxI fAdvowfh;I g ;where the maximum is over all inverters I that run in time at most t0.E.3 Number TheoryE.3.1 Number Theory Fa
tsProve the following fa
ts:1. If k is the number of distin
t prime fa
tors of n then the equation x2 = 1 mod n has 2k distin
tsolutions in Z�n. Hint: use Chinese Remainder Theorem2. If p is prime and x 2 Z�p then (xp ) = x p�123. g is a generator of Z�p for a prime p, i� gp�1 = 1 mod p and gq 6= 1 mod p for all q prime divisors ofp� 1E.3.2 Relationship between problemsLet n be the produ
t of two primes n = pq. Des
ribe redu
ibilities between the following problems (e.g. ifwe 
an fa
tor we 
an invert RSA.) Don't prove anything formally, just state the result.� 
omputing �(n)� fa
toring n� 
omputing QRn(a) for some a 2 Z�n� 
omputing square roots modulo n� 
omputing k-th roots modulo n, where g
d(k; �(n)) = 1E.3.3 Probabilisti
 Primality TestLet SQRT (p; a) denote an expe
ted polynomial time algorithm that on input p; a outputs x su
h thatx2 = a mod p if a is a quadrati
 residue modulo p. Consider the following probabilisti
 primality test, whi
htakes as an input an odd integer p > 1 and outputs \
omposite" or \prime".1. Test if there exist b; 
 > 1 su
h that p = b
. If so output \
omposite"
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ture Notes 2752. Choose i 2 Z�p at random and set y = i23. Compute x = SQRT (p; y)4. If x = i mod p or x = �i mod p output \prime", otherwise output \
omposite"(A) Does the above primality test always terminate in expe
ted polynomial time? Prove your answer.(B) What is the probability that the above algorithm makes an error if p is prime?(C) What is the probability that the above algorithm makes an error if p is 
omposite?E.4 Publi
 Key En
ryptionE.4.1 Simple RSA questionSuppose that we have a set of blo
k en
oded with the RSA algorithm and we don't have the private key.Assume n = pq; e is the publi
 key. Suppose also someone tells us they know one of the plaintext blo
ks hasa 
ommon fa
tor with n. Does this help us in any way?E.4.2 Another simple RSA questionIn the RSA publi
-key en
yption s
heme ea
h user has a publi
 key n; e and a private key d. Suppose Bobleaks his private key. Rather than generating a new modulus, he de
ides to generate a new pair e0; d0. Is thisa good idea?E.4.3 Proto
ol Failure involving RSARemember that an RSA publi
{key is a pair (n; e) where n is the produ
t of two primes.RSA(n;e)(m) = me mod nAssume that three users in a network Ali
e, Bob and Carl use RSA publi
{keys (nA; 3), (nB ; 3) and (nC ; 3)respe
tively. Suppose David wants to send the same message m to the three of them. So David 
omputesyA = m3 mod nA , yB = m3 mod nB , yC = m3 mod nCand sends the 
iphertext to the relative user.Show how an eavesdropper Eve 
an now 
ompute the message m even without knowing any of the se
retkeys of Ali
e, Bob and Carl.E.4.4 RSA for paranoidsThe best fa
toring algorithm known to date (the number �eld sieve) runs ineO(log1=3 n log log2=3 n)That is, the running time does not depend on the size of the smallest fa
tor, but rather in the size of thewhole 
omposite number.The above observation seem to suggest that in order to preserve the se
urity of RSA, it may not be ne
essaryto in
rease the size of both prime fa
tors, but only of one of them.



