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ABSTRACT
CoIL challenge2000 was a supervisedlearningcontestthat at-
tracted43 entries. The authorsof 29 entrieslater wrote explana-
tionsof their work. This paperdiscussesthesereportsandreaches
threemain conclusions. First, naive Bayesianclassifiersremain
competitive in practice: they wereusedby both the winning en-
try andthenext bestentry. Second,identifying featureinteractions
correctlyis importantfor maximizingpredictiveaccuracy: thiswas
thedifferencebetweenthewinning classifierandall others.Third
andmostimportant,too many researchersandpractitionersin data
mining do not appreciateproperly the issueof statisticalsignifi-
canceand the dangerof overfitting. Given a datasetsuchas the
onefor theCoIL contest,it is pointlessto applyaverycomplicated
learningalgorithm, or to perform a very time-consumingmodel
search.In eithercase,oneis likely to overfit the trainingdataand
to fool oneselfin estimatingpredictiveaccuracy andin discovering
usefulcorrelations.

1. INTRODUCTION
Thispaperexplainssomegeneralguidelinesandprinciplesthatare
fundamentalto practicalsuccessin datamining, but which many
practitionersdo not follow or do not know. The empirical evi-
dencethat datamining practitionersareunawareof theselessons
comesfrom the reportswritten by participantsin a datamining
contestorganizedin the spring of 2000. This contest,known as
CoIL Challenge2000,wassponsoredby a consortiumof research
groupsfundedby the EuropeanUnion. The contestattracted147
registeredparticipants,of whom 43 submittedentries. Of the 43
participantswho submittedentries,29 laterwrote reportsexplain-
ing theirmethodsandresults.Theauthorsof thesereportsappearto
bedataminingpractitionersor researchers,asopposedto students.
Thereportshave beenpublishedby [8].

TheCoIL contestwasquitesimilarto thecompetitionsorganizedin
conjunctionwith theKDD conferencein recentyears,andto other
datamining competitions.The contesttaskwasto learna classi-
fier capableof identifying which customersof a Dutch insurance
company have an insurancepolicy covering a caravan. (Caravans

aremobilehomesthatarenormallytowedby cars.They arecalled
trailersin North America.) Thetrainingsetcontainedinformation
on 5822customers,of which 348,about6%,hadcaravanpolicies.
The test set containedinformation on 4000 customersrandomly
drawn from thesamepopulation.For eachcustomer, thevaluesof
85 featuresweregiven.Contestparticipantswereaskedto identify
which 800of the testcustomersweremostlikely to have caravan
policies. The training and test setsusedin the contestare now
availablein theUCI repository.

Like otherdatamining contests,the CoIL contestwasa valuable
testbedfor measuringthe“end to end” successfulnessof datamin-
ing methods.The real-world usefulnessof an algorithmdepends
not only on its theoreticalproperties,but also on the easewith
which practitionerscanapply it without falling victim to overfit-
ting andother traps. In principle overfitting canbe avoidedwith
almostall methods,but in practicesomemethodsaremuchmore
likely to leadtheir usersastray. Contestssuchasthis oneprovide
guidanceaboutwhichmethodsaredefactomorerobust,andabout
wheredatamining practitionersneedguidancemost.

2. THE WINNING ENTRY
Figure1,adaptedfrom [8], showsahistogramof thescoresachieved
by the43 individualsor teamsthatsubmittedentriesto thecontest.
Thewinning entry, which wasmine,identified121caravanpolicy
holdersamongits 800toppredictions.Thenext bestmethodsiden-
tified 115and112policy holders.Themeanscorewas95.4,with a
standarddeviation of 19.4.Thedistributionof scoresis clearlynot
normal,with a long tail to the left. The mostcommonscorewas
109,andthemedianscorewas103.
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Figure 1: Distribution of scores achieved by 43 entries.

Thedatamining algorithmusedin thewinning entrywasstandard
naive Bayesianlearning.Thesecondbestentry, dueto PetriKon-
tkanen,alsouseda naive Bayesianclassifier. Many of the meth-
odsdescribedin the29 reportsby participantsaremuchmoreso-
phisticated.They includecombinationsof backpropagationneural



networks, self-organizingmaps(SOMs),evolutionaryalgorithms,
C4.5, CART, andotherdecisiontree inductionalgorithms,fuzzy
clusteringand rule discovery, supportvector machines(SVMs),
logistic regression,boostingandbagging,andmore. The strong
performanceof naive Bayesianlearningagainstthiscompetitionis
noteworthy.

An importantaspectof theCoIL contestwasthat thevaluesof all
numericalfeaturesweremadediscretein advanceby the contest
organizers. For example, insteadof a real-valuedfeaturegiving
the precisemonetaryamountthat a customerpaysfor car insur-
ance,theCoIL datasetsincludeonly a discrete-valuedfeaturethat
categorizesthis amountinto oneof sevendifferentdiscretelevels.
Becauseall featureswerediscretizedin advance,theCoIL compe-
tition couldnotserve asa testof discretizationmethods.

