

Ultimus®

Profit from the ProcessTM

Ultimus BPM Studio Help
Version 6.0 SP1

Table of Contents
TABLE OF CONTENTS.. 2

INTRODUCTION TO ULTIMUS BPM STUDIO 16

BPM STUDIO NEW FEATURES... 17

Collaborative Process Design...18

Enhanced User Interface ...19

Object Security...20

Archiving and Versioning..21

Reusing Process Objects ..22

Reusing Entire Processes...23

Segmenting Processes for Modular Design ..24

Web Services Integration ..25

.NET Code Integration..26

Custom Editor Plug-Ins ...27

Microsoft Office InfoPath 2003 Forms Support28

Microsoft Office 2003 Support ..29

Microsoft Exchange Server 2003 Support ...30

Offline Process Design..31

Importing and Exporting Processes...32

Process Level Resource Management...33

General Modeling Enhancements...34

One-Click Process Publishing ..35

One-Click Object Publishing ...36

On-the-Fly Process Updates ...37

Architectural Overview ..38

BPM STUDIO USER INTERFACE... 39

Starting Ultimus BPM Studio ..40

Repository View Window...44

The Editor Window...45

Status Window ...48

The BPM Studio Menu Bar ..49

Creating and Adding Objects..53

Defining Object Security..54

Checking Out, Checking in and Locking Objects57

Editing Objects...59

Copying, Renaming and Deleting Objects ...60

Object History and Rollback ...63

Working With Objects Offline..64

Outputting Technical Documentation ..67

Working with Object Notes..69

Simulating Processes..72

Publishing Processes..73

Exporting Objects ..75

BPM Studio Tool Bar ...76

DESIGNING PROCESS MAPS.. 77
Rules About Process Maps..77

The Process Map View ..79

Adding Steps to a Process Map..82

Using Grid Lines...82
Using Snap-to-Grid ..83
Working with Steps ..83

Inserting and Deleting Links ...87
Inserting Links Between Steps ...87
Deleting a Link ...87
Anchors ..87

Using Descriptive Text...89
Changing Text Formatting..90
Moving Text Boxes...90
Deleting Text ..90

Printing Processes...91

WORKING WITH THE MODELING EDITOR................................. 93

Defining Modeling Scenarios ..93

Working with Steps..94

Documenting Step Properties...95

Working with Conditions Tables...98

Opening the Conditions Table Window..98

Specifying Actions in the Event Conditions Table..............................98

Specifying Steps in an Event Conditions Table100

Event Conditions Tables for Junctions..100

Documenting Event Conditions..102

Defining Step Inputs-Outputs-Actions ...105

Executing Process Modeling Scenarios ..106

Process Level Resource Management...107

Process Level Scenario Properties ..109

Using Variables ..114

Example of Using Variables ..116

Step Level Scenario Properties and Conditions120

Running a Model ..124

Modeling Reports...126
Step Level Reports...126
Process Level Reports ...126

Working with Reports View ...128

Task Time Report ...130

Cost Report...132

Lag Time Report...134

Elapsed Time Report ...136

Step Utilization Report...138

Process Balance Report ..139

Under Utilization...140

Integration with the Build Editor...141

Working with Step Properties Window...141

Working with Event Condition Tables..142

Working with Form View..143

Creating Design Documents ...145
Creating a Documentation Template..146

WORKING WITH THE BUILD EDITOR...................................... 149

Defining Map Properties ..150
Editing Map Properties Object:...150
Defining the Process Owner...151
Process Completion Time ..152
Help URL..152
Defining the Process Description ...153
Defining E-Mail Notifications ..153
Linking to a Database Table...156
Defining Databound Variable Information ..156
Checking the Size of Distributed Spreadsheets157

Defining Step Properties and Conditions ..158

Editing Steps ..159

Defining User Step Properties ..173

Detailed Description of Recipient Types..177
Conditional Recipients ...179

Detailed Description of Relative Job Functions180

Detailed Description of Groups ..181
Sequential Groups ...181
Weighted Groups ...182

Defining Begin Step Properties ..183

Defining Flobot Step Properties ...186

Defining Maplet Step Properties ...187

Defining Junction Step Properties ...189

Event Conditions Rules and Guidelines ..192

The Event Conditions Tables Window ...194
Activate Event Conditions Table ..194
Complete, Late, Return, and Resubmit Event Conditions Tables195
Recipient Conditions Table ..196

Working with Conditions Tables...198

Opening the Conditions Table Window..198

Specifying Actions in the Event Conditions Table............................198

Specifying Steps in an Event Conditions Table200

Event Conditions Tables for Junctions..201

Working in the Data View ..202

Distributed Spreadsheets..203
Rules About Spreadsheets and Variables..204

Data View ..206
The View Toolbar ...206
Going to the Data View ..207

Working with Spreadsheets ..208
Creating the Spreadsheets...208
Moving Among Spreadsheets ..208
Saving Spreadsheets ...209
Selecting Cells ...209
Text in a Cell ..209
Entering a Formula in a Cell...210
Formatting Cells ...210
Copying Cells ...211
Deleting Cells ...211

Naming Cells as Variables...213

Declaring Local Variables and Linking to Main Spreadsheet Variables
...215
Link Types: Data Flow..215

Viewing Variable Links ..218

Example of Using Global Variables ..219

Working With Forms ..223

Working with Standard Forms ..224

Designing and Editing the User Interface ..225

Rules and Guidelines About Forms ...226

The Form View..227
The Form View Toolbar..227

Creating a Form..229
Invoke the Form View ..229
Moving Among Forms ..229
Creating a Form With Multiple Pages...229
Editing Pages using the Toolbar Functions ..230

Form Properties ...232
Enabling and Disabling Return, Send and Print Buttons232
Defining Actions for a Form or Page ..233
Defining Scripts for a Form or Page ...235

Page Properties..237

Working with Controls ...240
The HTML Controls Palette and Advanced Controls Palette..................240
Aligning and Sizing Controls ..242

Aligning and Sizing Controls with Each Other ..242
Copying and Pasting Controls..244
Viewing Grid Lines on the Form...244

Defining Control Properties ..245

Description of Common Controls Properties246
General Tab ...246
Colors Tab..246
Fonts Tab...247
Border Tab (Advanced Controls Only) ...247
Identification Tab..248
Miscellaneous Tab ...248

Description of Control Links ...250

Spreadsheet..252

Scripts...254

Data Validation ...256

Event Actions ...258

Form Related Actions ..260

Recordset Actions ...261

Calling .NET Code ..262

Calling Web Services...265

Execute Database Actions ..268

Description of User Information Variables...270

Linking Controls with Spreadsheet Cells...271
Linking Controls to Separate Source and Destination Cells271

Linking Controls to Workflow Variables ..273

Ultimus Form Controls ..274

Advanced Combo Box Control ...275
Advanced Combo Box Control Properties..275

Advanced Edit Control...276
Advanced Edit Control Properties ..276

Advanced List Box Control ...278
Advanced List Box Control Properties..278

Attachment Control..279
Attachment Control Properties ...279
Attachment Control Links Properties..281
Adding Attachment Controls...282
Using Attachments ...282

Check Box Control ...284
Check Box Control Properties ..284

Combo Box Control ...285
Combo Box Control Properties...285

Control PlaceHolder...286
Inserting a PlaceHolder Control on a Form ..286
Registered PlaceHolder Control Properties..287
User-Defined PlaceHolder Control Properties..287

Edit Control...290
Edit Control Properties ...290

Frame Control...291
Frame Control Properties ...291
Creating Boxes with the Frame Control ...291

Grid Control ..293
Grid Control Properties ..293
Cell Properties..293
Linking a Grid to Local Spreadsheet Cells ...297
Using Formulas with a Grid ..297
Linking a Grid to Recordset Columns...298

Image Control ...299
Image Control Properties ...299
Using an Image in a form ...299

List Box Control ...300
List Box Control Properties...300

Push Button Control ..301
Push Button Control Properties..301

Radio Button Control ...302
Radio Button Control Properties...302

Signature Control...304

Signature Control Properties ..304
Using Signature Controls ...304
Custom Signature Images..305

Testing Your Form Design ..306

Text Control ..307
Text Control Properties ..307
Text Control Link Properties...307

Using Databases with Forms ..309

How Databases Are Used..310

Creating Database Connections ...312

Working with Recordset Pane...314

Creating Recordsets ..316

Creating Custom Recordsets..319

Modifying Recordset Properties ...323

Defining Recordset Event Actions ...324

Defining Recordset Filters...326
Defining Custom Filter Expressions ...327

Linking Form Controls to Database Tables329
Linking a Grid Control to a Recordset ..329

Creating Database Actions..332

Modifying Actions Properties ...339

Examples of Using Recordsets in Forms...342
Using a Recordset Filter...342
Using Buttons for Database Actions...345
Using Buttons and a Grid Control...347
Working with Query Based Recordsets..350

Working with Thin Forms ..356

The Thin Form Designer ..357

The Thin Form View ...358
To Invoke the Thin Form View: ..358
Thin Form View Toolbar ...359

The Formatting Toolbar..360

Rules and Guidelines...361

Creating Thin Forms ..363
Modifying Text and Form Colors ..363
Working with Multiple Pages in a Thin Form ...363

Working with Controls ...365
The Thin Forms Controls Palette ...365

Linking Thin Form Controls with Spreadsheet Cells367
Link Types: Data Flow..367
Linking Controls to Separate Source Cells and Destination Cells368

Linking Thin Form Controls to Recordsets370

Description of Thin Form Controls...371
Button Control ..371
Check Boxes ..372
Combo Boxes...373
Edit Fields ..374
Image Control...375
List Boxes...376
Multi-line Edit Fields ...377
Radio Buttons...378

Attachment Control..382

Viewing Thin Form's HTML Code ...384

Including ASP Pages in Thin Forms...386

Working with Frame Pages ...387

Testing Your Form Design ..393

Using with PDF Forms...394

Working with PDF Forms...395

Working with InfoPath Forms ...397

Working With Flobots ..399

How Flobots Are Used...400
Ultimus FloStation ..401
Rules and Guidelines for Using Flobots ...401

Defining Flobot Steps ..405
Inserting Flobot Steps in a Workflow Map..405
Defining Flobot Step Properties ...405
Creating a Spreadsheet for a Flobot Step..407
Creating a Flobot Variable List for the Flobot Step.................................407
Training the Flobots ...408
Invoking a Flobot in Simulation ..409

Word Flobot ..412
How the Word Flobot is Used...412
Training the Word Flobot..412
Error Status Codes Returned by the Word Flobot..................................415
Word Flobot in Operation ...415

Web Service Flobot..417
Training the Web Services Flobot ..417
Working with Web Services Flobot Actions ..421

.NET Code Flobot ...423

Excel Flobot..428
How the Excel Flobot is Used ..428
Train The Excel Flobot ...428
Excel Flobot in Operation...431

ASCII Flobot..432
How the ASCII Flobot is Used..432
Training the ASCII Flobot ...432
ASCII Flobot in Operation ..434

Database Flobot ...436
Database Flobot Vs ODBC Flobot ...436

Rules about Database Flobot..437

Database Flobot Actions ...439

Training the Database Flobot..440
Read: ...444
Add...446

Using Workflow Variables with Database Flobot453

Working with Filters...456

Working with Database Flobot Actions..458

Database Flobot Examples..459

Read Operation..459
Add Operation ..462
Delete Operation ..464
Update Operation...466
Custom Query Operation ...468

File Flobot ...474
How the File Flobot is Used ...474
Training The File Flobot ...474
Use of Arguments ..475
File Flobot in Operation..475

E-Mail Flobot...476
How the E-Mail Flobot is Used ...476
Training the E-Mail Flobot ..476
E-Mail Flobot in Operation..479

Exchange Flobot ..480
Linking Fields to Variables ...487

Script Flobot (Read-Only)..489

XML Flobot..493
Training the XML Flobot ...493
Working with XML Flobot Actions...498

Completing a Workflow Step Using XML Flobot506

Acrobat Flobot..510
How Acrobat Flobot is Used...510
Training the Flobot ...510
Acrobat Flobot in Operation ...512
Error Codes returned by Acrobat Flobot ..513

Reusing Process Objects ..514

Reusing Steps ..515

Reusing Entire Processes...516

Defining Inlets (Segmenting Processes)..517

Simulation...519

Using Simulation..520
Rules and Guidelines About Simulation ...520

Simulating a Workflow Process..522

1. Starting Simulation ...522
2. Invoking a Workflow Step...523
3. Completing a Form...524
4. Returning Steps During Simulation ..525
5. Resubmitting Steps During Simulation...525
6. Working with Memos During Simulation...526
7. Checking the Contents of the Spreadsheets527
8. Working With Flobot Steps...527
9. Using the Watch Window ...527
10. Ending and Restarting Simulations ..528

Creating Technical Documentation ..529

Documentation Variables ..530
Process-Related Variables...530
Step-Related Variables ..530
Loop Variables ...531

Creating a Documentation Template..532

Working With Form Object Library Editor..534

Creating Form Object Libraries ..534
Using controls from existing forms: ..537
Using Recordsets with Form Objects ...537

ADVANCED DESIGN FEATURES.. 538

Dynamic Groups ..539
Define a Dynamic Group for a Step ...539
A Simple Example of Using Dynamic Groups ..540

Dynamic Routing Based On Cell Contents ..543
Examples of Using Dynamic Routing Based on Cell Contents...............543

Indexed Links ...547
Defining Indexed Links...547
An Example of Using Indexed Links...547

Periodic Launches ...551
Defining Periodic Launch Steps ...551

Initiating Processes via Web Links ..553

Maplet Steps ...555
Defining a Maplet Step...555
Viewing Maplets ...556

Defining a Process as Maplet Only ..557

Repeating Maplet Steps...558
Defining Repeating Maplet Steps...558

An Example of Using Periodic Launches and Repeating Maplet Steps
...560

Working with Databound Variables ..565

Using Scripts ..575

Referencing External .NET Assemblies When Calling .NET Code...576

System Variables ...577
Linking System Variables to Form Controls ...578

Introduction to Ultimus BPM
Studio
BPM Studio Overview

Ultimus BPM Studio is a next-generation BPM IDE (Integrated Design
Environment). It includes all of the capabilities currently found in both Ultimus
Builder and Ultimus Process Designer. By combining the capabilities of these
products, process design participants now have one place to go to design,
model, develop, simulate, and test every business process.

Note: For users that simply wish to model processes in a standalone
fashion, and do not require the more powerful BPM Studio module,
Process Designer will continue to be made available as a standalone
module.

Beyond this, Ultimus BPM Studio also changes the way teams work on business
processes. In the past, the parties involved in BPM development (process
analysts, owners, designers, and developers) all worked independently using
their own tools. Collaboration occurred off-line in conference rooms and e-mail.
With Ultimus BPM Studio, these parties now have a unified environment that
supports multiple editing tools (e.g. Ultimus Form Designer, Visual Studio.NET)
appropriate to the user role, provides a shared repository that improves process
integrity, and enables on-line collaboration (e.g. multiple users working on
different parts of the same process through the new Ultimus Inlets capability).
The expected result of this new environment is more efficient and effective
process teams and reduced total cost of ownership for the entire Ultimus BPM
Studio.

BPM Studio New Features
The sections in this chapter provide a high-level overview of the key new features
of the Ultimus BPM Studio. Some of these features include:

• Support for collaborative design of business processes across the Internet
or intranets.

• The ability to check-in and check-out processes and objects with full
support for versioning.

• Powerful capabilities for leveraging Web Services and .Net Code (C#,
VB.NET, ASP.NET) in Ultimus business processes.

• Support for new Microsoft technologies such as Microsoft Office 2003,
including support for InfoPath Forms.

• Easy One-Click Publishing of business processes to servers, and support
for on-the-fly updates of live business processes.

Collaborative Process Design

Through BPM Studio, employees at organizations involved in process
automation initiatives now have an easy way to centrally store and manage
business processes in a shared repository environment. Processes can easily be
checked-in and checked-out from the repository as required, and multiple users
can work on different portions of processes in a collaborative fashion, all at the
same time. When a process or object (Step, Form etc) is checked-out to a
specific user, no one else will be allowed to make changes to that process or
object, ensuring that work is not overwritten or duplicated. Full object versioning
is supported, along with the ability to get previous object versions.

Amongst other features, BPM Studio users are also able to add comments at
check-in time. These comments are version specific and can be viewed by other
users for reference purposes.

Benefit:

Enhanced productivity in that BPM Studio users can collaboratively design,
model and automate processes in team fashion, and tight object security ensures
users do not overwrite each other’s work.

Also, centralizing processes into one location also allows for easier management
of those processes and ensures that users are working on the most up-to-date
versions of processes and objects at all times.

Enhanced User Interface

The Ultimus BPM Studio now includes an enhanced interface that further
simplifies the task of designing, modeling, automating, and deploying business
processes from a single integrated environment. This interface includes:

• An explorer-like dockable Repository Window for browsing and
manipulating processes, process objects and external process objects.
Context-sensitive menus associated with tree nodes enable the designer
to perform a variety of functions through simple right-clicks of the mouse.

• An Editor Window that supports a multitude of context sensitive editors for:

• Previewing processes
• Modeling processes
• Automating processes
• Managing process documentation
• Managing reusable Form objects
• Managing external content. This is installed from the

Tools menu bar menu by selecting add Custom Editor
option.

• A Status Window for viewing the status of objects in the repository. This
status contains information about who has checked-out the object, last
change date, comments, and so forth.

Benefit:

Enhanced, more productive user experience due to a more intuitive design
interface.

Object Security

Process administrators can easily define object security privileges at the process
and object level for editing, deleting and publishing processes, individual objects,
or groups of objects.

Benefit:

Granular access control and security privileges give process administrators tight
control over who can make certain changes to processes and who cannot.

Archiving and Versioning

This powerful feature automatically creates a new version of an object when it is
changed in BPM Studio. Users can then easily view version history or get
previous versions of that object.

Benefit:

As an example, if a BPM Studio user makes an erroneous change to a particular
object, they can easily roll back to a previous version of that object. This
capability can also be used for informal auditing of changes made to processes
and objects.

Reusing Process Objects

BPM Studio users have the ability to easily leverage existing development efforts
by dragging and dropping steps from one process into another.

Benefit:

Reduced design effort through leveraging existing design elements of other
processes.

Reusing Entire Processes

Users have the ability to drag a process into another process. This automatically
creates a sub process in the target process, and also creates a reference to the
original process. Cross dependencies are automatically managed, and any
change to the original process is automatically reflected in processes where it is
referenced.

Benefit:

Reduced design-time through point-and-click process reuse functionality and
automatic cross-reference dependency management

Segmenting Processes for Modular Design

Users have the ability to define continuous sections of a process as an Inlet. Inlets
allow process owners to segment processes into exclusive, independent
sections, and users can then work individually on different sections of the
process.

Benefit:

Users can modify individual sections of a process without interfering with each
other’s work.

Web Services Integration

Ultimus now supports the consuming of external web services through the
following capabilities:

Step Events Web Services: Web services in other applications can now be
called in real-time through intuitive point-and-click mechanisms from Ultimus
Step Event Conditions.

Form Events Web Services: Web services can also be called from Controls in
Ultimus Forms, for real-time interaction with other web services-compliant
applications.

Web Services Flobot: Web services compliant external applications can also be
invoked in an automated or asynchronous manner using the Web Services
Flobot. BPM Studio users can easily invoke capabilities in other applications over
the Internet; independent of the platform that those applications run on, or the
language they were written in.

Benefit:

BPM Studio users can easily invoke capabilities in other applications over the
Internet.

Note: The Web Services Flobot was previously made available as a
separate download for Ultimus v5.0d

.NET Code Integration

BPM Studio now allows designers to easily call .NET Code (C#,VB.NET) through
the following capabilities:

Step Events .NET Code: .NET Code can be called from Ultimus Step Events,
such as Activate/Complete, through simple point-and-click interfaces.

Form Events .NET Code: .NET Code can also be called from Controls in
Ultimus Forms.

.NET Code Flobot: .NET Code can also be invoked in an automated manner
using the new .NET Code Flobot

Benefit:

This functionality allows the developer to easily leverage the enhanced power
and flexibility of powerful development tools, such as Visual Studio.NET, and
.NET Code directly from Ultimus processes through intuitive point-and-click
interfaces

Custom Editor Plug-Ins

BPM Studio users have the ability to easily plug-in external editing tools for in-
context creation and manipulation of any type of external content from within the
BPM Studio environment. Examples of some editors that can be leveraged
include:

• Powerful Forms design tools such as Adobe Acrobat and Microsoft Office
InfoPath 2003 – for managing external Forms

• Powerful development tools such as Visual Studio.NET – for managing
ASP.NET, VB.NET or C# code

Benefit:

Designers have one central place to manage and reference all process-related
objects from within Ultimus BPM Studio.

Microsoft Office InfoPath 2003 Forms Support

Users are able to leverage InfoPath 2003 Forms in their processes by linking
process variables to/from InfoPath fields through an intuitive point-and-click
trainer interface.

Benefit:

The combination of InfoPath 2003 and Ultimus BPM Suite allows customers to
create powerful data-driven business processes that natively leverage the power
and ease-of-use of InfoPath 2003 Forms.

Microsoft Office 2003 Support

Information from business processes can easily be sent to Word 2003 and Excel
2003 through leveraging updated Word Flobot and Excel Flobot, and Process
Documentation features in Ultimus.

Benefit:

Customers can easily exchange process-driven information with the new
Microsoft Office 2003 productivity tools in the business workplace.

Microsoft Exchange Server 2003 Support

The Ultimus E-mail Flobot and Exchange Flobot now support integration with
Exchange Server 2003.

Benefit:

Customers can easily use Exchange Server 2003 for sending e-mails, tasks and
calendar items to process participants.

Offline Process Design

BPM Studio users have the ability to check processes out, save them offline, and
then work with those processes in an offline/disconnected mode. Once the user
has finished working with the offline processes/objects, they can be easily be
imported using the BPM Studio and checked in.

Benefit:

This feature provides great benefit for portable users as an example, who may
want to work on a process at home one evening without being connected to the
server (but whilst still benefiting from the check-in/check-out capabilities that
BPM Studio provides), and then import the process back in to the repository the
next morning.

Importing and Exporting Processes

Through a single click, BPM Studio users have the ability to import processes
into repositories, and export entire processes from BPM Studio as a standalone
process map (.WFL) file.

Benefit:

BPM Studio users can easily package processes into a single file, and share
those processes with people outside their organization by attaching processes to
e-mails as an example.

Process Level Resource Management

When modeling business processes, BPM Studio and Process Designer now
support process-level Resource Management. This means the resources
definitions can be defined at the process level and can then be reused at multiple
Steps in a process. An example of a Resource is a group of engineers who are
responsible for executing multiple Steps in a process, and must all have the
same associated cost rate structure across all the Steps. One can now define
one resource “Engineers”, and use key information about that resource group
(such as Task Rate), across multiple Steps.

Prior to this capability, resources had to be defined at individual Steps in a
process and could not be reused across steps.

Benefit:

Enhanced productivity and ease of use since designers don’t have to delve down
to the individual Step level to manage resources, and can perform this task at
one central place when modeling processes.

General Modeling Enhancements

When modeling processes, users can now benefit from a variety of
enhancements in BPM Studio and Process Designer:

• Right-click on Steps to view Reports when a modeling run is complete.
• A new Word-like editor for manipulating all process-related documentation

(In Map Properties, Step Inputs/Outputs/Actions-related documentation
and so forth).

• In entering Input/Outputs/Actions documentation for a process, designers
now can easily switch between Steps using a drop-down list box for
selecting Steps.

Benefit:

Improved designer productivity through enhanced ease-of-use.

One-Click Process Publishing

BPM Studio users now have the ability to easily publish processes to one or
more run-time servers through One-Click Publishing from within BPM Studio.

Benefit:

This feature empowers designers and owners to publish processes on their own,
without involving administrators.

One-Click Object Publishing

BPM Studio users now also have the ability to easily publish individual process
objects and process-related objects (such as .NET Code and images) to one or
more run-time servers.

Benefit:

The ability to only publish individual process objects allows process publishers to
make targeted updates to business processes, and is also optimal from a
network performance perspective in that only the object that needs to change is
being transmitted across the network.

On-the-Fly Process Updates

When publishing a process, in addition to having the capability to create a new
version of the published process at the server, designers can now also update an
existing process version on-the-fly at the server.

Benefit:

Updating a process on-the-fly allows process owners to rapidly institute changes
to any existing live processes (without creating a new version), and all process
participants will be able to immediately benefit from that change.

Architectural Overview

BPM Studio is designed on a 3-tier architecture, which consists of the following
objects:

• The BPM Studio client resides on every designer’s PC. This module
serves as the primary interface that developers will use for designing,
modeling, and automating processes.

• The BPM Studio server is a server module that controls access to process
repositories. Designers who are working collaboratively on process maps
in the BPM Studio client will each have a connection to the particular BPM
Studio server that manages access for those repositories.

• The process repository tier - all processes managed by BPM Studio
servers are kept in a SQL Server or Oracle database.

• Communication from the BPM Studio client to the BPM Studio server is
provided through HTTP, HTTPS and DCOM in order to ensure maximum
deployment flexibility, and to make it easy for remote users to participate
in the development process.

Provided below is a high-level BPM Studio architecture diagram:

BPM Studio User Interface
The new BPM Studio User Interface is much more flexible, intuitive and user-
friendly than ever before. The user interface has been split up into 3 intuitive
views:

• A Repository View Window for easily browsing process and objects,
actions can be performed against objects through simple right-click
context-sensitive menus

• An Editor Window for previewing and editing process maps , individual
process objects, and external objects via the Editor Plug-in capability

• A Status Window for viewing the status of objects in the process
repository.

Starting Ultimus BPM Studio

Ultimus BPM Studio supports collaborative design and deployment, whereby
multiple users are able to work on processes at the same time by connecting to a
central process repository. In connecting to the repository for the first time, you
may require some assistance from your Ultimus administrator for defining the
settings below.

