Guía práctica para hacer un análisis de MDS en SPSS

Consideraciones generales

Los datos deben ser entregados en forma de matriz, donde las columnas y filas son nombres de las distintas marcas.

Se debe ocupar en todos ellos la misma métrica para realizar las comparaciones (recuerde que las métricas para el caso de comparaciones de marca son adimensionales, es decir no corresponden a ningún atributo específico y además deben ser cuadradas).

Para obtener buenos resultados, es recomendable realizar comparaciones con 4*k+1 marcas, donde k es el número de dimensiones que se esté interesado en encontrar.

Para efectos de está guía, se generó una tabla de distancias geográficas entre 10 ciudades de Chile, lo que si bien es cierto no son percepciones, servirá para mostrar como se utiliza el programa.

					La	Puerto	Punta		San
Arica	Concepción	Copiapó	Coyhaique	Iquique	Serena	Montt	Arenas	Santiago	Pedro
0	2581	1261	3712	316	1588	3078	5152	2062	717
2581	0	1314	1260	2372	993	626	2700	519	2195
1261	1320	0	2451	1058	333	1817	3890	801	880
3712	1260	2451	0	3503	2124	634	1580	1649	3730
316	2372	1058	3503	0	1377	2869	4943	1853	512
1588	993	333	2124	1377	0	1490	3564	474	1201
3078	626	1811	634	2869	1490	0	2286	1016	2692
5152	2700	3890	1580	4943	3564	2286	0	3090	4767
2062	519	801	1649	1853	474	1016	3090	0	1667
717	2195	880	3730	512	1201	2692	4767	1667	0

El análisis MDS

Tabla №1: Distancias entre 10 ciudades de Chile (el color rojo representa cercanía el y el verde lejanía).

Esto se introdujo al programa SPSS de la siguiente manera:

Archivo -> Abrir -> Data...

Una vez en Data se selecciona el archivo *.xls* que se desee importar.

	Untit	led4	[Datas	iet3] - SPS	iS Data	Editor				
File	Edit	View	Data	Transform	Analyze	e Graphs	Utilities	Windo	w He	lp
N	lew				- + j		- 	ta 🖽	\sim	@ •
С	pen				•	Data		2 H-N	· ·	
С	ipen Da	atabası	е		•	Syntax				
R	ead Te	ext Dat	a			Output	r		var	var
C	lose			Ctrl-	F4	Script				
S	ave			Ctrl-	FS					
S	ave As									
S	ave All	Data			Ĩ					
Ε	xport t	to Data	base		İ					
M	lark File	e Read	Only							
R	ename	Datas	et							_
D	isplay I	Data Fi	le Infor	mation	- F [
C	ache D)ata			İ					
S	top Pro	ocessor		Ctrl-	ы 🕴					
S	witch S	öerver.						-		
Р	rint Pre	eview								
Ρ	rint			Ctrl-	P					
R	ecently ecently	y Used y Used	Data Files		;					
E	×it									
_	18				-					

Si se utilizan títulos para nombrar las variables, se debe marcar la opción **Guardar títulos de columnas como nombres de las variables**. Esto es especialmente práctico para los análisis posteriores. Con esto se debería llegar a una pantalla como esta:

🛂 *Untitled6 [DataSet5] - SPSS Data Editor									
File Edit	View Data Transfo	rm Analyze Graph	ns Utilities Windov	v Help					
🗁	🔒 📴 🔶 🕈	🖢 🖟 👫 I	1 🗄 🕀 🖪	🖗 🔕 👻					
1 : V1	1 : V1 Arica								
	V1	Arica	Concepción	Copiapó	Coyhayque	lquique l			
1	Arica	0	2581	1261	3712	316			
2	Concepción	2581	0	1314	1260	2372			
3	Copiapó	1261	1320	0 2451		1058			
4	Coyhayque 3712 1260 2451 0 3503								
5	Iquique 316 2372 1058 3503 0								
6	La Serena 1588 993 333 2124 1377								
7	Puerto Montt	3078	626	1811	634	2869			
8	Punta Arenas	5152	2700	3890	1580	4943			
9	Santiago	2062	519	801	1649	1853			
10	San Pedro	717	2195	880	3730	512			
11									
10	1	1				i			

Obs: Para análisis como este, el SPSS considera solo una mitad diagonal de la matriz para el análisis, sin embargo, de ser necesario esto se puede cambiar.

