

Pauta P1 C1 MA22A-4 2007/01

Parte a)

La norma es una función continua $\Rightarrow f(x) = ||x - x_0||$ es continua.

Parte b)

(1.5)

A es un conjunto cerrado y acotado, $f:A \to \Re$ continua, luego por teorema de Bolzano-Weierstrass, $f(x)=\left\|x-x_0\right\|$ alcanza su mínimo y máximo en A.

(1.5)

Parte c)

$$f(x) \ge 0, \forall x \in A \Rightarrow \min_{x \in A} f(x) \ge 0$$

Sea $x_1 \in A$ tal que $\min_{x \in A} f(x) = f(x_1) = ||x_1 - x_0||$

Si
$$||x_1 - x_0|| = f(x_1) = 0 \Rightarrow x_1 = x_0$$
. Pero $x_0 \notin A, \rightarrow \leftarrow$

(1.0)

Parte d)

Observemos que $x_1 \in A(c)$ (x_1 de la parte (c))

Si A(c) es un conjunto abierto $\Rightarrow \exists \delta > 0$ tal que $B(x_1, \delta) \subset A(c)$

Sea
$$v = \frac{x_0 - x_1}{\|x_0 - x_1\|}$$
.

Entonces
$$y = x_1 - \frac{\delta}{2}v \in B(x_1, \delta)$$
 pues $||v|| = 1$

$$\text{Además: } \left\| x_0 - y \right\| = \left\| (x_0 - x_1)(1 - \frac{\mathcal{S}}{2}) \right\| = (1 - \frac{\mathcal{S}}{2}) \left\| x_1 - x_0 \right\| = (1 - \frac{\mathcal{S}}{2}) f(x_1) < \min_{\mathbf{x} \in A} f(\mathbf{x})$$

$$\Rightarrow y \notin A \Rightarrow y \notin A(c) \subset A, \rightarrow \leftarrow$$
 contradicción

 \Rightarrow A(c) **NO** es abierto. (Como subconjunto de \Re^n)

(A(c)) es abierto relativo a A)

(1.0)

Parte e)

1)
$$Adh(A(c)) = A \cap \{x \mid f(x) \le c\}$$

2)
$$Int(A(c)) = A(c) \cap Int(A)$$

3)
$$Fr(A(c)) = [A(c) \cap Fr(A)] \cup \{x \mid f(x) = c\}$$

(1.0)