276 Goldwasser and BellareShamir suggested the follwong version of RSA that he 
alled unbalan
ed RSA (also known as RSA forparanoids). Choose the RSA modulus n to be 5,000 bits long, the produ
t of a 500-bits prime p and a4,500-bit prime q. Sin
e usually RSA is usually used just to ex
hange DES keys we 
an assume that themessages being en
rypted are smaller than p.(A) How would you 
hoose the publi
 exponent e? Is 3 a good 
hoi
e?On
e the publi
 exponent e is 
hosen, one 
omputes d = e�1 mod �(n) and keep it se
ret. The problem withsu
h a big modulus n, is that de
rypting a 
iphertext 
 = me mod n may take a long time (sin
e one has to
ompute 
d mod n.) But sin
e we know that m < p we 
an just use the Chinese Remainder Theorem and
ompute m1 = 
d mod p = m. Shamir 
laimed that this variant of RSA a
hieves better se
urity against theadvan
es of fa
toring, without losing in eÆ
ien
y.(B) Show how with a single 
hosen message atta
k (i.e. obtaining the de
ryption of a message of your
hoi
e) you 
an 
ompletely break the unbalan
ed RSA s
heme, by fa
toring n.E.4.5 Hardness of DiÆe-HellmanRe
all the DiÆe-Hellman key ex
hange proto
ol. p is a prime and g a generator of Z�p . Ali
e's se
ret key isa random a < p and her publi
 key is ga mod p. Similarly Bob's se
ret key is a random b < p and his publi
key is gb mod p. Their 
ommon key is gab.In this problem we will prove that if the DiÆe-Hellman key ex
hange proto
ol is se
ure for a small fra
tionof the values (a; b), then it is se
ure for almost all values (a; b).Assume that there is a ppt algorithm A thatProb[A(ga; gb) = gab℄ > 12 + �(where the probability is taken over the 
hoi
es of (a; b) and the internal 
oin tosses of A)Your task is to prove that for any Æ < 1 there exists a ppt algorithm B su
h that for all (a; b)Prob[B(ga; gb) = gab℄ > 1� Æ(where the probability is now taken only over the 
oin tosses of B)E.4.6 Bit 
ommitmentConsider the following \real life" situation. Ali
e and Bob are playing \Guess the bit I am thinking". Ali
ethinks a bit b = 0; 1 and Bob tries to guess it. Bob de
lares his guess and Ali
e tells him if the guess is rightor not.However Bob is losing all the time so he suspe
ts that Ali
e is 
heating. She hears Bob's guess and shede
lares she was thinking the opposite bit. So Bob requires Ali
e to write down the bit in a pie
e of paper,seal it in an envelope and pla
e the envelope on the table. At this point Ali
e is 
ommitted to the bit.However Bob has no information about what the bit is.Our goal is to a
hieve this bit 
ommitment without envelopes. Consider the following method. Ali
e andBob together 
hoose a prime p and a generator g of Z�p . When Ali
e wants to 
ommit to a bit b she 
hoosea random x 2 Z�p su
h that lsb(x) = b and she publishes y = gx mod p. Is this a good bit 
ommitment? Doyou have a better suggestion?E.4.7 Perfe
t Forward Se
re
ySuppose two parties, Ali
e and Bob, want to 
ommuni
ate privately. They both hold publi
 keys in thetraditional DiÆe-Hellman model.



