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Abstract

In this paper, we examine the model section decision for a medical diagnostic decision support system (MDSS). Our purpose

in doing this is to understand how model selection affects the accuracy of the decision support system. We explore two related

research questions: (1) Do ensembles of models, acting as a single decision maker, perform more accurately than single models;

and (2) How does model diversity affect the accuracy of the ensembles? Specifically, we compare 23 single models and

bootstrap aggregating (i.e., bagging) models for their predictive abilities across five diverse medical data sets. We are able to

reach important conclusions about our research objectives. Ensembles are more accurate than single models in their predictive

ability. The best ensemble model achieves an error level significantly lower than the error of the best single model for four of the

five medical applications analyzed. The magnitude of the error reduction ranges from 6.4% to 17.5%. Also, when designing an

ensemble for an MDSS, the decision to diversify the model selection should be guided by the relationship between model

instability and generalization error for the population of models under consideration.
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1. Introduction

The importance of making a correct medical diag-

nosis cannot be over-stressed. There are emotional,

legal, and financial consequences if a patient is told

they are ill when, in fact, they are not. The patient

suffers extreme emotional distress; the physician may

be legally liable for this distress, and, in this time of

managed health care, costs for unnecessary medical

procedures are incurred. Of far greater consequence is

an improper diagnosis concluding the patient is dis-

ease-free when they are not. If proper treatment is

withheld due to this misdiagnosis, the patient will

suffer and possibly die unnecessarily. Any technology

that can improve the ability to correctly diagnose

human illness is a needed advance to humanity’s well

being. With the widespread use of electronic data

capture and automation of medical records, medical

diagnostic decision support systems (MDSS) have

become a valuable aid in improving the accuracy of

medical diagnosis [29,35]. Their purpose is to
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enhance, not replace, a physician’s ability in the

complex and highly intuitive process of medical

diagnosis. The use of MDSS in medical diagnosis

are predicted to increase 10-fold within the current

decade [29].

Traditionally, MDSS are based on a best single

model that learns certain physiological characteristics

of a given disease and can then be used to diagnose

patients who manifest these characteristics. The

choice of model used in an MDSS ranges from simple

parametric methods, through the non-parametric

methods, to various feed forward neural networks.

Unfortunately, there is no theory available to guide the

selection of the best model. Most MDSS use a model

that is most accurate among a limited set of models’

relative performance in cross validation trials. In fact,

recent research suggests that finding the single ‘‘best

model’’ may be the wrong approach [10,11,47,49,50].

It is reported that combinations of single models,

referred to as ‘‘aggregate predictors,’’ built from

perturbed versions of the learning sets may have

significantly lower error than that of the best single

predictor [11].

In order to avoid confusion, we will adopt the

following terminology throughout the remainder of

the manuscript. An individual classifier, such as a mul-

tilevel perceptron, Fisher’s linear discriminant anal-

ysis, or kernel density, is referred to as a single model.

When single models are combined into an ensemble

(regardless of how the learning sets are perturbed) the

term aggregate model is used. If the data in the learning

sets are perturbed using a bootstrap method, we refer to

the resulting model as a bootstrap aggregating or

bagging model. If one model architecture is used to

complete the bagging model then it is called a baseline

bagging model. If multiple model architectures are

used in the bagging model, we label it a diverse

bagging model.

The purpose of this research is to investigate the

choice of a model (be it single or aggregate) for

medical diagnostic decision support systems. We

compare the diagnostic accuracy of 23 single models,

two diverse bagging models and 23 baseline bagging

models, across five medical data sets. The single

models studied are the parametric methods of linear

discriminant analysis and logistic regression, the non-

parametric k nearest neighbor and kernel density, and

three categories of feed forward neural networks

(multi-layer perceptrons, radial basis functions, and

mixtures of experts). The two diverse bagging models

are equally weighted (plurality) voting and unequally

weighted (frequency) voting [10]. Each of the 23

baseline bagging models are ensembles comprising

just one of each of the 23 single models. The criterion

we use is the reduction in diagnostic error in terms of

overall accuracy. We also report false positive results

(diagnosing patients as ill when they are not) and

false negative results (diagnosing patients as disease-

free when they are ill).

In order to understand how model selection affects

the accuracy of the medical decision support systemwe

explore two related research questions: (1) Do ensem-

bles of models, acting as a single decision maker,

perform more accurately than single models; and (2)

How does model diversity affect the accuracy of the

ensembles?