Thepredictive accuracy of a naive Bayesianclassifiercanoftenbe
improved by boosting[3], and by addingnew attributesderived
from combinationsof existing attributes. Both boostingandde-
rivedattributesarewaysof relaxingtheconditionalindependence
assumptionsthat constitutethe naive Bayesmodel. For the CoIL
contest,aftertwo importantderivedattributeswereadded,boosting
did notgive any significantincreasein accuracy onavalidationset
takenfrom thetrainingset,nor did addingmorederivedattributes.
Therefore,thefinal entryI submitteddid notuseboosting,andused
only two derivedattributes.

Thetwo derivedattributesthatI addedgive themostdetailedinfor-
mationpossibleabouta customer’s existing carandfire insurance
policies.Thesetof valuesof onenew attributeis thecross-product
of the setsof valuesof the existing attributesnamedPPERSAUT
and APERSAUT. Theseattributesare explainedas “contribution
[level for] car policies” and “numberof car policies.” The other
new attribute is a similar cross-productfor two fire insuranceat-
tributes.

Creatinga derivedattributethatis a cross-productallows thenaive
Bayesianclassifierto associatea differentprobability of having a
caravanpolicy with eachalternativepairof valuesfor theattributes
PPERSAUT and APERSAUT, and similarly for the two fire in-
suranceattributes. As mentionedabove, all attributesarealready
discretizedinto a smallnumberof so-calledlevels,soeachcross-
productattributealsohasafinite numberof values.Any alternative
derivedattributeconstructedfrom two attributesthathave already
beenmadediscrete,for examplean averagepolicy premiumde-
finedas“contribution level” dividedby “numberof policies,” must
loseinformationcomparedto a cross-productattribute.

Thestrongestsinglepredictorof having acaravaninsurancepolicy
is having two carinsurancepolicies,or having onecarpolicy where
thecontribution level is not low (not level 5). Theotherpredictors
that aremoststatisticallysignificantare(i) a high valuefor “pur-
chasingpower class,” specifically5 or higherandespecially7 or
higher, (ii) having a privatethird party insurancepolicy, (iii) hav-
ing a boatinsurancepolicy, (iv) having a socialsecurityinsurance
policy, and(v) having a singlefire policy with a high contribution
(level 4). Intuitively, thesepredictorsidentify customerswho have
acarandarewealthierthanaverage,andwhoin generalcarrymore
insurancecoveragethanaverage.It is not surprisingthattheseare
thepeoplewho aremostlikely to have caravaninsurance.

Statisticalsignificanceis easyto evaluatequantitatively but approx-
imately for findings like the onesjust stated. For example,2977
customersin thetrainingsethave a carinsurancepolicy. Of these,
276 have a caravan policy, that is 9.3% comparedto 6% in the
populationof all customers.Thenumberof customerswith a car

insurancecontribution level of 5, all of which have only onecar
policy, is 613. If having acontribution level of 5 wasnotcorrelated
with having a caravanpolicy, we would expect9.3%,thatis 57,of
thesecustomersto have a caravanpolicy, with astandarddeviation
of

�
57 ��� 1 � 0 � 093��� 7 � 2. In fact, amongcustomerswith a car

insurancecontribution level of 5, only 14 have a caravan policy.
Thez-scoreof this discrepancy is � 14 � 57�
	 7 � 2 ��� 6 � 0 standard
deviations,which is unquestionablystatisticallysignificant.

The CoIL contestorganizersexplicitly set two tasks: develop a
modelof which customersaremost likely to have a caravan pol-
icy, andseparately, provide insight into thecharacteristicsof these
customers.Many datamining projectssimilarly have two useful
deliverables:a predictive model, and new insights into the phe-
nomenonbeingmodeled.An insight is particularlyusefulif (a) it
is statisticallyreliable,(b) it wasnot known previously, and(c) it
is actionable,meaningthatsomeactioncanbetakento exploit the
insight. In many dataminingprojects,few insightssatisfyall three
of thesecriteria.

For theCoIL contest,thediscovery thata customerwho hasa car
insurancepolicy but whosepremiumamountis low is lesslikely
thanaverageto have caravaninsuranceis aninsightthatpossesses
the threeproperties.This finding wasnot obvious in advance,the
argumentabove shows that it is statisticallyreliable,andit is ac-
tionable,sincedifferentpromotionscanbetargetedspecificallyat
thesecustomers.A customerof this typeis perhapslesswealthyor
lessrisk-averse,soheor sheis lesslikely to own a caravan,or less
likely to buy insurancefor it if heor shedoesown one.

