DEFECTOS CRISTALINOS EN CRISTALES REALES

Recordemos que nuestra estructura se basa en la escala atómica. Sobre la base de dicha escala precisemos la dimensión de los defectos cristalinos.

Los defectos cristalinos no necesariamente son dañinos para efectos prácticos. Ellos simplemente corresponden a un distanciamiento del estado ideal (cristal perfecto).

Estos defectos, al ser un elemento más de la estructura de un material, influyen sobre las propiedades de este último. Tengamos presente la relación: estructura/procesos/propiedades.

Debemos conocer y controlar los defectos, para manipular apropiadamente las propiedades.

Orden	Dimensión	Ejemplos
0	Puntuales	Vacancias
		Autointersticiales
		Impurezas disueltas: soluciones sólidas de sustitución y de inserción
		Defectos electrónicos
1	Lineales	Dislocaciones de borde, helicoidales y mixtas.
2	Superficiales	Bordes de grano (en policristales)
		Maclas
		Dislocaciones extendidas
		Superficies libres
3	Tridimensionales	Poros
		Partículas de una segunda fase

Ejemplos del rol de algunos defectos sobre el comportamiento de los materiales.

- Las vacancias juegan un gran rol en la difusión atómica, particularmente en el caso de cristales densos.
- Las soluciones sólidas constituyen un importante tipo de fases sólidas. Por ejemplo, un aleación Cu-3% peso Al es una solución sólida de sustitución; ella presenta la estructura cristalina (orden) del Cu (ccc), sólo que los átomos de Al están dispersos en el cristal y ocupan algunas de las posiciones donde antes había un átomo de Cu. Por supuesto que el parámetro de celda, un valor promedio, es afectado por la cantidad de Al agregado. Bajo condiciones de equilibrio químico, a temperatura ambiente se puede agregar hasta aproximadamente un 8%p. de Al (límite de solubilidad) y aún hay disolución. Más allá de tal valor, la solución se satura y aparece una segunda fase, un compuesto definido de fórmula estequeométrica Cu₄ Al.
- Las dislocaciones, los bordes de grano y las partículas de segunda fase, así como sus interacciones, son importantes en propiedades MECÁNICAS (dureza, tenacidad, etc.)

Fase

Definición de fase: una fase es una región de materia homogénea, cuyas propiedades varían en forma continua con las variables intensivas del sistema.

Variables intensivas de un sistema termodinámico son aquellas que NO dependen de la masa. Ellas son: Composición, Temperatura y Presión. (Por ejemplo, la cantidad de calor y el volumen sí dependen de la masa; estas son variables extensivas)

Si, por ejemplo, al aumentar la temperatura (o la cantidad de soluto agregado, o la presión), se detecta un cambio discontinuo en alguna propiedad (resistividad, longitud, etc.), entonces se ha detectado un cambio de fase, el cual habrá que identificar específicamente con experiencias complementarias.