In the next section of this paper, we briefly review

the various models selected for this study based upon,

in part, several recent MDSS implementations. The

third section will then discuss our research method-

ology and experimental design that we will use to

estimate diagnostic accuracy for each model. The

fourth section presents our results. This paper con-

cludes with a discussion of these results, and impli-

cations to guide the selection of models for medical

diagnostic decision support systems.

2. Model selection

2.1. Single models

Many MDSS are implemented with logistic regres-

sion, a popular choice that regresses predictor varia-

bles on binary targets coded to represent the presence

or absence of a disease. For example, logistic regres-

sion is used to predict or diagnose spondylarthropathy

[17], acute myocardial infarction [20], coronary artery

disease [21], liver metastases [24], gallstones [30],

ulcers [33], mortality risk for reactive airway disease

[37], and breast cancer [44]. Fisher linear discriminant

analysis was used to diagnose coronary artery disease

[14], acute myocardial infarction [20], and breast

cancer [44].

Non-parametric models have also been used to

diagnose or predict illness. The k nearest neighbor
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was used in comparative studies to diagnose lower

back disorders [9], to predict 30-day mortality and

survival following acute myocardial infarction [20],

and to separate cancerous and non-cancerous breast

cancer tumor masses [44]. Kernel density was utilized

to determine outcomes from a set of patients with

severe head injury [38], and to differentiate malignant

and benign cells taken from fine needle aspirates of

breast tumors [46].

Neural networks have also been used in a great

number of MDSS applications because of the belief

that they have greater predictive power [42]. The

traditional multilayer perceptron (MLP) was used to

diagnose breast cancer [2,3,22,45,48], acute myocar-

dial infarction [4–6,19,32], colorectal cancer [8], lower

back disorders [9], drug/plasma concentration levels

[39], hepatic cancer [23], sepsis [28], cytomegalovirus

retinopathy [36], and ovarian cancer [45]. PAPNET, an

MDSS based on anMLP, is now available for screening

gynecologic cytology smears [26,27]. The radial basis

function (RBF) neural network was used to diagnose

lower back disorders [9], in a comparative study of

acute pulmonary embolism [40], classify micro-calci-

fications in digital mammograms [41], and in control of

blood transfusion costs for surgery [43]. In a compar-

ison with other methods, RBF and the mixture of expert

(MOE) neural networks were used to detect breast

cancer [44].

2.2. Aggregate models

Based on the logic of Breiman’s research [10,11],

as well as that of Dietterich [15,16], we will also

examine bootstrap aggregate models. Although not

specifically examining MDSS applications, it was

found that improved accuracy in classification and

prediction is obtained if researchers used aggregate

models employing perturbed versions of the learning

set [1,10,11,15,16]. There are various methods of

perturbing the learning set (e.g., Refs. [15,16]). We

employ the bootstrap method, which is described in

the next section. All our aggregate models are there-

fore bootstrap aggregating models or bagging mod-

els. The logic behind the improved accuracy from

aggregate models is based upon the instability of

single model approaches. It is common for small

changes in the learning set to create large changes

in the results (i.e., accuracy) of a single model. Using

an aggregate approach, the effects of these changes

tend to be dampened (see Ref. [10], on the bias and

variance properties of aggregate models).

Previous research of aggregate models largely

focuses on ensembles of one particular method. For

example [50], aggregates 30 multilayer-perceptron

neural networks with varying numbers of hidden

neurons to estimate polymer reactor quality. The

author reports that the aggregate model is more

robust than a single neural network model. Bootstrap

aggregate models from classification and regression

trees (CART) are tested on several benchmark data

sets. The aggregate CART models achieve reductions

in misclassification errors ranging from 6% to 77%

[11]. Combinations of nearest neighbor classifiers are

trained on a random subset of features; the aggregate

model outperforms standard nearest neighbor var-

iants [7]. Aggregate models of hybrid fuzzy logic

neural networks are used to recognize swallow accel-

eration signals [13]. Bagging models of multilayer

perceptron neural networks that have identical archi-

tecture and starting weights are explored in Ref.

[31]. In Ref. [51], aggregate models composed of

combinations of linear and quadratic discriminant

analysis, logistic regression, and multiplayer percep-

tron neural networks classify brain spectra by mag-

netic resonance measurement. The authors report that

the aggregate models are more accurate than any

single model and that the performance of the single

models varies widely, performing well on some data

sets and poorly on others.