Cryptography: Le
ture Notes 277An eavesdropper Eve stores all the en
rypted messages between them and one day she manages to breakinto Ali
e and Bob's 
omputer and �nd their se
ret keys, 
orrespondent to their publi
 keys.Show how using only publi
{key 
ryptography we 
an a
hieve perfe
t forward se
re
y, i.e., Eve will not beable to gain any knowledge about the messages Ali
e and Bob ex
hanged before the dis
losure of the se
retkeys.E.4.8 Plaintext-awareness and non-malleabilityWe say that an en
ryption s
heme is plaintext{aware if it is impossible to produ
e a valid 
iphertext withoutknowing the 
orresponding plaintext.Usually plaintext-aware en
ryption s
hemes are implemented by adding some redundan
y to the plaintext.De
ryption of a 
iphertext results either in a valid message or in a 
ag indi
ating non{validity (if theredundan
y is not of the 
orre
t form.) Corre
t de
ryption 
onvin
es the re
eiver that the sender knows theplaintext that was en
rypted.The 
on
ept of plaintext{awareness is related to the 
on
ept of malleability. We say that an en
ryptions
heme E is non{malleable if it given a 
iphertext 
 = E(m) it is impossible to produ
e a valid 
iphertext 
0of a related message m0.Compare the two de�nitions and tell us if one implies the other.E.4.9 Probabilisti
 En
ryptionAssume that you have a messagem that you want to en
rypt in a probabilisti
 way. For ea
h of the followingmethods, tell us if you think it is a good or a bad method.1. Fix p a large prime and let g be a generator. For ea
h bit bi in m, 
hoose at random xi 2 Zp�1su
h that lsb(xi) = bi (lsb(x) = least signi�
ant bit of x.) The 
iphertext is the 
on
atenation of theyi = gxi mod p. What about if you use x su
h that msb(xi) = bi?2. Choose an RSA publi
 key n; e su
h that jnj > 2jmj. Pad m with random bits to get it to the samelength of n. Let m0 be the padded plaintext. En
rypt 
 = me mod n.3. Choose an RSA publi
 key n; e. Assume that jmj is smaller than log logn (you 
an always break themessage in blo
ks of that size.) Pad m with random bits to get it to the same length of n. Let m0 bethe padded plaintext. En
rypt 
 = me mod n.4. Choose two large primes p; q = 3 mod 4. Let n = pq. For ea
h bit bi in m, 
hoose at random xi 2 Z�nand set yi = x2i mod n if bi = 0 or yi = �x2i mod n if bi = 1. The 
iphertext is the 
on
atenation ofthe yi's.E.5 Se
ret Key SystemsE.5.1 Simultaneous en
ryption and authenti
ationLet (E ;D) be a symmetri
 en
ryption s
heme (
f. Chapter 6and MAC a message authenti
ation 
ode(
f. Chapter 8). Suppose Ali
e and Bob share two keys K1 and K2 for priva
y and authenti
ation re-spe
tively. They want to ex
hange messages M in a private and authenti
ated way. Consider sending ea
hof the following as a means to this end:1. M;MACK2(EK1(M))2. EK1(M;MACK2(M))



278 Goldwasser and Bellare3. EK1(M);MACK2(M)4. EK1(M); EK1(MACK2(M))5. EK1(M);MACK2(EK1(M))6. EK1(M;A) where A en
odes the identity of Ali
e. Bob de
rypts the 
iphertext and 
he
ks that these
ond half of the plaintext is AFor ea
h say if it se
ure or not and brie
y justify your answer.E.6 Hash Fun
tionsE.6.1 Birthday ParadoxLet H be a hash fun
tion that outputs m-bit values. Assume that H behaves as a random ora
le, i.e. forea
h string s, H(s) is uniformly and independently distributed between 0 and 2m � 1.Consider the following brute{for
e sear
h for a 
ollision: try all possible s1; s2; : : : until a 
ollision is found.(That is, keep hashing until some string yields the same hash value as a previously hashed string.)Prove that the expe
ted number of hashing performed is approximately 2m2 .E.6.2 Hash fun
tions from DESIn this problem we will 
onsider two proposals to 
onstru
t hash fun
tions from symmetri
 blo
k en
ryptions
hemes as DES.Let E denote a symmetri
 blo
k en
ryption s
heme. Let Ek(M) denote the en
ryption of the 1{blo
k messageM under key k. Let M =M0 ÆM1 ÆM2 Æ : : : ÆMn denote a message of n+ 1 blo
ks.The �rst proposed hash fun
tion h1 works as follows: let H0 =M0 and then de�neHi = EMi(Hi�1)�Hi�1 for i = 1; : : : ; n:The value of the hash fun
tion is de�ned as h1(M) = HnThe se
ond proposed hash fun
tion h2 is similar. Again H0 =M0 and thenHi = EHi�1 (Mi)�Mi for i = 1; : : : ; n:The value of the hash fun
tion is de�ned as h2(M) = HnFor both proposals, show how to �nd 
ollisions if the en
ryption s
heme E is 
hosen to be DES.E.6.3 Hash fun
tions from RSAConsider the followng hash fun
tion H . Fix an RSA key n; e and denote with RSAn;e(m) = me mod n. Letthe message to be hashed be m = m1 : : :mk. Denote with h1 = m1 and for i > 1,hi = RSAn;e(hi�1)�miThen H(m) = hn. Show how to �nd a 
ollision.
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ture Notes 279E.7 Pseudo-randomnessE.7.1 Extending PRGsSuppose you are given a PRG G whi
h stret
hes a k bit seed into a 2k bit pseudorandom sequen
e. Wewould like to 
onstru
t a PRG G0 whi
h stret
hes a k bit seed into a 3k bit pseudorandom sequen
e.Let G1(s) denote the �rst k bits of the string G(s) and let G2(s) the last k bits (that is G(s) = G1(s):G2(s)where a:b denotes the 
on
atenation of strings a and b.)Consider the two 
onstru
tions1. G0(s) = G1(s):G(G1(s))2. G00(s) = G1(s):G(G2(s))For ea
h 
onstru
tion say whether it works or not and justify your answer. That is, if the answer is noprovide a simple statisti
al test that distinguishes the output of, say, G0 from a random 3k string. If theanswer is yes prove it.E.7.2 From PRG to PRFLet us re
all the 
onstru
tion of PRFs from PRGs we saw in 
lass. Let G be a length-doubling PRG, fromseed of length k to sequen
es of length 2k.Let G0(x) denote the �rst k bits of G(x) and G1(x) the last k bits. In other words G0(x) Æ G1(x) = G(x)and jG0(x)j = jG1(x)j.For any bit string z re
ursively de�ne G0Æz(x) ÆG1Æz(x) = G(Gz(x)) with jG0Æz(x)j = jG1Æz j.The PRF family we 
onstru
ted in 
lass was de�ned as F = ffig. fi(x) = Gx(i). Suppose instead that wede�ned fi(x) = Gi(x). Would that be a PRF family?E.8 Digital SignaturesE.8.1 Table of ForgeryFor both RSA and ElGamal say if the s
heme is1. universally forgeable2. sele
tively forgeable3. existentially forgeableand if it is under whi
h kind of atta
k.E.8.2 ElGamalSuppose Bob is using the ElGamal signature s
heme. Bob signs two messages m1 and m2 with signatures(r; s1) and (r; s2) (the same value of r o