It is not clearwhetherany additionalinsightscanbe gainedfrom
theCoIL trainingdatathatmeetall threecriteriaexplainedabove.
Usingalgorithmsto discover associationrules,severalparticipants
enumeratedadditionalclaimedcorrelations,but they never mea-
suredthestatisticalsignificanceof thesecorrelations.Theresultsof
thecontestindicatethatnoneof thesecorrelationscoveredenough
customersor were reliable enoughto improve overall predictive
accuracy.

In addition to revealing reliable correlationsthat have predictive
value,statisticalsignificancetestingcanalsobeusefulin showing
thatplausiblepotentialcorrelationsarein factunproven.For exam-
ple, in commercialdatamining, significancetestingoften shows
that demographicattributes, suchas customersegmentationsby
lifestyle, income,etc.,do not addany extra predictive power when
behavioral datais available.This phenomenonis clearlyvisible in
the CoIL dataset.Whena featureprovides no additionalpredic-
tive value,it is generallybeneficialnot to useit in modeling.The
naive Bayesmodelusedfor thewinning entry to theCoIL contest
was trainedwith all demographicattributesdiscarded,except the
attributenamedMKOOPKLA, “purchasingpower class.”

3. OVERFITTING
It is vital for datamining practitionersto understandthe issueof
overfitting in an intuitive way, andalsoto understandbasicstatis-
tics in anintuitive way. Most introductorycourseson statisticsdo
not discussoverfitting explicitly, but overfitting is a concerneven
with the simplestdataanalysisprocedures.Considerfor example
the meanandstandarddeviation of a sampleof n observationsxi
randomlyselectedfrom someparentpopulation.Themeanof the
sampleis definedof courseasµ � 1

n ∑n
x� 1 xi . Thestandarddevia-

tion of thesampleis thesquareroot of theaveragesquareddevia-
tion from themean,that is thesquareroot of 1

n ∑n
x� 1 � xi � µ� 2. But

statisticaltextbooksalwayssaythat the standarddeviation of the
parentpopulationshouldbeestimatedusingthedenominatorn � 1



insteadof n. We shouldusethesquareroot of 1
n 
 1 ∑n

x� 1 � xi � µ� 2,

which� is alwaysbiggersince 1
n 
 1 � 1

n if n � 2. Why?

The reasonis that usinga denominatorof n overfits the training
data,thesamplex1 throughxn. Themeanµ is thenumberrelative
to whichthesumof squareddeviations∑n

x� 1 � xi � µ� 2 is minimized.
Clearlythemeanof theparentpopulationis in generalnot exactly
thesameasthemeanof thesample.Thereforetheaveragedevia-
tion of thesamplerelative to theunknown truemeanof thepopu-
lation is typically greaterthanthesquareroot of 1

n ∑n
x� 1 � xi � µ� 2.

Onecanprove mathematicallythat replacing 1
n by 1

n 
 1 yields an
improvedestimateof thetruestandarddeviation of theparentpop-
ulationthatwill notsystematicallybetoosmall.Technically, using

1
n 
 1 givestheminimumvarianceunbiasedestimator[7].

Many contestsubmissionsreveal basicmisunderstandingsabout
theissueof overfitting. For example,oneteamwrotethatthey used
“ �
�
� evolutionarysearchfor choosingthepredictive features.The
result is a predictive modelthat usesonly a subsetof theoriginal
features,thussimplifying themodelandreducingtherisk of over-
fitting while maintainingaccuracy.”1 As shown by thediscussion
aboveof alternativestandarddeviationestimators,overfitting is not
preventedsimply by choosinga modelthat is simplesyntactically.
Overfitting occurswhen a model is chosenwhosehigh apparent
accuracy arisesfrom fitting patternsin the trainingsetthatarenot
statisticallyreliable,andarenot valid in testdata.

Even if a predictive modelusesonly a small subsetof features,if
that subsetis chosenas the best,or oneof the nearbest,among
many candidatesubsetsof features,thenoverfitting is a real dan-
ger. In datamining, overfitting is typically causedby searchinga
spaceof candidatemodelsthat is too large. Making predictions
with afinal modelthatusesonly afew featuresis neithernecessary
nor sufficient to preventoverfitting. If this final modelis foundby
a protractedsearchprocessthat explicitly or implicitly considers
many alternativemodelswith differentsubsetsof features,thenthe
apparentsimplicity of thefinal modelis misleading.Similarly, the
dangerof overfitting is not reducedjust becausea learningalgo-
rithm outputsa modelwith only a few parameters.For therisk of
overfitting to belessened,all modelsthatthealgorithmcouldhave
outputmustbeequallysimple.