The literature on aggregate models reports encour-

aging results. What is not clear is whether the en-

semble of models to be aggregated should be limited

to just one or two architectural types or should

contain a very diverse group of single models. Essen-

tially, our second research question is barely ad-

dressed by the literature (see, e.g., Ref. [51]). We

will therefore examine both diversified and baseline

bagging models.

For those aggregate models with no diversity, we

employ baseline bagging models. Each baseline model

is an ensemble of a single model architecture. As we

have 23 single models we therefore have 23 baseline

bagging models. We discuss the design of these models

in the next section.

We address model diversity using two aggregating

methods. One method of aggregating is to use equally
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weighted or plurality voting while the other aggregate

method is unequally weighted or frequency voting.

Before describing these two methods, it is necessary to

understand the output of the single models. As

explained in the next section, each model is trained

on a training set, evaluated for accuracy (i.e., initially

tested) on a validation set and then tested (i.e., the

comparatively tested) on a common ‘‘hold-out’’ test

set. The output of the single model is a value between

zero and one for each data point. The closer to zero, the

more likely that the data point belongs to group 0 (in

this study, group 0 consists of disease-free patients).

Conversely, the closer to one, the more likely that the

data point belongs to group 1 (in this study, group 1

contains patients who are ill). For the valuation set data

points, this value is often called the likelihood value.

Given this output, each single model then classifies the

data into the appropriate group (i.e., less than 0.5 is put

in group 0 and greater than 0.5 is put in group 1).

The equally weighted or plurality voting aggregate

method is relatively simple. The majority of single

models that place a test set data point in a given group

are the ‘‘winners.’’ For example, if 12 of the 23 single

models place a data point in group 1 while 11 place the

same data point in group 0, then the equally weighted

baggingmodel uses the plurality vote and will place the

data point in group 1. This method is similar to that of

Ref. [51]. It allows for the diversity of the ensemble to

have the greatest impact on the aggregate model’s

predictive accuracy. We view this aggregating method

as representing high model diversity.

The other diverse bagging model that we examine

employs the unequally weighted or frequency voting

method of aggregation. This method makes use of the

accuracy of each single model’s classification ability.

Each of the 23 single models is evaluated for accuracy

on a validation set. For each evaluation, one single

model is the most accurate (as described in the next

section there are 100 evaluations for each data set).

We accumulate the percent of times each single model

is the best over the 100 evaluations and refer to this as

the frequency of the single model. For the unequally

weighted or frequency voting bagging model, we

multiply the likelihood value of the test set data point

by the frequency of each single model. If the resulting

value is below 0.5, the data point is placed within

group 0 whereas if it is above 0.5 the data point is

placed within group 1. A simple example will help

illustrate this method. Three single models, X, Y, and

Z, are evaluated individually on 100 validation sets.

Model X was best 50% of the time (frequency of 0.5),

model Y was best 30% of the time (frequency of 0.3)

and model Z was best 20% of the time (frequency of

0.2). For a particular data point in the hold-out test set,

model X had a likelihood value of 0.8, model Y had

0.2, and model Z had 0.9. The unequally weighted

aggregate voting model would return a value of 0.64

for this data point ([0.5� 0.8]+[0.3� 0.2]+[0.2�
0.9] = 0.64). This data point would then be assigned

to group 1. By using an unequal weight for each

single model in the ensemble based upon that single

model’s predictive accuracy, the frequency voting

aggregate method allows the more accurate single

models to dominate the decision-making. We view

this aggregating method as representing moderate

model diversity.

In the next section, we describe our research

methodology. Some of the points raised in the this

section will be discussed in more detail.

3. Research methodology

Our research methodology is presented in three

parts. The first part presents the five medical data sets

that we examine in this study. The second describes

the 23 single models that we examine. The third part

presents our experimental design with further discus-

sion of the aggregate models.

3.1. Data sets

The five medical data sets represent various ill-

nesses. The diagnosis we seek to render is whether a

given patient, based upon various physiological symp-

toms is ill with the disease in question or is disease-free.

Specifically, the diseases we examine are heart disease,

liver disease, lung cancer, breast cancer, and cellular

cancer (actually cytological studies for metastasized

breast tumors). These five data sets are relatively

dissimilar and represent a fair test of the diagnostic

accuracy of the various models. Please see Ref. [34],

for additional description of the data sets.

