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ABSTRACT

ColL challenge2000 was a supervisedearning contestthat at-
tracted43 entries. The authorsof 29 entrieslater wrote explana-
tions of their work. This paperdiscusseshesereportsandreaches
three main conclusions. First, nave Bayesianclassifiersremain
competitve in practice: they were usedby both the winning en-
try andthenext bestentry Secondjdentifying featureinteractions
correctlyis importantfor maximizingpredictive accurag: thiswas
the differencebetweerthe winning classifierandall others. Third
andmostimportant,too mary researcherandpractitionersn data
mining do not appreciateproperly the issueof statisticalsignifi-
canceand the dangerof overfitting. Given a datasesuchasthe
onefor the ColL contestijt is pointlesso applyavery complicated
learning algorithm, or to perform a very time-consumingmodel
search.In eithercaseoneis likely to overfit the training dataand
to fool oneselfin estimatingpredictve accurag andin discovering
usefulcorrelations.

1. INTRODUCTION

This paperexplainssomegeneralguidelinesandprinciplesthatare
fundamentato practicalsuccessn datamining, but which mary
practitionersdo not follow or do not know. The empirical evi-
dencethat datamining practitionersare unavare of theselessons
comesfrom the reportswritten by participantsin a datamining
contestorganizedin the spring of 2000. This contest,knovn as
ColL Challenge2000,wassponsoredby a consortiumof research
groupsfundedby the EuropeanUnion. The contestattractedl47
registeredparticipants,of whom 43 submittedentries. Of the 43
participantsvho submittedentries,29 later wrote reportsexplain-
ing theirmethodsandresults. Theauthorsof thesereportsappeato
be datamining practitionersor researchergsopposedo students.
Thereportshave beenpublishedby [8].

TheColL contestvasquitesimilarto thecompetitionsorganizedn

conjunctionwith the KDD conferencen recentyears,andto other
datamining competitions. The contesttaskwasto learna classi-
fier capableof identifying which customerof a Dutch insurance
company have aninsurancepolicy covering a caravan. (Caravans

aremobilehomesthatarenormallytowedby cars.They arecalled
trailersin North America.) Thetraining setcontainednformation
on 5822customerspf which 348, about6%, hadcarazan policies.
The test set containedinformation on 4000 customergandomly
dravn from the samepopulation.For eachcustomerthe valuesof
85 featureswveregiven. Contestparticipantsvereasledto identify
which 800 of the testcustomeraveremostlikely to have caravan
policies. The training and test setsusedin the contestare now
availablein the UCI repository

Like otherdatamining conteststhe ColL contestwasa valuable
testbedior measuringhe“endto end” successfulness datamin-
ing methods. The real-world usefulnesf an algorithm depends
not only on its theoreticalproperties,but also on the easewith
which practitionerscanapply it without falling victim to overfit-
ting andothertraps. In principle overfitting can be avoided with
almostall methodsbut in practicesomemethodsare muchmore
likely to leadtheir usersastray Contestsuchasthis oneprovide
guidanceaboutwhich methodsaredefactomorerobust,andabout
wheredatamining practitionersmeedguidancemost.

2. THE WINNING ENTRY

Figurel, adaptedrom [8], shavs ahistogranof thescoresachieed
by the43 individualsor teamsthatsubmittedentriesto the contest.
Thewinning entry whichwasmine,identified121 caravan policy

holdersamongits 800top predictions.Thenext bestmethoddden-
tified 115and112policy holders.Themeanscorewas95.4,with a

standarddeviation of 19.4. Thedistribution of scoress clearly not

normal,with along tail to the left. The mostcommonscorewas
109,andthe medianscorewas103.

O R N WAMA~OWOM
T
I

[ | e 11 HHH‘H Hﬂ M0 I
40 50 60 70 80 90 100 110 120
Number of policy holders identified correctly (score)

Figure 1. Distribution of scores achieved by 43 entries.

Thedatamining algorithmusedin the winning entrywasstandard
naive Bayesianearning. The secondbestentry, dueto Petri Kon-
tkanen,alsouseda naive Bayesianclassifier Mary of the meth-
odsdescribedn the 29 reportsbhy participantsaremuchmoreso-
phisticated.They includecombinationof backpropagationeural



networks, self-oiganizingmaps(SOMs), evolutionary algorithms,
C4.5, CART, andotherdecisiontree inductionalgorithms,fuzzy
clusteringand rule discovery, supportvector machines(SVMs),
logistic regression,boostingand bagging,and more. The strong
performancef nave Bayesiarearningagainsthis competitionis
noteworthy.