urs in both signatures.) Suppose also that g
d(s1 � s2; p� 1) = 1.1. Show how k 
an be 
omputed eÆ
iently given this information2. Show how the signature s
heme 
an subsequently be broken
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hemeConsider the following dis
rete log based signature s
heme. Let p be a large prime and g a generator. Theprivate key is x < p. The publi
 key is y = gx mod p.To sign a message M , 
al
ulate the hash h = H(M). If g
d(h; p� 1) is di�erent than 1 then append h to Mand hash again. Repeat this until g
d(h; p� 1) = 1. Then solve for Z inZh = X mod (p� 1)The signature of the message is s = gZ mod p. To verify the signature, a user 
he
ks that sh = Y mod p.1. Show that valid signatures are always a

epted2. Is the s
heme se
ure?E.8.4 Ong-S
hnorr-ShamirOng, S
hnorr and Shamir suggested the following signature s
heme.Let n be a large integer (it is not ne
essary to know the fa
torization of n.) Then 
hoose k 2 Z�n. Leth = �k�2 mod n = �(k�1)2 mod nThe publi
 key is (n; h), the se
ret key is k.To sign a message M , generate a random number r, su
h that r and n are relatively prime. Then 
al
ulateS1 = M=r + r2 mod nS2 = k2 (M=r � r)The pair (S1; S2) is the signature.To verify the signature, 
he
k that M = S21 + hS22mod1. Prove that re
onstru
ting the private key, from the publi
 key is equivalent to fa
tor n.2. Is that enough to say that the s
heme is se
ure?E.9 Proto
olsE.9.1 Un
onditionally Se
ure Se
ret SharingConsider a generi
 Se
ret Sharing s
heme. A dealer D wants to share a se
ret s between n trustees so thatno t of them have any information about s, but t + 1 
an re
onstru
t the se
ret. Let si be the share oftrustee Ti. Let v denote the number of possible values that s might have, and let w denote the number ofdi�erent possible share values that a given trustee might re
eive, as s is varied. (Let's assume that w is thesame for ea
h trustee.)Argue that w � v for any Se
ret Sharing S
heme. (It then follows that the number of bits needed to representa share 
an not be smaller than the number of bits needed to represent the se
ret itself.)Hint: Use the fa
t that t players have NO information about the se
ret|no matter what t values they havere
eived, any value of s is possible.
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ture Notes 281E.9.2 Se
ret Sharing with 
heatersDishonest trustees 
an prevent the re
onstru
tion of the se
ret by 
ontributing bad shares ŝi 6= si. Using the
ryptographi
 tools you have seen so far in the 
lass show how to prevent this denial of servi
e atta
k.E.9.3 Zero{Knowledge proof for dis
rete logarithmsLet p be a prime and g a generator modulo p. Given y = gx Ali
e 
laims she knows the dis
rete logarithmx of y. She wants to 
onvin
e Bob of this fa
t but she does not want to reveal x to him. How 
an she dothat? (Give a zero-knowledge proto
ol for this problem.)E.9.4 Oblivious TransferAn oblivious transfer proto
ol is a 
ommuni
ation proto
ol between Ali
e and Bob. Ali
e runs it on input avalue s. At the end of the proto
ol either Bob learns s or he has no information about it. Ali
e has no ideawhi
h event o