The characteristics of these data sets vary along

four dimensions: the number of data records, the

number of variables, the percentage of categorical
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variables, and balance. The number of examples

contained in the data set ranges from a low of 194

records for the breast cancer data to a high of 683 for

the cytology data. The number of variables defines

the size of the input space and varies from 6 variables

for the liver data to 32 variables for the breast cancer

data set. The percent of categorical variables meas-

ures the relative mix between real and ordinal input

variables. This ranges from 0% for several data sets

with only real variables to 100% for the cytology data

set, which contains only ordinal variables. Balance

measures the ratio of the examples in the largest

classification group to examples in the smallest

group. This ranges from a relatively balanced value

of 1.13 for the lung cancer data to a very unbalanced

3.21 for the breast cancer data. The properties of each

of the five data sets used in this research are sum-

marized in Table 1.

Andras Janosi, MD, compiled the heart disease

data set at the Hungarian Institute of Cardiology. Ten

variables define personal information, pain type and

location, blood pressure, sugar, cholesterol, etc. The

objective is to classify each instance to one of two

groups that represent the diagnosis of the angio-

graphic disease status. The liver disorder data was

collected by BUPA Medical Research and includes

data from blood tests used to determine if liver

damage is present. The cytology data consists of

records of breast cytology used in breast cancer

diagnosis research at the University of Wisconsin

[25,46]. The breast cancer data set represents follow-

up data for breast cancer cases and includes only

those cases exhibiting invasive breast cancer and no

evidence of distant metastases at the time of diag-

nosis [25,46]. The lung cancer data predicts 6-month

survival rate for patients with primary cancer of the

lung [18].

3.2. Single model description

The 23 single models include neural networks,

parametric models, and nonparametric models. Three

different neural network architectures are used: multi

layer perceptrons (MLP), mixture of experts (MOE),

and radial basis functions (RBF). The parametric

models include Fishers linear discriminant analysis

(LDA), and logistic regression (LR) while the non-

parametric models included are k nearest neighbor

(kNN), and kernel density estimation (KD).

Several key design decisions involving the top-

ology and the learning process are required to define

the neural network models. Topology decisions estab-

lish the network architecture and include the number

of hidden layers and number of neurons in each layer

(input, hidden, and output). The number of neurons in

the input layer of the neural models is simply the

number of variables in the data set. For the neural

output layer, exclusive coding is used with an output

neuron dedicated to the two medical conditions, ill

(group 0) or disease-free (group 1). The hidden layer

is more difficult to define. A relatively large hidden

layer creates a more flexible diagnostic model. The

diagnostic error for such a model will tend to have a

low bias component with a large variance caused by

the tendency of the model to over-fit the training data.

A relatively small hidden layer results in a model with

a higher error bias and a lower variance. The design of

the hidden layer, therefore, involves a tradeoff bet-

ween error components. In this research, we use five

different hidden layer designs from small to large for

each neural network model. This allows us to incor-

porate a range of architectures from simple to more

complex models. The parameters for the nonparamet-

ric nearest neighbors and kernel density models are

established by trial and error. We found that 5, 7, and

9 of the ‘‘nearest neighbors’’ was a good range to

examine. Kernel densities of 0.1, 0.5, and 1.0 per-

formed well in our preliminary trials. We therefore

had 23 single models (five each of the three neural

network architectures, three each of the two nonpara-

metric models and one each of the parametric models)

to examine.

For the neural networks, diagnostic accuracy is

also dependent on the dynamics of the network

learning process. The most accurate diagnosis results

typically do not coincide with network error conver-

Table 1

Data set characteristics

Data set Number of

examples

Number of

variables

Percent of

categorical

variables

Balance

Heart disease 261 10 50 1.66

Liver disease 345 6 0 1.38

Breast cancer 194 32 6 3.21

Cytology 683 9 100 1.86

Lung cancer 200 13 69 1.13
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gence for the training data [12,50]. We conducted

initial experiments with training lengths varying from

30,000 to 300,000 iterations. Based on these experi-

ments, the following training guidelines are used in

this research. Network weights are updated after each

learning epoch, defined as one cycle through the

training data set. The network learning parameters

(the learning rate and learning momentum) are

decreased every 10 learning epochs, and training is

terminated after 50 learning epochs. It is our experi-

ence that setting relatively low values for the network

learning rate and momentum increases decision accu-

racy. We therefore use a learning rate of 0.3 and a

momentum of 0.4.