An importantaspecbf the ColL contestwasthatthe valuesof all
numericalfeatureswere madediscretein advanceby the contest
organizers. For example,insteadof a real-valuedfeaturegiving
the precisemonetaryamountthat a customerpaysfor car insur
ance,the ColL datasetsncludeonly a discrete-aluedfeaturethat
cateyorizesthis amountinto oneof seven differentdiscretelevels.
Becausall featuresverediscretizedn adwance the ColL compe-
tition couldnot sene asatestof discretizatiormethods.

The predictive accuray of a naive Bayesiarclassifiercanoftenbe
improved by boosting[3], and by addingnew attributesderived
from combinationsof existing attributes. Both boostingand de-
rived attributesare waysof relaxingthe conditionalindependence
assumptionshat constitutethe naive Bayesmodel. For the ColL
contestaftertwo importantderivedattributeswereaddedpoosting
did not give ary significantincreasen accurag on avalidationset
takenfrom thetrainingset,nor did addingmorederived attributes.
Thereforethefinal entryl submitteddid notuseboostingandused
only two derived attributes.

Thetwo derivedattributesthatl addedgive themostdetailedinfor-
mation possibleabouta customers existing car andfire insurance
policies. The setof valuesof onenew attributeis the cross-product
of the setsof valuesof the existing attributesnamedPPERSAJT
and APERSAUT. Theseattributesare explainedas “contribution
[level for] car policies” and “number of car policies’ The other
new attribute is a similar cross-producfor two fire insuranceat-
tributes.

Creatinga derived attribute thatis a cross-producallows the naive

Bayesianclassifierto associate differentprobability of having a
caravanpolicy with eachalternatve pair of valuesfor theattributes
PPERSAJT and APERSAUT, and similarly for the two fire in-

suranceattributes. As mentionedabove, all attributesare already
discretizednto a smallnumberof so-calledlevels, so eachcross-
productattributealsohasafinite numberof values.Any alternatve

derived attribute constructedrom two attributesthat have already
beenmadediscrete,for examplean averagepolicy premiumde-
finedas"“contribution level” divided by “numberof policies; must
loseinformationcomparedo a cross-producattribute.

Thestrongessinglepredictorof having acararaninsurancepolicy
is having two carinsurancepolicies,or having onecarpolicy where
the contritution level is notlow (notlevel 5). The otherpredictors
that are moststatisticallysignificantare (i) a high valuefor “pur-
chasingpower class; specifically5 or higherandespecially7 or
higher (ii) having a privatethird party insurancepolicy, (iii) hav-
ing aboatinsurancepolicy, (iv) having a socialsecurityinsurance
policy, and(v) having a singlefire policy with a high contribution
(level 4). Intuitively, thesepredictorsdentify customersvho have
acarandarewealthierthanaverageandwhoin generatarrymore
insurancecoveragethanaverage.lt is not surprisingthattheseare
thepeoplewho aremostlikely to have caravaninsurance.

Statisticalsignificances easyto evaluatequantitatvely but approx-
imately for findingslike the onesjust stated. For example,2977
customersn thetraining sethave a carinsurancepolicy. Of these,
276 have a caravan policy, thatis 9.3% comparedto 6% in the
populationof all customers.The numberof customerswith a car

insurancecontritution level of 5, all of which have only onecar
policy, is 613.If having acontribution level of 5 wasnot correlated
with having a caravan policy, we would expect9.3%,thatis 57, of
thesecustomergo have a caravanpolicy, with astandarddeviation
of 4/57-(1—0.093 = 7.2. In fact, amongcustomerswith a car
insurancecontritution level of 5, only 14 have a caravan policy.
The z-scoreof this discrepang is (14— 57)/7.2 = —6.0 standard
deviations,whichis ungquestionablgtatisticallysignificant.

The ColL contestorganizersexplicitly settwo tasks: develop a
model of which customersare mostlikely to have a caravan pol-

icy, andseparatelyprovide insightinto the characteristicef these
customers.Mary datamining projectssimilarly have two useful
deliverables: a predictve model, and new insightsinto the phe-
nomenorbeingmodeled.An insightis particularlyusefulif (a) it

is statisticallyreliable, (b) it wasnot knowvn previously, and(c) it

is actionablemeaningthatsomeactioncanbetakento exploit the
insight. In mary datamining projectsfew insightssatisfyall three
of thesecriteria.

For the ColL contestthe discovery thata customemwho hasa car
insurancepolicy but whosepremiumamountis low is lesslikely
thanaverageto have caravaninsurances aninsightthatpossesses
thethreeproperties.This finding wasnot obvious in adwance,the
amgumentabove shavs thatit is statisticallyreliable,andit is ac-
tionable,sincedifferentpromotionscanbe targetedspecificallyat
thesecustomersA customeof thistypeis perhapdesswealthyor
lessrisk-averse soheor sheis lesslikely to own a caravan,or less
likely to buy insurancdor it if heor shedoesown one.