Starting Ultimus BPM Studio:

• Click the Start button on the Windows Taskbar.
• Select Programs. Select Ultimus BPM Suite 6.0. Select Ultimus BPM

Studio.
• Enter User Name and Password

• Select the connection to the BPM Studio server i.e. Local (uses COM),
Remote (DCOM, HTTP, HTTPS) or Work Offline.

o Choose Local if the BPM Studio server (and process repository) is
located on the same machine that you are currently working on.
The majority of the time though, the BPM Studio server will be on a
different machine, and the Remote option will need to be used.

o In case of Remote connection to a BPM Studio server located on a
different machine, when using DCOM, enter the name of the
machine containing the BPM Studio server that you wish to connect
to. When using HTTP or HTTPS either enter the fully qualified
domain name of the machine you wish to connect to (i.e.
servermachine.mycompany.com), or the IP address of the machine
(i.e. 192.168.1.100).

o The Port option is used when Remote and HTTP/HTTPS is
selected, and the BPM Studio server is installed on a web server.
The default port for HTTP is 80 and for HTTPS is 443.

o Work Offline allows a user to work in a disconnected fashion on the
local machine without being connected to a repository on a BPM
Studio server. If the Work Offline option is selected only the
username option is active and the rest of the controls will be grayed
out.

• Once you have selected a connection type, select the Repository that you
wish to work with. In order to refresh the list of repositories available on
the BPM Studio server, click Refresh. This will provide the list of
repositories that you have been granted access to.

• Click OK when done
• The next time you log onto BPM Studio, you will only need to enter your

user/password information. The rest of the login information will be
retained from your first login and only needs to be verified. Detailed login
information can be viewed by simply clicking the Details button in the
dialog below:

Selecting a Default BPM Server

If you are logging onto BPM Studio for the first time, you will be required to enter
a Default BPM Server. This BPM Server information will be used for purposes of
providing Org Chart and FloStation data when building processes in BPM Studio.
Once you have entered this information during login, you will not be asked for
this information again. The Default BPM Server setting can be modified in BPM
Studio from the Tools, Default BPM Server menu option.

Provided below is the Default BPM Server dialog:

1. Choose to connect to a local BPM Server (on your machine) or to a
remote BPM Server via DCOM or HTTP/HTTPS

2. For DCOM connections, enter the server name in the BPM Server field.
3. For remote connections, enter Port number, select HTTP or HTTPS

connection and enter the IP address or fully qualified domain name of the
BPM Server

4. Click OK when done

Note: A user cannot log on using the same credentials on another machine.
To do so the previous session must be terminated from BPM Studio
Activity in BPM Studio Configuration.

The Main View

Once you have successfully logged on, the Main View of BPM Studio has the
following appearance:

The user interface is split into 3 main windows:

• An explorer-like dockable Repository View Window for browsing and
manipulating processes, process objects and external process objects.
Context-sensitive menus associated with tree nodes enable the designer
to perform a variety of functions through simple right-clicks of the mouse.

• An Editor Window that supports a multitude of context sensitive editors for:

• Previewing processes
• Modeling processes
• Building/Automating Processes
• Managing process documentation
• Managing reusable Form objects
• Managing external content and code (discussed later)

Note: When you are building/automating processes, there are also a variety
of object editors available for editing Steps, Forms, and Workflow Variables
and the like. These object editors will be described in more detail in a later
chapter.

• A Status View for viewing the status of objects in the repository. Examples
of status information include information around who has the object
checked out, last change date, object documentation and so forth.

Each of the areas referenced in the diagram above will be covered in more detail
in the following sections.

Repository View Window

Repository View Window of the BPM Studio has the following appearance:

The Repository View Window consists of the following default nodes:

1. Processes: The Processes folder is the location where all business
processes will be stored. Each Process contains three sub nodes - namely
Map Properties, Workflow Variables, and Steps. Steps will have additional
sub-nodes for managing business rules, properties for the step, and other
step-related settings that are dependant on the step type

2. Documentation Templates: This folder stores document templates that
are used as a foundation for generating technical documentation for
processes. Ultimus BPM Studio has the ability to produce detailed
documentation and design instructions about workflow requirements. This
documentation is produced using Microsoft Word templates that can be in
any customer-defined format. These include ISO 9000 document formats
and the format recommended by the Ultimus Workflow Development
Methodology.

3. Form Object Library: The Ultimus BPM Studio allows you to create and
save reusable "form objects" in a library. A standard set of form controls
can be grouped and saved in the Form Object Library for insertion in any
Form in Ultimus processes. Objects in the Form Object Library retain their
positioning, spreadsheet and recordset links, and formatting properties
when inserted into Forms.

The context-sensitive Object menu-bar can be accessed from any object in the
Repository View Window by right clicking on the particular object.

The Editor Window

The Editor Window functions are “context sensitive” to the object being edited.
The Editor Window functions in 3 key modes:

• A Generic Preview Mode: This mode is active when an object is
checked-in or checked-out, but not actively being edited. In this mode a
“preview” snapshot of the object will be provided in the Editor Window.
Different objects will have different display modes. For example, when
previewing a process, the process map preview will appear in the Editor
Window. When previewing a Step's Properties, the Step Properties
preview will appear in the Editor Window.

• A Build Mode: This mode is active when any object is checked-out and
being actively edited. As an example, if one drags a process across to the
Editor Window, it will automatically check-out the process, and open it in
Edit mode in the Build Editor. A checked-out process can also be opened
for editing in the Build Editor by right clicking on the process, and selecting
Edit from the pop-up menu. For more information on working with
processes in the Build Editor see the chapter titled Working with the Build
Editor.

• Individual process objects and external objects can also be edited in Build
mode, through the same actions mentioned above. When individual
objects are edited in Build mode, they will be rendered in their Object
Editors. There are different Object Editors for each of the following
objects:

• Process - Map Properties
• Process - Steps (Properties,

Event Conditions, Trainer
Dialogs, and Forms)

• Process - Spreadsheets
• FOL Objects
• Documentation Templates
• External Content and Code (that

are being manipulated through
Custom Editor Plug-ins)

• A Model Mode: In order to Model a checked-out process, simply check it
out, right click on the process, and choose the Edit (Model) option from the
pop-up menu, it will open in the Modeling Editor. The Edit (Model) function
is supported only at the process level. For more information on modeling
processes, see the chapter titled “Working with the Modeling Editor”.

 The Process Preview Mode

Process in the Build Editor Mode

Step Properties (Preview Mode)

Step Properties (Object Editor)

Status Window

The Status Window at the top right of the screen provides the status of the
currently highlighted process or object in the Repository View Window. The
Status Window displays the following data:

• Name: The name of the currently highlighted process or object in the
Repository View Window

• Owner: The name of process/object owner, that is, the person who
created the object, or who has it checked-out/locked at that time

• Created: This specifies the date and time at which the process or object
was created.

• Modified: This specifies the date and time at which the process or object
was last modified.

• Status: Indicates whether the process or object is checked in, checked
out, or locked by another user.

• Version: Describes the number of times the process or object has been
changed and saved.>

• Comments: Free format descriptive text that last user entered when they
made changes to the process or object

The Notes Icon in the Status Window indicates whether the process or object
has documentation associated with it. For more information on adding object-
level Notes, please see information on the Edit Notes function in the Working
with Object Notes

The BPM Studio Menu Bar

The BPM Studio menu bar is context sensitive menu bar that contains different
menu options dependant on whether users are previewing objects, working in the
Build Editor, Modeling Editor, or working with the individual Object Editors. When
you start BPM Studio, you will always be working in Preview Mode as a default,
and the menu options in the BPM Studio Menu Bar will be as follows:

• File
• Object
• View
• Tools
• Help

File

• Exit: This option closes the Ultimus BPM Studio, and will terminate your
connection to the BPM Studio server (process repository) to which you are
connected

Object

The Object Menu is the main menu from which the majority of the collaborative
design features in BPM Studio can be performed. The functions on this menu are
described in each of the sub-sections below this chapter.

Each option in the object menu is context sensitive depending on the object type
in the Repository View Window that is currently highlighted. The different Object
types supported in BPM Studio are:

• Processes
• Process Objects (Map Properties, Workflow Variables Step Properties,

Step Forms, Step Event Conditions etc)
• Form Object Library (FOL) Objects
• Documentation Templates
• External Objects manipulated in BPM Studio through the Custom Editor

plug-in capability

View

• Toolbar: For toggling the BPM Studio Toolbar on and off
• Status Bar: For toggling the Status Bar (at bottom of screen) on and off
• Repository Window: For displaying/hiding the Repository View Window

Tools

Change Repository

This option allows users to switch to a different
repository on the BPM Studio server

• Default BPM Server: The default BPM Server
provides the User and FloStation definitions that are
used when browsing for Users in Step Properties for
User Steps in Build Editor, and for browsing
FloStation definitions for Flobot Steps in Build Editor.

• Add Custom Editor: This menu option allows the
user to specify a Custom Editor plug-in for the
repository currently open in BPM Studio. Through
Custom Editors, users can then edit external content
and code through BPM Studio. For details on editing
external objects view the to Editing Objects section.

Note: By default the "Use Default Registered
Executable” is checked. When this option is
checked, BPM Studio will use the default
Windows application associated with the
particular external file type when you choose to
edit the file.

 Setting up a Custom Editor:

• Name: Specify a name for the Custom Editor. This
will become the name of the Custom Editor folder in
the Repository View Window.

• Extension: Give the extension of the file type you
wish to edit through the Custom Editor (e.g. DOC,
PDF etc)

• Host Application: This is inactive by default.
However this can be activated by un-checking the
"Use Default Registered Executable" check box. Then
by clicking the browse button, select the Custom
Editor executable to be used for editing the external
objects from the directory.

Import Offline Object:

Allows users to import an offline Process from the
offline process repository on the local client machine.

More information regarding the Import of Offline
Object can be found in the Working With Processes
Offline.

Help

This has two options;

Contents: Provides Help about the Ultimus BPM
Studio.
About Ultimus BPM Studio: This option provides
licensing and version information for Ultimus BPM
Studio.

Creating and Adding Objects

Through the New and Add options of the Object menu, new objects can be easily
created, and existing objects can be imported into BPM Studio process
repositories

• New: This option creates a new object under the currently highlighted
folder in the Repository View Window. Note that this menu option is
context sensitive depending on the folder currently selected. For example,
if the Processes folder is highlighted, and the user selects New from the
menu, a new process will be created under that folder. If the Form Object
Library (FOL) folder is highlighted, New will create a new FOL Object
under the FOL tree. The New option is not available for External Objects
accessed through the Custom Editor capability. These objects must be
created outside of BPM Studio, and then can be Added to the BPM Studio
through the Add function (described below).

• Add:This context-sensitive menu option allows you to add pre-defined
objects to your Ultimus BPM Studio repository. To Add the object, select
the object and then click Open. If working offline, the Add option will add
the object to an offline process repository on the local client machine. The
Add function is supported for all object types in BPM Studio.

• Create Folder: Folders provide a convenient way to organize objects in
the Repository View Window. This option allows users to add new folders
under the currently selected folder in the Repository View Window.
Objects can then easily be moved to that folder by dragging and dropping
them into this folder. By holding down the control key and selecting an
object, a copy of that object will be made when it is dragged and dropped
into the folder.

Defining Object Security

Object security allows BPM Studio administrators to control who is able to
modify, delete and publish objects. BPM Studio administrators are the only users
allowed to define object security. A person is given administrative rights by
assigning the "Administrative Rights" privilege to the user in the BPM Studio
Configuration application. For more information on this privilege, please view the
"Configuring Access Rights" section of the BPM Studio Configuration help.

The administrator can define object security on all object types in BPM Studio.
Object Security can be set from the Object menu by selecting the Security option.
This will display the window provided below.

“Object Rights” are those rights that can be explicitly defined for a specific object.
Whenever security is defined for a parent object, all children below that parent
object will automatically have the “Rights inherited from Parent” activated,
meaning they will inherit all the parent object’s security settings. Individual
security rights for child objects can then be overridden by selecting the object in
the Repository View Window, selecting Security, selecting “Object Rights” and
explicitly defining security for the relevant child object.

To assign Object Rights:

1. Select Object Rights radio button

2. Click the browse button to select a user (this list of users only includes
those users who are allowed access to the process repository currently
being worked on in BPM Studio. User Access Rights for process
repositories is controlled through the BPM Studio Configuration application)

3. Click the Add User button to add a user. The following rights Object
Security Rights then become active and can be selected:

• Edit: Allows users to check-out and edit processes and objects. For more
information on Checking Out Objects, please view the Checking Out,
Checking In, and Locking Objects section

• Delete: Allows users to delete processes and objects.

• Lock: Allows users to lock processes and objects without checking them
out. For more information on Locking Objects, please view the Checking
Out, Checking In, and Locking Objects section

• Publish: Allows users to publish processes and objects. For more
information on Publishing Objects, please view the Publishing Processes
section.

Important Rules for Defining Object Security

• By default no Object Security is active for new objects that are created in,
or added to BPM Studio. This logic applies to all object types. Thus, any
user can perform any action on these objects (Edit, Delete, Publish, Lock)
initially as a default.
Security for these objects can be "activated" by explicitly setting security for
that object through the Security dialog.

• When Object Security is set on a parent object, the security rights are
automatically cascaded down to all child objects. Thus, if a Publish privilege
is set for a Process, all children of that Process (Map Properties, Steps etc)
will implicitly inherit the Publish privilege.

• As a rule for Processes, a child object can only be explicitly assigned
security once security has been explicitly set for the Process itself. As an
example, to assign security explicitly for a Step, you would need to activate
security for the Process first by assigning some level of security rights to
that Process.

• When object security is explicitly set on child objects, the security rights set
for the child are additive to security rights set for all parents above it. As an
example, if a Process has the Publish Privilege, the Steps node below it
has the Lock privilege explicitly defined for it, and a Form for a particular

Step explicitly has the Delete privilege set for it, then the Form will inherit
have all 3 Security Rights assigned to it - Publish, Lock (through
inheritance) and Delete.

Checking Out, Checking in and Locking Objects

Once the appropriate Object Security Rights have been defined for objects, they
can then be checked-out of the repository.

• Check Out: Check Out allows the object to be checked out for editing. If a
user has an object checked out, no one else will be able to work with that
object. In the Repository View Window, objects with red checkmarks
shows that you have checked-out an object, whereas blue checkmarks
shows that another user has checked the object out. All child objects of
the checked out node are automatically checked out when the parent is
checked out.

• Check In: Once changes are made to an object, this option allows the
user to check the object back into the process repository. When this
happens, the version number of the object is automatically incremented in
the process repository.

• Undo Check Out: Allows the user to reverse the check-out process
without creating a new version of the object.

• Lock: This menu option allows the user to Lock an object without
checking the object out. This functionality is useful if the user wants to
prevent other users from changing an object without having to check that
object out though, and in so doing, create a new version of that object.

Note: In order to Check Out objects, the user must have the "Edit" Object
Security privilege defined for that object. In order to Lock objects, the user
must have the "Lock" Object Security privilege defined for that object. For
more information on Object Security, see the section titled "Defining Object
Security"

Editing Objects

Ultimus BPM Studio supports 4 main editor types for manipulating objects.

1. Modeling Editor: For designing and modeling processes
2. Build Editor: For designing and automating processes
3. Object Editors: For editing individual process objects such as Map

Properties, Steps and Workflow Variables
4. Custom Editors: For editing external objects in BPM Studio (PDF, C#,

VB.NET files)

These editors can be accessed from the Object Menu from the following menu
options:

• Edit/Edit (Build) : This menu option allows for processes and objects to
be edited. If Edit is selected for a process, it will open the Build Editor,
where entire processes can be automated. If this option is selected for an
individual process object (Map Properties, Workflow Variables, Step
Properties, Step Event Conditions and so forth), the object can then be
edited in it's individual Object Editor. If this menu option is selected for an
external object, the Custom Editor associated with that object will be
opened (for more information on setting up a Custom Editor, see the The
BPM Studio Menu Bar section). For additional information on working in
this editor mode, see the Editor Window section in this chapter, and the
Working with the Build Editor chapter.

• Edit (Model): This opens the Modeling Editor and allows the process to
be modeled. The Edit (Model) function is only available at the process
level, it is not accessible for individual process objects. For more
information on working in this editor mode, see the Editor Window section
in this chapter, and the Working with the Modeling Editor chapter.

In order to Edit an object, two conditions must be met:

• The object must be checked out
• The user must have the "Edit" Object Security Privilege enabled for that

object

Note: When in editing an object in BPM Studio it is not possible to perform
other tasks, unless the object being edited is closed and the Editor Window
switches back to Preview Mode.

In order to save and close an object being edited, select the "Close Editor" button
from the BPM Studio toolbar; or File/Close from the BPM Studio Menu Bar.

Copying, Renaming and Deleting Objects

The Create Copy and Rename Object Menu functions are supported for all object
types in BPM Studio, with the exception of process objects (Map Properties,
Workflow Variables, and Steps).

These functions can be accessed from the following options in the Object Menu:

1. Create Copy: This option allows users to create a copy of the currently
selected object. When a copy is created, it will be called
Copy_Of_(objectname). In order to make a copy of an object, two
conditions must be met:

o The object must be checked in
o The user must have the "Edit" Object Security

Privilege enabled for that object

2. Rename: This option allows users to rename objects in BPM Studio. It is
also possible to rename an object by clicking once object in the Repository
View Window. In order to rename an object, two conditions must be met:

o The object must be checked out
o The user must have the "Edit" Object Security

Privilege enabled for that object

.

• Delete: This option allows users to delete objects. In order to delete an
object, two conditions must be met:

o The object must be checked out
o Object Security Privilege enabled for that object

Object History and Rollback

BPM Studio supports full object versioning and rollback capabilities. When an
object is checked-out in BPM Studio, edited, and checked back in, the version
number for that object will be automatically incremented.

The history of changes to any object can be viewed by selecting the History
menu option from the Object menu. This will display the following dialog:

• Version: Specifies the version number of the process or object, the latest
version number being the most current.

• User: Provides the name of the user who made the change to that
particular version.

• Date: Specifies the date on which the change was made.
• Comments: Provides any comments the user may have added to the

process or object when making the change

If an object is checked out to the current user, and the user selects History from
the Object Menu, the following options will also be available in the History
window:

• Get: Gets the selected version of the object and overwrites the checked
out (latest) version of the object.

• Create Copy: This creates a copy of the selected version as a new object
named HistoryCopy_Of_<objectname>. This option is not available for
process objects (such as Map Properties, Workflow Variables and Steps)

• Delete: This option allows the user to delete the selected version of the
object. It is not possible to delete the last version of an object from this
window. This action must be performed from the Process View Window
using the Delete functionality

Working With Objects Offline

Users can save Processes, FOL Objects, Documentation Templates and
external objects offline on their local machine by selecting Save Offline option
from the Object Menu.

When working offline, a user can work with objects on their local machine,
without having to be connected to a process repository. In order to save an
object offline, the object must be checked out of the repository first. This ensures
that no other user can make changes while the object is offline.

Once the object has been saved offline, you will be notified through the dialog
below

Once an object is saved offline, you can switch to offline mode, by exiting BPM
Studio, logging on again, and selecting the Work Offline option when logging on

Working with objects offline is almost identical to working with processes from a
central repository, the only difference being that you are working with the objects
against a “local/offline” process repository on your client machine. Thus, when
working offline, you will still need to perform tasks like checking an object out
from the offline process repository before editing the object. Once you have
made the necessary changes to the objects, be sure to check these objects in
before proceeding to the next step of importing the offline objects.

Importing Offline Objects

Once you have finished working with objects offline and are connected to a
repository again, objects can be imported into the repository as follows. Select
Import Offline Objects menu option from Tools on the BPM Studio Menu bar.

Expand the Repository Window View and select the object(s) to import by
clicking the check boxes or select the main Offline Node check box, which will
select all the objects.

When this action is selected, the Offline Object will replace the
corresponding object in the repository and the version will automatically be
updated for that object.

Note: Processes and objects created offline will not replace online
processes having the same name, but BPM Studio rather creates a
separate identifier in the repository for those objects.

Outputting Technical Documentation

Ultimus BPM Studio provides the extremely powerful capability to take the
process design and produce an electronic document (in Microsoft Word) format
that describes the technical aspects of the process, its objects and requirements.

In order to create this technical documentation, a Document Template needs to
be created first. For more information on creating documentation templates,
please review the Creating Technical Documentation section.

Once a documentation template is created, it can be applied to any process
within the process repository, and technical documentation can be outputted for
that process. In order to output technical documentation for a process, select a
documentation template in the Documentation Templates folder, and from the
Object menu, select Run Report.

Once this option has been selected, a dialog will be provided where the user can
select the process for which they would like to output technical documentation.

Select a process and hit OK. BPM Studio will then produce the technical
documentation for that process, and prompt you for a location where you can
save the documentation.

Working with Object Notes

BPM Studio allows users to add descriptive notes to all object types for reference
purposes. These notes can then be viewed by other developers to assist them in
design of the process.

In order to add notes to an object, the object must first be checked out. Then,
select the Notes option from the Object menu.

This will open a comprehensive text editor, where the user can enter detailed
notes for a process or object.

Once the user has finished entering notes, the Notes Editor can be closed by
selecting the Close Editor button on the BPM Studio tool bar.

The object can then be checked in, and other users will be able to view notes on
the object by clicking on the Notes icon in the Status Window for that object.

When other users are viewing notes, a read-only version of the Notes Editor will
be provided for them to view the information.

The Notes icon will also change to the following icon to show that the notes
are being viewed. By clicking on the Notes icon in the Status Window, users are
able to switch back and forth between the "read-only" Notes Editor and the
standard Preview mode for the object.

Simulating Processes

Simulation is a powerful tool which lets you thoroughly test the workflow
application you have designed before you publish it from BPM Studio. BPM
Studio allows you to simulate a process in two ways:

1. By selecting a process in the Repository View window, and selecting
Simulate from the Object Menu.

2. When simulation is selected at this level, it can be performed on a process
that is either checked in or checked out. Simulating at this level is limited
in that switching to Data View and using the Watch Window is not
supported. This is supported when using Simulation in the Build Editor.

3. By editing a process in Build Editor, and selecting the Simulate option
from this editor.

For more information see the Simulation section in the Working with the Build
Editor chapter.

Publishing Processes

This section describes how to publish processes and objects in Ultimus BPM
Studio.

Rules and guidelines for publishing:

• Publishing is possible for processes, individual process objects, and
external objects referenced in processes.

• Processes or objects must be checked in before publishing
• BPM Studio users can only publish processes and objects if they have

access rights to the via the Publish Object Security privilege
• BPM Studio users can only publish to BPM Servers that are specified by

the administrator through the BPM Studio Configuration application

Publishing a Process

Right click a Process from the Repository Window View and select Publish from
the menu or click Object from the main menu bar and select Publish. You will
then be prompted to specify a BPM Server to which you will be publishing the
process.

Click OK. The following screen appears

• Install New Version: Publishes a new version of the object or process to
the target BPM Server. Note if a change is made to an individual process
object (such as Event Conditions for a Step), and this object is selected for

publishing, then the entire process version will be incremented on the
target BPM Server. When Publishing individual objects, BPM Studio
automatically optimizes client to server communication in that it will only
send the necessary object changes to the server, and not the entire
process

• Upgrade Existing Version: This option is active if a process of a similar
name is already published on the BPM Server. Selecting this option will
update the latest version of the process, without incrementing the version
number on the BPM Server. The major benefit of this functionality being
that users will be able to benefit from changes to the process immediately
in live incidents (without having to initiate incidents against the new
process version to see the change).

• Cancel: Exits the publishing window without publishing the process or
object.

Note: Ultimus users are advised to save process with major changes as
New Versions rather than using the Upgrade Existing Version
option.Examples of major changes would be the addition or removal of
Steps and/or Workflow Variables.

It is possible to publish external objects like .NET code, images, PDF files etc. by
similar means used for processes. However the Publish dialog which appears for
external objects is different and shown below;

For example, .NET Code would go to the Resources folder on the target BPM
Server, images used in Forms would go to the UltWeb directory, or you can
specify a Custom Location in the Custom Path field which becomes active when
the Custom Location radio button is selected.

Exporting Objects

Users have the ability to export entire processes from BPM Studio as a
standalone process map (.WFL) file. This allows BPM Studio users to easily
share processes with people outside their organization.

To export a process, select a process from the Repository View Window and
select Export from the Object menu.

This option allows you to save the process. It defaults to the current working
directory.

Note that the process must be checked in in order for it to be exported

The Export capability is also supported for FOL Objects, Documentation
Templates, and external objects

BPM Studio Tool Bar

The BPM Studio Toolbar provides buttons for commands that you can access
when using Ultimus BPM Studio.

Button Name Description

 Check Out Checks out objects

 Check In

Checks in objects and allows users to enter
comments through a Comments Editor. The Status
Window for the object will then display these
comments and other important object information

 Open Editor Opens an object that is checked out in its relevant
editor

 Close editor Closes the editor currently being used

 Lock object Locks objects so that no other users can make
changes to that object

 New Creates a new object in the Repository View
Window

 Add Adds an existing object to the process repository
from the file system

 Notes

Allows users to add descriptive notes (through a
Word-like editor) to BPM Studio objects. These
notes can be used to provide a more detailed
description about the role of a particular object for
other users to review.

Refresh
Node

Refreshes the repository to show changes made to
objects by other users. Any changes not checked
in will not be displayed.

Simulate
Process
(Quick)

Allows for quick Simulation of a process. For more
details on Simulation, refer to the Simulating
Process chapter.

Show/hide
Repository
Window

Shows/hides the dockable BPM Repository View
window

 Help Opens BPM Studio Help

Designing Process Maps
Process maps can be designed and modified by either using the Build Editor or
the Modeling Editor in BPM Studio. In order to design or modify a process map
through one of these Editors, it must first be checked-out of the process
repository. When a process is not actively being edited, clicking on any process
in the Repository Window view will automatically display a read-only ‘preview’ of
the process in the Editor Pane. For more information on the BPM Studio Editors,
please view the Editor section in the BPM Studio User Interface chapter.

Please note that when in Build Editor or Modeling Editor, there is certain
functionality that will differ between the two editors when designing process
maps. These differences are primarily found when providing details associated
with the graphical process map. The effort to design a process map is the same
in both editors.

A process map is a graphical representation of the sequence of steps that make
up a business process. A map is shown below;

Every map must have a Begin and an End Step. Every step denotes a task to be
performed at that stage. Steps are tied together by links, which denote the flow of
the process. Steps can be conditional or unconditional. Unconditional steps are
always invoked. Conditional steps are activated only if certain conditions are
met.

Rules About Process Maps

• A map must have one Begin and one End Step .
• A Begin Step cannot have any steps before it.
• An End Step cannot have any step after it.

• Each step must have a unique label which is used to identify it when
reports are generated.

The Process Map View

The Map View consists of the Map View Toolbar and the Workspace, where the
process map is created. The Map View is shown below. Note that BPM Studio
automatically switches to Map View when a process is opened for editing in
either the Build Editor or the Modeling Editor.