3.3. Experimental design

A controlled experimental comparison requires a

data partitioning strategy. To assess the accuracy of

the diagnostic models, the data set must be split into

three partitions: a training set, a validation set for

establishing generalization ability, and a final inde-

pendent test set to measure model accuracy.

A sampling plan that follows the general spirit of

earlier works [11,12,47,50] is employed in this paper.

First, the data set is randomly divided into a ‘‘hold-out’’

test set, which contains approximately 10% of data, and

a learning set consisting of the remaining observations.

The hold-out test set is used to test the accuracy of all

single and bagging models. The learning set is further

partitioned into 10 mutually exclusive data sets. One

partition is used as a validation set and the other nine as

a training set. This process is repeated 10 times with

each of the partitions taking its turn as the validation

set. The best single model is then identified as the

model with the lowest error across the 10 validation

sets. An estimate of its accuracy on future unseen

patients is measured using the hold-out test set. The

process described in this paragraph is typical of the

methodology used by practitioners developing an

MDSS based on a best single model. The merits of

cross validation are that the model is trained with a

large proportion of the available data (90% in this case),

and that all of the data is used to test the models.

After all 23 single models have been trained and

tested, training sets for the aggregate models are

constructed from bootstrap samples of the previously

created learning set. The purpose of the bootstrap

samples is to create different training sets for each of

the 23 models thereby increasing the independence of

the prediction errors and generating more accurate

bagging models. Twenty-three bootstrap samples are

constructed from the learning set and each of the

single models in the ensemble is trained on one

unique bootstrap sample. All of these single models

are combined into one ensemble to create the diverse

bagging models. The aggregating methods (plurality

and frequency voting) have already been discussed in

the previous section.

The baseline bagging models are developed sim-

ilarly to the diverse models. After the each single

model is trained and tested, we employ bootstrap

perturbations of the training set and, in the case of

the neural network models, random initial starting

conditions to create 23 different variants of the same

single model. All 23 bootstrap variants are put into an

ensemble and are aggregated using plurality voting.

As there are 23 single models, we have 23 baseline

bagging models as well.

Please note that all the aggregate models have the

same number in the ensemble, 23. The use of an odd

number of models is important as this prevents tie

votes. As with the single models, the bootstrap aggre-

gate or bagging models use the same hold-out test

set.

The random division of the data into the learning set

and test set as well as the 10-fold cross validation and

bootstrap sampling described in the previous para-

graphs are repeated 100 times for each of the five data

sets. The overall error, as well as the false negatives and

false positive errors, reported in the next section, are the

averages over these 100 iterations.

4. Results

The identification of the best single model is

summarized by data set in Table 2. The importance

of beginning with a broad search for model accu-

racy is evident. Table 2 demonstrates that no single

model, in fact not one group of models of similar

architecture consistently outperforms the other mod-

els across the five medical data sets. The best single

model for the Cytology data set is almost exclu-

sively one of the radial basis function neural net-

work architectures. For these networks, accuracy is
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seen to increase with network complexity. A very

different pattern arises in the liver disease results.

With only one exception, RBF, the neural network

models are never the most accurate. Accuracy in

this data set is dominated by the nonparametric k

nearest neighbor and kernel density models. The

results for the Heart disease data and Lung disease

data are similar. The nonparametric and parametric

models are the most accurate for 50% of the

validation tests with the remaining best single mo-

dels scattered across the MOE and RBF networks.

The most accurate models for lung cancer consist of

the parametric methods with smaller representations

of the simpler neural network architectures. The

nonparametric methods are never the most accurate

for this data set. Lastly, the breast cancer results

include a reasonably uniform mix of neural network

models. Parametric and nonparametric methods are

seldom the most accurate for the breast cancer data.

Failure to begin with a broad array of models may

result in a sacrifice of accuracy in the MDSS

application.