It is not clearwhetherary additionalinsightscanbe gainedfrom

the ColL training datathatmeetall threecriteriaexplainedaborve.

Usingalgorithmsto discover associationules,several participants
enumerateddditional claimed correlations,but they never mea-
suredthestatisticakignificanceof thesecorrelations Theresultsof

the contestindicatethatnoneof thesecorrelationscoveredenough
customersor were reliable enoughto improve overall predictve

accuray.

In additionto revealing reliable correlationsthat have predictve
value, statisticalsignificancetestingcanalsobe usefulin shaving
thatplausiblepotentialcorrelationsarein factunproven. For exam-
ple, in commercialdatamining, significancetestingoften shavs
that demographicattributes, such as customersegmentationsby
lifestyle,income,etc.,do notaddary extra predictve pover when
behaioral datais available. This phenomenoiis clearlyvisible in
the ColL dataset.When a featureprovides no additionalpredic-
tive value, it is generallybeneficialnot to useit in modeling. The
naive Bayesmodelusedfor thewinning entryto the ColL contest
wastrainedwith all demographiattributesdiscarded exceptthe
attribute namedVIK OOPKLA, “purchasingoower class.

3. OVERFITTING

It is vital for datamining practitionersto understandhe issueof
overfitting in anintuitive way, andalsoto understandasicstatis-
ticsin anintuitive way. Mostintroductorycourseon statisticsdo
not discussoverfitting explicitly, but overfitting is a concerneven
with the simplestdataanalysisprocedures.Considerfor example
the meanand standarcdeviation of a sampleof n obserationsx;

randomlyselectedrom someparentpopulation. The meanof the
sampleis definedof courseasp= 2 57, x. The standardievia-
tion of the sampleis the squareroot of the averagesquaredevia-
tion from the mean thatis the squarerootof £ 57, (x — w)2. But
statisticaltextbooksalways say that the standarddeviation of the
parentpopulationshouldbe estimatedisingthe denominaton— 1



insteadof n. We shouldusethe squarerootof ;14 37, (% — p)?,
which is alwaysbiggersince;1; > 1 if n> 2. Why?

The reasonis that using a denominatorof n overfits the training
data,the samplex; throughx,. The meanu is the numberrelative
to whichthesumof squaredieviationsy%_; (X — )2 is minimized.
Clearlythe meanof the parentpopulationis in generalnot exactly
the sameasthe meanof the sample.Thereforethe averagedevia-
tion of the samplerelative to the unknavn true meanof the popu-
lation is typically greaterthanthe squareroot of 2 50_, (x — p)2.

One canprove mathematicallythat replacingr—l1 by nfll yieldsan
improved estimateof thetrue standardieviation of the parentpop-
ulationthatwill notsystematicallypetoo small. Technically using
nfll givestheminimumvarianceunbiasedestimator{7].

Mary contestsubmissionsreveal basic misunderstandingabout
theissueof overfitting. For example,oneteamwrotethatthey used
“ ... evolutionarysearchfor choosingthe predictive features.The
resultis a predictive modelthat usesonly a subsetof the original
featuresthussimplifying the modelandreducingtherisk of over
fitting while maintainingaccurag.”! As shavn by the discussion
above of alternatve standardleviation estimatorspverfittingis not
preventedsimply by choosinga modelthatis simplesyntactically
Overfitting occurswhen a modelis chosenwhosehigh apparent
accurag arisesfrom fitting patterngn the training setthatarenot
statisticallyreliable,andarenot valid in testdata.

Evenif apredictive modelusesonly a small subsebf featuresijf
that subsetis chosenasthe best,or one of the nearbest,among
mary candidatesubsetof features thenoverfitting is a real dan-
ger In datamining, overfitting is typically causedby searchinga
spaceof candidatemodelsthat is too large. Making predictions
with afinal modelthatusesonly afew featureds neithemecessary
nor sufiicient to preventoverfitting. If this final modelis found by
a protractedsearchprocessthat explicitly or implicitly considers
mary alternatve modelswith differentsubset®f featuresthenthe
apparensimplicity of thefinal modelis misleading.Similarly, the
dangerof overfitting is not reducedjust becausea learningalgo-
rithm outputsa modelwith only a few parametersFor therisk of
overfitting to belessenedall modelsthatthe algorithmcould have
outputmustbeequallysimple.