A few participantswerequiteunawareof thedangerof overfitting.
For example,after usingbackpropagationnetworks with 20 hid-
denunitsbut with subsampledtrainingsetsof only 1200examples,
oneteamwrote“We haven’t got thebestscore.Thepossibleways
for theimprovementof themodelare(i) increaseof thenumberof
neuronsin thehiddenlayerwhatlet usto consideragreaternumber
of therelationshipsamongthedata �
�
� (ii) useof thegeneticalgo-
rithm for theneuralnetwork learningsinceoneis moreeffective in
globalextremumfinding.” Thesesuggestionswould only increase
the severity of overfitting. What oneshoulddo insteadis useall
availabletrainingexamplesandapplyaregularizationmethodsuch
asearlystoppingto reducetherisk of overfitting.

4. FEATURE SELECTION
Most participantsusedheuristicsto identify which of the85 avail-
ablefeatureshave themostpredictive value,andto choosea sub-
setof featuresfor input into their learningalgorithm. Noneof the

1Unlessstatedotherwise,all quotationsin thispaperaretakenfrom
reportswritten by CoIL contestparticipantsandpublishedby [8].
The quotationshave theoriginal spelling,grammar, anditalics of
theirauthors.Thepointof thispaperis to explainsomewidespread
misunderstandings,not to criticize individuals,sothenamesof the
authorsof quotationsareomitted.

authorsof reportsapplieda well-definedalgorithmfor featurese-
lection that did not requirehumanguidance. Moreover, noneof
the authors,includingmyself, useda systematicmethodto detect
importantfeatureinteractions.

Someparticipantsusedmethodsdesignedto evaluatesubsetsof
features,asopposedto individualfeatures,but thesemethodsfailed
to detecttheinteractionbetweenthenumberof carpoliciesandthe
total premiumpaidfor carpolicies,becausethesetwo featuresare
highly correlated. For example,oneauthorincorrectly wrote “if
‘Contribution carpolicies’ is chosen,the informationcontainedin
‘Numberof carpolicies’ is alreadyincludedin themodel.” Simi-
larly, despiteusinga“multidimensionalvisualisationtool,” another
teamalsoexcludedthe “numberof car policies” featureafter in-
cluding the “contribution carpolicies” feature.While thenumber
of carpoliciesandthetotalpremiumpaidfor carpoliciesarecorre-
lated,thefeaturestogetherdoprovidemoreinformationthaneither
by itself.

A differentteamwrotethat in theoutputof their commercialtool,
“somecontribution[s]mayberelatedto 2 or morevariables.In this
lastcase,thecontribution expressesthe fact that the importantin-
formationis broughtby the‘additionalknowledge’broughtby the
secondvariablewhenthe first one is alreadyknown.” Their tool
correctlyidentifiedthe “numberof car policies” featureashighly
predictive, but it did not detecttheadditionalpredictivenessof the
“contribution carpolicies” featureor theinteractionbetweenthese
two features.Identifying this interactionis importantfor two rea-
sons.First, exploiting it givesbetterpredictive accuracy. Second,
asdiscussedin Section2, it is theonly patternin the trainingdata
thathasbeenshown to be statisticallyreliableandsurprisingand
actionable.

5. COMPARING THE ACCURACY
OF LEARNING METHODS

A simple calculationshows that the test datasetprovided in the
CoIL contestis too small to reveal reliably which learningmeth-
odsaremoreaccurate.Considerthenull hypothesisthata learning
methodachieves p � 12% accuracy in the top 20% of its predic-
tions. On a randomlychosentest set of 4000 examples,the ex-
pectednumberof correctpredictionsis µ � pn � 96 wheren �
0 � 2 � 4000 � 800, which is similar to the averagenumberof cor-
rectpredictionsachieved by CoIL contestparticipants.Theantic-
ipatedstandarddeviation of the numberof correctpredictionsis
σ � �

np � 1 � p��� 9 � 2. In orderfor us to rejectthenull hypothe-
sis with a confidenceof over 95%,a learningmethodwould have
to scoremorethantwo standarddeviationsabove or below theex-
pectednumber, thatis lessthan78corrector morethan114correct.
Any methodthat scoresbetween78 and114 correctis not statis-
tically distinguishablefrom thenull hypothesismethod.Only the
winning entryandpossiblythesecondbestentryaresignificantly
betterthantheaverageCoIL contestentry.

It is possibleto comparetwo different learningmethodswith the
sametrainingandtestdatasetsin a way that is moresensitive than
the simplebinomial calculationabove, usingMcNemar’s hypoth-
esistest [2]. Let A andB designatetwo learningalgorithmsand
let n10 be the numberof test examplesclassifiedcorrectly by A
but incorrectly by B. Similarly, let n01 be the numberclassified
incorrectlyby A but correctlyby B. McNemar’s test is basedon
calculatingthestatistic

s � ��� n01 � n10 ��� 1� 2
n01 � n10

�



Thenull hypothesisis thatbothlearningalgorithmsareequallyac-
curate.� If this hypothesisis true, then the numeratorof the test
statisticshouldbe small. One can prove that underthe null hy-
pothesis,s hasapproximatelya chi-squareddistribution with one
degreeof freedom.Theterm � 1 in thenumeratoris calleda conti-
nuity correctionandadjustsfor thefact thats is discretewhile the
chi-squareddistribution is continuous. In general,a chi-squared
distributionwith k degreesof freedomhasmeank andvariance2k.
Thereforethedistributionof s, underthenull hypothesis,hasmean
1 andstandarddeviation � 2 approximately.