urred.An 1-2 oblivious transfer proto
ol is a 
ommuni
ation proto
ol between Ali
e and Bob. Ali
e runs it oninout two values s0 and s1. Bob runs it on input a bit b. At the end of the proto
ol, Bob learns sb but hasno information about s1�b. Ali
e has no information about b.Show that given an oblivious transfer proto
ol as a bla
k box, one 
an design a 1-2 oblivious transfer proto
ol.E.9.5 Ele
troni
 CashReal-life 
ash has two main properties:� It is anonymous: meaning when you use 
ash to buy something your identity is not revealed, 
omparewith 
redit 
ards where your identity and spending habits are dis
losed� It is transferable: that is the vendor who re
eives 
ash from you 
an in turn use it to buy somethingelse. He would not have this possibility if you had payed with a non-transferable 
he
k.The ele
troni
 
ash proposals we saw in 
lass are all \non{transferable". that is the user gets a 
oin fromthe bank, spends it, and the vendor must return the 
oin to the bank in order to get 
redit. As su
h theyreally behave as anonymous non-transferable 
he
ks. In this problem we are going to modify su
h proposalsin order to a
hieve transferability.The proposal we saw in 
lass 
an be abstra
ted as follows: we have three agents: the Bank, the Userand theVendor.The Bankhas a pair of keys (S; P ). A signature with S is a 
oin worth a �xed amount (say $1.). It is possibleto make blind signatures, meaning the Usergets a signature S(m) on a message m, but the Bankgets noinformation about m.Withdrawal proto
ol1. The User
hooses a message m2. The Bankblindly signs m and withdraws $1 from User's a

ount.3. The Userre
overs S(m). The 
oin is the pair (m;S(m)).Payment Proto
ol1. The Usergives the 
oin (m;S(m)) to the Vendor.



282 Goldwasser and Bellare2. The Vendorveri�es the Banksignature and sends a random 
hallenge 
 to the User.3. The Userreplies with an answer r4. the Vendorveri�es that the answer is 
orre
t.The 
hallenge{response proto
ol is needed in order to dete
t double{spending. Indeed the system is 
on-stru
ted in su
h a way that if the Useranswers two di�erent 
hallenges on the same 
oin (meaning he's tryingto spend the 
oin twi
e) his identity will be revealed to the Bankwhen the two 
oins return to the bank. Thisis why the whole history of the payment proto
ol must be presented to the Bankwhen the Vendordepositsthe 
oin.Deposit proto
ol1. The Vendorsends m;S(m); 
; r to the Bank2. The Bankveri�es it and add $1 to the Vendor's a

ount.3. The Banksear
hes its database to see if the 
oin was deposited already and if it was re
onstru
t theidentity of the double{spender User.In order to make the whole s
heme transferrable we give the bank a di�erent pair of keys (S;P). It is stillpossible to make blind signatures with S. However messages signed with S have no value. We will 
all thempseudo-
oins. When people open an a