A few participantsverequite unavareof the dangerof overfitting.
For example, after using backpropagatiometworks with 20 hid-
denunitsbut with subsampledrainingsetsof only 1200examples,
oneteamwrote “We haven't gotthe bestscore.The possibleways
for theimprovementof the modelare(i) increaseof the numberof
neuronsn thehiddenlayerwhatlet usto consideragreatemumber
of therelationshipsamongthedata. .. (ii) useof thegeneticalgo-
rithm for the neuralnetwork learningsinceoneis moreeffective in
globalextremumfinding? Thesesuggestionsvould only increase
the severity of overfitting. What one shoulddo insteadis useall
availabletrainingexamplesandapplyaregularizationmethodsuch
asearlystoppingto reducetherisk of overfitting.

4. FEATURE SELECTION

Most participantsusedheuristicsto identify which of the 85 avail-
ablefeatureshave the mostpredictive value,andto choosea sub-
setof featuredfor input into their learningalgorithm. None of the

lUnlessstatedbtherwiseall quotationsn this paperaretakenfrom
reportswritten by ColL contestparticipantsandpublishedby [8].
The quotationshave the original spelling, grammay anditalics of
theirauthors.Thepointof this paperis to explainsomewidespread
misunderstandingsiot to criticize individuals,sothe namesof the
authorsof quotationsareomitted.

authorsof reportsapplieda well-definedalgorithmfor featurese-
lection that did not require humanguidance. Moreover, none of
the authors,including myself, useda systematianethodto detect
importantfeatureinteractions.

Someparticipantsused methodsdesignedto evaluate subsetsof
featuresasopposedo individual featuresput thesemethodgailed
to detecttheinteractionbetweerthenumberof carpoliciesandthe
total premiumpaidfor carpolicies,becaus¢hesetwo featuresare
highly correlated. For example,one authorincorrectly wrote “if
‘Contribution car policies’ is chosenthe informationcontainedn
‘Number of carpolicies’is alreadyincludedin themodel’ Simi-
larly, despiteusinga “multidimensionalvisualisatiortool,” another
teamalso excludedthe “number of car policies” featureafter in-
cluding the “contribution car policies” feature. While the number
of carpoliciesandthetotal premiumpaidfor carpoliciesarecorre-
lated,thefeaturedogetherdo provide moreinformationthaneither
by itself.

A differentteamwrotethatin the outputof their commercialtool,

“somecontrikution[s] mayberelatedto 2 or morevariables.In this

last case the contrikution expresseghe factthat the importantin-

formationis broughtby the ‘additionalknownledge’ broughtby the
secondvariablewhenthe first oneis alreadyknown.” Their tool

correctlyidentifiedthe “numberof car policies” featureas highly

predictive, but it did not detectthe additionalpredictvenessof the
“contribution carpolicies” featureor theinteractionbetweerthese
two features.ldentifying this interactionis importantfor two rea-
sons. First, exploiting it givesbetterpredictve accuray. Second,
asdiscussedn Section2, it is the only patternin thetrainingdata
thathasbeenshavn to be statisticallyreliable and surprisingand

actionable.

5. COMPARING THE ACCURACY
OF LEARNING METHODS

A simple calculationshawvs that the test datasetprovided in the
ColL contestis too smallto reveal reliably which learningmeth-
odsaremoreaccurate Considerthe null hypothesighatalearning
methodachieres p = 12% accurag in the top 20% of its predic-
tions. On a randomlychosentest set of 4000 examples,the ex-

pectednumberof correctpredictionsis 4= pn= 96 wheren =

0.2-4000= 800, which is similar to the averagenumberof cor-

rectpredictionsachiezed by ColL contestparticipants.The antic-
ipated standarddeviation of the numberof correctpredictionsis
o0 = +/np(1—p) =9.2. In orderfor usto rejectthe null hypothe-
siswith a confidenceof over 95%, a learningmethodwould have
to scoremorethantwo standardieviationsabove or below the ex-

pectechumberthatis lessthan78 corrector morethanll4correct.
Any methodthat scoreshetween78 and 114 correctis not statis-
tically distinguishabldérom the null hypothesiamethod. Only the
winning entry andpossiblythe secondbestentry are significantly
betterthanthe averageColL contestentry

It is possibleto comparetwo differentlearningmethodswith the
sametrainingandtestdatasetsn a way thatis moresensitve than
the simple binomial calculationabore, usingMcNemars hypoth-
esistest[2]. Let A andB designatewo learningalgorithmsand
let n1p be the numberof testexamplesclassifiedcorrectly by A
but incorrectly by B. Similarly, let ng; be the numberclassified
incorrectly by A but correctlyby B. McNemars testis basedon
calculatingthe statistic