A continuación se debe seleccionar el método de escalamiento del menú de Análisis:

insform	Analyze	Graphs	Utilities	Wir	ndow	Help				
• 🔚	Repor Descri Tables	ts iptive Stat s	istics	+ + +		s @ •				
	Comp	are Means	5	ł		Copiapó		Coyhayque	lo	
	General Linear Model Generalized Linear Models Mixed Models Correlate Regression Loglinear				}1	12	61	3712		
					0	13	14	1260		
					20		0	2451		
					30	24	51	0		
					2	10	158	3503		
	Classil	fy		►	13	3	33	2124		
	Data Reduction				<u>1</u> 6	18	11	634		
	Scale Nonparametric Tests Time Series Survival Multiple Response Missing Value Analysis				Reliability Analysis					
					Multidimensional Unfolding					
					- N	ng (PROXSCAL)				
					M	Iultidimensional	Scaliı	ng (ALSCAL)		
					Γ					
	Compl	lex Sample	es	•	\vdash					
	Qualit	y Control		•	\square					
	ROC Curve									
					-					

Al hacer esto, aparecerá una ventana con opciones acerca del tipo de datos que se desea utilizar lo que para este caso no es relevante pues ya están los datos correctamente ingresados en el SPSS. Entonces se debe presionar **Definir** y aparecerá la siguiente pantalla:

			1011	
626	1811	634	2869	1490
2 Mu	ltidimensional Sc	aling (Proximiti	es in Matrices A	cross Colu 🔀
	Coyhayque Iquique La Serena [LaSeren Puerto Montt [Puer Punta Arenas [Pun Santiago San Pedro [SanPer	na toł taź drc Image: Source Image: Image: I	ties: ica prcepción ppiapó is:	OK Paste Reset Cancel Help
	Model Restri	ctions Option	ns Plots	Output

En esta ventana se deben escoger cuales son las variables que se desean ingresar al análisis. Es muy importante que la matriz sea cuadrada porque o sino el programa no entregará ningún resultado.

Si existen valores faltantes no es muy grave, pues el programa es capaz de entregar una solución igual (aunque de esta manera disminuye la calidad de la solución).

En el submenú **Model** se puede elegir la opción de si la medida utilizada es de cercanía o de lejanía. En este caso en particular, la medida es distancia, la que es una medida de lejanía pues cada valor nos dice que tan lejos están 2 cosas entre sí (a mayor valor, mayor la separación).

Una vez agregadas las variables, se presiona **OK** y el programa entregará una serie de tablas y un gráfico como este:

En este gráfico se pueden apreciar varias cosas muy importantes acerca del MDS. Primeramente, se puede apreciar que el resultado está girado y en espejo con respecto a la realidad. Esto se debe a que los ejes utilizados por el MDS son arbitrarios.

Parte importante del trabajo en MDS es girar el resultado obtenido e interpretar los ejes según algún atributo o característica, para poder entender efectivamente bajo que dimensiones se están diferenciando los productos.

Además, casi todos los datos quedaron determinados puramente por un solo eje, lo que es lógico dada la forma de Chile. Esto resulta interesante considerando que si se hace lo mismo con marcas, que son muy similares en un atributo importante, el resultado puede llegar a ser similar. Esto puede ser perjudicial pues impide establecer puntos de comparación en el segundo eje.

Una solución para este caso puede ser agregar más ciudades (marcas) al estudio:

Common Space