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Appendix B

Notation Summary

This chapter contains a brief visual summary of notation. The major notational
elements are included, but not every variation or option is shown. For full details,
see the encyclopedia entry for each element.
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Figure B-1. Icons on class, component, deployment, and collaboration diagrams
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Figure B-2. Class contents

Figure B-3. Association adornments within a class diagram
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Figure B-4.
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Figure B-5.
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Figure B-6.

 

Template

 

Figure B-7.

 

Package notation
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Figure B-8.

 
Component and node notation
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Figure B-9.

 

Icons on use case diagrams

 

Figure B-10.

 

Use case diagram notation
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Figure B-11.

 

Icons on statechart and activity diagrams
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Figure B-12.

 

Statechart notation
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Figure B-13.

 

Activity diagram notation
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Figure B-14.

 

Sequence diagram notation
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Figure B-15.

 

Collaboration diagram notation

 

Figure B-16.

 

Message notation
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Chapter 38 

MORE UML NOTATION 

38.1     General Notation 

Stereotypes and Property Specifications with Tags 

Stereotypes are used in the UML to classify an element (see Figure 38.1). 
 

 

 

Figure 38.1 Stereotypes and properties.
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Figure 38.2  Interface of a package.  

 

Dependency 

Dependencies can exist between any elements, but they are probably most often 
used in UML package diagrams to illustrate package dependencies (see Figure 
38.3) 

 
 

Figure 38.3 Dependencies. 

38.2     Implementation Diagrams 

The UML defines several diagrams that can be used to illustrate implementa-
tion details. The most commonly used is a deployment diagram, to illustrate the 
deployment of components and processes to processing nodes. 
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38 - MOKE UML NOTATION

Package Interfaces 

A package can he illustrated as implementing an interface (see Figure 38.2).



IMPLEMENTATION DIAGRAMS 

Component Diagrams 

To quote: A component represents a modular, deployable, and replaceable part 
of a system that encapsulates implementation and exposes a set of interfaces 
[OMG01]. It may, for example, be source code, binary, or executable. Examples 
include executables such as a browser or HTTP server, a database, a DLL, or a 
JAR file (such as for an Enterprise Java Bean). UML components are usually 
shown within deployment diagrams, rather than on their own. Figure 38.4 illus-
trates some common notation. 

 
Figure 38.4 UML components. 

Deployment Diagrams 

A deployment diagram shows how instances of components and processes are 
configured for run-time execution on instances of processing nodes (something 
with memory and processing services; see Figure 38.5). 
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Figure 38.5 A deployment diagram. 

38.3     Template (Parameterized, Generic) Class 
Template classes and their instantation are shown in Figure 38.6. 
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Figure 38.6 Template classes.



ACTIVITY DIAGRAMS 

Some languages, such as C++, support templatized, generic, or parameterized 
classes. In addition, this feature will be added to the Java language. For exam-
ple, in C++, map<string, Person> declares the instantiation of a template class 
with keys of type string, and values of type Person. 

38.4     Activity Diagrams 

A UML activity diagram offers rich notation to show a sequence of activities. 
It may be applied to any purpose (such as visualizing the steps of a computer 
algorithm), but is considered especially useful for visualizing business work-
flows and processes, or use cases. One of the UP workflows (disciplines) is Busi-
ness Modeling; its purpose is to understand and communicate "the structure 
and the dynamics of the organization in which a system is to be deployed" 
[RUP]. A key artifact of the Business Modeling discipline is the Business 
Object Model (a superset of the UP Domain Model), which essentially visual-
izes how a business works, using UML class, sequence, and activity diagrams. 
Thus, activity diagrams are especially applicable within the Business Modeling 
discipline of the UP. 

Some of the outstanding notation includes parallel activities, swimlanes, and 
action-object flow relationships, as illustrated in Figure 38.7 (adapted from 
[OMGOl, FS00]). Formally, an activity diagram is considered a special kind of 
UML statechart diagram in which the states are actions, and event transition is 
automatically triggered by action completion. 
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38 - MORE UML NOTATION 
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Figure 38.7 Activity diagram. 
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