The Map View Toolbar

The Map View Toolbar contains command buttons and functions which are
unique to the Map View and are defined below.

Button Name Function
 Arrow Returns cursor to the arrow pointer mode.
 User Turns cursor into the user step insertion mode.

 Flobot Turns cursor into the Flobot step insertion
mode.

 Maplet Turns cursor into the Maplet step insertion
mode.

 Junction Turns cursor into the Junction insertion mode.
 Text Turns cursor into the text box insertion mode.
 Link Turns cursor into the link insertion mode.

 Lock Activates the lock mode. Click again to "unlock"
it.

 Grid Displays grid lines on the workspace.
 Snap Activates/deactivates "snap to grid" mode.

 Simulation Initiates the Simulation mode. Available in Build
Editor only.

 Watch Opens the Watch window during Simulation.
Available in Modeling Editor only.

Start
Modeling

Starts modeling a designed process. As you
start modeling this button turns to a pause
button. Click the pause button to pause and
resume modeling. Available in Modeling Editor
only.

Stop
Modeling

Stops modeling. Available in Modeling Editor
only.

Pause
Modeling

Pauses modeling. Available in Modeling Editor
only.

Speed
Control

The speed control let's you change the speed of
modeling flow. Available in Modeling Editor only.

Other Tool Bars

The Standard Toolbar

The Standard Toolbar provides buttons for commands which you can access
throughout the program.

Button Name Description
 New Clears the workspace and lets you open a new process.
 Open Open an existing process.
 Save Save the current process.
 Print Print the Map.

 Print Preview Preview what you will be printing before you commit it to
paper.

 Cut Deletes selected items and places them in the Windows
Clipboard.

 Copy Copies selected items into the clipboard.
 Paste Pastes contents of the Clipboard onto the workspace.
 Undo Repeals the last-performed function.

 Zoom Combo
Box

Select a percentage to compress or enlarge the Map
View display.

The Formatting Toolbar

The Formatting toolbar provides functions for formatting text.

Button Name Description
 Font Selection Combo Box Select the text font.
 Size Selection Combo Box Select the text size.

 Bold Change text to bold.
 Italics Change text to italics.
 Underline Underlines text.
 Left Justify Left justify text block.
 Center Justify Center text block.
 Right Justify Right justify text block.

Note: The additional functions in the Formatting Toolbar are active only
when you access the Thin Forms Designer. For information on these
buttons and their functionality, see "The Thin Form Designer."

The View Toolbar (Build Editor)

When in Build Editor, the View Toolbar has three main views: Map View, Form
View, and Data View. Each View has a set of buttons which are used only in that
View.

Button Name Description
 Map View Switch to the Map View.

 Form View Switch to the Form View.
 Data View Switch to the Data View.

The View Toolbar (Modeling Editor)

When in Modeling Editor, the View Toolbar has two main views: Map View and
Reports. Each View has a set of buttons which are used only in that View.

Button Name Description
 Map View Switch to the Map View.

 Reports Switch to the Reports View.

Adding Steps to a Process Map

The following types of steps can be added to a workflow map:

• User Steps: Denote tasks in a process that are performed by individuals.
• Flobot Steps: Denote tasks in a process that are performed by third party

applications, such as Microsoft Excel or Microsoft Word, or enterprise
applications using Web Services or XML.

• Maplet Steps: Denote tasks in a process which are performed by other
Ultimus Maplets, or "sub-processes." Ultimus lets one process call other
processes. This gives you flexibility to design complicated processes by
breaking them down into simpler sub-processes.

• Junction Steps: Allow many links to merge into one, or one link to split
into multiple.

The Toolbar in the Map View contains buttons for each of these steps, as
described previously. Whenever a button is activated, the cursor changes to a
corresponding step insertion cursor.

To insert steps in a map:

1. Click the button for the desired step in the Map View Toolbar. The cursor
changes to the corresponding insertion cursor.

2. Click on the process map. A new step is inserted. The cursor changes
back to the arrow pointer mode.

Note: If you want to perform the same operation multiple times (such as
inserting several User steps), click on the Lock button, either before or
after clicking the step button. This locks the cursor in the step insertion
mode and allows you to insert multiple steps. When you have inserted all
the steps you need, click on the Arrow button and the cursor changes back
to the arrow pointer.

Note: You can also drag steps from other processes in the process
repository into a new process map. That will add a copy of that step to the
map along with all of the contents of that step.

Using Grid Lines

You can display Grid Lines by clicking on the Grid button. Grid Lines make it
easy for you to align the step boxes.

To activate/deactivate Grid Lines:

• Click on the Grid button in the Toolbar.

Using Snap-to-Grid

If you have already designed a map, activating Snap-to-Grid causes the steps
and anchors to be repositioned so that each occupies the center of the nearest
grid box.

When you insert new steps, or when you drop them after dragging, the steps will
occupy the grid box pointed to by the insertion or the drag cursor. If the grid box
is not empty, the step will occupy the closest empty grid box.

The "snap to grid" mode can be activated only if the gridlines are displayed.

To activate/deactivate "snap to grid":

• Click on the Snap to Grid button in the Toolbar.

Working with Steps

To select a step:

• Click on the step with the arrow pointer. The step Label is highlighted in
bright green.

To move a step:

• Click on the step, hold the mouse button down, and drag it to the new
location. When you drag a step, the cursor changes to a hand (drag
cursor).

Copying To and Pasting From A Workflow Snapshot

When working in the Build Editor, in addition to dragging and dropping from the
process repository window, you may use steps in more than one process via the
Copy To and Paste From functions. Copy To allows you to copy a step, or group
of steps, into a "workflow snapshot." This is a file containing only the copied
steps, their spreadsheets, properties, links, and event conditions, instead of a full
process map. The Paste From function is used to import these saved steps into
other process maps.

Note: This option is supported in the Build Editor only.

To copy a step, or group of steps, into a workflow snapshot:

1. Perform one of the following:
o Select a single step.

o Use the arrow cursor to draw a selection box around a group of
steps.

2. Select Copy To from the Edit Menu, or right-click on the step and select
Copy To. The Save As window appears.

3. Name the snapshot and click Save.

To paste a workflow snapshot into a process map:

1. Select Paste From in the Edit Menu, or right-click on the Workspace and
select Paste From. An Open window appears. All workflow snapshots
have the extension ".snp."

2. Select the snapshot and click Open. An unnamed step (e.g., "Step 2") is
pasted into the process map.

Note: When copying and pasting from workflow snapshots, care should be
taken to make sure the spreadsheets are identical if you wish to use global
variables. If the spreadsheets do not match, the variables will have to be
linked manually (see "The Data View").

Copying and Pasting Into A Step

You may want to create a new step which is similar to an existing step. The best
way to do this is to copy an existing step, paste it, and then make all the
necessary modifications. When you copy a step, the properties, form,
spreadsheet, event conditions, and links associated with the step are also
copied. You can then paste it to make a new step, or Paste Into a previously
mapped step. Paste Into allows you to design your workflow map first, then copy
the forms, spreadsheets, and links from one step to another. You may also use
the Paste Into Special function to only paste the form, spreadsheet, or properties
for a particular step. Since the forms and spreadsheets require the most work to
create, copying and Paste Into are great time-savers. The Modeling Editor allows
complete information to be copied and pasted into a newly created step.

Note: Copying and pasting into a existing step is not supported by the
Modeling Editor, this functionality is only supported in the Build Editor.

To Copy and Paste a step:

1. Select the step and click the Copy button , or select Copy from the Edit
menu.

2. Click the Paste button , or select Paste from the Edit menu. A duplicate
step is placed in the top left corner of the workspace.

3. Drag the step to any point in the map.
4. After you have placed the step, be sure to make the necessary links, label

changes, and any other necessary changes.

To Copy and Paste Into a step:

1. Select the step and click the Copy button , or select Copy from the Edit
menu.

2. Select another step in the workflow map.
3. Right-click on the step and select Paste Into, or select Paste Into from the

Edit menu. The properties of the copied step are now associated with the
current step.

To Copy and Paste on the form, spreadsheet, or properties Into a step:

1. Select the step and click the Copy button , or select Copy from the Edit
menu.

2. Select another step in the workflow map.
3. Right-click on the step and select Paste Into Special, or select Paste Into

Special from the Edit menu. The Paste Into Special window appears.

4. Click the checkboxes to select the item(s) to be pasted into the step.

Note: Event conditions tables are part of the step properties.

5. Click OK. The selected properties of the copied step are now associated
with the current step.

All the options below are supported in both the Build and Modeling Editors.

Deleting A Step

When a step is deleted, its associated form and spreadsheet are also deleted.

To delete a step:

1. Select the step.
2. Click the Cut button , select Cut from the Edit menu, or press the Delete

key.

Note: No warning is given when a step is deleted. However, a deleted step
is placed in the Clipboard. If you delete a step by mistake, you can restore
it by clicking the Paste button or selecting Paste from the Edit menu. A
step referenced in an event condition table cannot be deleted.

To undo a function in Ultimus BPM Studio:

• Select Undo from the Edit menu. The last function performed will be
undone. Ultimus offers ten levels of undo.

Inserting and Deleting Links

Inserting Links Between Steps

Links in the map denote the "flow" of steps required for the completion of a
business process. You can link as many steps as you want. The first step you
click represents the output and second step the input. The step at the end of the
link always has the arrow attached to its left side.

If multiple links are tied to a step, multiple lines go to the step, as shown below.

To link steps:

1. Click on the Link button in the Toolbar. The cursor changes to the Link
cursor.

2. Click on a step, hold down the left mouse button, and drag to the next
step. A line follows the cursor, indicating the path of the link.

3. Release the mouse button to complete the link.

Note: When linking multiple steps, it is helpful to engage the Lock button.
This keeps the cursor from defaulting back to the arrow pointer after use.

Deleting a Link

To delete a link:

1. Select the link line. The line turns green.
2. Click the Cut button , select Cut from Edit menu, or press the Delete

key.

Anchors

Anchors allow you to change the path of the links in the process map. You can
insert up to 10 anchors on any link. Anchors appear as dots on the process map.
At each anchor, you can change the path of the link. This enables you to route
link lines gracefully across the process map from the source to the destination.

To make it easy to place anchors, the following capabilities are provided:

• An invisible mini-grid is available. Each major grid line on the map is
subdivided into 8 mini-grids. If the Snap-to-Grid button is on, the anchors
snap-to the mini-grids. This allows process designers to easily draw links
with straight lines.

• Map can be zoomed up to 200%. This allows designers to precisely
position the anchors.

• Anchors can be dragged around the map. If Snap-to-Grid is activated,
users can see a shadow of the anchor to indicate the point on the grid to
which it will snap.

To insert and position anchors on a link:

1. Select the arrow pointer .
2. Click on the link and hold the mouse button down. The anchor appears on

the link.
3. Drag the anchor to its new location and release the mouse button. If Snap-

to-Grid is active, the anchor automatically snaps to the center of the mini-
grid. While dragging, a shadow indicates the position to which the anchor
will snap.

To delete an anchor:

1. Select the anchor. It turns green.
2. Click the Cut button , select Cut from the Edit menu, or press the Delete

key.

Using Descriptive Text

You can insert descriptive text on the map, such as titles, comments, and
captions.

To insert descriptive text:

1. Click on the Text button in the Toolbar. The cursor changes to the text
cursor.

2. Click on the map to insert a Text Box. All text boxes are initially displayed
with the words "Sample Text."

Note: If you want to insert multiple Text Boxes, click on the Lock
button. When you have finished inserting all the Text Boxes, click on
the Arrow button to change the cursor back to the arrow pointer.

3. Select a Text Box, then right-click on it. The Step Properties window
appears and displays the Text Attributes tab.

4. Enter text in the Text edit field.
5. Define the border for the text box:

o Visible/Hidden Radio Buttons: Select one of these options to
specify whether you want a frame to appear around the text.

o Shadow: If this checkbox is activated, a shadow is displayed
behind the text box.

6. Define the colors:
o Click on the Browse button beside the Text field. The Color window

appears. Select a color and click OK.
o Click on the Browse button beside the Background field. The Color

window appears. Select a color and click OK.

7. The text you entered is displayed in the Text Box. The size of the box
increases or decreases automatically.

Changing Text Formatting

To change the formatting of the text in a Text Box:

1. Select the Text Box.
2. Select a Font from the Font menu.
3. Select a Font Size from the Font Size menu.
4. If you want to change the character properties, click on the Bold, Italics, or

Underline button.
5. If you want to change the paragraph properties, click on the Left Justify,

Center, or Right Justify button.
6. Click anywhere to deselect the text box.

Moving Text Boxes

To move a text box:

• Click on a Text Box and drag it to a new location. When dragging, the
cursor changes to a hand (drag cursor).

Note: For help in positioning Text Boxes, you can display grid lines by
clicking on the Grid button.

Deleting Text

To delete a text box:

1. Select the Text Box.
2. Click the Cut button , select Cut from the Edit menu, or press the Delete

key.

Printing Processes

Previewing the Map

Ultimus allows you to preview a map before you print it. Preview displays a
preview of the first page of the map, and allows you to display other pages as
well. You can also use Page Setup to adjust the page orientation and other
parameters.

To preview a map:

1. Click the Print Preview button in the Map View Toolbar or select Print
Preview from the File menu. The Print Preview View appears.

2. Use the Print Preview Toolbar as described:
o Print: Print the map as displayed.
o Next Page: Go to the next page.
o Previous Page: Go to the previous page.
o Two Page: Display two pages at one time.
o Zoom In: Enlarge the view of the currently selected page.
o Zoom Out: Decrease the view of the currently selected page.
o Close: Return to the Map View.

Printing the Map

When you print the map, it appears as displayed in the Preview mode. For this
reason, it is always best to preview the map first.

To print the map:

1. Click the Print button in the Toolbar, or select Print from the File menu.
The Print window appears.

2. Select the print specifications and click OK.

Working with the Modeling Editor
The goal of modeling is to ensure that the process will behave as expected and
yield results that are consistent with the requirements of the business owners,
and the expectations of the customers who are served by the process. Modeling
is used to answer questions such as:

• How many incidents of the business process can be completed in a week?
• If new cases are coming in at a rate of 100 per day, how large a staff is

required to ensure that every case gets processed within 3 days?
• What is the cost of performing the order verification step in an order

process?
• If the number of claim appraisers is reduced to half, how long will it take to

process a typical claim?
• How long does it take the bank to process a loan?
• How much more will it cost to reduce the time by 50%?
• How much time does a person have to spend to perform a particular step

in a business process?
• Are any of the steps in the process potential bottleneck areas?

Defining Modeling Scenarios

Modeling begins by defining one or more “scenarios” and then applying a
scenario to a business process and measuring how it will perform. A “scenario” is
a set of assumptions about the resources used in a business process and the
probabilities of various events that might occur during the course of a process.
Some of the assumptions apply to individual steps, or tasks, in a process, while
others apply to the process overall. You can create multiple scenarios for a
process to test the impact that changing resources, time estimates, costs, or
probabilities has on process execution.

When a scenario is executed by the modeling engine, data is collected and made
available in a series of reports on the process and each step. These reports can
be printed or exported to Microsoft Excel for further analysis, manipulation, and
comparison.

Note: The scenarios you create are stored in separate scenario files with a
.sio extension. These files contain all of the Process Level Scenario
Settings, Scenario Variables, Step Scenario Properties, and Step Scenario
Event Conditions that have been defined.

Working with Steps

The Modeling Editor uses the same graphical tools to develop process maps as
the build editor as described in the Designing Process Maps section. Once the
map has been developed, you can provide additional detail for each of the steps
in a map. By right clicking on a step, you will be presented with a dialog box with
four tabs:

• Properties: This allows you to provide some basic design documentation
including a label for the step, recipients, completion time, and a number of
other parameters.

• Conditions: This allows you to document actions that the automated
process will take when specified conditions become true. This will help the
developer provide robust exception handling capabilities for the automated
process.

• Scenario Properties: Every process step has a working scenario. A
"Scenario" is defined as a set of assumptions that are used to model the
process in an automated manner to evaluate expected outcomes.
Scenario properties allow you to specify the assumptions for a particular
step. For example you can specify average Lag time and Task Time for a
step.

• Scenario Condition: For every condition specified in the conditions table
you can specify a scenario. Suppose you have specified a condition for
some step in the map. The related scenario for this condition can be that
the chances of this condition becoming true are sixty percent. You can
specify this for a scenario using the scenario conditions table.

The Properties and Conditions tabs can be used to provide design
documentation for the step that can be used during the development of the
automated process. Scenario properties and conditions are used when running
a modeling scenario to analyze the process. Scenario Properties and Conditions
are covered in detail in the Executing Process Modeling Scenarios section.

Documenting Step Properties

The Step Properties window allows you to document key parameters for the step

Label: The Label identifies the step. It is shown in the graphical process map
and used to identify individual steps during reporting. The label must, therefore,
be unique.

Recipient(s): Recipient is the individual who performs the task for a step.
Provide a description of the person, or people, who perform this task. In most
cases, this should refer to a job function or group, rather than a specific person.
This will provide more flexibility when the process is automated.

Completion Time: The Completion Time is the time you allow the recipient to
complete the task. Provide a description of how long you want to allow people to
take to complete their tasks.

Extension Time: Like the Completion Time, you can specify the estimated
Extension Time the user is allowed as a grace period over and above the
Completion Time. The Extension Time is used for automated processes to
provide a second level of escalation for tasks that are late.

Delay Time: The Delay Time is the time the BPM Server will delay invoking
before invoking the step. If you need to delay a step for some time period,
provide a description of that delay time here. .

Description: Specify any additional explanation or description of the step in this
field.

All the above fields excluding Label have a button associated with with it. This
opens a text editor when clicked, allowing for detailed documentation.

Properties for different type of steps are slightly different as follows:

• Begin and Maplet type steps do not have Completion time, Extension
Time and Delay Time properties.

• Recipient for a Maplet step should indicate the process to be invoked. In
addition, you can specify whether you would like for the process to wait
until the maplet has completed execution before continuing.

• For a Flobot Step you also have to specify Flobot type. A Flobot can be of
following types:

o .NET Flobot
o Acrobat Flobot
o ASCII Flobot
o Database Flobot
o E-Mail Flobot
o Exchange Flobot
o File Flobot
o Excel Flobot
o Word Flobot

o Web Services Flobot
o XML Flobot
o Custom Flobot

• Junction steps have only the Label and Delay Time properties.

Working with Conditions Tables

In the following sections, we discuss how to define a Conditions Table. In the
examples given below, we use the User step, which is the most common. For the
other steps, such as Junctions, Flobots, and Maplets, there are some slight
variations as to which events are available, which are discussed in the later
sections.

Opening the Conditions Table Window

To open the Event Conditions Table for a step:

• Right-click on the step and select Event Conditions. The map step
Properties window appears and defaults to the Conditions tab. The
window may be resized, maximized, or minimized.

Specifying Actions in the Event Conditions Table

The first column of the Event Conditions Table is the Actions column and is
permanently labeled as such. Each cell in the Actions column is used to specify
the action which will be taken. The second column is permanently labeled as
Parameters. This is used to specify the step related to the action.

To add an Action to an Event Conditions Table:

o Open the Conditions Table you want to modify.
Notes: If no condition is present, the Action is always performed.

o Double-click on the first blank cell in the Actions coumn. The Actions
window appears.

o Select one of the following actions:
o Activate Step: Activates the step specified in the Parameters

column.
o Abort Step: Aborts the step specified in the Parameters column.
o Abort Incident: The entire workflow incident is aborted.

The specified action appears under the Actions Column Header.

To change or delete an Action:

• Open the Event Conditions Table you want to modify.
• Select the Actions cell you want to modify.
• Right-click on the selected cell.
• Select Delete from the submenu that appears.
• The Action is deleted.

Note: If you remove an Action cell, the entire row of conditions for the
Action is also deleted.

Insert, Copy, Paste and Delete Conditions

When editing a Conditions Table, you may cut, copy and paste Event Conditions
Table entries. Any condition may be copied and then inserted between existing
conditions.

To insert a row in an Event Conditions Table:

• Open the Conditions Table you want to modify.
• Select the cell in the Action column below where you want a row inserted.
• Click on the Insert Row button in the Event Conditions Table Toolbar or

right-click on the cell and select Insert Row. A row is inserted above the
selected cell.

To copy a row or cell in an Event Conditions Table:

Open the Conditions Table you want to modify.

1. Select a cell or an entire row of cells.
2. Click the Copy button in the Toolbar or right-click on the selection and

select Copy.

To paste a row or cell in an Event Conditions Table:

1. After you have copied a row or cell, select the cell where you want the
copied item to appear. If you are pasting an entire row, select the cell in
the Action column.

2. Click on the Paste button in the toolbar.

To delete a row in an Event Conditions Table:

1. Display the Conditions Table you want to modify.
2. Select a cell or an entire row of cells.
3. Click the Cut button in the Toolbar or right-click on the selection and

select Cut.

Specifying Steps in an Event Conditions Table

For every Action that you define, there is a step that is affected. Under the
Activate Tab, the current step is added automatically since the only Action is to
activate the current step. However, under the Complete, Late, Return, and
Resubmit Tabs, the steps are defined independently.

To select or change a step in an Event Conditions Table:

1. Open the Event Conditions Table you want to modify. Double-click inside
the cell under the Parameters column header. The Select Step window
appears.

2. Select a step from the Step combo box. All steps created for the process
map are listed.

3. Click OK. The step name is added to the Step column.

Event Conditions Tables for Junctions

The Conditions Tables for Junctions are a subset of the Conditions Tables of
normal steps. This is because there are no tasks associated with Junction steps
and, therefore, a Junction step cannot be late, returned, resubmitted or have a
Recipient. Thus, a Junction step only has Activate and Complete Conditions
Tables.

Documenting Event Conditions

Exceptions and unique conditions are rampant in every organization. Even a
process that looks very simple on the surface becomes complex as soon as you
start dealing with all of the exceptions that must be handled efficiently. Ultimus
provides powerful exception handling capabilities in the Ultimus BPM Server.
When working with the modeling editor, business users can describe the type of
exceptions that are likely to occur and how they should be handled.

Exception conditions are tested when specific events occur at the Ultimus BPM
Server. The following five events are available to the steps in an Ultimus process
map:

Activate: Occurs when the BPM Server determines that it is time to activate a
step.
Complete: Occurs when the step has been completed.
Late: Occurs if the step becomes late.
Return: Occurs if the step is returned by the user.
Resubmit: Occurs if the step is resubmitted by the user.
Recipient: Allows the BPM Server to dynamically change the recipient of the
step based on conditions.

For each of these events and for every step, Ultimus allows you to create an
Event Conditions Table in a spreadsheet format. Each row in the table
represents a condition for the step. The first column represents an action.
Whenever an event occurs for a step, the Event Conditions Table is evaluated. If
all the conditions in the row are matched, then the corresponding action is
executed. As you can see, this is a simple, yet powerful means of handling all
types of exceptions and unique conditions. Event Conditions Tables and Actions
are used to bypass the normal flow of a workflow process as represented by the
map. Thus, this feature should be used only for handling exceptions, and the
normal flow of the process is the one represented by the map.

The Conditions window in the Modeling Editor contains a table with six tabs:
Activate, Complete, Late, Return, Resubmit, and Recipient. Click on a tab to
display the corresponding Event Conditions Table.

Note: The recipient tab cannot be used in the modeling editor. If your
process needs to change recipients based on conditions, that information
can be reflected in the recipients area of the properties window.

The first column of an Event Conditions Table is reserved for the Action that will
be taken if the condition is satisfied. The second column is reserved for the step
that will be invoked by the Action. You can define one or more conditions using
the event conditions table. For each condition you can specify notes in the
Description field. The description for various conditions is used while creating
documentation for the designed process.

To specify an event condition:

1. Choose the tab for that corresponds to the event that needs to occur
before the condition is tested.

2. Click in the first column of the first available row. You will be presented
with a dialog with three options:

o Activate another Step
o Abort another Step
o Abort the entire incident

3. Choose the action that you want to occur.
4. If you chose to activate or abort another step, click in the second column.

You will be presented with a dialog with a dropdown list of the steps in the
process. Choose the step that you want activated or aborted.

5. Provide a description of the conditions that must be present for the desired
action to occur.

Continue these set of steps for every event condition you need to specify for the
step.

Since you can specify multiple condition rows and every row is evaluated, you
can request that the process perform many different Actions. The Complete,
Late, Return, and Resubmit Event Conditions Tables, therefore, give you
tremendous flexibility in changing the course of the process based upon unique
conditions.

Ultimus also provides an advanced feature for Referencing External .NET
Assemblies When Calling .NET Code

Defining Step Inputs-Outputs-Actions

Using the Modeling Editor you can specify details of different steps including a
description of the steps required inputs, actions, and desired outputs. This
information is extremely helpful while building the process.. This also facilitates
the design documentation of a process as you can later use this information for
converting the designed process into an electronic document.

To specify Inputs-Outputs-Actions for a step, either double-click on the step or
select the step and click on the Input-Output View button. Inputs-Outputs-
Actions view for the selected step is shown below:

In this view you specify design notes for the Inputs, Actions, and Outputs of the
step.

You can quickly switch between steps while staying in the input-actions-output
view by using the drop down step menu in the top right hand corner of the
Modeling Editor window..

Executing Process Modeling Scenarios

When working in the modeling editor, you have the ability to define and run one
or more "scenarios" against a process map. When modeled, these scenarios
allow you to predict process performance and costs, identify potential
bottlenecks, and use the information to perform some process optimization
before moving into the development stage of the project. A “scenario” is a set of
assumptions about the resources used in a business process and the
probabilities of various events that might occur during the course of a process.
Some of the assumptions apply to individual steps, or tasks, in a process, while
others apply to the process overall.

Note: Process Level Scenario Settings, Scenario Variables, and Step
Scenario Properties are saved in .sio files. As a result, you can have
multiple different scenario files associated with a single process. You can
open and close scenario files by using the File menu when working in the
modeling editor. Scenario files are not stored within the BPM Studio
repository.

Process Level Resource Management

A key aspect of scenarios is understanding the resources that are associated
with a process. Within BPM Studio, you can create a list of named resources and
associate a task rate with them. Then, you can simply specify the resource at
later steps in the process rather than having to remember the rate at each step.
Resources can be specified once and reused for all scenarios that are created
for a particular process.

