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In this and the following three chapters, we focus on the minimum cost
flow problem, introduced in Section 1.2:

minimize E ai;Tij

(i.5)€A
subject to Z zij - Z Tji = 8, VieN,
{Jl(i.j)e A} {31(5,1)e A}

bij <xij <cij, YV (i,§) € A4,

where a;j, bij, ¢ij, and s; are given scalars.

We begin by discussing several equivalent ways to represent the prob-
lem. These are useful because different representations lend themselves
better or worse for various analytical and computational purposes. We
then develop duality theory and the associated optimality conditions. This
theory is fundamental for the algorithms of the following three chapters,
and richly enhances our insight into the problem’s structure.

4.1 TRANSFORMATIONS AND EQUIVALENCES

In this section, we describe how the minimum cost flow problem can be
represented in several equivalent “standard” forms. This is often useful,
because depending on the analytical or algorithmic context, a particular
representation may be more convenient than the others.

4.1.1 Setting the Lower Flow Bounds to Zero

The lower flow bounds b;; can be changed to zero by a translation of vari-
ables, that is, by replacing x;; by x;; — b;j, and by adjusting the upper flow
bounds and the supplies according to

Cij 1= Cij = bij,

Si =8 — Z bij + Z bj,'.

{ilti.i)eA} {71G.1)eA}

Optimal flows and the optimal value of the original problem are obtained by
adding bi; to the optimal flow of each arc (4, j) and adding }_; . ¢ 4 ai;bij
to the optimal value of the transformed problem, respectively. Working
with the transformed problem saves computation time and storage, and
for this reason most network flow codes assume that all lower flow bounds
are zero.
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4.1.2 Eliminating the Upper Flow Bounds

Once the lower flow bounds have been changed to zero, it is possible to
eliminate the upper flow bounds, obtaining a problem with just a nonneg-
ativity constraint on all the flows. This can be done by introducing an
additional nonnegative variable 2;; that must satisfy the constraint

Tij + zij = Cij.
(In linear programming terminology, z;; is known as a slack variable.) The
resulting problem is a minimum cost flow problem involving for each arc

(i, 7), an extra node with supply c¢;;, and two outgoing arcs, corresponding
to the flows z;; and zi;; see Fig. 4.1.

s, Sj s; _):mcim cjj 8; -—chjm

Cost aj Cost =0 Cost a i
Feasible flow range: [0, c,]~] Feasible flow range: [0, o)
Original arc After the transformation

Figure 4.1: Eliminating the upper capacity bound by replacing each arc with a
node and two outgoing arcs. Since for feasibility we must have z;; = ¢;; — 45,
the upper bound constraint z;; < ¢;; is equivalent to the lower bound constraint
0 < 2;;. Furthermore, in view again of z;; = ¢i; — 2;5, the conservation of flow

equation
—E zij“g Iji=si—E Cij
7 3 3

for the modified problem is equivalent to the conservation of flow equation
inj - E Tji = Si
3 J

for the original problem. Using these facts, it can be seen that the feasible flow
vectors (z, z) of the modified problem can be paired on a one-to-one basis with
the feasible flow vectors = of the original problem, and that the corresponding
costs are equal. Thus, the modified problem is equivalent to the original problem.

Eliminating the upper flow bounds simplifies the statement of the
problem, but complicates the use of some algorithms. The reason is that
problems with upper (as well as lower) flow bounds are guaranteed to have
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at least one optimal solution if they have at least one feasible solution, as
we will see in Chapter 5. However, a problem with just nonnegativity con-
straints may be unbounded, in the sense that it may have feasible solutions
of arbitrarily small cost. This is one reason why most network flow codes
require that upper and lower bound restrictions be placed on all the flow
variables.

4.1.3 Reduction to a Circulation Format

The problem can be transformed into the circulation format, in which
all node supplies are zero. One way to do this is to introduce an artificial
“accumulation” node t and an arc (¢, i) for each node ¢ with nonzero supply
si. We may then introduce the constraint s; < z < s; and an arbitrary
cost for the flow zy. Alternatively, we may introduce an arc (t,i) and
a constraint 0 < zy; < s; for all ¢ with s; > 0, and an arc (4,t) and a
constraint 0 < s < —s; for all i with s; < 0. The cost of these arcs should
be verv small (i.e., large negative) to force the corresponding flows to be

at their upper bound at the optimum,; see Fig. 4.2.

r )

Original Network

Artificial Accumulation
Node t

Figure 4.2: A transformation of the minimum cost flow problem into a circulation
format by using an artificial “accumulation” node t and corresponding artificial
arcs connecting ¢ with all the nodes as shown. These arcs have very large negative
cost. to force the corresponding flows to their upper bounds at the optimum.