Thenumbersn01 andn10 neededto applyMcNemar’s testhavenot
beenpublishedfor mostpairsof entriesto theCoIL contest.How-
ever this informationis availablefor thetop entryandthesecond-
bestentry. As mentionedearlier, the contesttaskwasto identify
the 800 testexamplesmost likely to be positive. Eachentry can
be viewed as labeling800 examplesaspositive, and the remain-
der asnegative. On the testdataset,the top entry A andthe next
entry B gave 729predictionsin common,of which 110weretrue
positiveswhile 619 werefalsepositives. Eachentry gave 71 pre-
dictionsthat theotherdid not. Of thepredictionsuniqueto A, 11
weretruepositivesand60 werefalsepositives.Of thoseuniqueto
B, 5 weretruepositivesand66 werefalsepositives.We have here
thatn10 � 11 � 66 while n01 � 5 � 60,so

s � ��� 65 � 77��� 1� 2
65 � 77

� 121
142 � 1 �

Accordingto McNemar’s test,thedifferencein accuracy between
methodsA andB is not statisticallysignificant.

Evenwhenparticipantsdid evaluatetheperformanceof theirmod-
elsstatistically, theevaluationwasoften inappropriate.For exam-
ple, oneteamwrote “ �
�
� we have repeatedthemodellingprocess
five times,finding �
��� 105 � 2.55 in termsof meanandstandard
deviation.” But a standarddeviation computedon a fixedtestset,
over differentrunsof a learningalgorithm,revealsonly how stable
a learningmethodis. It hasno connectionwith thereproducibility
of the generalizationperformanceof the algorithm,which would
berevealedby astandarddeviationcomputedover independenttest
sets.

If onedoesnot take a statisticalview of the predictiontask,then
it is easyto believe incorrectly that a sufficient amountof train-
ing datais available.For example,oneauthorwrote“This appears
to bea complex, datarich, theorypoor typeof problemwith sub-
stantialhistoricaldata �
�
� ” In fact,thenumberof positive training
examplesavailable,348,is verysmall.Complex modelscannotbe
learnedwith confidencefrom sofew datapoints.

The mistake of believing that the numberof training examplesis
large is connectedwith anothercommonmistake, thatof underes-
timatingtheknowledgeandskill of existing expertsin a particular
domain. For example,the knowledgeof expertsin the insurance
industryis derived informally from millions of trainingexamples,
andso is potentiallymuchdeeperthanany knowledgethatcanbe
extractedfrom a singledataset.Of course,boththerealworld and
theknowledgeof expertsaresubjectto uncertaintyandignorance.
In theCoIL trainingdataset2.5%of customerswho do not have a
car insurancepolicy neverthelesshave a caravan policy. Presum-
ably thereis anexplanationfor this phenomenon.

6. MAGICAL THINKING
The previous sectionsof this paperhave shown that many CoIL
contestparticipantsweremisledby an insufficient intuitive under-
standingof the issueof statisticalrandomness.Many reportswrit-

tenby participantsrevealanimplicit belief thatsomehow onepar-
ticular learningmethodis ideal,andwith a little moreintelligence,
or luck, or data,a personcouldhave discoveredthis method.For
example,oneauthorwrote“But aftertheannouncementof thetrue
policy ownersit hasbecomeclearthattheapplicationof neuralnet-
worksisn’t necessary, [my] scoringsystemitself couldbeusedin-
steadand,evenmore,wouldhaveperformedbetter.” Laterhewrote
“UnfortunatelyI have discoveredthis factafter theannouncement
of thetruepolicy owners.”

This type of thoughtprocessis called “magical thinking” by an-
thropologists.In thewordsof a famouspassageby Gregory Bate-
son,“The practitionerof magicdoesnot unlearnhis magicalview
of events when the magic doesnot work. In fact, the proposi-
tions which govern punctuationhave the generalcharacteristicof
beingself-validating” [1]. In any culture,humanshave a certain
setof expectationsthat they useto explain the resultsof their ac-
tions.Whensomethingsurprisinghappens,ratherthanquestionthe
expectations,peopletypically believe that they shouldhave done
somethingslightly different. Unlesspeopleunderstandthe issue
of randomnessandstatisticalsignificancein an intuitive way, they
areliable to believe alwaysthat if only they haddonesomething
differently in themodelbuilding process,their modelwould have
performedbetter.