You can access and update resources in two places. The first way is to select
Tools, then select Resources from the main menu. The second way is to update
resources as follows when working on steps

1. Right click on a step and select the Scenario Properties option from the
menu.

2. Click the Manage Resources button. The following window appears (this is
the same window that appears when you select Tools from the menu bar, and
then select Resources from the menu option);

Click Add or double-click a cell to add data in the following fields ;

• Name
• Cost ($/hr)

A resource may also be edited or deleted if required by clicking the
respective buttons.

Click OK to save changes.

Note: Process level resource definitions are saved with the process
map definition and not with the Scenario (.sio) file. As a result, they
can be reused across all scenarios that are developed for a
process.

Process Level Scenario Properties

When developing a modeling scenario, there are a number of overall
assumptions that are made for the business process as a whole. These are
called "Scenario Settings."

To define Scenario Settings (i.e. Process Level Scenario Properties):

Right click on any step and select the option “Scenario Settings” or select the
same option from File Menu. Following window is shown to you:

Using this window you can specify:

General
On general tab you can specify:

• Distribution: Ultimus BPM Studio allows you to specify the statistical
distribution model for all steps in a process. If a Uniform Distribution is
selected, Ultimus BPM Studio will ensure that the probability of generating
values in simulations is evenly distributed between the Min and Max
values specified. The likelihood of the time being at the Minimum or the
Maximum is the same as every other intermediate value. If a Normal
Distribution is chosen, the probability of randomly generated values is
subject to the area covered by a normal curve. The Mean and Sigma
values will allow the user to control the distribution of values along this
normal curve.

• Default Time Unit: The default time unit is in hours. When a default time
unit is selected, the map defaults to that time unit for all steps in the
process. You can override this setting at any step by simply specifying a
different time unit for that entry in a particular step.

• Rate: You can specify the rate at which incidents are initiated at Begin
Step. If you specify a normal distribution, you have to specify the mean
and standard deviation of the number of incidents initiated at Begin Step
during a specified interval. If you have selected uniform distribution then
incidents will be generated at a rate that is between the Min and Max
values specified. For example:

o With Normal Distribution, a Rate Mean value of 2, with Sigma value
of 1, and unit as Hours, will mean that 1 incident is initiated for the
process every 2 hours, with a standard deviation of 1 hour.

o When using a Uniform Distribution for a model, a Rate Min. Value
of 2, with a Max Value of 4, and unit as hours, will mean that 1
incident is initiated for the process between every 2 to 4 hours.

• Model Count: The purpose of statistical modeling is to run enough
incidents of a process to predict how it will behave under a given set of
assumptions. Some business processes are not resource constrained and
will achieve steady state behaviors after only a few incidents. Other might
be more complex and achieve steady state behavior after many incidents.
And yet other may never reach steady state. The Model Count variable in
a scenario specifies the number of incidents that will be completed in a full
execution of the model. When executing models, more incidents than the
model count may be executed, and completed, if you have conditional
execution logic built into the model. In those cases, the engine continues
to run all of the incidents numbers from 1o to the model count are
completed. A default setting of a hundred incidents is recommended to
obtain realistic conclusions.

For example, if you have a model count of 100 and some conditional
logic, the engine will continue to run until incident number 1 through
100 have all completed. In this case, more than 100 incidents may be
started and more than 100 may complete, but only the results from
the first 100 incidents (after the pre-load) will be used in reporting.

• Preload: You can specify the number of incidents to preload before
beginning to collect modeling data. This allows you to measure the
process when it is running continuously, rather than including the data
when the process is ramping up. In many cases, processes tend to be
sporadic rather than continuous day after day. For such cases, when a
process is started (i.e. switched on) and the initial incidents begin to flow,
the process has not begun to run at its typical level because all steps
along the process have not yet been activated. Therefore, preloading
provides an excellent method of analyzing process behavior realistically
when it is operating in its typical state.

• Task Priority: Specify the priority on which tasks are completed at a step.
You can select the following options:

• FIFO: At every step tasks are completed on first in first out basis.
• Incidents: Tasks are completed based on incident number i.e., task of

incident number one will be completed first and then tasks of later
incidents.

• Scenario Description: Specify any further details of the process scenario
in this field.

Calendar

On the calendar tab, you can specify appropriate business/work hours including
break times using Calendar. Calendar shows you a breakdown of 24 hours in 15-
minute increments allowing you to mark-off times where people are available for
work. This feature, however, will not apply to Flobots. For aggregating data based on
incidents not completed during one business workday, Ultimus BPM Studio adds in
the hours an incident had to wait overnight before being processed the next day.

By default the calendar highlights resources to be available from 9:00 am to 5:00
pm. You can modify the default setting by simply clicking on the highlighted cells.
Un-highlighted cells show the time resources are unavailable (shown in yellow)
while highlighted cells show the available time (shown in green).

Variables
The Variables tab is used to create complex scenarios where the
process follows different paths based on probabilities. Variables are
covered in detail in subsequent sections.
Modeless Dialogs
Some of the dialogs provided by Ultimus BPM Studio are
"modeless". This feature gives users the ability to open a dialog for
one control, make changes to it, and then select the other control in
the background to toggle to it's dialog and make changes to it. This
saves the user from three separate mouse-clicks to move from one
dialog to another. While editing a step property dialog if the

background is clicked it will switch to process level dialog and vice
versa.

Using Variables

Variables are used to enable you to distribute process flow when conditional logic
is required (e.g. Route this purchase request to the Safety Committee Leader if it
is for hazardous materials). Variables allow you to assign an Expression to an
Action in the Scenario Conditions table. Using variables, you can specify varying
scenario conditions for an event in different incidents. Since Process Designer
executes only models, all of your expressions should be developed to return a
logical value (either TRUE or FALSE). You may also have some variables that
simply compute a random number to be used as a probability value.

Defining and using Variables:

• To define a variable, right click on a step and select the option “Scenario
Settings” or select this option from File Menu. Following window is shown
to you.

• This window defaults to General tab. Select ‘Variables’ tab.
• You can type the name of the variables in the name field and

corresponding formula in the Formula field.
• In the formula field, click on the cell and Press the F2 Key twice. The

following window appears (with a sample expression shown):

• Type the formula in this window and click OK.

To see an example see the section Example of Using Variables

Example of Using Variables

The following example explains the usage of variables in a business process
design.

Suppose there is a process having three steps, as shown in the snap below.

In this process work can flow in through three different paths as follows:

Path1: Begin Step2 End
Path2: Begin Step3 End
Path3: Begin Step4 End

Based on our initial analysis, we estimate that Path1 is followed 10% of the time,
Path2 is followed 40% of the time, and Path3 is followed the remaining 50% of
the time. Using the variables we can define a logic based on which one of the
above three paths will be followed. We will use a random number (between 0 and
100) to simulate the probabilities we estimated:

Path1: If random number is less than 10.
Path2: If random number is between 10 and 50.
Path3: If the random number is greater than 50.

To implement this follow the steps given below:

Open the Scenario Settings dialog and move to Variables tab.

• Define a variable with the name RandomNumber.
• In the corresponding formula field of this variable, type the following

formula to generate a value between 0 and 100:
=INT(RAND()*100)

• Define another variable Path1. Set following formula for Path1:
=IF(RandomNumber<10,TRUE,FALSE)

Using this formula this variable is assigned TRUE if the value of
RandomNumber is less than 10.

• Define two more variables Path2 and Path3 and set the following two
formulas respectively:
=IF(RandomNumber>=10 & RandomNumber<50,TRUE,FALSE)
=IF(RandomNumber>=50,TRUE,FALSE)

• Close the scenario settings dialog.
• Right click on Step2 and select the option Event Conditions. (Using

Scenario Event Conditions is covered in more detail in an upcoming help
section).

• Double click on first row. Following dialogue is shown to you:

• Select the option Activate and click OK. Step2 will appear in the
Parameters field.

• Select the Scenario Conditions tab and double click under the expression

field corresponding to first condition. Following window is show to you:

• Select Path1 from the value combo box and click Ok.
• Similarly define activate condition for Step3 and Step4.
• Save the process and click on Start Modeling button.
• During modeling incidents will flow according to the desired logic.

Note: In this scenario, we used variables to ensure that incidents flow
down 1 and only one path. Ultimus also supports assigning basic
probability values to scenario event conditions. This approach is useful
when something either happens or it doesn't (and the occurrence does not
impact other steps in the process). But it would not work for this scenario.
Here is why:

If we were using simple probabilities, rather than assigning the variables
Path1, Path2, and Path3 to each step, we would have entered the values 10,
40, and 50 in each steps scenario event condition table. However this
would behave very differently.

Using basic probabilities, the modeling engine would create a new random
number (not stored in a variable, but just for probability purposes) when it
was requested to activate each step. As a result, it is feasible that a single
incident could follow all paths, or even no paths (effectively stalling).

For example, when evaluating whether to activate Step 2 , the engine might
generate a value of 8, causing that path to be followed. It would then

prepare to active step 3, and generate a new value, say 30, causing Step 3
to be activated; and so on.

As this shows, simple probabilities can not be used when an incident
follows different paths based on values. This also makes sense, because
Ultimus, and business processes, often require paths to be routed in
parallel, both conditionally and unconditionally.

Step Level Scenario Properties and Conditions

Every process step has scenario properties and scenario conditions. These can
be defined as follows:

Scenario Properties

To define scenario properties for a step:

• Right click on the step and select the option “Scenario Properties”. Step
properties window is shown to you.

Using this window you can specify:

• Name of Resource: Select the name from the drop down combo box or
type in a name.

• Number of Resources: The Number of Resources defaults to ‘1’ . Any
other value has to be typed in manually. When you assign multiple
resources to a step, the engine assumes that these resources can all work
on the same task concurrently. You should take this into account when
analyzing task, lag, and elapsed times.

• Manage Resources: Clicking this button, opens the Resource Manager
screen where you can add/edit/delete resources as defined in Process
Level Resource Management section.

• Task Rate: This information is used to compute the cost of the business
process. The time taken to complete the task is multiplied by the task rate
and the number of resources to calculate the cost of the step. By adding
the cost of each step, Process Designer computes the cost of an incident.
Over multiple incidents, Process Designer can compute statistical
information about the cost of the business process. This value will
automatically update to reflect the value of the Resource field. However a
value may also be typed in directly.

• Lag Time: This is an estimate of the minimum dead, or “away” time
between tasks, for a single resource. This is the time the user or resource
is not available to perform the task because he is busy with other tasks.
The values used here will follow the format for the process level
distribution method (normal or uniform).

• Task Time: This is an estimate of the amount of time it takes to perform
the task for a step.

• % Returned: A certain number of tasks performed at a step may be
returned for lack of information or some other factor.

• Completion Time: The Completion Time is the time which you allow the
recipient to complete the task. You can specify the Completion Time and
the units of the time in days, hours, or minutes in the associated combo
box.

• Extension Time: Like the Completion Time, you can specify the
Extension Time the user is allowed as a grace period over and above the
Completion Time.

• Delay Time: You can specify a time value here by which the step is
delayed. While modeling the process,Ultimus delays invoking the step by
this amount of time. This allows processes and steps to be synchronized.

• Allow Resubmit: This function allows to Resubmit the completed step of
an active incident. Multiple Resubmittable steps may be inserted in a
process. For such steps you have to specify:

o % Resubmitted and Resubmit Time: In real life situations, after a
task has been completed, it is sometimes necessary to open and
resubmit the same task again because of the availability of new
information or some other external event. Under the section "Allow
Resubmit" you can enter the percentage of tasks that may be
resubmitted at a step. To formulate the distribution of resubmitted
tasks at a step during given time, you also have to specify mean
and standard deviation (if you want the resubmitted tasks to be
normally distributed over the specified period) or minimum and
maximum number of resubmitted tasks (if you want the resubmitted
tasks to be uniformly distributed over the specified period).

Modeless Dialogs

Some of the dialogs provided by Ultimus Process Designer are "modeless". This
feature gives users the ability to open a dialog for one control, make changes to

it, and then select the other control in the background to toggle to it's dialog and
make changes to it. This saves the user from three separate mouse-clicks to
move from one dialog to another. While editing a step property dialog if the
background is clicked it will switch to process level dialog and vice versa.

Scenario Event Conditions

For every condition specified in the conditions table you can specify an
expression using a value or a variable. If you use a value, it will be interpreted as
the probability of that event condition evaluating to true. If you use a variable, it
should be a logical value that also represents the probability of the event
condition occuring. Variables are used when more complex logic is required than
simple probabilities.

For example, suppose you have specified a condition for some step in the
map. The related scenario for this condition can be that the chances of this
condition becoming true are forty percent. You can specify this for a scenario
using the scenario conditions table.

To define Scenario Conditions:

• Right click on the step and select the option “Scenario Event Conditions”.
The dialog will show you any conditions you defined for the step. For the
scenario, you need to add an expression so that the modeling engine can
process the condition.

• Using this window you can specify the related scenario for step conditions.

To define scenario for a condition, double click on the corresponding cell
under expression column. Following dialog is shown to you:

In this dialog specify scenario probability of condition and click OK. You
can also select a variable that can generate some value based on a
formula. For details of using variables see the section, “Using Variables”.

• When evaluating event conditions, the engine will test activate conditions
until one evaluates to TRUE, then it will activate the step. If none of the
activate conditions evaluate to TRUE, the step will not be activated.

• For other conditions (complete, late, return, resubmit), the engine will test
all event conditions and take the requested action if the condition
evaluates to true (this could activate multiple other steps). If a step is
activated because of one of these conditions, its activate conditions are
ignored (i.e. they are not testedl; the step simply activates).

Modeless Dialogs

Some of the dialogs provided by Ultimus Process Designer are "modeless". This
feature gives users the ability to open a dialog for one control, make changes to
it, and then select the other control in the background to toggle to it's dialog and
make changes to it. This saves the user from three separate mouse-clicks to
move from one dialog to another. While editing a step property dialog if the
background is clicked it will switch to process level dialog and vice versa.

Running a Model

After you have created a scenario for the process, Ultimus Process Designer
allows you to run the process through its paces based on assumptions such as
the rate at which new incidents are coming in, the task time and lag time of each
step. To run a model, make sure the appropriate scenario file is open, then select
Tools |Model Process from the Main Menu. You can also run a model by clicking
on the on the toolbar. Once you have started running a scenario, you can view
the progress of the model execution by opening the Model Window.

To open the Model Window, click on the Model window button.

Model window displays:

• Incidents: Number of active and completed incidents at a given time.
• Steps: Number of active and completed steps.
• Day: Using the specified calendar, days taken to complete the specified

number of incidents.
• Display Workload: If you check this check box, workload for different

steps is shown in the map view. When checked and a running model is
stopped or paused, a value is displayed showing the total number of tasks
queued under each Step. This number is shown in red color for a step with
the highest number of queued tasks. It's displayed in yellow for the step
with the second highest number of queued tasks. The workload for the
remaining steps is displayed in green color.

The Model window keeps on changing the displayed statistics as the modeling
progresses. Using the speed control the modeling speed can
be slowed down and the behavior of the process can be observed in detail.

Every time a process is modeled the modeling details are stored in a log file
named "UltimusModel.log". This file is stored in the same directory in which the
process map has been stored. Once the process modeling has completed, this
file can be used to review the process behavior in detail.

Note: Every time a process is re-modeled the log file is cleared and most
recent data is overwritten in the file.

Modeling Reports

When running a model based on a scenario in the Modeling Editor, Ultimus
generates two different types of reports, the Process Level Reports and the Step
Level Reports. The process level reports provide insights as to how a process is
working as a whole. Step Level reports on other hand help in analyzing the
performance of individual steps. A description of the Step Level and Process
Level Reports is given below.

Step Level Reports

The following reports can be generated as Step Level Reports:

• Task Time Report: Provides information on how much time was taken to
complete tasks at a particular step.

• Cost Report: Provides information on how much cost was incurred in
completing tasks at a particular step.

• Lag Time Report: Lag time is the time that the user is not available to
perform a particular task, due to the fact that they are working on other
tasks. It is the time spent on other tasks from the moment a user
completes a task to the moment they are able to start on the next task.
This report provides information on how much lag time was incurred for a
particular step.

• Elapsed Time Report: Elapsed time is the time a user takes to complete
a task. It is from the time a task reaches user's desk to the time the user
finishes the task and sends it to the next desk. This reports shows how
much time was spent to do a task for a particular step.

• Step Utilization Report: This reports demonstrates how the resources
are being utilized at each step.

Process Level Reports

All of the above reports can be generated at process level as well. On a process
level, the above reports provide the same information collectively for whole
process. For example the Cost Report, when generated for a process as a
whole, displays the break-down of cost as percentage in different steps. Besides
the above reports, the following additional reports can be generated at the
process level:

• Process Balance Report: A process is said to be balanced if all incidents
run through this process are taking the same time for completion over
time. The Process Balance Reports displays, in a chronological order, the
incident completion time for all the incidents run through the process. An
upward moving graph in a process balance report is an indication that the
process is not well balanced and needs to be modified.

• Under Utilization Report: The Under Utilization Report displays the
percentage underutilization at each step. The time spent waiting for tasks
at a step represents the under utilization for that step.

Note: In Process Level Reports, if modeling is stopped before preloading is
completed no incidents are shown. However if it stopped after preloading
but before Model Count, only the completed incidents are displayed.

Working with Reports View

Once you have run at least one model using a scenario, you can view reports

associated with that model. To switch to the reports, view click on Reports
View button. This view shows you different reports for all the steps. Reports may
also be accessed by right clicking on a Step after modeling has run, selecting
Step Reports, and then the particular report. This will display step level reports.
Similarly process level reports may be accessed by right clicking on a process
map after modeling has run, selecting Process Reports, and then the particular
report. Both Process and Step level reports can also be selected from the context
menu.

Selecting Steps

You can view reports for a particular step by selecting that step’s corresponding
tab from the report tabs at the bottom of the reports view. You can also view
reports for the entire process by selecting the “Process” tab.

Note: Ultimus remembers the last viewed report and automatically
displays it when the Reports View button is clicked.

Changing Reports Type

For each step in the process you can view following type of reports:

• Task Time Report
• Cost Report

• Lag Time Report
• Elapsed Time Report
• Utilization Report
• Balance Report
• Under Utilization Report

You can switch between different report types by using the Report Type
Selection Combo Box.

Note: The last two reports are only available at the process level and
cannot be viewed for individual steps.

Note: No report is generated for Junction Steps.

Changing Report View

Every report can be viewed in a tabular or graphical mode. You can toggle
between the graphical and tabular views by using the Report View button.
Minimum, maximum, average and standard deviation for reports is also shown in
tabular view.

Exporting Reports to Microsoft Excel

In tabular view, you can export the report data to Microsoft Excel as follows:

• Select the report for export.
• Change the report view to tabular.
• From the Tools menu select the option ‘Export Report’.
• The ‘Save As’ dialog appears, specify the name of file and click Save.
• The report data is exported to the specified file.

Rotating Graph

In graphical view you can rotate graphs as follows: Press the Ctrl Key, click on
the graph and drag it to reposition while keeping the Ctrl key pressed.

Task Time Report

Task Time represents the time taken to complete a task. This report provides
information on how much time was taken to complete tasks at a step in different
incidents. Since the Task Time for each step is one of the assumptions in the
scenario, the Task Time report will closely match the Step Task Time specified in
the scenario with variability introduced only by randomness.

In tabular view, the task time for each incident is shown separately. Tabular view
also shows average, minimum, maximum and standard deviation in task time for
various incidents.

Note: A Total column is also present in the tabular view for Process Level
Reports, which gives the total of each row and the statistics section
accurately calculates the total based on the number of incidents run.

Cost Report

This report provides information on how much cost was incurred in completing
tasks at the step. The cost for a step is calculated by multiplying the task time
with specified task rate. Wait time is also included in task time as it can be a
major contributing factor towards cost.

The cost can be either viewed for the entire process, or it can be viewed for each
step in the process. This report allows business managers to determine the task
or activities that contribute most to the overall cost of the process.

By analyzing these costs, business managers may be able to redesign or modify
the process with the goal of reducing the overall cost. For example, if the Incident
Cost Report indicates that a significant percentage of cost is incurred by tasks
that have to be performed by a senior executive, the process could be
redesigned so that fewer tasks are assigned to the senior executive, or a new
recipient for the step can be found that has a lower task rate.

Note: A Total column is also present in the tabular view for Process Level
Reports, which gives the total of each row and the statistics section
accurately calculates the total based on the number of incidents run.

Lag Time Report

This report provides information about the lag or dead time for any step in the
business process. It represents the time that a user is not able to work on a
particular task, due to the fact that they are working on other tasks.

For example, a particular task needs to be completed by persons ‘A’ and ‘B’.
Once person ‘A’ has fully completed their part of the task, they will forward to
person ‘B’. In this case Lag Time is the time from the moment person ‘A’ finishes
their work, and submits the task until the moment person ‘B’ starts working on
the task.

The lag time is a combination of the lag time specified in the scenario plus the
unproductive time a user spends waiting for new tasks. The latter becomes the
major factor in the lag time if the workflow process is not balanced.

Note: A Total column is also present in the tabular view for Process Level
Reports, which gives the total of each row and the statistics section
accurately calculates the total based on the number of incidents run.

Elapsed Time Report

Elapsed time is the duration of time that it takes a user to complete a task. That
is, it is the amount of time between a task being assigned to a user, and the time
the user takes to complete and submit the task.

This report provides information about the total time consumed by each step in
the business process. It is a measure of how long it takes a task to be completed
on average.

The elapsed time is a combination of the task time and the lag time of the step. It
measures the maximum throughput of the step.

Note: A Total column is also present in the tabular view for Process Level
Reports, which gives the total amount of time it took from incident creation
to completion and the statistics section accurately calculates the total
based on the number of incidents run.

Step Utilization Report

This report displays the percentage ratio of the actual time spent performing a
task to the actual time available to perform the task.

This report provides business owners with a measure of how much extra
capacity there is to perform a task. As an example, a step capacity utilization of
25% indicates that the user for that step has 75% additional capacity that is not
being leveraged. The Step Utilization report is not available in tabular view.

Process Balance Report

A process is said to be balanced if all incidents run through this process are
taking the same time for completion. The Process Balance Reports displays, in a
chronological order, the incident completion time for all the incidents run through
the process. An upward moving graph in a process balance report is an
indication that the process is not well balanced and needs to be modified. A
suggested way to resolve this issue would be to then review the task times for
individual steps in the process.

If the tasks are backing up on one or more steps and if more resources are not
added, the incident completion time will become unacceptably high. On the other
hand if the elapsed time hovers around a particular value, it implies that the
process is balanced and there are enough resources to perform the tasks. The
example above illustrates an unbalanced process.

Under Utilization

This report is rendered as a pie chart where each section of the pie is the Wait
Time of each step. Wait Time represents the time that a resource assigned to a
step was not performing the task, or was assigned to some other task.

The Under Utilization report identifies steps that have the most available free
time. The resources used at these steps can potentially be assigned to other
tasks. The Under Utilization report is not shown in tabular view.

Integration with the Build Editor

The work you do in the Modeling Editor is not lost when you move into
development mode. Design documentation and design instructions become
specifications for input parameters required when using the Build Editor in
Ultimus BPM Studio. While you are working in the Build Editor, design
instructions specified in the Modeling Editor are available as notes. These notes
are shown to you while you are working with Step Properties, Event Conditions
and the Form View. These have been explained in the coming sections.

Working with Step Properties Window

Using the Modeling Editor you might specify design instruction and notes about
steps recipients, completion time, extension time and delay time as shown in the
snap below:

When you open this process in the Build Editor, the above specified instructions
are shown to you in the form of notes as follows:

1. Open a process using the Build Editor.
2. Right click on a step and select the option properties.

3. The properties window appears.

4. When you do a mouse click on recipient, completion time, extension time
or label, the instructions specified in BPM Studio are displayed as shown
in the snap below. For example if we click on completion time combo box,
following instructions are shown:

5. Using the instructions specified you can easily build a process is using the
design documentation that was provided.

Working with Event Condition Tables

Using the Modeling Editor, you might specify design instruction and notes about
event conditions as shown in the snap below:

When you open this process in the Build Editor, the descriptions specified for any
event condition is shown to you in the form of notes as follows:

1. Open a process in the Build Editor.
2. Right click on a step and select the option Event Conditions.
3. The properties window appears.

4. When you click on an event condition row in this table, the description for
the selected condition is shown to you as a tool tip.

Working with Form View

Using the Modeling Editor you can specify design instructions and notes about
the Inputs, Processing and Outputs of a step. This information proves very useful
when you are designing the form for a step in the Build Editor.

When you open a process in the Build Editor these notes are displayed as
follows:

1. Open a process in the Build Editor..
2. Select a step and click on the Form View button to switch to the Form

View.
3. In the Form View Tool bar click on the button "Notes" and the

instructions specified in the Modeling Editor are shown to you as follows:

4. Using the Input-Output instructions specified in Ultimus BPM Studio you
can create forms for different steps in a process.

Creating Design Documents

When working with the Modeling Editor, the information you provide for the
process and steps can be easily incorporated into a Microsoft Word document for
storage, printing, and distribution. The user can create one or more
documentation templates in Microsoft Word and then use these templates to
produce a Word file. Thus, Ultimus BPM Studio provides the capability to take
the process design and produce an electronic document that describes the
model, its objects and requirements.

Ultimus provides a list of pre-defined documentation variables that can be used
in the documentation templates. These variables can be broken down into three
categories: Process-related, Step-Related, and Loop.

Process-Related Variables

Process-related variables deal with the entire process, and generally refer to one
piece of data in a report. They are as follows:

• Process Name: Name of the workflow process.
• Process Description: Description of the process.
• Process Creation Date: Date the process was created.
• Process Modified Date: Date that the process was last modified.
• Process Map: Image of the process map.
• Total Number of Steps: Total number of steps used in the process.
• Number of User Steps: Total number of user steps used in the process.
• Number of Flobot Steps: Total number of Flobot steps used in the

process.
• Number of Maplet Steps: Total number of maplet steps used in the

process.
• Number of Junction Steps: Total number of junction steps used in the

process.

Step-Related Variables

Step-related variables refer to specific steps in the workflow process, rather than
the whole process. Step-related variables are generally used in a loop (see next
section). The step-related variables are as follows:

• Step Label: The label of the step.
• Step Conditions Table: Conditions table for the step.
• Step Recipient Notes: Notes about step recipients.
• Step Completion Time Notes: Notes about step completion Time.
• Step Extension Time Notes: Notes about Step Extension Time.
• Step Delay Time Notes: Notes about delay time for the step.
• Step Notes: Notes about the step.