In the following discussion, we compare the error

rates of the bagging models to the results of the over-

Table 2

Best single models by data set

Model Data set

Cytology Heart disease Liver disease Breast cancer Lung disease

1 MLPa 0.02 0.01 0 0.05 0.14

2 MLPb 0.02 0 0 0.03 0.02

3 MLPc 0 0 0 0.08 0.09

4 MLPd 0 0 0 0.07 0.05

5 MLPe 0 0.01 0 0.06 0.04

6 MOEa 0.02 0.02 0 0.01 0.08

7 MOEb 0.01 0.04 0 0.03 0.02

8 MOEc 0.02 0.06 0 0.02 0.05

9 MOEd 0.03 0.05 0 0.06 0

10 MOEe 0.03 0.07 0 0.07 0.04

11 RBFa 0.03 0.18 0 0.05 0.01

12 RBFb 0.07 0.02 0 0.05 0.01

13 RBFc 0.12 0.01 0 0.08 0.01

14 RBFd 0.32 0.03 0 0.18 0.01

15 RBFe 0.29 0.01 0.08 0.14 0

16 LDA 0 0.09 0 0 0.16

17 LR 0 0.04 0.03 0 0.27

18 KNNa 0 0 0.05 0 0

19 KNNb 0.02 0.03 0.13 0.01 0

20 KNNc 0 0.05 0.14 0.01 0

21 KDa 0 0 0 0 0

22 KDb 0 0 0.27 0 0

23 KDc 0 0.28 0.3 0 0

The numbers in the cells represent the percent of times that a particular model performed the best for the given data set.

Best single model characteristics by data sets

Larger

RBF

models

Varied

mix

All

nonparametric

Reasonably

uniform

mixture of

ANNs

Parametric

models plus

simpler ANNs

Percent stable 0.02 0.49 0.92 0.02 0.43

Number of

models

above 0%

13 17 7 17 15
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all single most accurate model for 100 iterations for

each of the five data sets investigated. The overall best

single model is identified as the single model having

the lowest average diagnostic error on the 100 runs of

the 10-fold cross validation data. Its error on the hold-

out test set is then compared to each bagging model’s

error on the same hold-out test set.

Table 3 summarizes the overall diagnostic error for

each data set. The plurality voting bagging model had a

statistically significant reduction in overall error rela-

tive to the best single model for two of the five data sets.

The percentage improvement is 10.5% for heart disease

and 16.67% for breast cancer. Frequency voting, the

other diverse bagging model, had statistically signifi-

cant reductions in diagnostic error for four of the five

data sets relative to the best single model. Its diagnostic

improvement ranged from 6.41% for liver disease to

17.55% for breast cancer. The last two columns in

Table 3 report the results of the most accurate ‘‘Best

Baseline Bagging Model.’’ Please recall that there are

23 baseline bagging models for each data set. Depicted

in this table is the result of the model that achieved the

minimum diagnostic error of all 23 models. The best

baseline bagging model had statistically lower diag-

nostic error on three of the five data sets. The magni-

tude of the error reduction ranged from 7.38% for

breast cancer to 13.14% for heart disease. No single

best model had statistically lower diagnostic error than

any aggregate model for any data set.

Based upon these results we can reach a definite

conclusion regarding our first research question. Boot-

strap aggregate models are more accurate than single

models identified in cross validation trials.

The second research question involving the role of

model diversity is a more complicated issue. Table 4

presents the average diagnostic error of all 23 baseline

bagging models as well as the maximum and minimum

error. Note from Table 4 that the best baseline model

varied for each data set and that there was not a strong

correlation between the most accurate baseline bagging

model and the more accurate single models (see Table

2). From a strictly statistical view, the average error is

an expected value obtained when one randomly selects

a baseline model from the set of 23 models investi-

gated. Of course, in the real world no one actually

selects a baseline bagging model without some a priori

guidance. This guidance often tends to gravitate to a

researcher’s ‘‘favorite model’’ such as neural networks,

Table 3

Overall diagnostic error

Data set Best single

model

Plurality

voting

bagging

model

Percentage

improvement

plurality voting

bagging model

to best single

model

Frequency

voting

bagging model

Percentage

improvement

frequency

voting bagging

model to best

single model

Best

baseline

bagging

model

Percentage

improvement

best baseline

bagging model

to best single

model

Cytology 0.0292 0.0290 0.6849 0.0257*** 11.9863 0.0285 2.3973

Heart 0.1971 0.1764*** 10.5023 0.1840** 6.6464 0.1712*** 13.1405

Liver 0.3370 0.3449 � 2.3442 0.3154** 6.4095 0.3001** 10.9496

Breast

cancer

0.2262 0.1885*** 16.6667 0.1865*** 17.5508 0.2095* 7.3829

Lung 0.3013 0.3050 � 1.2280 0.2935 2.5888 0.3051 � 1.2612

* Difference significant at the 0.05 level.