In thequotationabovefromBateson,theword“punctuation”means
theway in which we find patternsin our perceptionsof our expe-
riences.The“propositions”thatgovernpunctuationaretheprinci-
plesor expectationsthatwehavelearnedto useto organizeourper-
ceptions.Whatever theseprinciplesare,if we have learnedthem,
it is becausethey appearedto be useful in the past. As pointed
out in a differentcontext by ThomasKuhn[6], practitionersof sci-
encedonotunlearntheirscientificworldview whensciencecannot
explain a certainphenomenon.Instead,they eitherignorethephe-
nomenon,or they redoubletheir efforts to understandit scientifi-
cally. Whetherscientificor magical,it is difficult, andindeedocca-
sionallydangerous,to setasideanentireworldview. Nevertheless,
sometimesprogresscomesfrom doingso,andmagicalthinking in
datamining is oftencounter-productive.

Thereareseveralrelatedmanifestationsof magicalthinkingin data
mining. Onemanifestationis non-probabilisticthinking. For ex-
ample,aparticipantwrote“On analyzingthedataI foundmany in-
consistentinstances(i.e. samevaluesfor all attributesbut differing
[class]values)andremovedtheminority classof themfor training
sincethey might confuse[sic] thealgorithm.” Similarly, otherpar-
ticipantswrote “The original datasetwascleanedin the way that
all contradictoryrecordswerereclassifiedaspositive.”

Anothermanifestationof magicalthinkingis thebelief thatanideal
datamining methoddoesexist thatyieldsclassifierswith idealac-
curacy. Perhapstheclearestexampleof this belief is provided by
theauthorwho wrote“Two importantpoints[sic] abouttheCART
softwarefrom Salfordsystemsis its ability to identify an optimal
tree,oneproviding the leastamountof errorbetweenthe learning
datasetandthetestdataset.” In fact,evenfor a fixedlearningtask
andpopulationof examples,differentmethodsmay be bestgiven
different training or test datasets,becauseof randomnessin how
thesedatasetsaredrawn from thepopulation.

A third manifestationof magicalthinking in datamining is thebe-
lief that if a particular learningmethodor classifierhasnot per-
formedwell, this is alwaysdueto somespecificcausethatcanbe
andshouldbe fixed. This belief is bestillustratedby comments
from ateamthatsubmittedaclassifierthatwouldhave scored115,
but thenwithdrew this entryandsubmitteda classifierthatscored



107. This teamwrotethatthefirst classifier“had muchbetterluck
with the testset” but insteadof quantifyingthis phenomenonand
recognizingthat thedifferencebetween107and115 is easilydue
to randomnessin the test data, they suggesteda modificationto
their heuristicsandwrote“If someextra effort hadbeenput in this
direction,we believe that SVMs could have given even betterre-
sults.” If a spell fails to work, themagicianalwaysthinks thathe
mustcorrectsomesmall mistake, not that the spell may have no
chanceof working. If a spellappearsto have thedesiredoutcome,
themagiciandoesnot pauseto considerwhetheror not hecanbe
surethattheoutcomewascausedby thespell.

Magical thinking is not alwayslessproductive thantraditionalsci-
entificthinking. Beingprimedto seepatternsin smalldatasetsis an
innatecharacteristicof humansandperhapsotheranimalsalso,and
this characteristicis often useful for successin everydaylife [5].
Moreover, thestartingpoint of scientificthinking is oftena typeof
magicalthinking: scientistscommonlyposithypothesesbasedona
low numberof observations.Thesehypothesesarefrequentlyuse-
ful becausescientiststendto exploresmallandwell-consideredhy-
pothesisspacesthatarebasedonbackgroundknowledgeandhence
implicitly ona largenumberof previousobservations.In datamin-
ing however, patternsin a datasetaretypically not genuineunless
they satisfyformal scientificcriteriaof statisticalsignificance,be-
causethespaceof patternsexploredis large.

7. ECONOMIC ISSUES
Both thecontestsubmissionsandthedesignof thecontesthint at
a lack of understandingof the economicissuesinherentin a data
mining tasksuchas the CoIL contesttask. In similar real-world
domainsthe task shouldnot be to identify a fixed percentageof
customersmostlikely to have a caravaninsurancepolicy. Instead,
the taskshouldbe to identify which customersshouldbe offered
sucha policy, however few or many thesecustomersare.This task
is verydifferentfor at leasttwo reasons.

First, it is usuallyeconomicallyirrationalto offer aninsurancepol-
icy to somearbitrary percentageof customers.Instead,an offer
shouldbe madeto a customerif and only if the expectedprofit
from makingtheoffer is greaterthanthecostof makingtheoffer.
Therefore,theaim of datamining shouldbeto estimatetheproba-
bility thata customerwould acceptanoffer, andalsothecostsand
benefitsof thecustomeracceptingor declining[10].