• Step Inputs: Details about step inputs.
• Step Outputs: Details about step outputs.
• Step Actions: Details about step actions.

Loop Variables

One of the most useful features of the process Documentation function is the use
of the Begin Step Loop and End Step Loop variables. When you place a step-
related variable between the two loop variables, Ultimus provides the values of
that step variable for every step in the process. Therefore, if you wish to know the
Step User, Step Task Cost, Step Completion Time, and Step Delay Time for
every step in the process, you insert the following variables:

• Begin Step Loop
• Step User
• Step Task Cost
• Step Completion Time
• Step Delay Time
• End Step Loop

Ultimus automatically "loops" through all the steps and prints the values of the
documentation variables for each.

The loop variables are as follows:

Begin Step Loop: Triggers the beginning of the loop.

End Step Loop: Triggers the end of the loop.

Creating a Documentation Template

Ultimus allows you to create a Documentation Template that specifies the format
and content of the documentation. You can create multiple Document Templates
and use them for different purposes..

Creating a Documentation Template

To create a Documentation Template:

1. Select Documentation from the Tools menu. The Documentation window
appears

2. Click on the New button to create a new report. The Enter the Report

Name window appears. Type in the name of the Report.

3. Click OK.
4. Ultimus launches Microsoft Word and the Documentation variables list

window appears on top of Word. You can now use all the capabilities of
Word to create a report template.

5. Type in the desired field labels on the report template and format them as
you wish.

6. For each label, select a variable from the Documentation window and
click the Insert button, or double-click on the variable.

7. The code for the variable appears in the Word document.
8. After you have inserted all the needed variables, click on the Done button

in the Documentation window.
9. Ultimus closes the Word document and the Documentation variables

window.
10. The name of the new report appears in the Documentation window.
11. Click Done.

Editing a Document Template

To edit a Documentation report template:

1. Select Documentation from the Tools menu. The Documentation window
appears.

2. Select a report template from the Reports list box.
3. Click Edit.
4. Modify the report template as described previously.

Creating a Documentation Report

To create a documentation report:

1. Select Documentation from the Tools menu. The Documentation window
appears.

2. Select a report template from the Reports list box.
3. Click on the Run button.
4. Ultimus compiles the report and opens Microsoft Word to display the

results.

Working with the Build Editor
The Build Editor allows you to automate business processes by adding business
logic and forms to processes, and also allows you to perform integration with
enterprise systems through robust integration components such as the Flobots.
Processes can be designed from scratch in the Build Editor, or the Build Editor
can use the output from Process Designer and the Modeling Editor as the
foundation for automating a business process.

The following topics will be discussed in this chapter:

Defining Map Properties
Editing Steps
Working in the Data View
Working With Forms
Working With Flobots
Reusing Process Objects
Defining Inlets
Simulation
Working with Form Object Library Editor
Advanced Design Features

Defining Map Properties

The Map Properties window contains information about the current process map,
such as process owner, process description, e-mail notifications, controls for
assigning databound variables to a database, and checking how much hard disk
space is being used by the Ultimus Distributed Spreadsheets.

To Preview Map Properties:

In the Repository View Window, expand an existing Process node, and select
Map Properties. The following screen appears:

Editing Map Properties Object:

Ultimus BPM Studio allows you to edit individual process objects without
checking out the entire process. To edit the Map Properties Object, simply right
click Map Properties on the Repository View Window, select Check Out, and
then select Edit from the Object menu.

Once you are done editing the object, you can save and close the object by
selecting the Close Editor button on the BPM Studio Tool Bar.

Map properties may also be edited from the Build Editor, by selecting File and
then Map properties. The images below are examples of where the user is
working with the Map Properties in the Build Editor.

Defining the Process Owner

A process owner may be assigned to each process as an option. The process
owner receives e-mail notification (which you can define) for events which
warrant an emergency notification, such as stalled processes. To see which
messages the process owner receives, refer to the table in the section, "Defining
E-Mail Notifications."

To define the process owner:

1. In the Build Editor select Map Properties from the File menu. The Map
Properties window appears.

2. Click on the Process Owner Type combo box and select either a user or a
job function.

3. Click on the Browse button beside the Process Owner field. The Select
Recipients window appears. Depending upon which type you selected
above, choose either a user or a job function as the process owner, then
click OK.

4. Click OK to close the Map Properties window.

Process Completion Time

Ultimus provides the ability to specify a Completion Time limit for the process.
Like Completion and Extension Times for User steps, this can be a constant or a
variable. If a process incident is not completed within the Process Completion
Time limit, the BPM Server sends a Late Incident Notification to the process
owner.

To set the Process Completion Time:

1. Enter a length of time in the Completion Time field, or select a workflow
variable.

2. Select a unit of time (Months, Days, or Hours).

Note: The Process Completion Time can be expressed as an absolute time
(e.g., 6/15/2001) or relative time (e.g., 3 Days). However, be aware that when
using an absolute time, the process can only be used once and its
flexibility is, therefore, limited.

Help URL

The user may type in the URL for an HTML process help file or select a main
spreadsheet variable that contains the URL. This help file is then shown at the
Client via a help button. The HTML process help file may be generated using any
HTML authoring tool and saved on any web server. The step help file may be
invoked by the Client user via button in the form toolbar or the Client task list
menu.

To define the Process Help URL:

• Enter the URL in the Help URL field or select a workflow variable.

Defining the Process Description

The process description is a brief description of the Process. It is available for
inclusion in process documentation, as described in "Outputting Technical
Documentation"

To enter a process description:

1. Select Map Properties from the File menu. The Map Properties window
appears as shown in Step 1 above.

2. Enter a brief description of the process in the Process Description field.
3. Click OK to close the Map Properties window.

Defining E-Mail Notifications

Ultimus sends e-mail notifications when certain events occur, such as a new
task, a stalled incident, or an aborted step. Ultimus has default messages for
these events, but they can also be customized for your specific needs. You can
use any workflow variable to enter specific information in the e-mail message to
make it more meaningful to the recipient. This is also beneficial if you are working
in a language other than English so you can translate the message.

The following table lists the events, their descriptions, and the message
recipients:

Event Description Message Recipient

New Task The recipient has a new task
waiting. Recipient(s)

New Process
Installed A new process can now be initiated. All users named in the

Begin Step
Incident Stalled An incident of a process has stalled. Process Owner

Late Step A task is late. Recipient and the
recipient's Supervisor

Invalid User An invalid user has been named in Process Owner

a step.
Aborted Step A step has been aborted. Recipient(s)

Aborted Incident An incident has been aborted.
All users who have
participated in the
incident

Step Failed A Flobot step has failed to execute
properly. Process Owner

Incident Time
Limit Reached

The Completion Time for the
process incident has been reached. Process Owner

Minimum
Response Email

A task has been performed by the
minimum number of users specified.

All group members
assigned to the step

Completion Time
Expired

The completion time for a step has
expired. Recipient(s)

Using Variables In E-Mail Notification

Ultimus allows you to use three types of variables when modifying e-mail
notifications, key variables, system variables, and workflow variables. Workflow
variables are any variables defined in the main and local spreadsheets. For more
information on workflow variables, see "The Data View".

Key variables are only used in e-mail notifications, and allow the user to specify
incident-specific information, such as the label of the current step, the recipient of
the current step, the direct URL for a form, and more. The following key variables
may be used:

• KEY_STEPLABEL: Inserts the label of the current step.
• KEY_CLIENTNAME: Inserts the name of the recipient of the current step.
• KEY_STEPNOTES: When a step is aborted in the Client, the Client user

is prompted to enter a brief description. Likewise, if a Flobot fails, the
workflow Manager is also prompted to enter a description of why the
failure occurred. This variable inserts the description into the e-mail
Notification.

• KEY_CLIENTURL: Inserts the URL to access the Ultimus Client.
• KEY_FORMURL: Inserts the URL to directly access the form for the

current step, without accessing the Client. This is valid for a 7 day period
after which the cookie expires and the form is removed.

The following System variables may also be used:

• SYS_PROCESSNAME: Inserts the name of the current process.
• SYS_PRIORITY: Inserts the Priority of the current incident.
• SYS_PROCESSINITIATOR: Inserts the name of the user who initiated the

current incident.
• SYS_SUMMARY: Inserts the Incident Summary.

• SYS_INCIDENT: Inserts the Incident Number.
• SYS_NOABORT: Inserts the setting of the Disable Abort System variable.

For a more detailed description of System variables, see "Advanced Design
Features".

To define e-mail notifications:

1. Select Map Properties from the File Menu. The Map Properties window
appears.

2. Click the Email Messages tab. The e-mail controls appear.

3. Select one of the events, as described previously.
4. Type the subject of the e-mail message in the Subject field. You may also

click on the Browse button to insert a workflow variable or System
variable. See "Advanced Design Features" for more information on
System variables.

5. Type the body of the message in the Message Body field. You may also
click on the Browse button to insert a workflow variable or System
variable.

6. Click OK.

To disable an e-mail message:

• Click the checkbox next to the event in the Event pane.

Note: You may also delete the contents of the subject field to disable e-mail
messages.

Linking to a Database Table

In order to use databound variables (as described in "The Data View"), you must
link the process map to a database table.

To link the process map to a database table:

1. Select Map Properties from the File Menu. The Map Properties window
appears.

2. Click the Databound Database tab. The Database controls appear.

3. Type the user's name in the User ID field.
4. Type the user's password in the Password field.
5. Select a Data Source from the DSN combo box. When you have selected

a Data Source, the Table combo box below becomes activated.

Note: The first two columns in this database table must be "Name"
(30 characters) and "Incident" (Type=Long).
For date type fields, Ultimus does not support date value earlier than
March 1900.

6. Select a table from the Table combo box.
7. Click OK.

For further information about databound variables please see, "Working with
Databound Variables"

Defining Databound Variable Information

The databound variable controls are covered in " The Data View".

Checking the Size of Distributed Spreadsheets

The Map Properties allow you to check the size of each spreadsheet used in the
current process. It also displays the average size of the spreadsheets.

To check the size of the Distributed Spreadsheets:

1. Select Map Properties from the File Menu. The Map Properties window
appears.

2. Click the Spreadsheet Size tab. A listbox appears which lists each
spreadsheet used in the current process and the size in KB (spreadsheet
sizes are rounded up). The average size of all the spreadsheets is
displayed at the bottom.

3. Click OK.

Defining Step Properties and Conditions

The properties for each step in a workflow map consist of the properties for the
particular kind of step, such as a User step or Flobot step, and the event
conditions tables. The Step Properties window allows you to tab between these
two. These windows are also modeless, so that you can modify the properties of
one step, then click on another step to view its properties without closing the
Step Properties window. Furthermore, these windows can be resized as needed
and remember their size and position, even if you exit the Ultimus BPM Studio
application.

The following sections describe the properties for each type of step in detail. For
a detailed description of event conditions tables, see "Documenting Event
Conditions."

Note: the remainder of this chapter assumes that you are working with Step
Properties and Conditions from the Map View in Build Editor. These Step-related
properties are also accessible from the individual Object Editors. For more
information, see Editing Steps.

Editing Steps

Ultimus BPM Studio provides a variety of different ways to edit Step-related
information in processes. At a high-level, Steps can be edited through two main
editor interfaces:

• Through the Map View when an entire process is being edited in the Build
Editor

• Through the individual Step Object Editors

Depending on the Step type (User Steps, Flobot Steps, Junction Steps, Maplet
Steps, and Text Areas), there are different Object Editors for each of these Step
types.

These Object Editors also behave in two different modes:

• Preview Mode: When a Step Object is clicked on in the Repository View
Window, and the object is not actively being edited, the Object Editor for
that Step will display in Preview Mode in the Editor Window (on the right)

• Edit Mode: When an object is Checked Out and the user selects Edit from
the Object menu in the Repository View Window, then the Object Editor
for that Step will display in Edit Mode, and changes can also actively be
made to the object

Below is a description of the different Object Editors for each Step type. These
Object Editors can be accessed for individual Steps from the Steps node for
Processes in the Repository View Window.

There are four Step Object Editors for User Steps:

• Properties Object Editor
• Event Conditions Object Editor
• Forms Object Editor
• Thin Forms Object Editor

Properties Object Editor (preview mode):

In the Repository View Window select the object, the following appears;

Properties Object Editor (edit mode):

Right click the object and select Edit from the menu, the following appears;

Event Conditions Object Editor (preview mode):

In the Repository View Window select the object, the following appears;

Event Conditions Object Editor (edit mode):

Right click the object and select Edit from the menu, the following appears;

Forms Object Editor (preview mode):

In the Repository View Window select the object, the following appears;

Forms Object Editor (edit mode):

Right click the object and select Edit from the menu, the following appears;

Thin Forms Object Editor (preview mode):

In the Repository View Window select the object, the following appears;

Thin Forms Object Editor (edit mode):

Right click the object and select Edit from the menu the following appears;

There are three Step Object Editors for Flobot steps:

• Properties Object Editor

• Trainer Object Editor
• Event Conditions Object Editor

Properties Object Editor (preview mode):

In the Repository View Window select the object, the following appears;

Properties Object Editor (edit mode):

Right click the object and select Edit from the menu, the following appears;

Event Conditions Object Editor (preview mode):

In the Repository View Window select the object, the following appears;

Event Conditions Object Editor (edit mode):

Right click the object and select Edit from the menu the following appears;

Trainer Object Editor (preview mode):

In the Repository View Window select the object, the following appears;

Trainer Object Editor (edit mode):

Right click the object and select Edit from the menu, the following appears;

There are two Step Object Editors for Maplet steps:

• Properties Object Editor
• Event Conditions Object Editor

Properties Object Editor (preview mode):

In the Repository View Window select the object, the following appears;

Properties Object Editor (edit mode):

Right click the object and select Edit from the menu, the following appears;

Event Conditions Object Editor (preview mode):

In the Repository View Window select the object, the following appears;

Event Conditions Object Editor (edit mode):

Right click the object and select Edit from the menu, the following appears;

There are two Step Object Editors for Junction steps:

• Properties Object Editor

• Event Conditions Object Editor

Properties Object Editor (preview mode):

In the Repository View Window select the object, the following appears;

Properties Object Editor (edit mode):

Right click the object and select Edit from the menu, the following appears;

Event Conditions Object Editor (preview mode):

In the Repository View Window select the object, the following appears;

Event Conditions Object Editor (edit mode):

Right click the object and select Edit from the menu, the following appears;

There is one Step Object Editors for Text steps:

• Properties Object Editor

Properties Object Editor (preview mode):

In the Repository View Window select the object, the following appears;

Properties Object Editor (edit mode):

Right click the object and select Edit from the menu, the following appears;

Defining User Step Properties

The User Step Properties window allows you to set the parameters for each User
step.

It contains the following:

• Label: The Label identifies the step and is used by the Ultimus BPM
Studio to report any errors pertaining to the step. It is also used in the
workflow Reports. The label must, therefore, be unique. The label is
displayed below the step icon in the process map. It possible to change
the label when the process is checked-out in Edit mode. Changes will
appear in the repository view only after the process has been checked-in.

• Recipient Type and Recipient: These are used to specify the individuals
to perform the task for the step. The recipient type combo box is used to
specify the type of recipients who will receive the task. Based on the type
you select, the recipient field lets you select the recipient(s). You may
select one of the following recipient types, for which a detailed description
of each is provided in the next section:

o User
o Job Function
o Groups
o Queue
o Initiator of process
o Supervisor of Initiator
o Manager of Initiator
o Cell Contents
o Supervisor Cell Contents
o Manager Cell Contents
o Weighted Groups

o Sequential Groups
o Supervisor Previous Step
o Manager Previous Step
o Department
o Relative Job Function (Initiator)
o Relative Job Function (Previous Step)
o Relative Job Function (Cell Contents)

• Task Rate: This information is used to compute the cost of the workflow
process. You can either enter the cost in $/hour of the individuals who will
perform the task, or link it to a workflow variable using the combo box. If
you choose to do the latter, you can change the rate based upon who is
performing the task, or some other criteria. This allows the rate to be
changed dynamically as the incident is in process. Depending on what you
want to accomplish, the cost can be the labor rate or the fully burdened
overhead rate of the individual(s). The use of this information is optional. If
a non-zero task rate is specified, the Ultimus Client asks the user how
much time was spent to complete the task. The time entered multiplied by
the task rate is used to calculate the cost of the step. By adding the cost of
each step, Ultimus computes the cost of an incident. Over multiple
incidents, Ultimus can compute statistical information about the cost of the
workflow process.

• Completion Time: The Completion Time is the time which you allow the
recipient to complete the task. You can specify the Completion Time and
the units of the time in days, hours, or minutes in the associated combo
box. You can specify a fixed Completion Time by typing a constant, or
select a workflow variable from the combo box. The latter capability gives
you the flexibility of changing the Completion Time based on the actual
conditions as the workflow incident is in progress. For example, you can
automatically change the Completion Time if the workflow is late. When
the user receives the task, it is marked as Current in the Client task list.
After the Completion Time has elapsed, the task status changes from
Current to Overdue.

• Extension Time: Like the Completion Time, you can specify the
Extension Time the user is allowed as a grace period over and above the
Completion Time. This, too, can be a fixed time if you type a constant, or
variable if you select a workflow variable from the combo box. After the
Extension Time has elapsed, the task status automatically changes from
Overdue to Urgent. Thus, the task becomes Urgent after the Sum of the
Completion Time and Extension Time has elapsed. An Urgent task is
considered late and this situation triggers the late notification described
below, as well as the late events described in "Documenting Event
Conditions ."
Note: Ultimus calculates the completion and extension time based
on the actual working hours. For example if completion time for a
task is 2 hours and it arrives in the inbox at 12:00 PM, given its a
break from 1:00 PM to 2:00 PM, the task completion time will expire

at 3:00 PM.
The working hours for an organization can be specified using
Ultimus administrator. For details see Ultimus Administrator Manual.

• Delay Time: The user can specify a constant or variable value that the
step is delayed. The BPM Server delays invoking the step by this amount
of time. This allows processes and steps to be synchronized. The Monitor
View in the Administrator also reflects a Delayed step in Orange.

Note: The Completion Time, Extension Time, and Delay Time can be
expressed as an absolute time (e.g., 6/15/2001) or relative time (e.g., 3
Days). However, be aware that when using an absolute time, the process
can only be used once and its flexibility is, therefore, limited.

• Help URL: The user types in the URL of a HTML Step Help File or selects
a global variable that contains the URL. This Help file is shown in the
Client via a Help button. HTML Step Help Files may be generated using
any HTML Authoring tool and saved on any web server. Step Help files
are invoked by the Client user via a button in the form toolbar or the Client
task list menu.

Note: If the Help URL entered begins with "http://," then the Help URL will
reference an Internet page. Otherwise, the Help URL will reference a page
on the machine from which the process is running.

• Default Form: The default form allows you to specify the Form Type that
will be loaded by the Ultimus Client. When a user clicks on the Step/Task
in their inbox, Ultimus checks the Default Form type, and automatically
loads that Form for the user. This gives the Client the ability to load
multiple Form types, based on the value specified in this field. By default
this field value is set to Standard Form.

• Completion Time Expired: An e-mail message may be sent to the
recipient and his Supervisor whenever the Completion Time for a step has
expired. This is in addition to any actions specified in the Late event
conditions tables described in "Documenting Event Conditions ." Users do
not have to design a special step just to handle late notifications.

o Notify Recipient: Active this checkbox to send an e-mail message
to the user named in the step to notify them that the Completion
Time has expired.

o Notify Supervisor: Sends an e-mail message to the Supervisor of
the user named in the step.

• Extension Time Expired: An e-mail message may be sent to the
recipient and his Supervisor whenever the Extension Time for a step has
expired. This is in addition to any actions specified in the Late event
conditions tables described in "Documenting Event Conditions ." Users do
not have to design a special step just to handle late notifications.

o Notify Recipient: Active this checkbox to send an e-mail message
to the user named in the step to notify them that the Extension
Time has expired.

o Notify Supervisor: Sends an e-mail message to the Supervisor of
the user named in the step.

• Security: Ultimus offers the following Security features for user steps,
activated via checkboxes:

o Private: A step marked as private may not be viewed by any one
other than the recipient and persons with rights to Archive. This is
to handle confidential tasks.

o Non-Assignable: A step marked as non-assignable may not be
assigned by the user to someone else. Only a person with access
to the Ultimus Administrator may assign it to another individual.

• Miscellaneous: The following miscellaneous functions are provided,
activated via checkboxes:

o Archive: Whenever a user completes the step during actual
execution of the workflow, the record for the completed form in the
BPM Server database is marked as Archived. The user cannot
delete the record from the database. However, an auditor with
Access Rights to the Archive, as assigned in the Ultimus
Administrator, can open and review the completed forms for any
workflow incident.

o Allow Resubmit: This function allows a user to open a completed
step of an active incident and resubmit it. It is configurable on a per-
step basis. If an event occurs after the completion of the step, the
user can re-open the task and send new information to the BPM
Server which can change the flow of the process based upon the
new information and the current status of the process. The
"resubmit step" can, therefore, be used as a "controller" for the
incident and implement process rollback to a known state. Multiple
resubmitable steps may be inserted in a process.

To define or edit User step properties:

1. Right-click on the User step and select Properties. The Step
Properties window appears and defaults to the User Step Properties tab.

2. Define the User step properties as described previously.
3. Click OK. Ultimus returns to the Map View.

Detailed Description of Recipient Types

Recipients are individuals or groups assigned to perform the task for the step.
Based on the type you select, the recipient field lets you select the recipient(s).
The following recipient types are available for User steps:

• User: A named user. Use the Browse button to select the user from a tree
list. Note that it follows the reporting hierarchy of users as defined in the
Ultimus Org Chart.

Note: A boxed + sign in the tree list indicates that there are additional users
under that entry. To view these users, click on the + sign and the tree list
expands. Conversely, click the boxed - sign to collapse the tree list.

• Job Function: Specify a job function as the recipient. Use the Browse
button next to the recipient field to select the job function from a tree list.
Note that it follows the reporting hierarchy of users as defined in the
Ultimus Org Chart. Each time the task is activated, Ultimus gets the user
from the Org Chart, which makes this recipient dynamic.

• Groups: Specify a group as the recipients. Use the Browse button to
select a group from the list.

Note: Groups are defined in the Ultimus Organization Chart. If you select a
group as the recipient, the task is assigned to all members of the group in
parallel. This is useful if you want more than one individual to fill out a
form, such as a survey.

• Group Voting: When you select groups, the Minimum Response field
next to the recipient type field is activated. The user can specify the

number of responses needed from a group before it can proceed. As soon
as the specified number of responses is reached, the process moves
forward. The non-responsive members of the group will have the tasks
removed from their in-boxes and an e-mail notification sent to them.

• Queue: Specify a queue as the recipient. Each queue is associated with a
group of users who can become recipients of the queue. Use the Browse
button to select a group from a tree list. A queue allows a process
designer to declare any step as a "queue" step. Tasks go into a queue.
Members of the recipient group request tasks, which are pulled from the
queue on a first-in, first-out basis.

Note: Queues are an excellent means of distributing workload among a
group of users based on the pace at which they perform the work. It
provides a means of not having to specify a pre-defined user to perform a
step task when multiple users are capable of performing it.

• Initiator of Process: Assign the step task to the individual who initiated
the incident. The recipient field is not used. This is an excellent way of
automatically routing the workflow back to the individual who initiated it.

• Supervisor of Initiator: Assign the step task to the immediate Supervisor
of the individual who initiated the incident. The recipient field is not used.
The Supervisor is the person who occupies the highest position in the
cluster of job functions to which the initiator belongs.

• Manager of Initiator: Assign the step task to the Manager of the
individual who initiated the incident. The recipient field is not used. By
definition, the Manager is the person who occupies the highest job
function in the sub-chart to which the initiator belongs.

• Cell Contents: Assign the step task to an individual(s) or job function
specified by a workflow variable (named cell in the main spreadsheet).
Use the recipient combo box to select the workflow variable. This allows
users to specify the recipient on an ad hoc basis, since the contents of the
main spreadsheet cell may be changed during the course of an incident
via a form, a database action, or some other means. The workflow
variable can also be a range, which allows a group to be declared
dynamically as the recipient. Ad hoc recipients and dynamic groups are
described in detail in "Advanced Design Features." Dynamic groups can
also set a value for the minimum number or responses required.

• Supervisor Cell Contents: Assign the step task to the Supervisor(s) of
the individual(s) specified by a workflow variable. The recipient combo box
is used to select the workflow variable.

• Manager Cell Contents: Assign the step task to the department
Manager(s) of the individual(s) specified by a workflow variable. The
recipient combo box is used to select the workflow variable.

• Weighted Groups: When you select a group with this recipient type, the
step is assigned to one member of the group based on assigned weights.
Use the Browse button to select a group from a tree list.

Note: Weights for the group are assigned in the Org Chart. A detailed
description of weighted groups is provided in the next section.

• Sequential Groups: When you select a group with this recipient type, the
step is assigned to the users sequentially, rather than in parallel. Use the
Browse button to select a group from a tree list. The step is assigned to
the first member in the group. If the member does not perform the task in
the allotted time, the step is automatically re-assigned to the next member
of the group.

Notes: The group sequence is defined in the Ultimus Organization Chart.

• Supervisor Previous Step: Assign the step task to the immediate
Supervisor of the individual who performed the previous step. The
recipient field is not used.

• Manager Previous Step: Assign the step task to the Manager of the
individual who performed the previous step. The recipient field is not used.

• Department: Assign the task to everyone in a particular Department (sub-
chart). This behaves like the group recipient type described above, except
that this group consists of all members of the Department. This does not
include sub-departments.

• Relative Job Function (Initiator): Assign the task to a job function which
is closest to the Initiator of the process incident in the Org Chart. See the
Detailed Description of Relative Job Functions in this chapter for more
information.

• Relative Job Function (Previous Step): Assign the task to a job function
closest to the person who completed the previous step. See the Detailed
Description of Relative Job Functions in this chapter for more information.

• Relative Job Function (Cell Contents): Assign the task to a job function
closest to the person named in a cell in the main spreadsheet. See the
Detailed Description of Relative Job Functions in this chapter for more
information.

Conditional Recipients

You can also select a recipient on a conditional basis. A conditional recipient is
selected based upon a set of conditions listed in the event conditions table. This
is a powerful feature, because a step can be automatically assigned to any
recipient based upon a set of conditions. Conditional recipients are described in
"Documenting Event Conditions."