(Ino1 —n1o| — 1)2
No1+N1o



Thenull hypothesiss thatbothlearningalgorithmsareequallyac-
curate. If this hypothesisis true, then the numeratorof the test
statisticshouldbe small. One can prove that underthe null hy-
pothesis,s hasapproximatelya chi-squaredlistribution with one
degreeof freedom.Theterm—1 in the numeratois calleda conti-
nuity correctionandadjustsfor thefactthatsis discretewhile the
chi-squareddistribution is continuous. In general,a chi-squared
distribution with k degreesof freedomhasmeank andvariance2k.
Thereforethedistribution of s, underthe null hypothesishasmean
1 andstandardieviation v/2 approximately

Thenumbersny; andn;g neededo applyMcNemarstesthave not

beenpublishedfor mostpairsof entriesto the ColL contest.How-

ever this informationis availablefor the top entryandthe second-
bestentry As mentionedearlier the contesttask wasto identify

the 800 testexamplesmostlikely to be positive. Eachentry can
be viewed aslabeling 800 examplesas positive, and the remain-
der asnegative. On the testdatasetthe top entry A andthe next

entry B gave 729 predictionsin common,of which 110 weretrue

positveswhile 619 werefalsepositives. Eachentry gave 71 pre-

dictionsthatthe otherdid not. Of the predictionsuniqueto A, 11

weretrue positvesand60 werefalsepositives. Of thoseuniqueto

B, 5 weretrue positvesand 66 werefalsepositves. We have here
thatnyp = 11+ 66 while ng; = 5+ 60, so

< (65— 77-1)2% 121
T 85+77 142

Accordingto McNemars test,the differencein accurag between
methodsA andB is not statisticallysignificant.

<L

Evenwhenparticipantgdid evaluatethe performancef their mod-

els statistically the evaluationwasoften inappropriate.For exam-

ple, oneteamwrote“ ... we have repeatedhe modellingprocess
five times, finding ... 105+ 2.55in termsof meanand standard
deviation” But astandardieviation computedon afixedtestset,

over differentrunsof alearningalgorithm,revealsonly how stable
alearningmethodis. It hasno connectionwith the reproducibility
of the generalizatiorperformanceof the algorithm, which would

berevealedby a standaraieviation computedverindependentest

sets.

If onedoesnot take a statisticalview of the predictiontask, then
it is easyto believe incorrectly that a sufiicient amountof train-
ing datais available. For example,oneauthorwrote “This appears
to bea comple, datarich, theorypoortype of problemwith sub-
stantialhistoricaldata. .. " In fact,the numberof positive training
examplesavailable,348,is very small. Complex modelscannotbe
learnedwith confidencedrom sofew datapoints.

The mistale of believing thatthe numberof training examplesis

large is connectedvith anothercommonmistale, thatof underes-
timatingthe knowledgeandskill of existing expertsin a particular
domain. For example,the knowledgeof expertsin the insurance
industryis derived informally from millions of training examples,
andsois potentiallymuchdeeperthanary knowvledgethatcanbe

extractedfrom a singledataset Of course poththerealworld and

theknowledgeof expertsaresubjectto uncertaintyandignorance.
In the ColL training datase®.5%of customersvho do nothave a

carinsurancepolicy neverthelesshave a carazan policy. Presum-
ably thereis anexplanationfor this phenomenon.

6. MAGICAL THINKING

The previous sectionsof this paperhave shavn that mary ColL
contestparticipantsweremisledby aninsuficient intuitive under
standingof theissueof statisticalrandomnessMary reportswrit-

tenby participantseveal animplicit belief thatsomeha onepar
ticular learningmethodis ideal,andwith alittle moreintelligence,
or luck, or data,a personcould have discoseredthis method. For
example,oneauthorwrote “But aftertheannouncemertf thetrue
policy ownersit hasbecomeclearthattheapplicationof neuralnet-
worksisn't necessarymy] scoringsystemitself could be usedin-
steacand,evenmore,would have performedbetter’ Laterhewrote
“Unfortunately| have discoreredthis factafter the announcement
of thetrue policy owners’

This type of thoughtprocesss called “magical thinking” by an-
thropologists.In the wordsof afamouspassagédy Gregory Bate-
son,“The practitionerof magicdoesnot unlearnhis magicalview

of eventswhen the magic doesnot work. In fact, the proposi-
tions which govern punctuationhave the generalcharacteristiof

being self-validating” [1]. In ary culture, humanshave a certain
setof expectationghatthey useto explain the resultsof their ac-
tions. Whensomethingsurprisinghappenstatherthanquestiorthe
expectationspeopletypically believe that they shouldhave done
somethingslightly different. Unlesspeopleunderstandhe issue
of randomnessandstatisticalsignificancen anintuitive way, they