4.1.4 Reduction to an Assignment Problem

Finally. the minimum cost flow problem may be transformed into a trans-

4.2
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portation problem of the form

minimize E aijTij

(i,5)eA
subject to z Zij = o, Vi=1,...,m,
{5ii.5)e A}
Z Iij=ﬁj, Vi=1,...,n,
{ilGi,5)e A}

0<z; < min{ai,ﬂj}, v (3,7) € A;

see Fig. 4.3. This transportation problem can itself be converted into an
assignment problem by creating a; unit supply sources (§; unit demand
sinks) for each transportation problem source ¢ (sink j, respectively). For
this reason, any algorithm that solves the assignment problem can be ex-
tended into an algorithm for the minimum cost flow problem. This mo-
tivates a useful way to develop and analyze new algorithmic ideas; apply
them to the simpler assignment problem and generalize them using the
construction just given to the minimum cost flow problem.

DUALITY

We have already introduced some preliminary duality ideas in the context
of the assignment problem in Section 1.3.2. In this section, we consider the
general minimum cost flow problem, and we obtain a dual problem using
a procedure that is standard in duality theory. We introduce a Lagrange
multiplier, also called a price p; for the conservation of flow constraint for
node i and we form the corresponding Lagrangian function

L(z,p) = Z aijmij+z $; — Z Tij + Z Tji | Di

(i,5)€A ieN {3l(i,5)eA} {71(3,1)e A}
= Z (aij + pj — pi)Tij + Z Sipi- (4.1)

(i.j)eA ieN

Here, we use p to denote the vector whose components are the prices p;.
Let us now fix p and consider minimizing L(z,p) with respect to
z without the requirement to meet the conservation of flow constraints.
It is seen that p; may be viewed as a penalty per unit violation of the
conservation of flow constraint. If p; is too small (or too large), there is an
incentive for positive (or negative, respectively) violation of the constraint.
This suggests that we should search for the correct values p; for which,
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Figure 4.3: Transformation of a minimum cost fiow problem into a transportation
prablem. The idea is to introduce a new node for each arc and introduce a slack
vatiable for every arc flow; see Fig. 4.1. This not only eliminates the upper bound
constraint on the arc flows, as in Fig. 4.1, but also createa a bipartite graph
structure. In particular, we take as sources of the transportation problem the
arcs of the original network, and as sinks of the transportation problem the nodes
of the original network. Each transportation problem source has two outgoing
arcs with cost coefficients as shown. The supply of each transportation problem
suurce s the feasible flow range length of the corresponding original network arc.
The demand of each transportation problem sink is the sum of the feasible flow
range lengihs of the outgoing arcs from the corresponding original network node
1inus the supply of that node, asshown. An arc flow z,; in the minimurm cost flow
problem cotresponds to flows equal o x5 and ci; — by — iy on the transportation

problem arcs ((i,j),j) and ((i,j},i), respectively.

when L{z,p) is minimized over all capacity-feasible z, there is no incentive
for either positive or negative violation of all the constraints.

We are thus motivated to introduce the dual function value g(p) at a
vector p, defined by '

a(p) = min{L(z.p) | bi; < 745 < ¢i5,(1,5) € A} 4.2)

Because the Lagrangian function L{z, p) is separable in the arc flows xy;, its
minimization decompases into a separate minimization for each arc (3,5).
Each of these minimizations can be carried out in closed form, yielding

ap)= Y aimi—p)+ Y s, (43)

(.4}€A €N
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where ]
gilps —pi) =, min (i +p; - piJss
7

i SxijLo;
_ { {aj+pi —pdby ifpi S ay +ps, (44)
- Uais+p5 —pidess i pe> ai; + ;.
Consider now the problem

maximize g{p)
subject o no constraint on p,

where ¢ is the dual function given by Eqgs. (4.3} and (4.4). We call this the
dual problem, and we refer to the original minimum cost flow problem as the
primal problem. We also refer to the dual function as the duel cost function
or dual cost, and we refer to the optimal value of the dual problem as the
optimal dual cost.] We will see that solving the dual problem provides the
correct valies of the prices p;, which will allow the optimal flows to be

obtained by minimizing L(z,p).