Second,a customershouldnot beofferedan insurancepolicy just
becausehe or sheresemblesothercustomerswho have the same
type of policy. Thecharacteristicsthatpredictwho is mostlikely
to acceptaspecialsolicitationmaybeverydifferentfrom thechar-
acteristicsthatpredictwhoalreadyhasa particulartypeof policy.

As an obvious specialcaseof both pointsabove, customerswho
alreadyhave a caravan policy shouldpresumablynot be offered
oneagain.Theeconomicallycorrecttestsetfor a scenariosimilar
to thatof theCoIL contestwouldconsistentirelyof customerswho
donothaveacaravanpolicy. Hencethetrainingandtestsetswould
notberandomsamplesfrom thesamepopulation.

Someparticipantsappearto have basicmisconceptionsaboutthe
centralityof rationaldecision-makingto datamining. For example,
onepersonwrote“Main difficulty of thedatasetis its noisiness[...]
This is the reasonwhy in most of the communicationsbetween
participants,othertermslike lift-of or up-lift wereusedinsteadof
accuracy.” This statementis incorrect. Lift wasusedasa metric
of successbecausethe real task is to make optimal cost-sensitive
decisions,andmaximizing lift is a betterproxy for this objective

thanmaximizingaccuracy.

Any formalcontestmusthaveadefinitestructureandcannotmimic
a real world scenariowith completefidelity. Nevertheless,mea-
suringaccuracy on anarbitrarypercentageof thetestsetis too far
from reality for adataminingcontest.In conteststhatarebetterde-
signed,theperformanceof participantsis evaluatedusinga matrix
of real-world costsandbenefits. In this respectthe contestorga-
nizedin conjunctionwith the1998KDD conference,for example,
wasmorerealisticthantheCoIL contest.

An openissuefor future datamining contestsis how they canbe
usedto compareandevaluatenot just datamining algorithms,but
alsomethodologiesfor datamining. It is noteworthy thatnoneof
thereportswritten by CoIL contestparticipantsmentionusingany
part of the CRISP-DM Europeanstandardmethodologyfor data
mining [9].

8. CHOICE OF LEARNING METHOD
Althoughit isdifficult to saywith certaintythatonelearningmethod
gives more accurateclassifiersthan another, it is possibleto say
with certaintythatfor practicalreasons,somelearningmethodsare
lesssuitablethanothersfor the CoIL contesttaskandall similar
tasks.

Somedatamining softwareis too slow for real applications.For
example,concerninga commercialtool oneparticipantwrote “an
analysisof thewholetrainingdatasettookabout2 hoursonaPen-
tium III with 500 MHz. Changingthat [searchdepth]value to 3
madethe analysislast for about28 hours.” Interestingly, a web
pagefor this tool saidafter thecontestthat its “high performance
enablesyouto quicklyandreliablyanalyzesmallto extremelylarge
quantitiesof data.”

Many dataminingmethodsarenotflexible enoughto copewith the
varietyof datatypesfoundin realcommercialdata.Mostmethods
can handlenumericfeaturesand discrete-valuedfeatures. How-
ever, commercialdataoftencontainsfeaturesthataremixed:some
trainingexampleshave numericvaluesfor a feature,andotherex-
ampleshave symbolicvaluesfor the samefeature. The symbolic
valuesmayhavecommonmeanings,for example“missing” or “not
applicable,” or they maybedomain-specific,for example“account
frozen.”

Even if all thevaluesof a featureappearto benumeric,it is often
thecasethatsomespecificvaluesarereally discretespecialcases.
Occasionally, somevaluessuchas999areerrorcodes.For almost
all accountbalanceor paymentattributes,zero is a value that is
commonandthathasa meaningthat is quitedifferentfrom thatof
any non-zeroamount.Datamining methodsthatdiscretizenumer-
ical valuescanhandlemixed attributesandzeroor otherspecific
codesasspecialcaseseasily. Otherdataminingmethodsoftenlose
a lot of usefulinformationby treatingzeroandotherspecialcodes
asordinarynumericvalues.

Someparticipantsappearedto beunawarethatsoftwarewasavail-
ablethat is muchmorecapablethanwhat they used.For example,
oneteamwrote“the numberof featuresin targetselectionis typi-
cally large(50 to 250 featuresarecommon),andhenceclustering
in sucha high dimensionalspaceis computationallyprohibitive.
Moreover thedatathentendsto besparse(thereis alwaysa feature
wheretwo recordsdiffer), andclusteringalgorithmsfail in deal-
ing with suchdata.” Thesestatementsaboutclusteringmethods
arefalse.Thek-meansalgorithm,for example,canhandledatasets
with millions of recordsandhundredsof dimensions,wherenotwo
recordsareidentical, in effectively linear time [4]. Of coursethe



k-meansalgorithmis nota panacea:it assumesthatall featuresare
numerical� andaEuclideandistancemetric,andnouniversallygood
methodis known for relaxingtheseassumptions.

