
Approximation algorithms

Homework

Exercise 1. Overflowed backpack of minimum cost

Given n items of non-negative sizes t1, . . . , tn, of costs c1, . . . , cn, and a constantW , the minimum cost over-
flowed backpack problem is to find a set S ⊆ {1, . . . , n} of minimum cost, such that

∑

i∈S ti ≥ W .

Question 1. By reduction from the partition problem (which is NP -hard), show that this problem is NP -hard.

We study the following greedy algorithm :

Algorithm 1 Greedy

1. Sort the items by non-decreasing ci/ti : c1/t1 ≤ c2/t2, . . . ≤ cn/tn.

2. Let i be the smallest index such that
∑

j≤i tj ≥ W and return S = {1, . . . , i}.

Question 2. Show that this algorithm may return arbitrary bad solutions, even if every item has size < W .

We consider two arrays C and V :
– C[i, v] is the minimum feasible cost with a total volume exactly v obtained with a subset of the i first
items.

– V [i, c] is the maximum feasible volume with a total cost of exactly c obtained with a subset of the i first
items.

Question 3. Give a recursive definition of V and C and propose two pseudo-polynomial algorithms for the minimum
overflowed backpack problem.

Let C = maxi ci.

Question 4. Propose a polynomial algorithm in time poly(n, 1/ǫ) such that the cost of the returned solution is at
most OPT +ǫC.

Hint : Round the instance in the following way : letK = ǫC
n
and for each item, round its cost to c′i = ⌈ ci

K
⌉.

Question 5. By parametric pruning, deduce a fully polynomial time approximation scheme for this problem.

Hint :What can you say about the previous algorithm when C ≤ OPT ?

Exercise 2. Minimum makespan scheduling

Given n jobs J1, . . . , Jn of processing times p1, . . . , pn , and m identical machines, a schedule of the jobs is
an assignment (mi, ti) of the jobs Ji to the machine mi such that ∀i, j, ifmi = mj , then tj 6∈ [ti, ti + pi). We
say that Ji is scheduled at time ti on machinemi. The completion time of Ji is CTi = ti + pi. The makespan
of a schedule is the maximum completion time of the jobs, i.e.maxi CTi.

FIG. 1 – Example : A schedule of 6 jobs on 3 machines. Job 6 ends at time 7 and thus the makespan of this
schedule is 7.

The minimum makespan scheduling problem is to find a schedule of n jobs on m machines, so that the
makespan is minimized.

1



Question 1. Show that this problem is NP -hard.

Hint : Reduce the partition problem to it.

Question 2. Show that the average time a machine has to run,
1

m
(
∑

i

pi), and the largest processing time are two

lower bounds on OPT.

We consider the following greedy algorithm :

Algorithm 2 Greedy

1. Order the jobs arbitrarily.

2. Schedule the jobs on machines in this order, scheduling the next job on the machine that has been
assigned the least amount of work so far. Figure is an example of the execution of this algorithm.

Question 3. Show that the greedy algorithm is a (2 − 1/m)-approximation algorithm and that it is not better.

Hint : LetMS denote the makespan of the greedy algorithm and pn the size of the last scheduled job. What can you
say about the total amount of work assigned to each machine at timeMS − pn ?

For an integer k, let J1, . . . , Jk be the k longest jobs of the n jobs. We consider the following algorithm (which
is not necessarily polynomial) :

Algorithm 3

1. Schedule J1, . . . , Jk optimally on themmachines.

2. Order the remaining jobs Jk+1, . . . , Jn arbitrarily.

3. Schedule this remaining jobs by placing each of them iteratively on the machine that has been assi-
gned the least amount of work so far.

Let ω(k) be the makespan of the solution returned by this algorithm.
We aim to show the following :

ω(k) ≤ (1 +
1 − 1/m

1 + ⌈k/m⌉
)OPT .

Let p∗ be the longest processing time of the remaining jobs Jk+1, . . . , Jn after step 1, i.e. p∗ = maxk<i≤n pi.

Question 4. Show that OPT ≥ ω(k) −
(

m−1

m

)

p∗.

Hint : Recall Question 3

Question 5. Show that OPT ≥ (1 + ⌈k/m⌉) p∗ by remarking that there is at least (k + 1) jobs of size greater than
p∗.

Question 6. Conclude that ω(k) ≤

(

1 +
1 − 1/m

1 + ⌈k/m⌉

)

OPT.

We now consider a modification of the greedy algorithm, where instead of taking the jobs in an arbitrary
order, the algorithm considers it by non-increasing processing time :

Algorithm 4 Greedy decreasing

1. Order the jobs by non-increasing processing times.

2. Schedule the jobs on machines in this order, scheduling the next job on the machine that has been
assigned the least amount of work so far.

Let pmin be the smallest processing time of any job.

2



Question 7. We first suppose that pmin > 1

3
OPT. Show that if n ≤ 2m Greedy decreasing returns an optimal

solution.

Hint : Remark that in an optimum solution, when pmin > 1

3
OPT, there is at most 2 jobs per machine, and show that

OPT can be modified into the solution returned by the Greedy decreasing algorithm without increasing the makespan.

Question 8. Show that the Greedy decreasing algorithm is a 4/3-approximation algorithm.

Hint : If pmin > 1

3
OPT, remark that Greedy decreasing is a special case of algorithm 3 and use Question 6. If

pmin ≤ 1

3
OPT, use the analysis in Question 3.

3