areliable to believe alwaysthatif only they had donesomething
differently in the modelbuilding processtheir modelwould have

performedbetter

In thequotationabove from Batesontheword “punctuation”’means
theway in which we find patternsin our perceptionof our expe-
riences.The“propositions”thatgovern punctuatiorarethe princi-
plesor expectationghatwe have learnedo useto organizeour per
ceptions. Whatever theseprinciplesare,if we have learnedthem,
it is becausehey appearedo be usefulin the past. As pointed
outin adifferentcontext by ThomasKuhn[6], practitionersof sci-
encedo notunlearntheir scientificworldview whensciencecannot
explain a certainphenomenonlnstead they eitherignorethe phe-
nomenon.or they redoubletheir efforts to understandt scientifi-
cally. Whetherscientificor magical,it is difficult, andindeedocca-
sionallydangerousto setasideanentireworldvien. Nevertheless,
sometimegprogressomesfrom doing so,andmagicalthinking in
datamining is oftencountesproductie.

Thereareseveralrelatedmanifestationsf magicalthinkingin data
mining. One manifestatioris non-probabilistichinking. For ex-
ample,aparticipantwrote“On analyzingthedatal foundmary in-
consistentnstancegi.e. samevaluesfor all attributesbut differing
[class]values)andremoved the minority classof themfor training
sincethey might confuse[sic] thealgorithm? Similarly, otherpar
ticipantswrote “The original datasetvas cleanedin the way that
all contradictoryrecordswerereclassifiecaspositive”

Anothermanifestatiorof magicalthinkingis thebeliefthatanideal
datamining methoddoesexist thatyields classifierawith idealac-
curay. Perhapshe clearestexampleof this belief is provided by
theauthorwho wrote “Two importantpoints[sic] aboutthe CART
software from Salford systemsds its ability to identify an optimal
tree,oneproviding the leastamountof error betweerthe learning
datasetandthetestdataset’ In fact,evenfor afixedlearningtask
andpopulationof examples differentmethodsmay be bestgiven
differenttraining or test datasetspbecauseof randomnesén how
thesedataset@aredravn from the population.

A third manifestatiorof magicalthinking in dataminingis the be-
lief thatif a particularlearningmethodor classifierhasnot per
formedwell, this is alwaysdueto somespecificcausethat canbe
and shouldbe fixed. This belief is bestillustratedby comments
from ateamthatsubmitteda classifierthatwould have scoredl 15,
but thenwithdrew this entry andsubmitteda classifierthatscored



107. This teamwrote thatthefirst classifier‘had muchbetterluck

with thetestset” but insteadof quantifyingthis phenomenorand
recognizingthatthe differencebetweenl07 and115is easilydue
to randomnessn the testdata, they suggestedh modificationto

their heuristicsandwrote “If someextra effort hadbeenputin this

direction, we believe that SVMs could have given even betterre-

sults’? If a spellfails to work, the magicianalwaysthinks thathe
must correctsomesmall mistale, not that the spell may have no

chanceof working. If aspellappeargo have the desiredoutcome,
the magiciandoesnot pauseto considerwhetheror not he canbe
surethatthe outcomewascausedy the spell.

Magicalthinking is not alwayslessproductive thantraditionalsci-
entificthinking. Beingprimedto seepatternsn smalldatasetss an
innatecharacteristiof humansandperhapotheranimalsalso,and
this characteristids often usefulfor successn everydaylife [5].

Moreover, the startingpoint of scientificthinking is oftenatype of

magicalthinking: scientistcommonlyposithypothesebasecna
low numberof obserations. Thesehypothesesrefrequentlyuse-
ful becausacientistgendto exploresmallandwell-consideredhy-

pothesispaceshatarebasednbackgroundknowledgeandhence
implicitly onalargenumberof previousobsenations.In datamin-

ing however, patternsn a datasetaretypically not genuineunless
they satisfyformal scientificcriteria of statisticalsignificance pe-
causethe spaceof patternexploredis large.

7. ECONOMIC ISSUES

Both the contestsubmissionsandthe designof the contesthint at

a lack of understandin@f the economicissuesinherentin a data
mining task suchasthe ColL contesttask. In similar real-world

domainsthe task shouldnot be to identify a fixed percentageof

customersnostlik ely to have a caravaninsurancepolicy. Instead,
the task shouldbe to identify which customersshouldbe offered
sucha policy, however few or mary thesecustomersre. Thistask
is very differentfor atleasttwo reasons.

First, it is usuallyeconomicallyirrationalto offer aninsurancepol-

icy to somearbitrary percentagef customers. Instead,an offer
shouldbe madeto a customerif andonly if the expectedprofit
from makingthe offer is greaterthanthe costof makingthe offer.

