Homework

Exercise 1.

Given a graph $G=(V, E)$, the clique problem asks to find the maximum size of a subset of vertices $C \subseteq V$ such that all pairs of vertices in C are connected.

Question 1. Propose an integer program for this problem.
Question 2. Show that the relaxation of this program has an integrality gap of $\Omega(n)$.

Exercise 2.

Densest subgraph
Given a graph $G=(V, E)$, the densest subgraph problem is to find a subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ that maximizes the ratio $\left|E^{\prime}\right| /\left|V^{\prime}\right|$. Consider the following linear program with variables x_{v} for each $v \in V$ and y_{e} for each $e \in E$.

Maximize: $\quad \sum_{e \in E} y_{e}$
Subject to : $\quad \sum_{v \in V}^{e \in E} x_{v}=1$

$$
\begin{array}{ll}
y_{e} \leq \min \left(x_{u}, x_{v}\right), & e=(u, v) \in E \\
y_{e} \geq 0, & e \in E \\
x_{v} \geq 0, & v \in V
\end{array}
$$

Question 1. Show that this linear program is a relaxation of the densest subgraph problem.
We consider the following rounding scheme. Let $r \in[0,1], V_{r}=\left\{v \in V \mid x_{v} \geq r\right\}$ and $E_{r}=\left\{e \in E \mid y_{e} \geq r\right\}$.
Question 2. Show that $\int_{0}^{1}\left|E_{r}\right| d r=\sum_{e \in E} y_{e}$.
Question 3. Show that $\int_{0}^{1}\left|V_{r}\right| d r=\sum_{v \in V} x_{v}=1$.
Question 4. Show that there exists a value of r such that $\left|E_{r}\right| /\left|V_{r}\right| \geq \sum_{e \in E} y_{e} / \sum_{v \in V} x_{v}$. What does it imply for the complexity of the densest-subgraph problem? How would you find the value of r that gives the best sets V_{r} and E_{r} ?

Exercise 3.

Given a graph $G=(V, E)$ with positive costs on edges, and a set $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subseteq V$ of terminals, a multiway cut is a set of edges whose removal disconnects the terminals from each other. The multiway cut problem is to find a multiway cut of minimum cost.
From $G=(V, E)$ obtain the directed graph H by replacing each edge $\{u, v\}$ of G by two directed edges $(u \rightarrow v)$ and $(v \rightarrow u)$, each having the same cost as $\{u, v\}$.
Assign a $0 / 1$ indicator variable d_{e} to each arc e in H. Suppose the terminals are numbered s_{1}, \ldots, s_{k} in some order. Let P be the collection of all simple paths from a lower-numbered terminal to a higher-numbered terminal.
Consider the following bidirected integer programming formulation for the multiway cut problem.
Minimize: $\quad \sum_{e \in H} c(e) d_{e}$
Subject to : $\quad \sum_{e \in P}^{e \in H} d_{e} \geq 1, \quad p \in P$

Question 1. Show that an optimal solution to this integer program yields an optimal solution to the multivay cut problem.

Question 2. Obtain the LP-relaxation and dual program. Give a good physical interpretation of the dual.
Question 3. Give an instance where the cost of an optimal integer solution is different from the cost of an optimal fractional solution. What is the corresponding integrality gap? How far can you go (until getting bored)?

Exercise 4.

Capacitated vertex cover
Given a graph $G=(V, E)$ with weighted vertices $w_{v} \in \mathbb{Q}^{+}$and vertex capacities $k_{v} \in \mathbb{Z}^{+}$, the capacitated vertex cover problem is to find a vertex cover of minimum cost such that each vertex :

1. can be taken multiple times (i.e. x_{v} times)
2. covers at most $k_{v} x_{v}$ edges.

The minimum capacitated vertex cover is to find such a cover that minimizes the total weight of the chosen vertices, $\sum_{v \in V} w_{v} \cdot x_{v}$.
We consider the following linear program for this problem :
Minimize: $\quad \sum_{v \in V} x_{v} w_{v}$
Subject to : $\quad y_{e, v}+y_{e, u} \geq 1, \quad e \in E$

$$
\begin{aligned}
& \sum_{e: v \in e} y_{e, v} \leq k_{v} x_{v}, \quad v \in V \\
& x_{v} \in \mathbb{N} \\
& y_{e, v} \in\{0,1\}
\end{aligned}
$$

Question 1. Show that this integer linear program encodes the minimum capacitated vertex cover problem. Propose a relaxation to this program.
Question 2. Show that the constraint $x_{v} \geq y_{e, v}$ for each $e: v \in e$ can be added to the LP relaxation. What does it corresponds to? In the following, we consider the relaxed LP with this additional constraint.

Consider the following rounding strategy :
Let $y_{e, v}^{*}=\left\{\begin{array}{ll}1 & \text { if } y_{e, v} \geq \frac{1}{2} \\ 0 & \text { if } y_{e, v}<\frac{1}{2}\end{array}\right.$, and $y_{v}^{*}=\sum_{e: v \in e} y_{e, v}^{*}$
Set $x_{v}^{*}=\left\lceil\frac{y_{v}^{*}}{k_{v}}\right\rceil$ and take x_{v} times node v.
Question 3. Show that this gives a valid capacitated vertex cover
Question 4. Show that $y_{v}^{*} \leq 2 k_{v} x_{v}$
Question 5. Show that if $y_{v}^{*} \geq k_{v}, 4 x_{v} \geq x_{v}^{*}$
Question 6. Suppose $y_{v}^{*}<k_{v}$. Remark that $x_{v}^{*} \in\{0,1\}$. Show that if $x_{v}^{*}=1$ then $x_{v} \geq \frac{1}{2}$. Conclude on the approximation ratio of the rounding strategy.