In general,a learningmethodis not usefulfor a datamining prob-
lemsimilarto theCoIL contesttaskunlessthemethodgivesnumer-
ical scoresto examples,suchthatthescoresaremonotonicallycor-
relatedwith theprobabilityof beingpositive. In a scenariowhere
lessthan6% of examplesarepositive, ashere,while someexam-
plesaremuchmorelikely to be positive thanothers,it is unusual
for any exampleto have a true probability of beingpositive that
is over 50%. Therefore,it is rationalfor an accuracy-maximizing
classifierthatonly makesyes/nopredictionsto labelall testexam-
plesnegative,a behavior thatis useless.

As mentionedin Section7, to make optimal decisionsoneneeds
in generalto know theactualprobability thata giventestexample
is positive. However, if thecost/benefitmatrix is the samefor all
testexamples,thenoneonly needsto know whethera given test
examplefalls above or below a fixedprobability threshold,which
correspondsto a fixed scorethreshold,if scoresandprobabilities
aremonotonicallyrelated. If the task is simply to maximizelift,
thenoneonly hasto rank testexamplesaccordingto their scores.
No thresholdor actualprobabilitiesareneeded.

While a wide variety of learningmethodscanprovide scoresthat
areuseful for rankingexamples,decisiontreeandrule induction
methodstendto be lesssuitablethanothermethods,becausethey
suffer from fragmentation:thephenomenonthateachrule or deci-
siontreeleaf is basedon a smallsubsetof thetrainingdata.Frag-
mentationtypically causesthreedifficulties: lack of statisticalsig-
nificance,lack of discrimination,andlackof interpretability,

Lack of statisticalsignificanceis the sameissuediscussedat the
end of Section2, sinceeachrule or leaf is a patternbasedon a
small subsetof training examples. Lack of discriminationis the
problemthat if examplesarescoredusingrulesor usingempirical
probabilitiesderived from decisiontree leaves, thenmany exam-
ples are assignedexactly the samescore. Identical scoresmake
it impossibleto order theseexamplesintelligently. For example,
oneparticipantwrote“To getour selectedpopulationdown to 800
we randomlydeleted78 individualsfrom thesetof 424who were
selectedby only 7 rules.”

Lack of interpretabilityis the problemthat a rule or decisiontree
leaf cannotbe understoodin isolation. Most rule inductionmeth-
odsproduceanorderedcollectionof ruleswhereeachrule applies
to anexampleonly if all its predecessorsin theorderingdonotap-
ply. Therefore,eachrule is not a logical implication that is valid
in isolation. Rules,andsimilarly decisiontreeleaves,canonly be
understoodin combination.

It is not the casethat all decisiontreeor rule inductionmethods
areunsuitablefor marketingtaskslike theCoIL contesttask.If the
pruningalgorithmusedis sensitive to unbalanceddata,andprob-
ability estimatesat leaves are smoothed,then decisiontreescan
befully competitive with naive Bayesianclassifiersoncommercial
responsepredictiontasks[11].

9. CONCLUSIONS
In summary, thereare threemain lessonsto be learnedfrom the
CoIL datamining contest.Thefirst two lessonsaretechnical,one
positiveandonenegative. Thepositive lessonis thatgoodmethods
areavailablefor classifierlearningtaskssimilar to theCoIL contest
task.In particular, naiveBayesianlearninggivesbothgoodpredic-
tive accuracy andinterpretablemodelsin many commercialappli-

cations. If necessary, new interactionfeaturesand boostingcan
improve accuracy without impairingcomprehensibility. Thenega-
tivetechnicallessonis thatreliablealgorithmsarestill notavailable
for doingfeaturesubsetselectionanddetectingfeatureinteractions
at thesametime.

Thethird andmostimportantlessonis moresociologicalthantech-
nical. Thereis a clearlack of awarenessandunderstandingamong
someresearchersandmany practitionersin dataminingof theissue
of statisticalsignificance.In many applications,thecategoriesthat
we particularlywant to modelarerare.Givena trainingsetwith a
smallnumberof membersof rarecategories,it is pointlessto apply
excessively complicatedlearningmethods,or to useanexcessively
time-consumingmodelsearchmethod.In eithercase,oneis likely
to overfit thedataandto fool oneself.Foolingoneselfhappensboth
in estimatingpredictive accuracy andalso in interpretingmodels
to discover actionableinsights. Given a small datasetsuchasthe
onefor theCoIL challenge,only a few predictive relationshipsare
statisticallyreliable. Otherapparentrelationshipsare likely to be
spurious.
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