Primat Cost Dual Cost q; .-
for Arc (i, for Arc (i) {
)

Slopg =~ b’]

i

Siope =- Cj

Figure 4.4: Form of the dual cost function giy for arc {i,7).

Figure 4.4 illustrates the form of the functions g;;. Since each g,; is-
piccewise linear, the dual function ¢ is also piecewise linear. The dual func-
tion also has some additional interesting structure. In particular, suppose

1 There is a slight abuse of terminology here, since in a dual context we
are not minimizing a cost but rather maximizing a value, but there is some
uniformity advantage in referring to cost in both the primal and the dual context.
Besides, some problems such as the assignment problem in Section 1.3, are cast as
maximization problems and their duals become minimization problems, so using
the term “dual value” rather than “dual cost” would be inappropriate.
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that all node prices are changed by the same amount. Then the values of
the functions ¢;; do not change, since these functions depend on the price
differences p; — p;. If in addition we have } .., s = 0, as we must if the
problem is feasible, we see that the term }:,—E w 8ipi also does not change.
Thus, the dual function value does not change when all node prices are
changed by the same amount, implying that the equal cost surfaces of the
dual cost function are unbounded. Figure 4.5 illustrates the dual function
for a simple example.

We now turn to the development of the basic duality results for the
minimum cost flow problem. To this end we appropriately generalize the
notion of complementary slackness, introduced in Section 1.3 within the
context of the assignment probiem:

Definition 4.1: We say that a flow-price vector pair (z,p) satisfies
complementery slackness (or CS for short) if = is capacity-feasible and

pi —p; Lay,  V{ij) e A withzs; < o, (4.5)

pi — Py =2 aij, v (i,j) € A with by < zyj. (4.6)

Note that the CS conditions imply that
pi = ai; + s, Y (i.f) € A with by < 745 < ¢,
An equivalent way to write the CS conditions is that, for all arcs (4, 4), we
have bi; <2i; < ¢i; and
{g, if pi > ai; +p,
Tij = .
by pe< aij +py.
Another equivalent way to state the CS conditions is that z;; atiains the
minimum in the definition of ¢
To; = arg. min (@i + Py — pi)zi; 4.7
by ey Sy
for all arcs {i, 7). Figure 4.6 provides a graphical interpretation of the CS
conditions.
The following proposition is an impaortant duality theorem, and will
later form the basis for developing a more complete duality analysis with
the aid ol the simplex-related algorithmic developments of Chapter 5.

Proposition 4.1: A feasible flow vector z* and a price vector p* sat-
isfy CS if and only if z* and p* are optimal primal and dual solutions,
respectively, and the optimal primal a;nd dual costs are equal.
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Price of Node 3 is Fixed at0d

Price of Nodo 1

{b)

Figure 4.5: Form of the dual cost function g for the 3-node problem in (a}. The
optimal flow is 232 = 1, z3a =1, £33 = 0. The dual function is

a{p1,p2,p3) =min{0, 1 + p2 — p1} + min{l, 1 + p3 — p2}
+min{0,3+p3 —p}+p-pa
Diagram {b) shows the graph of the dual function in the space of p1 and pg, with
pg fixed at 0. For a different value of pa, say <y, the graph is “translated™ Ly the
vector {y,7); that is, we have g{p1,p2,.0) = g(p1 + 1.02 + 7, ¥) for ali (m,p2).

The duat function is maximized at the vectors p that satisfy CS together with the
optimal z. These are the vectors of the form {p1 + 7,72 + 7,7), where

1<p1—pm, <3, 1<p2.