Therefore the aim of datamining shouldbeto estimatethe proba-
bility thata customemould acceptan offer, andalsothe costsand
benefitsof the customeiacceptingor declining[10].

Seconda customershouldnot be offeredan insurancepolicy just
becauséhe or sheresembleother customerswvho have the same
type of policy. The characteristicshat predictwho is mostlikely

to accepta specialsolicitationmaybevery differentfrom the char

acteristicghatpredictwho alreadyhasa particulartype of policy.

As an olvious specialcaseof both points above, customersvho
alreadyhave a caravan policy should presumablynot be offered
oneagain. The economicallycorrecttestsetfor a scenaricsimilar
to thatof the ColL contestwwould consistentirelyof customersvho
donothave acaravanpolicy. Hencethetrainingandtestsetswould
notberandomsamplesrom the samepopulation.

Someparticipantsappearto have basicmisconceptiongboutthe
centralityof rationaldecision-makingo datamining. For example,
onepersonwrote“Main difficulty of thedatasets its noisiness...]
This is the reasonwhy in most of the communicationsbetween
participantsothertermslik e lift-of or up-lift wereusedinsteadof
accurag.” This statements incorrect. Lift wasusedasa metric
of succesdecausehe real taskis to make optimal cost-sensitie
decisions,and maximizinglift is a betterproxy for this objectve

thanmaximizingaccuragy.

Any formal contesimusthave adefinitestructureandcannotmimic
a real world scenariowith completefidelity. Neverthelessmea-
suringaccurag on anarbitrarypercentagef thetestsetis too far
from reality for adatamining contest.In contestghatarebetterde-
signed the performancef participantss evaluatedusinga matrix
of real-world costsand benefits. In this respectthe contestorga-
nizedin conjunctionwith the 1998KDD conferencefor example,
wasmorerealisticthanthe ColL contest.

An openissuefor future datamining contestss how they canbe
usedto compareandevaluatenot just datamining algorithms,but
alsomethodologiedor datamining. It is notavorthy that noneof
thereportswritten by ColL contestparticipantsnentionusingary
part of the CRISP-DM Europeanstandardmethodologyfor data
mining [9].

8. CHOICE OF LEARNING METHOD

Althoughit is difficult to saywith certaintythatonelearningmethod
gives more accurateclassifiersthan another it is possibleto say
with certaintythatfor practicalreasonssomelearningmethodsare

lesssuitablethan othersfor the ColL contesttaskandall similar

tasks.

Somedatamining softwareis too slow for real applications. For
example,concerninga commercialtool one participantwrote “an
analysisof thewholetrainingdatasettook about2 hoursona Pen-
tium 1l with 500 MHz. Changingthat [searchdepth]valueto 3
madethe analysislast for about28 hours: Interestingly a web
pagefor this tool saidafter the contestthatits “high performance
enablegouto quickly andreliably analyzesmallto extremelylarge
quantitiesof data

Marny datamining methodsarenotflexible enoughto copewith the
variety of datatypesfoundin realcommerciadata.Most methods
can handlenumericfeaturesand discrete-alued features. How-
ever, commerciadataoften containsfeatureshataremixed: some
training exampleshave numericvaluesfor a feature,andotherex-
ampleshave symbolicvaluesfor the samefeature. The symbolic
valuesmayhave commonmeaningsfor example“missing” or “not
applicable, or they maybedomain-specificfor example*account
frozen’

Evenif all the valuesof afeatureappearo be numeric,it is often
the casethatsomespecificvaluesarereally discretespecialcases.
Occasionallysomevaluessuchas999areerror codes.For almost
all accountbalanceor paymentattributes, zerois a value that is
commonandthathasa meaningthatis quite differentfrom thatof
ary non-zercamount.Datamining methodsthatdiscretizenumer
ical valuescan handlemixed attributesand zero or other specific
codesasspecialcasegasily Otherdatamining methodwoftenlose
alot of usefulinformationby treatingzeroandotherspecialcodes
asordinarynumericvalues.

Someparticipantsappearedo be unavarethatsoftwarewasavail-
ablethatis muchmorecapablehanwhatthey used.For example,
oneteamwrote “the numberof featuresin target selectionis typi-
cally large (50 to 250 featuresarecommon),and henceclustering
in sucha high dimensionalspaceis computationallyprohibitive.
Moreoverthe datathentendsto be sparsdthereis alwaysafeature
wheretwo recordsdiffer), and clusteringalgorithmsfail in deal-
ing with suchdata® Thesestatementaboutclusteringmethods
arefalse.Thek-meansalgorithm,for example,canhandledatasets
with millions of recordsandhundred®f dimensionswherenotwo
recordsareidentical,in effectively lineartime [4]. Of coursethe



k-meansalgorithmis nota panaceait assumeshatall featuresare
numericalanda Euclideardistancemetric,andnouniversallygood
methodis known for relaxingtheseassumptions.