Detailed Description of Relative Job Functions

The relative job function allows a task to be routed to a job function relative to a
user in the organization. Conventional, role-based routing requires an absolute
job function to which the task is always assigned. Relative job functions allow you
to design processes with task recipients that are assigned relative to the location
of another individual in the organization.

For example, there are two Departments, A and B, in a company and both A and
B have a departmental secretary. A workflow process requires that the
departmental secretary enter an account number on a capital appropriations
request before it is sent to the department head. With role-based routing, the
workflow design will have to specify either Departmental Secretary A or
Departmental Secretary B as the recipient of the step. This means that a
company will either need two copies of the same process (one for each
Department), or the process will involve branching based on some logic as to
where the process initiated. With the Ultimus relative job function capability, the
job functions for both secretaries is simply Departmental Secretary. In the
process design, the named recipient is the relative job function named
"Departmental Secretary." If the process is initiated by anyone in Department A,
it goes to the Departmental Secretary for Department A, and likewise for
Department B. This capability greatly simplifies the design, management, and
administration of complex workflow processes.

Detailed Description of Groups

As noted previously, you can assign a group to be the recipient of a step. In this
case, all members of the group will receive the step in parallel. This is ideal for
creating tasks such as surveys, since you do not have to change the process if
the members of the group or the number of members change.

Ultimus also has two special types of groups: sequential and weighted. groups
are defined in the Ultimus Org Chart. The following are detailed descriptions of
how these groups may be used in the Ultimus BPM Studio.

Sequential Groups

Sequential groups are ideally used when a task can be performed by more than
one person, but it is important to complete it within a certain time frame. They
ensure that the process will not remain in one person's in-basket while the
person may not even be working that day.

If a step recipient is a sequential group, the step is assigned to the first member
in the group. If the member does not perform the task in the allotted time, the
step is automatically re-assigned to the next member of the group. This process
continues until someone performs the task, or the task reaches the last member
of the group. The task stays with the last member until it is completed. The
following important points should be noted about using sequential groups:

• Any group defined in the Ultimus Org Chart may be used as a sequential
group as long as it consists only of user names or job functions. You
cannot name Departments or other groups as members of a sequential
group.

• The "sequence" of a group (i.e., the order in which the task is assigned to
the members) is specified in the Org Chart while defining or editing
groups.

• The allotted time to perform the task is the Completion Time only. There is
no Extension Time for sequential groups.

• The Completion Time expires after the cumulative time for all members of
the group (e.g., if there are five members of the group and the Completion
Time is set for one hour, the Completion Time expires in five hours). Late
warnings are sent after the cumulative time has elapsed.

Example

A group called Approvers consists of John, David, and Linda, in that order. This
group is named as the recipient in the Approve step of a process, and the
recipient type is sequential group. The Completion Time for the step is 1 Hour
and 20 minutes. When a process incident occurs it is first assigned to John. If
John completes it in 1 hour and 20 minutes, it goes on to the next step.

Otherwise, it is automatically re-assigned to David. If David also does not
compete it in 1 hour and 20 minutes, the step goes to Linda. It stays with Linda
until it is completed or manually re-assigned to someone else. If Linda does not
complete the step in time, the late event for the step is triggered.

Weighted Groups

A weighted group is an easy method provided by Ultimus to distribute tasks to
individuals using a simple load balancing algorithm. If a step recipient is a
weighted group, the step is assigned to one member of a group based on
weights. Over many incidents of the workflow process, the number of times each
member performs the step task equals their "weight." The weights are assigned
in the Organization Chart.

The following important points should be noted about using weighted groups:

• Weights may be assigned to groups in the Ultimus Org Chart.
• Weighted groups may consist only of user names or job functions. You

cannot name Departments or other groups in a weighted group.
• If the group members are assigned equal weights (e.g, four group

members are each assigned a weight of 25), the tasks are assigned in a
round robin fashion. For example, if one user has a task, the next task
goes to one of the users that doesn't. Once each user has a task, the
assignment process starts over.

Weighted groups are a good way to assign a step task to one member of a group
and ensure that the workload is distributed based on management input. If the
weights are changed, the workload distribution also changes. For example, a
weighted group called Buyers has 3 members, John, Susan, and Jill, and their
weights are 30, 50, and 20, respectively. This group is named as the recipient of
the "Buy" step in a workflow process whose recipient type is weighted group.
When a process incident occurs, the BPM Server determines how many previous
tasks were assigned to each individual. It then assigns the new task to one
individual so that the percentage of tasks assigned to each is closest to 30%,
50%, and 20%, respectively. The BPM Server, therefore, tries to distribute the
workload based upon the weights.

Defining Begin Step Properties

The Begin Step is used to "launch" an incident of the process. The properties of
the Begin Step are slightly different from the User step. These differences are as
follows:

• The Begin Step does not have a Completion Time or Extension Time,
since it is the first step of the workflow process.

• It has an event conditions table only for Complete and Resubmit events.
• The Begin Step can be initialized periodically. This means that a process

can be initiated either by a user, or automatically at some periodic interval
specified by Ultimus BPM Studio.

The following properties are unique to the Begin Step:

• Launch Type: Specify how the process will be launched. The Launch
type selected determines which combo boxes and fields are activated
below. Select one of the following choices:

o By Client: Enable a user to launch the process. If this choice is
selected, the Recipient Type and Recipient combo boxes are used
to select the user(s) who can launch the process. The Task Rate
field is used to determine the cost per hour.

o Every Sunday-Every Saturday, First or Last of Every Month,
Day of the Month, Every Day, or Every Hour: These selections

enable the process to be launched automatically for the day and
time specified. If selected, the Frequency combo box is used to
specify the launch frequency. When "Day of the Month" is selected,
the Day of Month and Time combo boxes are also activated.

Note: Time is specified in 24 hour "military" time.

o Maplet Only: Designates that the process can only work as a
Maplet. In order to be launched, it must be called by another
process. When Maplet Only is selected, all of the combo boxes
below, with the exception of Incident Start, are deactivated.

• Recipient Type: This combo box contains the following selections that
are not found in the User step properties:

o Groups: Enables the process to be launched by any member of a
group defined in the Ultimus Administrator. This function allows you
to control who is allowed to initiate incidents of the process.

Note: When changes are made to a group or department named as the
recipient for a Begin Step, only the users affected by the change are
notified. For example, if a group of 300 users is named as the recipient for a
Begin Step, and the org chart is changed so that another 25 members can
now initiate the process, only those 25 are notified, rather than all 325
users. Notifications are sent when Housekeeping runs (for information on
setting the Housekeeping interval, see the Ultimus Administrator manual).

o Anonymous User: Enables processes to be launched by any user
via the ActiveX Client or the Thin Client. The URL for the Thin
Client can be set up as a link from any web page. Anonymous
users can also launch a process using a thin form from any web
page (for complete details, see "The Thin Form Designer"). Ultimus
tracks these users as "anonymous users." You may also provide
your own access security.

• Day of Month: This combo box is active only if the Launch type is "Day of
the Month." Select the date.

• Time: This combo box is active only if the Launch type is periodic and a
day of the week selection. Select the time in 24 hour, "military" time.

• Frequency: This combo box is active only if the Launch type is periodic,
i.e., any type other than By Client. In this case, the Frequency combo box
is used to specify a launch frequency between 1 and 10. For example, if
the Launch type is specified as Every Friday and the Frequency is 3, the
process is launched automatically every 3rd Friday.

• Incident Start: This combo box is used to insert the Seeded Incident
Number. Every Ultimus process has an incident number. The Seeded

Incident Number allows the Ultimus Engine to generate incident numbers
starting from a certain value. Seeded incident numbers are numeric only.

To define Begin Step properties:

1. Right-click on the Begin Step . The Step Properties window appears
and displays the Begin Step Properties tab.

2. Define the Properties as described previously.
3. Click OK. Ultimus returns to the Map View.

Defining Flobot Step Properties

Defining Flobot step properties is described in "Working With Flobots." Please
refer to that chapter to learn how Flobots are defined, trained and used.

Defining Maplet Step Properties

Maplets are in-line sub-processes which allow a large process map to be broken
down in to smaller "chunks" to be designed and tested independently.

A main process can view the Maplet, but cannot change it. A main process can
transfer data to the Maplet, and also receive data from the Maplet. Furthermore,
Maplet activities can be monitored in the Monitor view and statistics can be
incorporated into the statistics of the main process.

The Maplet step contains the following properties:

• Label: Enter the label for the step. This label identifies the step and is
used by the BPM Studio if it has to report any errors pertaining to the step.
It is also used in the workflow Reports. The label must, therefore, be
unique.

• Maplet Name: Specify the name of the Maplet that you want to launch.
Select one by clicking the Browse button which displays a list of the
processes already defined.

• Repeat Count: A Maplet step can be repeated multiple times. The Repeat
Count combo box specifies a workflow variable which must contain the
number of times the Maplet is launched. If the Repeat Cell is not specified,
the Maplet is launched only once. More details on Repeat Count are
provided in "Advanced Design Features."

• Wait for Completion: Enable this checkbox to force the workflow process
to wait until the launched Maplet has completed. Thus, you can design a
workflow process which calls a Maplet and waits until it is completed, or
proceeds to the next step as soon as the Maplet is initiated.

• Transfer Global Variables: Enable this checkbox to transfer the global
variables in the current process to the Maplet specified in the Launch

Process field. Data is also returned to the parent process when the Maplet
process is completed.

To define or edit Maplet Step Properties:

1. Right-click on the Maplet step and select Properties. The Step
Properties window appears and defaults to the Maplet Step Properties tab.

2. Define the Maplet properties as previously described.
3. Click OK. Ultimus returns to the Map View.

Defining Junction Step Properties

A Junction step allows many links in a map which are going to the same
destination to be merged into one link (join). Otherwise, in certain situations, you
would have a confusing web of links connecting one group of steps to another
group, as shown in the illustration below.

A Junction step simplifies this arrangement with links going to and from the
Junction step, as shown below.

A Junctions step also serves the following purposes:

o Since Junction steps have Activate and Complete event conditions
tables, you can use the Junction step to consolidate the conditions
for activating a number of steps into one event conditions table.

o It enables a group of steps to be executed on a conditional basis
without having to repeat the conditions for each step in the group.

o Junctions enable a group of steps to be followed by another group
of steps without having to draw a large number of individual links
from each step in the first group to each step in the second group.

o Junctions allow users to implement a group of steps as a "sub-
program." The group can be called iteratively from different points

in the process map.

The Junction step contains the following properties:

• Label: This identifies the step and is used by the Ultimus BPM Studio if it
has to report any errors pertaining to the step. It is also used in the
workflow reports. The label must, therefore, be unique.

• Delay Time: The user can specify a constant or variable value that the
step is delayed. The BPM Server delays invoking the step by this amount
of time. This allows processes and steps to be synchronized. The Monitor
View in the Administrator also reflects a delayed step in blue.

To define or edit Junction Step Properties:

1. Right-click on the Junction step and select Properties. The Step
Properties window appears and defaults to the Junction Step Properties
tab.

2. Modify the Junction step properties as described previously.
3. Click OK. Ultimus returns to the Map View.

Event Conditions Rules and Guidelines

1. Event Conditions Tables and Actions are used to bypass the normal flow
of a workflow process as represented by the map. Thus, this feature
should be used only for handling exceptions, and the normal flow of the
process is the one represented by the map.

2. Every step in the workflow map, with the exception of the End Step, has
two or more of the following Events associated with it: Activate, Complete,
Return, Resubmit, Late, and Recipient.

3. Every Junction step in the workflow map has two Events associated with
it: Activate and Complete. Thus, you can also use Junction steps to
conditionally branch to a group of steps, or branch out from a group of
steps.

4. For each Event there is an Event Conditions Table which you can define,
along with the Actions which you want to take if a condition is satisfied.

5. If a step has a blank Event Conditions Table, it means that workflow will
follow the normal progression as represented by the map.

6. You can specify up to 255 workflow variables as columns of the Event
Conditions Tables, and up to 9999 rows. Columns are ANDed and rows
are ORed.

7. For each row you can also specify an Action. Supported Actions include
the following:

o Activate Step
o Abort Step
o Abort Incident
o Call .NET Code
o Call Web Service

8. The Conditions Table for User steps allow you to specify a Recipient on a
conditional basis. Thus, you can decide who will perform the step based
upon any condition.

9. Jump To can occur on Complete, Return, Re-Submit, and Late Event
Conditions. However, please note the following exceptions:

o When Complete conditions are present for a step, normal links are
ignored when the step is complete.

o When Return conditions are present for a step, normal links are
ignored when the step is returned.

o When a step is Jumped To (activated through Event Conditions),
Activate conditions are ignored.

o Jumping to a delayed step (using Event Conditions) immediately
activates the step.

o Returning a task sends it back to the user of the previous step who
originally performed the task. This is also true for Queue steps.

o Any step with multiple recipients from a group or dynamic group
cannot return the task.

Note: Conditions Tables are very powerful. While they give you a lot of
flexibility, they must be used with caution because it is easy to define
conditions and actions which are contradictory or can lead to workflow
processes which "stall."

The Event Conditions Tables Window

The Event Conditions Tables window contains a spreadsheet with six tabs:
Activate, Complete, Late, Return, Resubmit, and Recipient. Click on a tab to
display the corresponding Event Conditions Table.

The first column of an Event Conditions Table is reserved for the Action that will
be taken if the condition is satisfied. The second column is reserved for the step
that will be invoked by the Action.

All other columns represent workflow variables from the Main Spreadsheet which
you can use to define the conditions. You select these variables while defining
the conditions tables and the name of the variable is displayed as the column
heading. You can select up to a maximum of 255.

Each row consists of a unique condition which you define. The first column of a
row represents the Action that will be taken if the condition is satisfied. All other
columns for the row contain either a blank, in which case the variable is ignored,
or contains an expression against which the variable is compared. Thus, in the
Event Conditions Table shown below, the Order Entry workflow step is activated
if "Customer" is "Medium sized," "Dept." is "Engineering," "Plant" is "A-9," and
"Approve" is "Yes."

Activate Event Conditions Table

Every step, other than the Begin or End Step, has an Activate Event Conditions
Table. This table is used if you want to activate the step on a conditional basis. It
is evaluated by the Ultimus BPM Server when a step is to be activated. If the

Activate Event Conditions Table for a step is empty, the step is always activated.
However, if there is one or more entry in the table, Ultimus performs the actions
listed in the Event Conditions Table if the corresponding conditions are satisfied.
The Action is the following:

• Activate the step.

An example of the Activate Event Conditions Table is shown below:

In this example, the Engg step is activated only under two conditions. For the first
condition, the step is activated if the Total Expense is 1000, the Department is
Sales, and the value of the Tax variable is "Y." For the second condition, the step
is activated if the Total Expense is 10000, the Department is Manufacturing, and
the expense has been approved.

Note: The Activate Event Conditions Table is evaluated one row at a time,
starting with the first. As soon as a row evaluates as true, the step is
activated, and no further rows are evaluated. If none of the rows evaluate
true, the step is not activated.

Complete, Late, Return, and Resubmit Event Conditions Tables

The Begin Step, User steps, Flobot steps, and Maplet steps contain two or more
of the following Event Conditions Tables: Complete, Late, Return, and Resubmit.
These tables are evaluated by the Ultimus BPM Server as follows:

• Complete: Evaluated when the step is completed.
• Late: Evaluated if the step becomes late (i.e., it goes past its Completion

Time and Extension Time).
• Return: Evaluated by the Ultimus BPM Server if the step is returned.
• Resubmit: Evaluated by the Ultimus BPM Server if the step is re-

submitted.

If any of these Event Conditions Tables are empty, the BPM Server does the
following:

• Complete: The BPM Server activates the next step(s)in the process map.
• Late: The BPM Server does nothing.
• Return: The BPM Server activates the previous step performed by a user

in the process.
• Resubmit: The BPM Server does nothing.

However, if there is one or more entry in a Table, the BPM Server does not follow
the process map. Instead, it performs the actions listed in the Event Conditions
Table if the corresponding conditions are satisfied. The Actions can be any of the
following:

• Activate another step.
• Abort another step.
• Abort the entire workflow incident.

Since you can specify multiple condition rows and every row is evaluated, you
can cause it to perform many different Actions. The Complete, Late, Return, and
Resubmit Event Conditions Tables, therefore, give you tremendous flexibility in
changing the course of the workflow based upon unique conditions.

Recipient Conditions Table

User steps and Flobots steps have a Recipient Event Conditions Table. In the
first column of the Table, you select the Type of Recipient, then choose the
Recipient based on that Type.

The following Recipient Types are available (for complete definitions of these
Recipient Types, see "Designing Process Maps."):

• Users
• Job Functions
• Groups
• Queue
• Cell Contents
• Supervisor Cell Contents
• Manager Cell Contents

If the Recipient Conditions Table for a step is empty, or none of the condition
rows are satisfied, the Recipient is as named in the step Properties. However, if
there are one or more rows in the table, the BPM Server selects a Recipient
listed in the table when the corresponding conditions are satisfied. Since the
BPM Server evaluates the conditions from the top, the first row for which the
conditions are true specify the Recipient for the step.

The Recipient Conditions Table, therefore, gives you tremendous flexibility in
assigning workflow tasks based upon unique conditions, such as the skill level of
users and the complexity of the task.

Note: When combined with the Activate Conditions Table, this feature
allows you to decide not only if a step will be activated, but also who will
do it under different conditions.

Ultimus also provides an advanced feature for Referencing External .NET
Assemblies When Calling .NET Code

Working with Conditions Tables

In the following sections, we discuss how to define a Conditions Table. In the
examples given below, we use the User step, which is the most common. For the
other steps, such as Junctions, Flobots, and Maplets, there are some slight
variations as to which events are available, which are discussed in the later
sections.

Opening the Conditions Table Window

To open the Event Conditions Table for a step:

• Right-click on the step and select Event Conditions. The map step
Properties window appears and defaults to the Conditions tab. The
window may be resized, maximized, or minimized.

Specifying Actions in the Event Conditions Table

The first column of the Event Conditions Table is the Actions column and is
permanently labeled as such. Each cell in the Actions column is used to specify
the action which will be taken. The second column is permanently labeled as
Parameters. This is used to specify the step related to the action.

To add an Action to an Event Conditions Table:

o Open the Conditions Table you want to modify.
Notes: If no condition is present, the Action is always performed.

o Double-click on the first blank cell in the Actions coumn. The Actions
window appears.

o Select one of the following actions:
o Activate Step: Activates the step specified in the Parameters

column.
o Abort Step: Aborts the step specified in the Parameters column.
o Abort Incident: The entire workflow incident is aborted.
o Call .NET code: Calls .NET Code in the Parameters column.
o Call Web Service: Calls Web Services in the Parameters column.

The specified action appears under the Actions Column Header.

To change or delete an Action:

• Open the Event Conditions Table you want to modify.
• Select the Actions cell you want to modify.
• Right-click on the selected cell.
• Select Delete from the submenu that appears.
• The Action is deleted.

Note: If you remove an Action cell, the entire row of conditions for the
Action is also deleted.

Insert, Copy, Paste and Delete Conditions

When editing a Conditions Table, you may cut, copy and paste Event Conditions
Table entries. Any condition may be copied and then inserted between existing
conditions.

To insert a row in an Event Conditions Table:

• Open the Conditions Table you want to modify.
• Select the cell in the Action column below where you want a row inserted.

• Click on the Insert Row button in the Event Conditions Table Toolbar or
right-click on the cell and select Insert Row. A row is inserted above the
selected cell.

To copy a row or cell in an Event Conditions Table:

Open the Conditions Table you want to modify.

1. Select a cell or an entire row of cells.
2. Click the Copy button in the Toolbar or right-click on the selection and

select Copy.

To paste a row or cell in an Event Conditions Table:

1. After you have copied a row or cell, select the cell where you want the
copied item to appear. If you are pasting an entire row, select the cell in
the Action column.

2. Click on the Paste button in the toolbar.

To delete a row in an Event Conditions Table:

1. Display the Conditions Table you want to modify.
2. Select a cell or an entire row of cells.
3. Click the Cut button in the Toolbar or right-click on the selection and

select Cut.

Specifying Steps in an Event Conditions Table

For every Action that you define, there is a step that is affected. Under the
Activate Tab, the current step is added automatically since the only Action is to
activate the current step. However, under the Complete, Late, Return, and
Resubmit Tabs, the steps are defined independently.

To select or change a step in an Event Conditions Table:

1. Open the Event Conditions Table you want to modify. Double-click inside
the cell under the Parameters column header. The Select Step window
appears.

2. Select a step from the Step combo box. All steps created for the process
map are listed.

3. Click OK. The step name is added to the Step column.

Event Conditions Tables for Junctions

The Conditions Tables for Junctions are a subset of the Conditions Tables of
normal steps. This is because there are no tasks associated with Junction steps
and, therefore, a Junction step cannot be late, rejected, or have a Recipient.
Thus, a Junction step only has Activate and Complete Conditions Tables.

Working in the Data View

The collection and distribution of information is the essence of any workflow
process. Information is collected and distributed either because it is the very
purpose of the process, or because the information is used in making decisions
about how the process will flow to its conclusion. A good workflow process
collects raw data and converts it into useful information on which decisions can
be made and actions taken, and then enables users to make the decisions or
take the actions.

This section describes how the Data View can be used to move process
variables through a business process as it executes in the real world.

The Data View for each process can be accessed by expanding the nodes under
any process in the Repository View Window, and editing the Workflow Variables
object under the main process node.

The Data View for a particular process can also be accessed through the Build
Editor

Distributed Spreadsheets

Ultimus uses spreadsheets to collect and distribute data in the course of a
workflow process. Since the participants in a business process are not located at
one place, we use the model of "Distributed Spreadsheets." The Patented
Distributed Spreadsheet Model (#6,157,934) is one of the most powerful feature
of Ultimus which provides you flexibility and ease in designing and implementing
workflow processes. The "Distributed Spreadsheet" Model is shown in the
following illustration:

Each step in an Ultimus workflow process has a form and a local spreadsheet
which is invoked by the user. The process also has one main spreadsheet.
Information (data) moves from the form to the local spreadsheet. When a step is
complete, the information is transferred from the local spreadsheet to the main
spreadsheet of the process. In the main spreadsheet, it is combined and
synchronized with data coming from other steps in the workflow. From there it
moves to the local spreadsheets of other steps, if required.

An Ultimus workflow process uses two types of spreadsheets:

• Main Spreadsheet: This is the primary spreadsheet used by a workflow
process. For every process there is one main spreadsheet. The main
spreadsheet is used to consolidate the data received from all the steps in
the process and perform centralized calculations. The main spreadsheet is
located on the BPM Server.

• Local Spreadsheet: There are many local spreadsheets; one for each
step in the process. Local spreadsheets also have cells which contain

data, text, or formulas. Some of these cells are linked to "forms" which the
user uses to enter data. Other cells are linked to cells in the main
spreadsheet. When the user gets a task, the contents of linked cells in the
local spreadsheet are updated with the data from the main spreadsheet.
When the user performs the task, the form shows data from the local
spreadsheet. When the user enters data, it goes into the local
spreadsheet which recalculates and shows new values on the form
instantaneously. This allows users to design intelligent forms without
programming. When the user is finished with the task, the contents of the
linked cells in the local spreadsheet are sent back to the main
spreadsheet. The main spreadsheet, thus, collects data from all the users
involved, and performs calculations on this data. The results of these
calculations are passed on to the next stage of the process and may also
be used to make decisions regarding which steps will be executed.

Note: Many users are already familiar with popular spreadsheets, such as
Microsoft Excel and Lotus 1-2-3. If you are not familiar with these, we
strongly recommend that you learn about one of them before proceeding.
Since the spreadsheets used in Ultimus are functionally most similar to
Microsoft Excel, we recommend that, if you have a choice, you should
familiarize yourself with Excel.

Rules About Spreadsheets and Variables

1. Ultimus spreadsheets are functionally a subset of Microsoft Excel. Many of
the mathematical and logical functions of Excel are available in the
Ultimus spreadsheets. A description of these functions is provided in
Ultimus document "Spreadsheet Functions," which is included on the
Ultimus CD as an Adobe Acrobat PDF file.

2. There is one main spreadsheet for each process.
3. There is a local spreadsheet for every step in the process.
4. A cell in the local spreadsheet may be linked to one or more Controls in

the form for that step.
5. A cell in the local spreadsheet may also be linked to one cell in the main

spreadsheet.
6. If a local spreadsheet cell is linked to a main spreadsheet cell, the

contents of the main spreadsheet cell are transferred to the local
spreadsheet cell before the step is invoked, and are transferred back to
the main spreadsheet cell after the step is completed.

7. The background color of the spreadsheets are coded as follows:
o Main Spreadsheet: Variable color (determined by the user).
o Local Spreadsheets: White

8. Main spreadsheet cells and cell ranges may be named. Named main
spreadsheet cells or ranges are called workflow variables. Local variables
are named cells in a local spreadsheet. By naming cells, you do not have
to remember the Row-Column address of important cells.

9. Workflow variables can be used as arguments in creating Event
Conditions Tables. They can be used for powerful evaluation of conditions
and performing activities based upon those conditions. Event Conditions
Tables are described in "Documenting Event Conditions".

10. Global variables are automatically linked to new and current steps in the
process, which makes it much easier to define variables and links. A
global variable is linked to the same cell as in the main spreadsheet and
the name of the cell is defined automatically in the local spreadsheets.
Global variables are linked bi-directionally to the same cell in each step of
the workflow process.

11. Workflow variables can be used as databound variables, which are tied to
a database field. Before a workflow variable can be declared a databound
variable, the process map must be linked to a database table in the Map
Properties (see "Designing Process Maps"). During the execution of the
workflow, whenever a workflow Incident is initiated and executed, the
Ultimus BPM Server automatically updates the database after every step.
All system variables can also be linked to this database table. Thus
Incident Name, Summary, Priority, and more may all be saved in the user
database. For further information about databound variables please see,
"Working with Databound Variables".

12. Only single cell variables can be used as databound variables.
13. Workflow variables may be used as arguments for Cell Content Recipient

Types for steps. This allows you to assign recipients dynamically and also
create dynamic groups.

14. Variables are used to pass arguments to Flobots.
15. Workflow variables can be linked with local spreadsheets cells of

individual steps. This allows you to control which pieces of information are
shared with specific steps.

16. When passing date values to a Databound database, the Main
Spreadsheet cell linked to the date value must be formatted as "date". For
passing date type values to database fields, Ultimus does not support date
value earlier than March 1900.

Data View

The Data View has a set of menu options and buttons which are identical to all
other views, with the exception of the View Toolbar and the spreadsheet tabs.

