Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Sábado 30 de junio del 2007

Examen-MA22A: Cálculo en Varias Variables.

Profesor: Rafael Correa

Profesores Auxiliares: Omar Larré, Tomas Spencer, Andrés Fielbaum

Instrucciones: Usted debe responder obligatoriamente las preguntas 1, 2 y 3. Además, debe elegir entre las preguntas 4 y 5, y responder solamente una de ellas.

1. Sea A una matriz de $n \times n$ simétrica. Considere el siguiente problema de maximizacion:

$$\begin{aligned} Max \ \overrightarrow{x}^t A \overrightarrow{x} \\ s.a. \ ||\overrightarrow{x}||_2 &= 1 \\ \overrightarrow{x} \in \mathbb{R}^n \end{aligned}$$

(a) Justifique por qué el máximo se alcanza.

Hint: Defina bien la funcion a la cual se le esta calculando el máximo y considere su dominio.

(b) Demuestre utilizando multiplicadores de Lagrange, que el valor máximo de la función objetivo es el mayor valor propio de A.

 $Hint: ||\overrightarrow{x}||_2 = 1 \Leftrightarrow \overrightarrow{x}^t \overrightarrow{x} = 1$. Además recuerde que λ es valor propio de A ssi $\exists \overrightarrow{x}_0 \in \mathbb{R}^n$ tal que $A \overrightarrow{x}_0 = \lambda \overrightarrow{x}_0$.

- (c) Considere ahora la descompocicion de $A: A = P^tDP$, con P invertible y D una matriz diagonal que contiene a los valores propios de A en su diagonal. Pruebe que el \overrightarrow{x} con el que se alcanza el máximo es tal que $P\overrightarrow{x} = \overrightarrow{e}_i$ (con \overrightarrow{e}_i el vector canónico i) y tal que el maximo valor propio de A este en la posicion i, i de la matriz D (i.e. $D_{i,i} = \lambda_{\max}$).
- 2. Considere el cambio de variables a coordenadas elipsodiales:

$$T(r,\theta) = (x,y) = (ar\cos\theta, br\sin\theta)$$

Las que son útiles para trabajar con una elipse de semi-ejes de medida a,b en los ejes x,y respectivamente.

- (a) Encuentre $|\det J(r,\theta)|$ donde $J(r,\theta)$ es el Jacobiano que representa a este cambio de variables.
- (b) Demuestre, usando integrales múltiples y estas coordenadas, que el área de una elipse de semi-ejes a y b es πab .

Hint: Para encontrar el límite superior de integración para r, le puede ser útil ver cuánto debiera valer r en los vértices de la elipse.

3. Considere el sólido dado por:

$$V = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 3, x \ge 0, y \ge 0, z \ge 0\} \cup \{(x, y, z) \in \mathbb{R}^3 : 1 \le x^2 + y^2 + z^2 \le 4, x \ge 0, y \ge 0, z \le 0\}$$

Se define la densidad de carga superficial $\rho(x, y, z)$ como la cantidad de carga por unidad de volumen de este sólido. Suponga que

$$\rho(x, y, z) = K(x^2 + y^2)(x^2 + y^2 + z^2)$$

con K una constante conocida y positiva. Calcule la carga total contenida en el sólido, es decir, calcule

$$\iiint\limits_{V}\rho(x,y,z)dxdydz$$

4. Considere el problema:

$$(P) \begin{cases} \min & -2x - 6y + x^2 - 2xy + 2y^2 + 2z^2 \\ s.a. & x + y \le 2 \\ & -x + 2y \le 2 \\ & z \le 3 \end{cases}$$

Use el teorema de Karush-Kuhn-Tucker para determinar si

$$\overrightarrow{x}_0 = \left(\frac{2}{3}, \frac{4}{3}, 1\right)$$

$$\overrightarrow{x}_1 = \left(\frac{4}{5}, \frac{6}{5}, 0\right)$$

son soluciones de (P).

5. Sea $f:\mathbb{R}^2 \to \mathbb{R}$, f=f(u,v), una función de clase C^2 y armónica en \mathbb{R}^2 , es decir:

$$\frac{\partial^2 f}{\partial u^2}(u,v) + \frac{\partial^2 f}{\partial v^2}(u,v) = 0 \quad , \forall (u,v) \in \mathbb{R}^2$$

Sea $g(x,y)=(e^x\cos y,e^x\sin y)$. Demuestre que $f\circ g$ también es armónica en \mathbb{R}^2 .

Tiempo: 3 horas.