** Difference significant at the 0.01 level.

*** Difference significant at the 0.001 level.

Table 4

Overall diagnostic errors of baseline bagging models

Data set Best baseline

bagging model

Minimum Average Maximum

Cytology Radial Basis

Function—c

0.0285 0.0386 0.0712

Heart Kernel

Density—d

0.1712 0.1901 0.2209

Liver Logistic

Regression

0.3001 0.3567 0.4072

Breast

cancer

Radial Basis

Function—c

0.2095 0.2759 0.3858

Lung Mixture of

Experts—b

0.3051 0.3324 0.4102
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etc. It can be argued that choosing a favorite model is

similar to random selection and that a method of model

selection based on a favoritemodel will, in the long run,

be close to the average value. For those few aggregate

models having limited diversity with ensemble mem-

bership constrained to three or four models, we antici-

pate that the long run results will also be close to the

average. Only those researchers who systematically

explore a wide range of models including parametric,

nonparametric, and neural network models can expect

to get baseline errors approaching the minimums we

report in Table 4.

A diverse group of baseline bagging models does

not guarantee that the minimum baseline model has a

smaller diagnostic error than the diverse aggregate

models. From our results it appears that the baseline

model may be a better choice only when there is a

single model with low error and high instability. This

concept is best explained by inspecting a plot of

generalization error versus model instability. Fig. 1

will be used to illustrate our point using just the breast

cancer and the liver data sets. Model instability is the

degree to which the bootstrap training perturbations

effect model decisions and is measured by the range of

outputs obtained from 500 iterations of the baseline

bagging models for each model and for each data set

[12,31]. The diverse frequency voting bagging model

has the lowest error for data sets with a large positive

slope between model instability and generalization

error such as the breast cancer data shown in Fig. 1

with a regression slope of 2.50 ( p = 0.000) (although

not illustrated, the Cytology data with a slope of 1.56

( p = 0.002) would also fall into this category). For data

sets exhibiting a positive relationship between insta-

bility and error, there is a subset of models to the lower

left portion of the scatter plot that are high potential

candidates for an effective bagging model. The fre-

quency voting methods assigns significant weights to

these models and excludes models from the upper right

portion of the plot that would adversely affect the error

of the bagging ensemble. The single baseline bagging

model is most effective for data exhibiting a strong

negative correlation between model instability and

generalization error such as the liver data plotted in

Fig. 1 with a regression slope of � 1.75 ( p = 0.003). In

these situations, an effective bagging model can be

formed from a single model with the ideal properties of

low generalization error and high model instability.

Such models are located to the lower right of the liver

data plot in Fig. 1. Increasing the diversity of a baseline

bagging model in these situations involves adding

additional models that sacrifice both accuracy and

instability. The plurality vote bagging model is most

effective for data sets where the magnitude of the slope

Fig. 1. Generalization error versus model instability.
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between model instability and error is relatively small

such as the heart data set with a slope of 1.01 ( p=

0.001). Under these conditions, it may be reasonable to

include all models in the bagging ensemble and to

weight their individual decisions equally to determine

an aggregate decision.

For medical diagnostic applications, the costs of

misclassification errors are not equal and it is informa-

tive to decompose the overall error into group specific

errors. Table 5 contains the average false positive errors

for the best single model and the bagging models for

those data sets with significant differences in overall

error. The plurality voting bagging model achieves a

false positive error improvement, as compared to the

best single model, for the heart disease (19.65%) and

breast cancer (52.98%) data sets. The frequency voting

bagging model improves accuracy by reducing false

positive diagnostic errors ranging from 4.63% for the

cytology to 42.33% for the breast cancer data sets. Note

that baseline bagging model reduces the false positive

error rate for only the breast cancer data set. It increases

the false positive error rate for both the heart and liver

disease data sets.

Table 6 reports the corresponding average false ne-

gative errors. The plurality voting bagging model has a

minor improvement in false negative diagnostic error,

as compared to the best single model, for the breast

cancer data set (2.41%) and for the heart disease data

set (3.63%). The frequency voting bagging model

reduces false negative diagnostic errors for the cytol-

ogy (27.44%) and breast cancer (7.56%) data sets and

with more modest reductions for the heart (2.54%) and

Table 5

Decomposition of significant differences in false positive diagnostic error

Data set Best

single

model

Plurality

voting

bagging

model

Percentage

improvement

plurality voting

bagging model

to best single

model

Frequency

voting

bagging

model

Percentage

improvement

frequency

voting bagging

model to best

single model

Best

baseline

bagging

model

Percentage

improvement

best baseline

bagging model

to best single

model

Cytology 0.0295 NS NS 0.0281 4.628 NS NS

Heart

disease

0.1365 0.1097 19.651 0.1196 12.369 0.176 � 28.94

Liver

disease

0.2339 NS NS 0.2168 7.316 0.247 � 5.60

Breast

cancer

0.0804 0.0378 52.983 0.0464 42.334 0.040 50.25

NS—difference in overall error was not significant.