The View Toolbar contains command buttons and functions which are unique to
the Data View. The spreadsheet tabs are used to select the main spreadsheet
and the local spreadsheets.

The View Toolbar

The toolbar consists of the following:

Button Name Description

 Font Combo
Box Select the cell font.

 Font Size
Combo Box Select the font size.

 Bold Bolds selected cell text.
 Italic Italicizes the selected cell text.
 Underline Underlines selected cell text.
 Align Left Left justify cell data.
 Align Center Center cell data.
 Align Right Right justify cell data.
 Cell Format Access the Format Cells window.

Show
Formulas View cell formulas. Toggle on/off view

 Cell Number Displays the location of the currently selected cell.

Pane
 Cell Edit Field Use this field to edit the content of cells.

Workflow
Variables
Combo Box

When a cell has been named, this combo box displays the
workflow variable when the cell is selected. If the workflow
variable is global, a globe icon appears to the right. The
combo box is also used to move the cursor to a named
cell.

Going to the Data View

To access the Data View from the Map View:

1. Select a step in the process map.
2. Click the Data View button or select Data from the View menu.

Note: If you click the Data View button without selecting a step, the main
spreadsheet appears.

To access the Data View from the Form View:

• Click the Data View button . The program switches to the Data View
and shows the spreadsheet for the selected step.

Working with Spreadsheets

Creating the Spreadsheets

When you make a new process map, a main spreadsheet is automatically
created along with a spreadsheet for the Begin Step. Whenever you add a new
step in the process map, a spreadsheet for that step is also created. If you name
the step, the spreadsheet assumes the name of the step. If you delete a step, the
spreadsheet for that step is also deleted.

Therefore, to make or delete spreadsheets, you do not have to do anything other
than define the steps in the process. The program takes care of maintaining the
appropriate number of spreadsheets.

Changing the Main Spreadsheet Color

The main spreadsheet background color can be changed by the user. This is to
differentiate it from the local spreadsheets, for which the background color
cannot be changed.

To change the background color of the main spreadsheet:

1. Select Main Spreadsheet Color from the Tools menu. The following
window appears.

2. Select the color from the Main Spreadsheet Color combo box.
3. Click OK.

Moving Among Spreadsheets

In the Data View, the main spreadsheet is identified with a tab labeled main and
each local spreadsheet is identified by a tab labeled with the name of that step.

The selected spreadsheet is designated by a white tab.

To switch to another spreadsheet:

• Click on the tab for that spreadsheet.

If there are many spreadsheets, there may not be enough room to display
all of them. The program provides tab controls which let you move either
left or right one step per click. You can use the tab controls to scroll the
tab list.

Saving Spreadsheets

Spreadsheets are saved automatically whenever you save the workflow process
as described in "Designing Process Maps," section.

Selecting Cells

You can select a cell or a range of cells.

To select an individual unnamed cell:

• Click on the cell. The cursor appears in the cell and its address appears in
the Cell Number pane.

To select an individual named cell:

• Select its name from the Workflow Variables combo box.

To select a range of cells:

• Click on the cell at the top left corner of the range and drag to the bottom
right corner of the range. The entire range is selected.

To select an entire row of cells:

• Click on the label for the row.

To select an entire column of cells:

• Click on the label for the column.

Text in a Cell

To enter text in a cell:

1. Select the cell and type in the text. The text appears in both the cell and
the Cell Edit field.

2. Press ENTER or any of the cursor keys to record the value.

Note: If you make a mistake while typing and would like to cancel what you
have entered, press the ESC key.

To edit previously entered text in a cell:

1. Select the cell. The text in the cell appears in the Cell Edit field.
2. Click in the Cell Edit field and edit the text or press the F2 key to directly

edit the cell.
3. Press ENTER to accept the changes.

Note: If you make a mistake while typing and would like to cancel what you
have entered, press the ESC key.

Entering a Formula in a Cell

Entering and editing a formula in a cell is exactly the same way as text is
entered, except that formulas must always be preceded with the "equal to" (=)
character.

The mathematical and logical functions are very similar to those provided by
Microsoft Excel. A list of valid functions which you can enter in the spreadsheet is
provided in the Ultimus document "Spreadsheet Functions," which is included on
the Ultimus CD as an Adobe Acrobat PDF file.

Formatting Cells

You can format a cell or a range of cells. Formatting cells is done the same as in
Microsoft Excel. Details of cell formatting are in the Ultimus document
"Spreadsheet Formatting," which is included on the Ultimus CD as an Adobe
Acrobat PDF file.

To format a cell or range of cells:

1. Selecting the cell(s).

2. Click the Format button . The Format Cells window appears.

3. Select the format.
4. Click OK.

Copying Cells

To copy an individual cell:

1. Select the cell.
2. Click the Copy button or select Copy from the Edit Menu.
3. Select a new cell.
4. Click the Paste button or select Paste from the Edit Menu. The contents

of the clipboard are pasted in the cell.

To copy a range of cells:

1. Select the range of cells.
2. Click the Copy button or select Copy from the Edit Menu.
3. Select a new cell.
4. Click the Paste button or select Paste from the Edit Menu. The contents

of the clipboard are pasted in the range, with the selected cell being the
top left corner of the range.

Deleting Cells

To delete a cell or range of cells:

1. Selecting the cell or range of cells.
2. Click the Cut button or select Cut from the Edit Menu. The contents of

the cell or range are deleted.

Naming Cells as Variables

In this section, we describe how to name and label workflow variables. When
naming variables, you can use Ultimus' Auto Labeling function to place the name
of the cell as a label in the cell on the left or above the named cell. If the workflow
variable is declared global, the label appears on every spreadsheet. Duplicate
names or cell address conflicts produce a warning message and cancel Auto-
linking.

Note: Auto-labeling only works for steps that have already been created. In
order to use auto-labeling for steps that were placed after the workflow
variables were created, you must open each workflow variable and save it
again. You can also copy and paste labels from one spreadsheet to
another.

To declare a main spreadsheet cell, or range of cells, as a workflow
variable:

1. Select the cell, or range of cells.

Note: For a single cell, you may also double-click the cell.

2. Right-click the selected cell(s) and select Cell Name. The Main Variable
window appears.

3. Type the name of the workflow variable in the Name field.
Note: It is strongly recommended that you do not use any numeric or
special characters while naming a cell. Its also recommended that
the name of workflow variables should not begin with "SYS", since
this word is reserved for "System Variables".

4. If you wish to use auto labeling, click the Auto Label checkbox, then select
the Left or Above radio button to determine the location.

5. Click Save. The name appears in the Workflow Variables combo box in
the Toolbar. If you selected auto labeling, the label also appears in the cell

on the left or above in the main spreadsheet. The label also appears in the
local spreadsheets for all steps created up to this point.

Databound Variables

To name a main spreadsheet cell, or range of cells, as a databound
variable:

1. Select the cell, or range, and access the Main Variable window, and name
the cell, or range, as described above.

2. Select a database column from the Bound Column combo box.

Note: Only single variables can be declared as databound variables.
Ultimus does not support range variables to be declared as
databound variables. To create a databound variable, the process
must be linked to a data source table in the Map Properties. For more
information, see "Linking to a Database Table."

3. Click Save.

For further information about databound variables please see, " Working with
Databound Variables"

Declaring Local Variables and Linking to Main Spreadsheet
Variables

Linking local spreadsheet cells to the main spreadsheet is separate from using
global variables. Global variables are linked bi-directionally to the same cell in
each step of the workflow process. Linking local variables to main spreadsheet
(not global) variables requires more work, but offers more flexibility in controlling
which spreadsheets receive particular pieces of workflow data, the flow of the
data (in or out), and also allows you to link non-corresponding cells in the
spreadsheets, for complex workflow calculations.

Local variables may be linked to workflow variables as you create them. Linking
variables allows the workflow BPM Studio to accomplish the following tasks:

1. Link a workflow variable to a local variable.
2. For each link, specify if the data flow between the workflow variable and

the local variable is unidirectional or bi-directional.
3. Delete or change the links.

Link Types: Data Flow

When you link a workflow variable with a local variable, Ultimus allows you to
specify the type of "data flow." This allows you to control whether data flow is
unidirectional or bi-directional for each link. The data flow choices are described
below. Each choice is associated with a symbol, which is displayed on the step
along with the name of the variable. This allows you to graphically determine not
only if the step is linked, but also the direction of data flow.

• Input: Specifies that data will flow from the main spreadsheet to the
local spreadsheet. The symbol indicates that data is flowing into the step.

• Output: Specifies that data will flow from the local spreadsheet to the
main spreadsheet. The symbol indicates that data is flowing out of the
step.

• Input + Output: If both input and output are selected for a link, the
data is transferred from the main spreadsheet at the start of the step and
transferred back to the main spreadsheet at the conclusion of the step.

• Output Indexed: Output Indexed is used to transfer data from the local
spreadsheet to the main spreadsheet when the recipient of the step is a
group. If the step recipient is a group, the form and local spreadsheet of
the step is distributed to all the members of the group. The same task is
done by multiple individuals. If there are three members in a group and the
cell A1 of the main spreadsheet is linked to cell A1 of the local
spreadsheet, when the first member sends data to the main spreadsheet,
it is placed in cell A1. If the link is Output, when the second member sends
the data to cell A1 of the main spreadsheet, it overwrites the data from the
first member, already in A1. If the link type is Output Indexed, the row

number of the main spreadsheet cell is automatically incremented and the
data from the second member goes into cell A2. For the third member, the
row number is incremented once again and the data is placed in cell A3.
This provides an efficient way of collecting data for a step performed by a
group. Note that the output arrow in the symbol for Output Indexed is
colored red, in contrast to the green colored arrows for all other symbols.

• Input Indexed: Input Indexed works the same as Output Indexed,
except that data flows to the local spreadsheet, and from the main
spreadsheet.

To declare a local spreadsheet cell, or range of cells, as a variable:

1. Create workflow variables (not global) in the main spreadsheet as
previously described in this chapter.

2. Click on the tab for the local spreadsheet.
3. Select the cell, or range of cells.

Note: For a single cell, you may also double-click the cell.

4. Right-click the selected cell(s) and select Cell Name. The Local Variable
window appears.

5. Type the name of the local variable in the Name field.
6. If you wish to use auto labeling, click the Auto Label checkbox, then select

the Left or Above radio button to determine the location.
7. Select the main spreadsheet variable from the Main Variable combo box.

Note: Even if you selected a main spreadsheet range for linking, you
only need to select a cell in the local spreadsheet. This cell is the top
left corner of the range in the local spreadsheet that is linked to the
range in the main spreadsheet. The size of the linked range is
dictated by the size of the range in the main spreadsheet.

8. Click on the Standard, Indexed, or None radio button to determine the
Input data flow. The appropriate symbol appears below the Main Variable
combo box.

Note: Linked variables in the Begin Step spreadsheet should only
have Output data flow.

9. Click on the Standard, Indexed, or None radio button to determine the
Output data flow. The appropriate symbol appears below the Main
Variable combo box.

10. Click Save. The name appears in the Workflow Variables combo box in
the Toolbar. If you selected Auto Labeling, the label also appears in the
cell on the left or above in the local spreadsheet.

Note: If you have not selected any of the Data Flow check boxes and click
the Save button, the link defaults to Standard Input and Output.

To modify a link:

1. In the local spreadsheet, double-click on the named cell. The Local
Variable window appears.

2. Select a new main spreadsheet variable or change the data flow.
3. Click Save.

To delete a link:

1. In the local spreadsheet, double-click on the named cell. The Local
Variable window appears.

2. Click the Delete button. A message window appears, asking if you want to
delete the local variable.

3. Click Yes. The variable and link are deleted.

Viewing Variable Links

Once you have created and linked local variables to workflow variables, you can
view the links graphically in the workflow map. The Variable Link View provides a
quick overview of all steps connected to the main spreadsheet through linking. It,
therefore, gives you a bird's eye view of the step where a variable originated,
where it is modified, and where it is used, but not modified.

In the Variable Link View, the process map provides the following information:

• The name of the local spreadsheet cell linked to the current workflow
variable is listed above each highlighted step.

• The Data Flow indicator is displayed above each highlighted step and
specifies the direction of data flow between the local spreadsheet and the
main spreadsheet.

To display links which you have already created:

• Select a workflow variable from the Workflow Variables combo box in the
Toolbar. The process map displays the links. The name of the local
spreadsheet variable to which it is linked and the data flow indicators are
displayed above each step.

Note: Global variables do not appear in the Workflow Variables combo box.

In the above illustration, the Variable Link View indicates that the workflow
variable "Name" is linked to the following steps:

Step Flow Indicator Link Description
Employee Output from step
Payroll Input to step
Manager Input to step
Flobot Input to step

Example of Using Global Variables

The following simple example demonstrates how spreadsheets are used by
Ultimus.

We create a workflow process where an employee enters meal and hotel
expenses for her travel report. The report goes to the departmental Secretary,
who enters the air fare for the trip. This information then goes to the Manager for
final approval. A process map for this example appears as follows:

For this simple example, the main and local spreadsheets are designed as
follows using global variables:

The Sub-Total cell has a formula which computes the Sum of Hotel and Meals.
The form for the Employee step consists simply of the fields labeled Name,
Meals, and Hotel. The Sub-Total is automatically calculated. Each of these form
fields are linked to their respective cells in the local spreadsheet. The Total cell
has a formula which computes the sum of Ticket and Sub-Total.

The form for the Secretary step consists of the fields labeled Name, Meals, Hotel,
Sub-Total, Ticket, and Total. Each of these form fields are linked to their
respective cells in the local spreadsheet. The Ticket field is used by the
Secretary to enter the air fare.

In a similar fashion, we can design the form and the spreadsheet for the Manager
step. An additional signature and approval field is added for the Manager to
provide his signature and approve or disapprove the expense report.

This simple process works as follows. When the Employee starts an Expense
Report, a form such as the following is displayed.

The Employee enters her name, the meals, and hotel expenses. The Sub-Total
is computed automatically. When she "sends" the form, the name, meals, hotel,
and Sub-Total values are transferred to the main spreadsheet. The Ultimus BPM
Server then sends this information to the local spreadsheet of the Secretary step
and tells her that she has an Expense Report task to perform. When the
Secretary invokes the task, she sees the following form:

The Secretary enters the ticket information and the total is computed
automatically. When she "sends" the form, the Ticket and Total information are
sent to the main spreadsheet. The Ultimus BPM Server then sends all the
information to the local spreadsheet of the Manager and the Manager is notified
that he has an Expense Report to approve. When the Manager invokes the task,
he sees the following form:

The Manager signs the form using his password, and either approves or
disapproves the expenses. This information may also be sent back to the main
spreadsheet for further processing by subsequent steps in the process.

This simple example demonstrates how data is routed in an Ultimus workflow
process. It shows how Ultimus uses spreadsheets and forms to enable you to
develop sophisticated workflow applications without the need for programming.

Working With Forms

Forms are the "user interface" of a workflow process. Users who participate in
the workflow use the forms to input and receive information, make decisions, and
review the work of others.

Ultimus lets the BPM Studio make forms unique to each step of the process. In
this way, the Ultimus BPM Studio controls what information the user can see or
input at each step, and what decision the user can make. The process is,
therefore, fine-tuned and optimized for the needs of each step.

Note: Third party forms cannot be trained through a child node.

Working with Standard Forms

For every Step in a workflow process, Ultimus BPM Studio allows designing two
different types of forms, the Standard Forms and the Thin Forms. This section
describes how to design Standard Forms. For details about Thin Forms see the
section "The Thin Form Designer".

The Standard forms are viewed in Ultimus Standard Client. Ultimus Standard
Forms allow the users design sophisticated and powerful front end of a workflow
process. The Standard Forms provide the users with a very simple and quick
means of designing web based front ends without doing any scripting. Using the
Standard Forms a user can visually create forms that connect with databases
and performs complex queries or uses customized ActiveX Controls. While the
Ultimus Standard Client and forms provide sophisticated capabilities, they use
ActiveX or Java controls that may not function in every browser. Ultimus
Standard Client and Forms are more appropriate for users that are participating
in a workflow process over the intranet OR a high speed internet.

When using Standard Forms, Ultimus provides FCO methods that control data
transfer between the Controls in an Standard Form and a Step’s Local
Spreadsheet. Most of these FCO methods are Ultimus internal methods that are
not intended for general usage by Ultimus customers and partners. Those
methods that are supported for customer and partner usage are listed in Chapter
6 of the Ultimus EIK, “Using Third-Party Controls in Ultimus Forms”. Please note
that Ultimus does not support usage of any FCO methods that are not
documented in the EIK.

Designing and Editing the User Interface

The Ultimus BPM Studio provides a powerful graphical form Designer which
produces web-based forms used in the Ultimus Client. Forms are made up of
fields, such as text boxes, edit fields, radio buttons, grids, and more. These fields
are also called controls. Each control in the form is linked to cells in the local
spreadsheet. When the form is painted, the contents of the controls are updated
with the contents of the local spreadsheet operating behind the scenes. When
the user enters data, the data goes directly into the local spreadsheet, where it is
calculated immediately. These calculations are reflected in other controls linked
to cells which receive the results of the calculations. Linking with the local
spreadsheet gives the Ultimus forms a lot of power and flexibility for computation
and decision making. When the user has finished the form and clicks the Send
button, the local spreadsheet cells linked to the main spreadsheet are sent to the
main spreadsheet, whose contents are then updated and recalculated.

Rules and Guidelines About Forms

1. Each step must have a form. A blank form is created automatically when a
step is entered in the process map.

2. Ultimus forms use Dynamic HTML and ActiveX controls. However, the
forms Designer is graphical and does not require any scripting or macros.

3. Ultimus forms can also use HTML controls in addition to Java Beans or
ActiveX controls. HTML controls are "lighter" and faster; however, their
functionality is limited by HTML. Java Beans and ActiveX controls are
"heavier" and slower, but provide much more functionality.

4. Controls in the forms must be linked to cells in the local spreadsheet or to
a database. If a control is not linked, the data entered in the control is lost
after the user completes the form. Linking controls to databases and using
databases is described in "Using Databases with Forms."

5. Default values for each control can be defined by placing the value in the
spreadsheet cell linked to the field. Defaults make it easier for users to
work with the forms.

6. While designing a form, you can immediately test the appearance and
logic in the test mode.

7. Ultimus forms support digital signatures through a password. You can
insert a signature control on any form. When the user "signs" it using her
password, her name appears in all subsequent forms with a special bit
pattern.

8. Ultimus forms allow you to attach documents. These documents, or
"attachments," are routed with the workflow just like other pieces of data.
However, the attachments are downloaded only when needed in order to
avoid unnecessary network traffic.

9. After you have designed a form, you can easily copy the entire form or a
control to other steps. This saves a lot of time in designing workflow
processes.

10. Ultimus also provides a powerful Form Object Library that enables you to
share and reuse controls that you have defined in the form. The Form
Object Library is described in "Working with Form Object Library Editor."

11. In addition to the variables which users can define, Ultimus provides a
number of pre-defined "system variables" which are common to all steps
in the process. Instead of the user having to define and link these
variables for each step, Ultimus enables you to select these fields from a
list and takes care of all the linking of this information. System variables
are defined in "Advanced Design Features"

12. Ultimus also provides a "Placeholder" control which allows you to use your
own third-party ActiveX or Java Bean controls for specialized functions.

13. Ultimus supports right-to-left text in forms and the ActiveX Client for use
with Arabic and Hebrew languages.

14. Ultimus does not support training of third-party forms through the child
node.

The Form View

The Form View Toolbar contains command buttons and functions unique to the
Form View. The HTML Controls Palette contains standard lightweight controls
that can be used in forms. The Advanced Controls Palette contains ActiveX
controls for advanced functions. The Alignment Aid Toolbar provides various
alignment and sizing aids. It is also covered later in this chapter.

The Form View Toolbar

The Form View Toolbar contains the following buttons and controls:

Button Name Function

 Test Mode Preview the form to see how it will behave when the
process is running.

 Page Selection
Combo Box

Displays the selected page and allows you to change
the page.

 New Page Creates a new page for a multi-page form.

 Delete Page Deletes the selected form page.

 Spreadsheet Links
Display/Hide the local spreadsheet for the form and
Control Links. Also enables linking controls with
spreadsheet cells.

 Recordset Links Open/close the Recordset pane and display links. Also

enables linking controls with database columns.
 Spreadsheet Display/Hide the local spreadsheet for the form.
 Recordset Open/close the Recordset pane.
 Notes Toggle

Button Display/Hide BPM Studio Notes.

 Alignment Grid Show/Hide the alignment grid.

 Step Select
Combo Box Switch to the form for another step.

Creating a Form

When you add a new step in the process map, a blank spreadsheet and a blank
form for that step are automatically created. If you name the step, the
spreadsheet and the form assume the name of the step. If you delete a step, the
spreadsheet and the form for the step are also deleted.

Thus, it is easy to make or delete spreadsheets and forms. You do not have to
do anything other than define the steps in the process map. The program takes
care of maintaining the appropriate number of forms and spreadsheets.

Invoke the Form View

From the Map View:

1. Select a step in the process map. The Form View button is activated.
2. Click on the down arrow beside the Form View button and select Form

View. The form for the step appears.

Note:

You can also double-click on a step to display its form, or right-click on the
step and select Form.

From the Data View

1. Select the Spreadsheet tab for the step.
2. Click on the down arrow beside the Form View button and select Form

View. The form for the step appears.

Moving Among Forms

When you are in the Form View mode, a form page is displayed in the
workspace.

To switch to another step's form:

• Select the step from the Step Select combo box in the Toolbar. The form
for the selected step appears.

Creating a Form With Multiple Pages

Ultimus allows you to create a form with multiple pages. This allows you to
design forms in which related information is grouped together on one page. Each

page can have its own name. Also, a page can be declared as a subform, which
can be invoked by a button on another page.

Note: The first page in a form cannot be declared as a subform.

To create and delete pages in a form:

1. Select Pages from the Edit menu. The Pages window appears.

2. To add a page, click on the New button . A new page appears in the

Pages list box. The software assigns a default name to the new page,
which you can change, as described in the section "Page Properties".

3. To delete a page, select the page in the Pages list box and click the
Delete button . The page is deleted.

4. To move a page, select the page and move it using the Up and Down
arrow buttons .

5. Close the window.

Editing Pages using the Toolbar Functions

You can also add, delete, and move between pages using the Toolbar.

To create a new page for a form:

• Click the Insert page button . A new, blank page is inserted behind the
current page. The software assigns a default name to the new page,
which you can change, as described in the section "Page Properties".

To delete a page:

1. Go to the page.
2. Click the Delete Page button .

To switch between pages:

• Use the Page Select combo box.

Form Properties

When a new step is added to a workflow process, a blank form is attached to that
step. You can change the size of the form and also change its properties, such
as enabling and disabling Return, Send and Printing hence defining the actions
performed when the form is loaded, sent, and returned, and adding custom
HTML code, such as META tags, or scripts. A form can also have multiple pages.

To change the size of a form:

1. Click on an empty space in the form to select it. Eight "handles" appear on
the border of the form as small square boxes.

2. Click on a handle and drag to resize the form.

Enabling and Disabling Return, Send and Print Buttons

When the form is painted in the Client, the Send, Return, Memo and Print buttons
are always displayed in the Toolbar at the top. The user can click the Send
button to complete the form and send it forward or, in the case of missing or
incomplete information, click the Return button to return the process to the
previous step. The user may click the Print button to print the form. However,
under certain circumstances you may want to disable the Send, Return and Print
buttons based upon some logical conditions.

Using local Spreadsheet cells or workflow variables, you can enable and disable
the Return, Send and Print buttons on the form. If the linked cell or local variable
is either empty or has a 0, the Button is disabled. If the linked cell has a 1 the
Button is enabled. You can use these functions to enable or disable the Return,
Send and Print buttons, based on the data in the local Spreadsheet.

To enable and disable Return, Send and Print:

1. Right-click in the Workspace of the form and select Form Properties. The
Form Properties window appears and defaults to the General tab.

2. Type the cell address in the Send Enable/Disable Cell field or select a

workflow variable.
3. Type the cell address in the Return Enable/Disable Cell field or select a

workflow variable.
4. Type the cell address in the Print Enable/Disable Cell field or select a

workflow variable.
5. Click OK.

Defining Actions for a Form or Page

 Ultimus allows you to define various actions based on form and
page events. First you select an event, then you select the action
that takes place. Based on the action selected, additional
parameters may need to be defined. Form events and actions only
apply to the first page in a form. If you wish to define events and
actions for multiple pages in a form, you must define them in the
properties for each specific page. Page actions are defined in the
exact same way as form actions.

The following combo boxes are available for forms and pages:

• Available Events: This combo box lists following events available for use
with the form:

o Form Load: Occurs when the form is loaded in the browser.
o Form Send: Occurs when the form is sent by the user.
o Form Return: Occurs when the task is returned by the user.

• The following events are available for use with pages:
o Clicked: The user clicks on the page.
o Double-Clicked: The user double-clicks on the page.
o Loaded: The page is loaded.
o Unloaded: The page is closed.

• Assigned Action: This combo box lists the following actions that can be
performed when the selected event occurs:

o No Action: No action takes place.
o Invoke SubForm: Select a subform from the SubForm Name

combo box. A subform must be an additional page in the current

form, and defined as a subform (see the "Declaring Pages as
SubForms" section in this chapter). When the selected event
occurs, the subform is opened in the Client.

o Load Page: Select a page from the Page Name combo box. The
page should be an additional page in the current form. This action
allows you to move between pages without declaring them as
subforms.

o Go to Specified URL: Type the URL in the URL to Open field.
When the selected event occurs, the specified URL is opened in
the Client.

o Set Value of a Local Spreadsheet Cell: Type the cell address in
the Local Spreadsheet Cell combo box or select a local or system
variable. If you wish to apply a formula to the cell value, type the
formula in the Formula field. When the selected event occurs, the
value calculated by the formula is transferred to the local
spreadsheet cell.

o Execute Specified Script: Type the script in the Script edit box.
The script can be used to invoke a custom control or perform some
other action. When the selected event occurs, the script is
executed.

Note: Load Page is not available on Form Event actions.

• Set Button: After you have selected an event and an action, this button is
used to set the properties.

To define form or page actions:

1. Perform one of the following:
o Right-click in the work area of the form and select Form Properties.

The Form Properties window appears.
o Right-click in the work area of the form and select Properties. The

Page Properties window appears.
2. Click the (Page) Event Actions tab.
3. Select an event from the Available Events combo box.
4. Select an action from the Available Actions combo box.
5. Modify the fields that appear as described previously.
6. Click the Set button.
7. Click OK.