Proof: We first show that for any feasible flow vector = and any price
vector p, the primal cost of z is no less than the dual cost of p. Indeed, we
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Figure 4.6: Mustration of CS for a flow-price pair (z,p). For each arc (i, j), the
pair {z;;.p; — p;) should lie on the graph shown.

have from the definitions (4.1) and (4.2} of L and g, respectively,

q(p) < L(z,p}

) ) aijzi; + Yy {8 2wt 2, o |m (4.8)

i)eA e {ili.g)e A} {(71(7.5)eA}

=Y aym,

fig)€A

where the last equality follows from the feasibility of x.
If z* is feasible and satisfies CS together with p*, we have by the
definition (4.2) of ¢

q(p*) = mzin{L(I,P') | bij < 65 < ey (3, 5) € A}

L(z*,p') (4.9)

Z A

{{.J)EA

I

Il

where the second equality is true because

{z*.p*) satisfies CS if and only if
=}, minimizes {aij + ;- pf)Ti; over all z;; € fbij.cii], V{5, 5)€ A,

[ef. Eq. {4.7)], and the last equality follows from the Lagrangian expression
{4.1) and the feasibility of z=. Therefore, Eq. (4.9) implies that z* attains
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the minimum of the primal cost on the right-hand side of Fq. (4.8), and p*
attains the maximum of g(p) on the left-hand side of Eq. (4.8), while the
optimal primal and dual values are equal.

Conversely, suppose that * and p* are optimal primal and dual so-
lutions, respectively, and the two optimal costs are equal, that is,

dpr)= 3 auTh
(i.5)eA
We have by definition
glp*} = min{L(z,p*) | by < 255 S5, (1,7) € A},
and also, using the Lagrangian expression (4.1) and the feasibility of z*,
Z agzl; = L{z*,p7).
(i.4)€A
Combining the last three equations, we obtain

L{z*,p*) = mgn{L(I.P') | bij < 235 S €3, (3,5) € A}

Using the Lagrangian expression (4.1}, it follows that for all arcs (£, ), we
have
wy = are, Efilil;lsqj(at‘j + P} - i)z

This is equivalent to the pair (z*,p*) satisfying CS. Q.E.D.

There are also several other important duality results. In particular,
in Prop. 5.8 of Chapter 5 we will use a constructive algorithmic approach
to show the following:

Proposition 4.2: If the minimum cost flow problem {with upper and
Jower bounds on the arc flows) is feasible, then there exist optimal
primal and dual solutions, and the optimal primal and dual costs are
equal.

Proof: See Prop. 5.8 of Chapter 5. Q.E.D.

By combining Props. 41 and 4.2, we obtain the following variant
of Prop. 4.1, which includes no statement on the equality of the optimal
primal and dual costs:
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Proposition 4.3: A feasible low vector z* and a price vector p* sat-
isfy CSif and only if z* and p* are optimal primal and dual sclutions.

Proof: The forward statement is part of Prop. 4.1. The reverse statement,
is obtained by using the equality of the optimal primal and dual costs (Prop.
1.2) and the reverse part of Prop. 4.1. Q.E.D.

4.2.1 Interpretation of CS and the Dual Problem

The CS conditions have a nice economic interpretation. In particular, think
of each node ¢ as choosing the flow z;; of each of its outgoing arcs (4, ) from
the range [bij, ¢i;], on the basis of the following economic considerations:
For each mit of the flow z;; that node i sends to node j along arc (3, §),
node ¢ must pay a transportation cost a;; plus a storage cost p; at node
J: for each unit of the residual flow ¢;; — 2;; that node : does not send
10 7, node ¢ must pav a storage cost p;. Thus, the total cost to node 7 is
fas; + pj)ws; + (ci5 — xi5)p- or

(aij + pj — pi)eiy + cjps.

It can be seen that the CS conditions (4.3} and (4.6} are equivalent to
requiring that node i act in its own best interest by selecting the flow that
minimizes the corresponding costs for each of its outgoing arcs (4, j); that

is,
{x,p) satisfles CS if and only if
x;; minimizes {a:; + p; — p:)2i; over all 2;; € [bij, cij), ¥ (1,5) € A,
fcf. Eq. (47}
To interpret the dual function g(p), we continue to view a,; and p;

as transportation and storage costs, respectively. Then, for a given price
vector p and supply vector s. the dual function

q(p):b. <mil’l< - { Z 01345

Lrysfe
Veaarea @ Llidea

eV {l{e.d)eA} {7liyeA}

is the minimum total transportation and storage cost to be incurred by the
nodes, by choosing flows that satisfy the capacity constraints.
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Suppose now that we introduce an organization that sets the node
prices, and collects the transportation and storage costs from the nodes.
We sce that if the organization wants to maximize its total revenue (given
that the nodes will act in their own best interest), it must choose prices
that solve the dual problem optimally.