In generalalearningmethodis not usefulfor a datamining prob-
lemsimilarto theColL contestaskunlesghemethodgivesnumer

ical scorego examples suchthatthe scoresaremonotonicallycor

relatedwith the probability of beingpositive. In a scenariovhere
lessthan6% of examplesare positive, ashere,while someexam-
plesaremuchmorelikely to be positive thanothers,it is unusual
for ary exampleto have a true probability of being positive that
is over 50%. Therefore,it is rationalfor an accurag-maximizing
classifierthatonly makesyes/nopredictiongto labelall testexam-
plesnegative, a behaior thatis useless.

As mentionedin Section7, to make optimal decisionsone needs
in generalto know the actualprobability thata given testexample
is positive. However, if the cost/benefimatrix is the samefor all
testexamples,thenone only needsto know whethera given test
examplefalls above or belov afixed probability threshold which
correspondso a fixed scorethreshold,if scoresand probabilities
are monotonicallyrelated. If the taskis simply to maximizelift,
thenoneonly hasto rank testexamplesaccordingto their scores.
No thresholdor actualprobabilitiesareneeded.

While a wide variety of learningmethodscan provide scoresthat
are usefulfor ranking examples,decisiontree andrule induction
methodgendto be lesssuitablethanothermethods pecausehey
suffer from fragmentationthe phenomenoihateachrule or deci-
siontreeleafis basedon a small subsebf the training data. Frag-
mentationtypically causeshreedifficulties: lack of statisticalsig-
nificance Jack of discrimination,andlack of interpretability

Lack of statisticalsignificanceis the sameissuediscussedht the
end of Section2, sinceeachrule or leaf is a patternbasedon a
small subsetof training examples. Lack of discriminationis the
problemthatif examplesarescoredusingrulesor usingempirical
probabilitiesderived from decisiontree leaves, thenmary exam-
ples are assignecdexactly the samescore. Identical scoresmake
it impossibleto ordertheseexamplesintelligently. For example,
oneparticipantwrote “To getour selectecpopulationdovn to 800
we randomlydeleted78 individualsfrom the setof 424 who were
selectedby only 7 rules’

Lack of interpretabilityis the problemthata rule or decisiontree
leaf cannotbe understoodn isolation. Most rule inductionmeth-
odsproduceanorderedcollectionof ruleswhereeachrule applies
to anexampleonly if all its predecessoiig the orderingdo notap-
ply. Therefore,eachrule is not a logical implication thatis valid
in isolation. Rules,andsimilarly decisiontreeleaves,canonly be
understoodn combination.

It is not the casethat all decisiontree or rule induction methods
areunsuitabl€or marlketingtaskslik e the ColL contestask.If the
pruningalgorithmusedis sensitve to unbalancediata,andprob-
ability estimatesat leaves are smoothed then decisiontreescan
befully competitve with naive Bayesiarclassifierson commercial
respons@redictiontasks[11].

9. CONCLUSIONS

In summary there are threemain lessonsto be learnedfrom the
ColL datamining contest.Thefirst two lessonsaretechnical,one
positive andonenegative. Thepositive lessons thatgoodmethods
areavailablefor classifiedearningtaskssimilarto the ColL contest
task.In particular naive Bayesiarnearninggivesbothgoodpredic-
tive accurag andinterpretablanodelsin mary commercialappli-

cations. If necessarynew interactionfeaturesand boostingcan
improve accuray withoutimpairing comprehensibility The nega-
tivetechnicalessoris thatreliablealgorithmsarestill notavailable
for doingfeaturesubseselectionanddetectingeatureinteractions
atthesametime.

Thethird andmostimportantlessonis moresociologicathantech-
nical. Thereis a clearlack of awarenessindunderstandingmong
someresearcherandmary practitionersn datamining of theissue
of statisticalsignificance In mary applicationsthe cateyoriesthat
we particularlywantto modelarerare. Givenatraining setwith a
smallnumberof memberof rarecategories,it is pointlessto apply
excessiely complicatedearningmethodspr to useanexcessiely
time-consumingnodelsearchmethod.In eithercase pneis likely
to overfit thedataandto fool oneself.Fooling oneselhappendoth
in estimatingpredictve accurag andalsoin interpretingmodels
to discover actionableinsights. Given a small datasesuchasthe
onefor the ColL challengepnly afew predictive relationshipsare
statisticallyreliable. Otherapparentelationshipsarelikely to be
spurious.
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