Table 6

Decomposition of significant differences in false negative diagnostic error

Data set Best

single

model

Plurality

voting

bagging

model

Percentage

improvement

plurality voting

bagging model

to best single

model

Frequency

voting

bagging

model

Percentage

improvement

frequency voting

bagging model

to best single

model

Best

baseline

bagging

model

Percentage

improvement

best baseline

bagging model

to best single

model

Cytology 0.0275 NS NS 0.0200 27.440 NS NS

Heart

disease

0.3070 0.2958 3.632 0.2992 2.538 0.159 48.21

Liver

disease

0.4746 NS NS 0.4466 5.892 0.337 28.99

Breast

cancer

0.7299 0.7123 2.408 0.6747 7.561 0.737 � 0.97

NS—difference in overall error was not significant.
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liver disease (5.89%) data sets. The baseline bagging

model achieves dramatic reductions of false negative

errors for the heart (48.21%) and liver disease (28.99%)

data sets.

5. Concluding discussion

In this paper, we examine themodel section decision

for a medical diagnostic decision support system. We

examine 23 single models, two diverse bootstrap

aggregate or bagging models, and 23 baseline bagging

models for their predictive accuracy across five diverse

medical data sets. Our purpose in doing this is to

understand how model selection affects the accuracy

of the decision support system. We raised and

addressed two related research questions: (1) Do bag-

ging models perform more accurately than single

models; and (2) How does model diversity affect the

accuracy of the aggregate models? We find that boot-

strap aggregate models are more accurate than single

models in their predictive ability. Also, when designing

an aggregate model for an MDSS, model diversity is

critical to selecting the most accurate model. On one

level, it is impossible to know, a priori, which baseline

bagging model to select. Without a diverse selection

fromwhich to choose, the long run error would average

above the single best model. This does not imply that a

diverse aggregate model is more accurate than a base-

line bagging model however. The decision to diversify

the model selection should be guided by the relation-

ship between model instability and generalization error

for the population of models under consideration.

When the slope of the plot of instability versus error

is negative, a baseline bagging model may be highly

accurate. In cases with large positive slopes the fre-

quency voting aggregate model is expected to be

superior because of its ability to screen out models

with high error terms. If the plot demonstrates a small

positive slope, then the plurality voting aggregate

model achieves very accurate results.

Our research is directed at model selection issues to

find the most accurate starting point for an MDSS

implementation. For any specific application, the eco-

nomics dictate that one type of misclassification error

may be significantly more costly than the other. The

idea of intentionally biasing the medical decision sup-

port system to minimize the total costs of misclassifi-

cation is an important aspect of the implementation

phase. While we have decomposed the overall error

into false positive and false negative rates assuming

equal misclassification costs (i.e., a threshold of 0.5),

the reader should appreciate that a tradeoff exists

between these component errors. There are several

methods that can be employed to bias the MDSS

ensemble decision. The practitioner can adjust the

threshold to values other than 0.5 in order to bias the

decisions of the individual ensemble members. A

second alternative is to require a more stringent vote

total than the majority vote used in this research. For

example, a disease-free decision could require the

consensus of all ensemble members. Another possibil-

ity is to explicitly include prior probability and mis-

classification costs in the classification objective

function. This is feasible for some models like linear

discriminant analysis and neural networks but is not

possible for others such as logistic regression or k

nearest neighbor. It is also possible to intentionally

bias the training examples using a stratified sampling

strategy.

While we feel the medical data used in this

research is representative of diagnostic decision sup-

port applications, the reader is cautioned that the

conclusions are based on five specific medical

domains. More research would be useful to establish

whether these results generalize to other medical

domains and to areas beyond health care such as

bankruptcy prediction and credit scoring. We also

acknowledge that there is potential to increase the

accuracy of aggregate model with more sophisticated

combining rules as well as to the level and degree of

diversity of the ensemble of models.
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