4.2.2 Duality and CS for Nonnegativity Constraints

We finally note that there are variants of CS and Props. 4.1-43 for the
versions of the minimurmn cost low problem where b;; = ~oo and /o1 ¢ = oo
for some arcs {1, j). In particular, in the case where in place of the capacity
constraints b:; < xi; < ij, there are only nonnegativity constraints 0 < 5,
the CS conditions take the form

Pi — P S Qs ¥ {i,j) € A,
pi —py=4ay VY (i,7) € Awith 0 <z,
(see Fig. 4.7).

Pi-P;

Figure 4.7: IHlustration of CS for a flow-price pair (z,p) in the case of nonneg-
ativity constraints O < x;; for the flow of each arc (1, 7). The pair (xi;,p: — £y}
shouid lie on the graph shown.

Some of the modifications needed to prove counterparts of the du-
ality results for nonnegativity constraints are outlined in Exercise 4.3. In
particular, Prop. 4.1 holds for this case as staled. However, showing a
counterpart of Prop. 4.2 involves a slight complication. In the case of non-
negativity constraints, it is possible that there exist feasible flow vectors
of arbitrarily small cost; a problem where this happens will be called un-
bounded in Chapter 5. Barring this possibility, the existence of primal and
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dual optimal solutions with equal cost (cf. Prop. 4.2) will be shown in Prop.
5.6 of Section 5.2.

NOTES, SOURCES, AND EXERCISES

The niinimum cost flow problem was formulated in the early days of lin-
ear programniing. There has heen extensive research on the algorithmic
solution of the problem, much of which will be the subject of the following
three chapters. This research has followed two fairly distinct directions.
On one hand there has been intensive development of practically efficient
algorithws. These algorithms were originally motivated by general lin-
car programming niethods such as the primal simplex, dual simplex, and
primal-dual methods, but gradually other methods, such as auction algo-
rithins. were proposed, which have no general linear programming coun-
terparts. The focus of research in these algorithms was to establish their
vaulidity through a proof of gnaranteed termination, to analyze their special
properties, and to establish their practical computational efficiency through
cxperimentation with “standard” test problems.

On the other hand there have been efforts to explore the worst-case
complexity limits of the minimum cost flow problem using polynomial al-
gorithms. Edmonds and Karp {1972] developed the first polynomial algo-
rithm, using a version of the out-of-kilter method (a variart of the primal-
dual method to be discussed in Chapter 6) that employed cost and capac-
ity scaling. Subsequently, in the late 70s, polynomial algorithms for the
general linear programiming problem started appearing, and these were of
course applicable to the minimum cost flow problere. AN of these poly-
nomnial algorithms are not strongly polynomial because their runming time
depends not just on the number of nodes and ares, but also on the are
costs and capacities. A strongly polynomial algorithm for the minimum
cost flow problem was given by Tardos [1985]. The existence of a strongly
polynomial algorithm distinguishes the minimum cost flow problem from
the general linear programming problem, for which there is no known al-
gorithm with running time that depends only on the number of variables
and constraints. However, a point made earlier in Section 1.3.4 should be
repeated: a polynomial running time does not guarantee good practical
performance. For example, Tardos’ algorithm has not been seriously con-
sidered for algorithmic solution of practical minimum cost flow problems.
Thus, to select an algorithm for a practical problem one must typically rety
on criterta other than worst-case complexity.

Duality theory is of central importance in linear programming, and
is simijlarly impertant in network optimization. It has its origins in the
work of von Neuman on zero sum games, and was first formalized by Gale,
Kuhn, and Tucker [1951]. Similar to linear programming, there are several
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possible dual problems, depending on which of the constraints are “dual-
ized” (assigned a Lagrange multiplier). The duality theory of this chapter,
where the conservation of flow constraints are dualized, is the most common
and useful for the minimum cost Aow problem. We will develop alterna-
tive forms of duality when we discuss other types of network optimization
problems in Chapters 8-10. ) .

