
519

Appendix B

Notation Summary

This chapter contains a brief visual summary of notation. The major notational
elements are included, but not every variation or option is shown. For full details,
see the encyclopedia entry for each element.

520 Appendix B

Figure B-1. Icons on class, component, deployment, and collaboration diagrams

Cname

attr: Atype

op (par: Type): Rtype

oname: Class Iname

Cname

Cname

Cname

Nname

text

Pname

«kind»

Aname

oname: Class[Role]

name: Class

Tname

p:Type

{ expression }

class

active class

role

note

object

multiobject

association

generalization

realization

 dependency

component

node

constraint

template

collaboration

interface

package

template
parameter

Notation Summary 521

Figure B-2. Class contents

Figure B-3. Association adornments within a class diagram

«stereotypeName«
Cname

{tag = value}

+ attrName: Cname = expression
attrName: Cname
– attrName[*]: Cname

+ opName (p:C1,q:C2):C3

Responsibilities
text description

«constructor»
opName (v:Cname=default)

visibility

stereotype icon

class

class name (italics for abstract)
tagged values

stereotype name

public attribute with initial value

optional named
compartment

public attribute with initial value
protected attribute
private attribute with multiplicity many

public abstract operation with return type
stereotype on subsequent operations
concrete operation with default value

compartment name
compartment list element

qname:Cname
0.1 name{ordered} ∗ oname

Aname

name
direction

∗

1

ACname

class

ordering multiplicity rolename

qualifieraggregation

association name

composition

association path

association class
(all one element)

class

association

522 Appendix B

Figure B-4.

Generalization

Figure B-5.

Realization of an interface

direct style tree style

parent superclass

child subclass

generalizations

«call»«interface»

Iname

Iname

«call»

explicit
style

implicit
style

usagesupplier realization interface client

Notation Summary 523

Figure B-6.

Template

Figure B-7.

Package notation

FArray

FArray<Point,3>

T,k:Integer

«bind» (Address,24)

T
k..k

AddressList

T has type Classifier by default.

This class has
its own name.This class has an

anonymous name.

The parameters are used
in the template body.

In this template, the
multiplicity of the array
is fixed by the binding.

template

explicit binding

template parameters

implicit binding

+A –B

+C +D

+C

«import»

«access»

Y Z

U

–G

+E

+F

X

package Y can see public contents of package Z

package Z adds public contents of package X to Z’s namespace

class G is private and accessible only inside package X

package with nested subpackage and class

524 Appendix B

Figure B-8.

Component and node notation

nodeName1:NodeType

nodeName2:NodeType

c1:CompType interfaceName

c2:CompType

«connectionType»

interface

node instance

usage dependency on interface

node instancerealization of interface

component instance

Notation Summary 525

Figure B-9.

Icons on use case diagrams

Figure B-10.

Use case diagram notation

«include»

«extend»

system boundary

communication
association

generalization

extend

include

use case

actor

«extend»(ep1)

«include»

ActorA

SystemB

UCBase UCExt

UCVar1 UCVar2

UCIncl

system boundary

ActorB

abstract parent use case abstract extension use case

extension point
generalization

concrete inclusion use case

actors

526 Appendix B

Figure B-11.

Icons on statechart and activity diagrams

Ename

Ename

name: Type

Sname

Sname

fork or join
branch or merge

output event

input event

transition

history state

final state

initial state

concurrent composite state

state

object flow state

activity state

H*

deep history state

 H

junction state

include / submachinename

S1

submachine reference state

stub state

Notation Summary 527

Figure B-12.

Statechart notation

StateA StateB

StateC

e1 (p:C) [cond] / action1; action2

entry / action3
exit / action4
e1 / action5e2

StateA

e3

guard
condition

transition

event
parameters

event name actions

internal transition
exit action
entry action

completion transition lacks a trigger event
fires on completion of activity

final stateinitial state substate

concurrent composite state

explicit transition
(aborts nested activity)

528 Appendix B

Figure B-13.

Activity diagram notation

activity

[choice1]

[choice2]

Cname::Operationname

start of overall activity

join (unbranch)

merge of control
(unfork)

fork of control

activityguard condition

branch

end of overall activity

activity

activity

activityactivity

activity

activity

Notation Summary 529

Figure B-14.

Sequence diagram notation

[x>0] create(x)

[x<0] callC(x)

doit(z)
doit(w)

recurse()

ob1:C1

ob2:C2

ob3:C3 ob4:C4

op()

These objects
exist before the
first operation
and continue after
the last.

The object
destroys itself
at this point.