ount with the Bank, they get a lot of these anonymous pseudo{
oinsby running the withdrawal proto
ol with S as the signature key.Suppose now the Vendorre
eived a payed 
oin m;S(m); 
; r and instead of depositing it wants to use it tobuy something from OtherVendor. What she 
ould do is the following:Transfer proto
ol1. The Vendorsends m;S(m); 
; r and a pseudo{
oin m0;S(m0) to OtherVendor2. OtherVendorveri�es all signatures and the pair (
; r). Then sends a random 
hallenge 
0 for the pseudo{
oin.3. Vendorreplies with r04. OtherVendor
he
ks the answer.Noti
e however that Vendor
an still double{spend the 
oinm;S(m); 
; r if she uses two di�erent pseudo{
oinsto transfer it to two di�ernt people. Indeed sin
e she will never answer two di�erent 
hallenges on the samepseudo{
oin, her identity will never be revealed. The problem is that there is no link between the real 
oinand the pseudo-
oin used during the transfer proto
ol. If we 
ould for
e Vendorto use only one pseudo{
oinfor ea
h real 
oin she wants to transfer then the problem would be solved.Show how to a
hieve the above goal. You will need to modify both the payment and the transfer proto
ol.Hint: If Vendorwants to transfer the true 
oin she is re
eiving during the payment proto
ol, she must be for
edthen to 
reate a link between the true 
oin and the pseudo{
oin she will use for the transfer later. Noti
ethat Vendor
hooses 
 at random, maybe 
 
an be 
hosen in some di�erent way?E.9.6 Atomi
ity of withdrawal proto
olRe
all the proto
ol that allows a Userto withdraw a 
oin of $1 from the Bank. Let (n; 3) be the RSA publi
key of the Bank.1. The Userprepares 100 messages m1; : : : ;m100 whi
h are all $1 
oins. The Userblinds them, that is she
hooses at random r1; : : : ; r100 and 
omputes wi = r3imi. The Usersends w1; : : : ; w100 to the Bank.



Cryptography: Le
ture Notes 2832. The Bank
hooses at random 99 of the blindings and asks the Userto open them. That the Bank
hoosesi1; : : : ; i99 and sends it to the User.3. The Useropens the required blindings by revealing ri1 ; : : : ; ri99 .4. The Bank
he
ks that the blindings are 
onstru
ted 
orre
tly and then �nally signs the unopenedblinding. W.l.o.g. assume this to be the �rst one. So the Banksigns w1 by sending to the Userw 131 =r1m 1315. The Userdivides this signature by r1 and gets a signature on m1 whi
h is a valid 
oin.Noti
e that the Userhas a probability of 1=100 to su

esfully 
heat.Suppose now that the proto
ol is not atomi
. That is the 
ommuni
ation line may go down at the end ofea
h step between the Bankand the User. What proto
ol should be followed for ea
h step if the line goesdown at the end of that step in order to prevent abuse or fraud by either party?E.9.7 Blinding with ElGamal/DSSIn 
lass we saw a way to blind messages for signatures using RSA. In this problem we ask you to 
onstru
tblind signatures for a variation of the ElGamal signature s
heme.The ElGamal-like signature we will 
onsider is as follows. Let p be a large prime, q a large prime dividingp� 1, g an element of order q in Z�p , x the se
ret key of the Bankand y = gx the 
orresponding publi
 key.Let H be a 
ollision-free hash fun
tion.When the Bankwants to sign a message m she 
omputesa = gk mod pfor a random k and 
 = H(m; a)and �nally b = k
+ xa mod qThe signature of the message m is sig(m) = (a; b). Given the triple (m; a; b) the veri�
ation is performed by
omputing 
 = H(m; a) and 
he
king that gb = a
yaSo the withdrawal proto
ol 
ould be as following:1. The Usertells the bank she wants a $1 
oin.2. The Bankreplies with 100 values ai = gki for random ki.3. The Usersends ba
k 
i = H(mi; ai) where mi are all $1 
oins.4. The Bankasks the user to open 99 of those.5. The Userreveals 99 of the mi's.6. The Bankreplies with bi = ki
i + xai mod (p� 1) for the unopened index iHowever this is not anonymous sin
e the Bank
an re
ognize the Userwhen the 
oin 
omes ba
k. In order tomake the proto
ol really anonymous, the Userhas to 
hange the value of \
hallenge" 
i 
omputed at step3. This modi�
ation will allow him to 
ompute a di�erent signature on mi on her own whi
h will not bere
ognizable to the Bankwhen the 
oin 
omes ba
k. During the proto
ol the Bankwill 
he
k as usual thatthis modi�
ation has been performed 
orre
tly by asking the Userto open 99 random blindings.