We finally note that one can illustrate the relation b.‘etween thg primal
and the dual problems in terms of an intuitive geometric interpetation (see
Fig. 4.8). This interpretation is directed toward the advanced rea_der and
will not be needed later. It demonstrates why the cost of any feasible flow
vector is no less than the dual cost of any price vector (later, in Chapter
8, this will be called the weak duality theorem), and why thanlfs to the
linearity of the cost function and the constraints, the optimal primal and

dual costs are equal.

EXERCISES

4.1 (Reduction to One Source /One Sink Format)

Show how the minimum cost flow problem can be transformed to an equivafhlant
problem where all node supplies are zero except for one node that has positive

supply and one node that has negative supply-

G;E(Duality for Assignment Problems)
S

Consider the assignment problem of Example 1.2. Derive the ldual problem and
the CS conditions, and show that they are mathematically equivalent to the ones

introduced in Section 1.3.2.

4.3 (Duality for Nonnegativity Constraints)

Consider the version of the minimum cost flow problem where thers are nonneg-

ativity constraints

minimize E G5 Ti5

(i.5)eAd
subject to Z Tij Z Tji = 54, Vic N,
{ilti. )€ A} {31(5.81€ A}

0< 2y, VEINEA
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Costz

Set S of pairs (v,7}as x rangaes over the

ko) set of all capacity-feasible flow vectors

™

Optimal primal cost

v gip)

5 Divergence 1;

-~——Vertical line L ={(s.2)1 z: real number}

Figure 4.8: Geometric interpretation of duzlity for the reader who is familiar
with the notion and the properties of hvperplanes in a vector space. Consider the
(polyhedral} set S consisting of all pairs (y. ), where y is the divergence vector
corresponding to # and : is the cost of x. as x ranges over all capacity-feasible
Aow vectors. Then feasible flow vectors correspond to common peints of § and
the vertical line

L ={(s.2) | z : real number}.

The optimal primal cost comesponds to the lowest common point.
On the other hand. for a given price vector p, the dual cost g{p) can be
expressed as [cf. Egq. (4.2

) = Liz.p) = miin z— Y wipi p + 8 Di.
alr) {x.p) G Zyma Z D

EN ieN

min
x: vapacity feasible

Based on this expression. it can be seen that g{p) corresponds to the intersection
point of the vertical line [ with the hyperplane

z- Z vipi = a(p) - ZM’-' ,

LAY N

(v.2)

which supports from below the set 5, and is normal to the vector (-p, 1). The
dua! problern is to find a price vector p for which the intersection peint is as high
as possible. The figure illustrates the equality of the lowest common point of
S and L (optimal primal cost), and the highest point of intersection of L by a
hyperplane that supports S from below {optimal dual cost).
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Show that a feasible flow vector z° and a price vector p° satisfy the following CS
conditions . o
P — P < aij, v (1, J) €A,

v — Py = Gij ¥ {i,7) € A with 0 < x7;,
if and only if #” is primal optimal, p* is an optimal solution of the following dual
problem:

rmaximize z S

EN

subject to pi—pj S, YEDECA
and the optimal primal and dual costs are equal. flint: Complete the details of
the following argument. Define

_ Eiel\f SiPy if Dy — P S aij, v (1_7) € A,
alp) = —00 otherwise,

and note that

alp) = Z Join (o + 15 -p,-]:c.-j + Zsme

L

Garea Y ieN
= min Z Q45 +z 8y — Z Ti + Z Tyr | P
2% | e N {31G.e41 {il(E4)

Thus, for any feasible z and any p, we have

q(p) < Z ae,xi,-+z 55— z x5+ Z ST 2

Ga)EA icN {ilti.NeA} {ilzHe A} {4.10)

= E @iy Lig.

(L.7)EA

On the other hand, we have

gp')= sipl = Y (as+p5 —pi)zy Y spl= ) e

€N (i, 5heA €N (t3)eA

where the second equality holds because the CS conditions imply that (et -+ p; —
p!)zi; =0 for all (7,7) € A, and the last equality [ollows from th.e feasibilily' of
z*. Therefore, £ attains the minimum of the primal cost on the right-hand side
of Eq. (4.10). Furthermore, p* attains the maximum of g{p) on the left-hand side
of Eq. (4.10), which means that p* is an optimal solution of the dual problem.