The object
destroys itself
at this point
and returns to
the caller.

return

object created
by the operation

fork of
concurrent
control

branch of control

join of control

call

merge of
concurrent
control

lifeline ends

lifeline continues

recursive
call

530 Appendix B

Figure B-15.

Collaboration diagram notation

Figure B-16.

Message notation

:Controller

wire: Wire

1: displayPositions(window)

left: Bead

wire

redisplay()
:Window

i-1 i

right: Bead

1.1.1b: r1:=position()1.1.1a: r0 := position()

1.1.2: create(r0,r1)

window

«parameter»window

1.1*[i:=1..n]: drawSegment(i) :Line {new}
«local»line

1.1.3: display(window)

1.1.3.1: link(self)

 contents {new}

«self»

invoker of operation

self-link for self-calls

local variable

object
created
during
operation

return
value

operation

association

sequence number

iteration expression

link
creation

operation being described

concurrent thread name

message flow

sequential message

asynchronous message

call

Chapter 38

MORE UML NOTATION

38.1 General Notation

Stereotypes and Property Specifications with Tags

Stereotypes are used in the UML to classify an element (see Figure 38.1).

Figure 38.1 Stereotypes and properties.

603

Figure 38.2 Interface of a package.

Dependency

Dependencies can exist between any elements, but they are probably most often
used in UML package diagrams to illustrate package dependencies (see Figure
38.3)

Figure 38.3 Dependencies.

38.2 Implementation Diagrams

The UML defines several diagrams that can be used to illustrate implementa-
tion details. The most commonly used is a deployment diagram, to illustrate the
deployment of components and processes to processing nodes.

604

38 - MOKE UML NOTATION

Package Interfaces

A package can he illustrated as implementing an interface (see Figure 38.2).

IMPLEMENTATION DIAGRAMS

Component Diagrams

To quote: A component represents a modular, deployable, and replaceable part
of a system that encapsulates implementation and exposes a set of interfaces
[OMG01]. It may, for example, be source code, binary, or executable. Examples
include executables such as a browser or HTTP server, a database, a DLL, or a
JAR file (such as for an Enterprise Java Bean). UML components are usually
shown within deployment diagrams, rather than on their own. Figure 38.4 illus-
trates some common notation.

Figure 38.4 UML components.

Deployment Diagrams

A deployment diagram shows how instances of components and processes are
configured for run-time execution on instances of processing nodes (something
with memory and processing services; see Figure 38.5).

605

Figure 38.5 A deployment diagram.

38.3 Template (Parameterized, Generic) Class
Template classes and their instantation are shown in Figure 38.6.

38 - MORE UML NOTATION

606

Figure 38.6 Template classes.

ACTIVITY DIAGRAMS

Some languages, such as C++, support templatized, generic, or parameterized
classes. In addition, this feature will be added to the Java language. For exam-
ple, in C++, map<string, Person> declares the instantiation of a template class
with keys of type string, and values of type Person.

38.4 Activity Diagrams

A UML activity diagram offers rich notation to show a sequence of activities.
It may be applied to any purpose (such as visualizing the steps of a computer
algorithm), but is considered especially useful for visualizing business work-
flows and processes, or use cases. One of the UP workflows (disciplines) is Busi-
ness Modeling; its purpose is to understand and communicate "the structure
and the dynamics of the organization in which a system is to be deployed"
[RUP]. A key artifact of the Business Modeling discipline is the Business
Object Model (a superset of the UP Domain Model), which essentially visual-
izes how a business works, using UML class, sequence, and activity diagrams.
Thus, activity diagrams are especially applicable within the Business Modeling
discipline of the UP.

Some of the outstanding notation includes parallel activities, swimlanes, and
action-object flow relationships, as illustrated in Figure 38.7 (adapted from
[OMGOl, FS00]). Formally, an activity diagram is considered a special kind of
UML statechart diagram in which the states are actions, and event transition is
automatically triggered by action completion.

607

38 - MORE UML NOTATION

Order product

Customer Order Processing Fulfillment

Validate order

:Order
[placed]

:Order
[prepaid] Get product

Collect
payment

Pay

Deliver rush Deliver regular

[rush] [else]

:Order
[fulfilled]

Swimlanes. Optional. An
area of responsibility. Often
an organizational unit.activity, and transition

on its completion

Start. Optional; identifying a
single start (or stop) point may
not be important.

Fork. One incoming
transition, and multiple
outgoing parallel transitions
and/or object flows.

Object in state. Input or
output with respect to an
activity.

Object flow.

Branch and merge.

Join. Multiple incoming
transitions and/or object
flows; one outgoing
transition.

End state. Optional;
identifying a single stop
point may not be important.

Send receiptAdd customer
to Satisfied list

Give beer to
shippers

Figure 38.7 Activity diagram.

608