Defining Scripts for a Form or Page

Since Ultimus forms are actually an HTML page, Ultimus allows you to add
custom scripts and custom HTML code to the HTML code for the page. These
scripts can be JavaScript, VB Scripts, or HTML Scripts to add additional
functionality to the page. You can specify whether the script is inserted within the
BODY tag or outside of the BODY tag.

To define a form or page script:

1. Open the Form or Page Properties window and click on the Custom
HTML/Scripts tab.

2. Select the location of the script (in or outside of the BODY tag) from the

combo box at the top.
3. Type the code or script in the edit box.
4. Click Set.
5. Click OK.

Page Properties

Forms can have multiple pages. The following properties of a page can be
modified using the Page Properties window:

• Name the page.
• Select a background color or image.
• Make the page a subform.
• Define page event actions. This is covered in the previous section. See

"Defining Actions for a Form or Page" for more information.
• Customize HTML codes and scripts for the page. This is covered in the

previous section. See "Defining Scripts for a Form or Page" for more
information.

To modify the Page Name and Background Color or Image:

1. Right click on the form and select Properties, or select the form and
choose Properties from the Edit Menu. The Page Properties window
appears and defaults to the General Tab.

2. Type a name for the form page in the Name field. Each page of the form
can have a distinct name.

3. If you wish to change the background color (the default is White) select a
new color from the Color combo box.

4. If you prefer to use a background image, select it using the Background
Picture browse button. The image can be in GIF or JPG format.

5. Close the window.

Modeless Dialogs

Some of the dialogs provided by Ultimus BPM Studio are "modeless". This
feature gives users the ability to open a dialog for one control, make changes to
it, and then select the other control in the background to toggle to it's dialog and
make changes to it. This saves the user from three separate mouse-clicks to
move from one dialog to another.

Declaring Pages as SubForms

Ultimus allows you to declare a page to be a subform that can be called from
another page. You can invoke a subform by clicking a button on the main form
and close it by clicking a button on the subform. Furthermore, a subform can
cause a cell or range of cells to be transferred to another cell or range. When a
subform is invoked, it remembers the cell where the cursor is located. When a
subform is closed, if you are transferring a single cell value from the subform to
the parent form, the value is simply transferred from one cell to another.
However, if you have specified a range (such as for a grid control), the value of
the first cell in the range is transferred to the top-left cell of the grid control, and
the rest of the cells are populated accordingly.

Subforms can be invoked when a page is opened, sent, or returned, as
described previously. However, you can also use button controls to invoke
subforms from within the parent form, and specify whether or not data is
transferred when the subform is closed.

When you define the Button on the parent form, you can configure it to open
another page that has been declared as a subform or switch to another page.
You can also place a button control on the subform itself, and transfer data when
the form is closed, or close without transferring data. For more information on
defining button controls for use with subforms, see "Ultimus Form Controls."

To create a subform:

1. Right click on the form and select the Properties, or select the form and
select Properties from the Edit Menu. The Page Properties window
appears and defaults to the General Tab.

Note: Single page forms cannot be declared as subforms.

2. Click the subform tab.

3. Click in the subform check box to define the page as a subform. The
Value Cell(s) field is activated.

4. Enter a Cell Name or Address in the Value Cell(s) combo box, or select a
local variable. You may also click on the Select button and select a cell or
range from the spreadsheet that appears. This field specifies the cell
range that contains the result of the subform. The contents of this cell or
range are transferred to the control from where the subform was invoked.
The transfer takes place when the subform is closed.

5. Close the window.

Working with Controls

A form is made up of a number of objects, called "controls." Controls have
properties, attributes, and perform specific functions. In this section, we explain
how controls are used in general and define the actions common to all controls.
In "Ultimus Form Controls" we focus on the specific properties of individual
control types.

The HTML Controls Palette and Advanced Controls Palette

The Ultimus Forms Designer has two Control Palettes: the HTML Controls
Palette and Advanced Controls Palette. The HTML Controls Palette allows you to
insert standard HTML controls, such as text, fields, buttons, images, and more.
These are "lightweight" controls that offer higher speed and should be used
whenever possible.

The Advanced Controls Palette allows you to insert advanced Ultimus controls,
such as a spreadsheet grid, attachment controls, and signature controls. The
advanced controls are ActiveX and offer advanced functionality. The browser
used for the Client (Netscape or Internet Explorer) determines which control
appears when the form is loaded.

By default, the HTML Controls Palette and Advanced Controls Palette appear on
the right side of the Form View. However, you can move the Palettes below the
Main Toolbar or make them floating windows. Each button is associated with a
"control," which performs a certain function and behaves in a certain way. You
make forms by placing these controls on a blank form, link some controls with the
local spreadsheets, and define the properties of the controls.

The HTML Controls Palette buttons are as follows:

Button Name Function
 Arrow Cursor Return cursor to arrow mode.

 Lock When placing multiple controls, activate the Lock
button to keep the cursor in the current control mode.

 Text Box Insert a text box control.
 Edit Box Insert an edit box control.
 List Box Insert a list box control.
 Combo Box Insert a combo box control.
 Push Button Insert a push button control.
 Check Box Insert a check box control.
 Radio Button Insert a radio button control.
 Frame Control Insert a frame control.
 Image Control Insert an image control.

Custom Control
Placeholder Insert a custom control placeholder.

The Advanced Controls Palette buttons are as follows:

Button Name Function
 Edit Insert an advanced edit control.
 List Box Insert an advanced list box control.
 Combo Box Inserts an advanced combo box control.
 Grid Control Insert a grid control.
 Signature Control Insert a signature control.
 Attachment Control Insert an attachment control.

To move a Palette:

• Click on one of the divider lines in the Palette and drag it to the new
location. If you drag it to the Main Toolbar, it switches to a horizontal
configuration. If you drag it to the workspace, it becomes a floating
window.

To insert controls in the form:

1. Click the button for the control in the Palette. The cursor changes to the
insertion cursor for the selected control.

Note: To insert multiple copies of the same control, click on the Lock
button.

2. Click on the form where you want to insert the control. The control
appears on the form and the cursor returns to its normal state. The
control's X/Y coordinates are displayed in the bottom right-hand corner of
the message bar. This makes it easier for form designers to precisely
place controls on the forms. If the Lock button is enabled, click on the
Arrow button.

Aligning and Sizing Controls

Before you perform any operation on a control, you must first select it. You can
select multiple controls to perform an operation on all of them simultaneously.

To select multiple controls:

• Hold down the SHIFT key and select the controls. You may also use the
cursor to "lasso" the controls. The last control is the "reference control,"
and is referenced for sizing and alignment, described below.

To delete one or more controls:

• Select the controls, then click Cut or press DELETE.

To move a control:

• Click on the control and drag it to the new location.

Note: You can move multiple controls by selecting them and moving them
as a group.

To change the size of a control:

• Select the control. Click on one of the handles that appear and drag it to
resize the control. The location of the handle determines how the control is
resized, such as height and width. Corner controls adjust the size
proportionally.

Aligning and Sizing Controls with Each Other

Ultimus provides a powerful Alignment Aid Toolbar that contains functions for
aligning and sizing controls. Controls can be aligned along the left, right, bottom,
and top edges. They can be centered vertically and horizontally, and distributed
horizontally and vertically. They can be resized to match the height, width, or
overall size of the reference control, and can also be positioned in front of or
behind one another on the page.

When you select multiple controls, one of them has handles on the selection box.
This is the reference control. All other controls are aligned to this control. Make
sure that this control is in the correct location. If you prefer to use another control
as the reference control, SHIFT-Click on it.

Button Name Function

 Align Left Aligns selected controls to the left boundary of the
reference control.

 Align Right Aligns selected controls to the right boundary of the
reference control.

 Align Top Aligns selected controls to the top boundary of the
reference control.

 Align Bottom Aligns selected controls to the bottom boundary of
the reference control.

 Align Vertical Center Aligns the center of a control to the vertical center of
the form.

Align Horizontal
Center

Aligns the center of a control to horizontal center of
the form.

Evenly Space
Horizontally Evenly spaces the controls horizontally.

Evenly Space
Vertically Evenly spaces the controls vertically.

Same Size
Horizontally

Resizes the controls to the same width as the
reference control.

 Same Size Vertically Resizes the controls to the same height as the
reference control.

 Same Size Resizes the controls to the same height and width
as the reference control.

 Move Forward Moves the selected object forward one layer.
 Move Backward Moves the selected object backward one layer.

 Move to Front Moves the selected object in front of all other
objects.

 Move to Back Moves the selected object behind all other objects.

To align or size controls to each other:

1. Select the controls you want to align and the reference control.
2. Align the controls to the reference control using the Alignment buttons

described above.

Copying and Pasting Controls

You can copy controls and paste them on the same form, or on another form.

To copy and paste a control:

1. Select the control or a group of controls.
2. Click the Copy button , or select Copy from the Edit menu. The control

is copied to the clipboard.
3. Click the Paste button , or select Paste from the Edit menu. The cursor

changes to a replica of the clipboard contents.
4. Click on the form to paste the item(s) in the new location.

Note: To paste the item(s) on another form, go to the new form, then click
the Paste button.

Viewing Grid Lines on the Form

The adjustable grid line display option makes it easier to design forms. The scale
of the grid can be changed from 0 to 100. When the grid is activated, objects
placed on the form automatically snap to the grid coordinates.

To view and change the grid line display:

1. Click the Grid button in the Form View toolbar. The grid is displayed and
defaults to the 0 setting.

2. Adjust the scale of the grid with the Grid Size slide bar.

Defining Control Properties

Controls have Properties which define how they behave or appear. Every control
has some properties which are common with others, and some that are unique.

To change the properties of a control:

• Double-click on the control. The Properties window for the control
appears.

Note: You may also select the control and right-click on it, then select
Properties, or select the control and choose Properties from the Edit menu.

To change the properties of multiple controls in sequence:

1. Open the properties for the first control.
2. When you have finished modifying the properties for the first control,

select the next control. The properties in the window change to those of
the new control.

Notes: If you are changing the properties of several identical controls and
you want them to share the same properties, you can select all the controls
and change the properties at one time.

Ultimus remember the last font type, size, and color when inserting
controls. When you modify a control, the next controls inserted will have
the same basic properties.

Description of Common Controls Properties

Properties that are common to all controls are defined below. The properties that
are specific to a control are defined later in the next chapter under each control's
section. The following are common tabs in the Properties windows for controls for
properties that are unique to each control, see "Ultimus Form Controls".

General Tab

Use this tab to set general Control Properties. The following are General Tab
properties common to most controls.

• Caption: This is the label for the control. On certain controls, it is
displayed on the form. In other controls, the label is not visible. For
example, the caption in a button is displayed as the button label.

Colors Tab

You can change either the foreground or the background colors of any control in
the form.

• Foreground Color: Select the color of the control. In most cases, this is
the color of the text placed in the control.

• Background Color: Select the color for the background of the control.
Generally, you will want the background color to match the color of the
form. In this case, you can select the Default/Transparent color.

Fonts Tab

The Fonts Tab is used for setting the text font characteristics of a control. The
following functions are available:

• Font Properties: This combo box is not used.
• Font: Select a system registered font, such as Arial or Times New

Roman.
• Font Style: Select the font style, such as Regular, Bold, Italic, or Italic

Bold.
• Size: Select the font size, from 8 to 48 points.
• Strikeout: Enable or disable the strikeout property of a font.
• Underline: Enable or disable the underline property of a font.
• Sample: The selected font and properties are displayed.

Border Tab (Advanced Controls Only)

The advanced controls (with the exception of the attachment control) allow you to
define the following types of borders:

• Border
• 3D

Identification Tab

This tab contains the Control Name field. Ultimus assigns each control its own
unique name, but you can change it. The control name is used if you wish to
access the control from a script.

• Control Name: Type in the unique name of the control to change it from
the default name.

Miscellaneous Tab

This tab allows you to change the order in which the controls gain focus as the
user tabs between them. Some controls also have an edit field for a Status

message.

• Tab Order: Allows you to set and change the tab order for the form
controls.

• Status Message: Text placed in the Status Message will appear in the
Status Bar at the bottom of the form when the focus is on the control. It is
used to guide the user who is filling out the form. This text is also
displayed in a message window if the Field is required and the user tries
to send the form without entering data in the Field.

Description of Control Links

All controls have Control Link properties that specify how they are linked to the
local spreadsheet or database. Control Link properties are defined below. These
may not be the same for all controls. When we describe the various types of
controls, we list which of these properties apply to that control.

To change the Control Links for a control:

• Select the control and right-click on it, then select Control Links, or select
the control and choose Control Links from the Edit menu. The Control
Links window appears and defaults to the Spreadsheets tab.

Using the Control Links property page you can change following settings for a
control:

• Spreadsheet Links: The Spreadsheet Links allow you to link the control
to spreadsheet cells and workflow variables.

• Scripts: When a control is placed on the form and its Properties modified,
Ultimus automatically generates a script for that control. The Scripts tab
allows you to view the script and change it manually.

• Recordset: Ultimus allows you to link popular databases with the forms
for each step in a workflow process. The Recordsets tab provides the
capabilities to link the controls to database columns. Details of this feature
are discussed in "Using Databases with Forms."

• Data Validation: The properties in this tab define the limits for the data
being entered in a field.

• Event Actions: The Event Actions tab allows you to select an Event, such
as clicking a button or getting focus, and assigning a specific action to that
Event.

Modeless Dialogs

Some of the dialogs provided by Ultimus BPM Studio are "modeless". This
feature gives users the ability to open a dialog for one control, make changes to
it, and then select the other control in the background to toggle to it's dialog and
make changes to it. This saves the user from three separate mouse-clicks to
move from one dialog to another.

Spreadsheet

The Spreadsheet Links allow you to link the control to spreadsheet cells and
workflow variables to perform the following functions:

• Destination Cell(s)/Variable: Enter the local spreadsheet cell address
which will receive the data from the control. This can be a single cell, such
as for a combo box or list box controls, or a range of cells, such as for a
multi-line edit box or grid controls. You can also select one of the following
system variables as the destination:

o Priority
o Incident Summary
o Disable Abort

Thus, by entering data in the control, the user can change the value of the
system variable. System Variables are discussed in detail in "Advanced
Design Features."

• Source Cell(s)/Variable: Enter the local spreadsheet cell address,
workflow variable, or Recordset column which will be the data source for
the control. Local spreadsheet cells and workflow variables can represent
a single cell or a range of cells. For list box or combo box controls, a range
of cells provide the data list.

The following System Variables are available for the Source
(system variables are discussed in detail in "Advanced Design
Features"):

• Process Name
• Priority
• Initiator
• Incident Summary
• Incident No.
• Disable Abort

Ultimus also provides the following list of user information variables
for the Source (see the "Description of User Information Variables"
section of this chapter):

• User Name
• User's Job Function
• User's Department
• User's E-Mail Address
• User's Supervisor
• User's Manager
• Group Members

• Enable/Disable Cell: Depending on the value in this cell, the control can
be enabled or disabled. If the linked cell is either empty or has a 0, the
control is disabled. If the linked cell has a 1, the control is enabled. You
can use this function to enable or disable the control, based on the data in
the local spreadsheet.

• Show/Hide Cell: Depending on the value in this cell, the control can be
shown or hidden. If the linked cell is either empty or has a 0, the control is
hidden. If the linked cell has a 1, the control is shown. You can use this
function to show or hide the control, based on the data in the local
spreadsheet.

Modeless Dialogs

Some of the dialogs provided by Ultimus BPM Studio are "modeless". This
feature gives users the ability to open a dialog for one control, make changes to
it, and then select the other control in the background to toggle to it's dialog and
make changes to it. This saves the user from three separate mouse-clicks to
move from one dialog to another.

Scripts

When a control is placed on the form and its Properties modified, Ultimus
automatically generates a script for that control. The Scripts tab allows you to
view the script and change it manually. The use of scripts can also be toggled on
and off.

• Use Scripts: There are two options through which the FCO (Form Control
Object) can communicate with the controls present in the form.

o Directly using COM in Internet Explorer : The Use Scripts
checkbox is not activated (this is the default setting). In this case,
the FCO talks with the control directly using COM in Internet
Explorer. This makes it much faster since no scripts are involved.
The drawback of this is that users can't customize a control's
behavior, since customization is handled through scripts.

o Via Ultimus-generated scripts: The Use Scripts checkbox is
activated. In this case, the FCO talks with the controls using the
scripts. Users can customize the scripts by writing their own or
customizing the existing script.

Note: When using Ultimus Standard Forms, Ultimus provides FCO methods
that control data transfer between the Controls in the Standard Form
and the Step's Local Spreadsheet. Most of these FCO methods are Ultimus
internal methods that are not intended for general usage by Ultimus
customers and partners. Those methods that are supported for customer
and partner usage are listed in the following chapter of Ultimus EIK ,
"Using Third-Party Controls in Ultimus Forms". Please note that Ultimus
does not support user manipulation of undocumented FCO methods in
Ultimus Scripts.

Note: Make sure that you write the scripts for the target browser. The
default scripts that appear in the Tab are based on IE with the Standard
FCO.

• Reset Button: Resets a modified script back to the default.
• Set Button: When you have completed changes to the Script, the Set

button confirms the changes, which are reflected in the final HTML code
for the form.

Notes: Please use caution when changing the script. Misuse of this
function may cause the form to behave abnormally.

The control must be linked to a spreadsheet cell in order to view the script.

Data Validation

The properties in this tab define the limits for the data being entered in a field.

• Read Only: If checked, this field is for display only. Data cannot be
entered.

• Required: If checked, this control must be manipulated in order to send
the form. For example, if you wanted to require that a user sign a form
before sending it, you would make the signature control required.

The following options are available only on select controls when they are
relevant:

• Normal: The control (typically an edit field) has no special formatting. You
may, however, define the maximum number of characters allowed in the
field provided.

• Numbers Only: If an edit control is to be used for entering numbers only,
this property prevents the user from entering any characters other than 0-

9. You may also enter the minimum and maximum range in the fields
provided.

• Valid Date: If the edit control is used to enter a date, this option verifies
that it is in the correct format. Ultimus gets the date format from the
Windows regional settings.

Modeless Dialogs

Some of the dialogs provided by Ultimus BPM Studio are "modeless". This
feature gives users the ability to open a dialog for one control, make changes to
it, and then select the other control in the background to toggle to it's dialog and
make changes to it. This saves the user from three separate mouse-clicks to
move from one dialog to another.

Event Actions

The Event Actions tab allows you to select an Event, such as clicking a button or
getting focus, and assigning a specific action to that Event. This powerful
capability allows you to perform a specific action when an Event occurs, and
enables you to create scriptable forms.

• Available Events: This combo box lists the following Events available for
use with the selected control:

o Clicked: The user clicks the control.
o Double-clicked: The user double-clicks on the control.
o Set Focus: The control gains focus.
o Lose Focus: The control loses focus.

• Available Actions: This combo box lists the following actions that can be
performed when the above selected Event occurs:

o No Action: No action takes place.
o Form Related Actions: Form actions such as Send Form, Return

Form etc.
o Recordset Action: Recordset actions such as Move to Next

Record, Move to First Record etc.
o Spreadsheet Action:
o Call .NET Code Calls .NET Code when some event takes place.
o Call Web Services: Calls Web Services when some event takes

place.
o Refresh Recordset: When clicked, this function refreshes the

linked recordset if the table is changed.

o Execute SQL Action(s): When clicked, this function executes SQL
Action(s).

o Execute Specified Script: When clicked, this function executes
the Specified Script.

Modeless Dialogs

Some of the dialogs provided by Ultimus BPM Studio are "modeless". This
feature gives users the ability to open a dialog for one control, make changes to
it, and then select the other control in the background to toggle to it's dialog and
make changes to it. This saves the user from three separate mouse-clicks to
move from one dialog to another.

Form Related Actions

Following form actions can be executed when some control event takes place.

• Send Form: The form is sent.
• Return Form: The form is returned to the last user who completed a step.
• Invoke SubForm: Select a SubForm from the SubForm Name combo

box. A SubForm must be an additional page in the current form, and
defined as a SubForm (see the "Declaring Pages as SubForms" section in
this chapter). When the selected Event occurs, the SubForm is opened in
the Client.

• Close SubForm with Data Transfer: The SubForm is closed, and the
value of the cell or range defined in the Page Properties of the SubForm is
transferred to the parent form. For information on defining the Value
Cell(s) of a SubForm, see the "Declaring Pages as SubForms" section of
this chapter.

• Close SubForm without Data Transfer: The SubForm is closed, but the
data contained in the Value Cell(s) is not transferred to the parent form.

• Load Page: Select a page from the Page Name combo box. The page
should be an additional page in the current form. This action allows you to
move between pages without declaring them as SubForms.

• Go to Specified URL: Type the URL in the URL to Open field. When the
selected event occurs, the specified URL is opened in the Client. You may
also enter a cell address (e.g., B1), which allows you to specify the URL
dynamically.

• Set Value of a Local Spreadsheet Cell: Type the cell address in the
Local Spreadsheet Cell field. If you wish to apply a formula to the cell
value, type the formula in the Formula field. When the selected event
occurs, the value calculated by the formula is transferred to the local
spreadsheet cell.

Recordset Actions

Ultimus uses the concept of "recordsets" for segregating a group of form controls
that work with a database table. A recordset consists of one or more variables
linked to a table. Any action performed on the database is reflected on the
recordset as a whole. For details see the section "Using Databases with Forms".
You can execute following recordset actions when some control event takes
place:

• Move to the First Record in the Recordset: Populate the control with
the value of the first record in the Recordset.

• Move to the Next Record in the Recordset: Populate the control with
the value of the next record in the Recordset.

• Move to the Previous Record in the Recordset: Populate the control
with the value of the previous record in the Recordset.

• Move to the Last Record in the Recordset: Populate the control with the
value of the last record in the Recordset.

• Create new Record in the Recordset: Populate the control with the
value of the new, empty record in the Recordset.

• Update the current Record in the Recordset: Update the current record
in the Recordset with the value contained in the control.

• Delete current Record in the Recordset: Delete the value contained in
the current record of the Recordset.

• Clear Controls linked to the Recordset: Clear the value of the controls
that were populated by values obtained from the Recordset.

Note: These recordset actions do not work with "Custom Recordsets".

Calling .NET Code

You can run .NET Code when some event takes place on a form (for example
Button click event). This provides a mechanism for executing .NET Code on
demand and makes Ultimus Workflow much more flexible. To execute .NET
Code on a control event, follow the steps given below:

1. Right click on the control and select the option Control Links. Control Links
property page is shown to you. This page defaults to Spreadsheet tab.
Select the Event Actions tab.

2. Select the suitable event from Available Events combo box and select the
action Call .NET Code from Assigned Action combo box.

3. Click the browse button to select the file from the directory
4. Select the Object to Call from the drop down combo box

5. Click the properties button. The Object property dialog appears

8. Select Object Property and Workflow Variable from the drop down menus.
9. Select the Set radio button
10. Click OK
11. To Set methods for the .NET Code. Click the methods button

12. Select Method name from the drop down menu
13. A list comes up initially of all the .NET Code method parameters, the

Workflow Variables column is blank. Click twice on the rows in the
Workflow Variables column, a pop up list box appears.

14. Select workflow variables from the list box and link them to the
corresponding .NET Code variable in that row.

15. Click OK

Ultimus also provides an advanced feature for Referencing External .NET
Assemblies When Calling .NET Code

Note: Structures and Classes are not supported by .NET Code.

Due to the limitation in Spreadsheets, Ultimus does not currently support
the following data types for Web Services and .NET Code.

• System.Byte
• System.Decimal
• Timespan
• All reference types (e.g. System.UIntPtr and System.IntPtr)
• System.Int64 signed/unsigned
• Arrays of all the above
• Enumeration
• Overloaded Methods

Calling Web Services

You can run Web Services when some event takes place on a form (for example
Button click event). This provides a mechanism for executing Web Services on
demand and makes Ultimus Workflow much more flexible. To execute Web
Services on a control event, follow the steps given below:

1. Right click on the control and select the option Control Links. Control Links
property page is shown to you. This page defaults to Spreadsheet tab.
Select the Event Actions tab.

2. Select the suitable event from Available Events combo box and select the
action Call Web Services from Assigned Action combo box.

3. Type in the URL path for WSDL location. An example of a WSDL URL is
http://<machine>/plwebservices/processname.asmx?WSDL

Note: Ultimus supports the consumption of Web Services that
comply with the following standards:

i) SOAP 1.1 - defined at http://www.w3.org/TR/SOAP

ii) WSDL 1.1 - defined at http://www.w3.org/TR/wsdl

Due to the limitation in Spreadsheets, Ultimus does not currently support
the following data types for Web Services and .NET Code.

• System.Byte
• System.Decimal
• Timespan
• All reference types (e.g. System.UIntPtr and System.IntPtr)
• System.Int64 signed/unsigned
• Arrays of all the above
• Enumeration
• Overloaded Methods

4. Click Connect

5. Click the methods button

6. Select Method to execute from the drop down menu

7. A list comes up initially of all the Web Services variables.
8. Select Ultimus Variable and select Web Service Parameters.
9. Click Link. The linked variables appear below.
10. Click OK.

Note: Ultimus does not support consumption of Web Services that contain
multi-dimensional parameter arrays. Arrays of structures and Classes are
not supported in Web Services called from the Forms.

Execute Database Actions

Ultimus allows you to execute Database Actions when some event takes place.
Database Actions allow the users to execute any SQL statement including
complex queries that work on multiple tables. For example you may want to
delete a record from a database table when user clicks on a button. This can be
easily accomplished by executing database action on a control event. This
section illustrates the linking of Database Actions with control events. For details
on creating database actions see the section, "Creating Database Actions". To
execute database action on a control event:

• Right click on the control and select the option Control Links. Control Links
property page is shown to you. This page defaults to Spreadsheet tab.
Select the Event Actions tab.

• Select the suitable event from Available Events combo box and select the
action Execute SQL Action from Assigned Action combo box.

• Available actions list box shows all the recordset actions.
• Select the database action and click on the Add button.

• The Action is added to the right side column.
• Click on the set button.

Modeless Dialogs

Some of the dialogs provided by Ultimus BPM Studio are "modeless". This
feature gives users the ability to open a dialog for one control, make changes to
it, and then select the other control in the background to toggle to it's dialog and
make changes to it. This saves the user from three separate mouse-clicks to
move from one dialog to another.

Note: SQL Actions cannot be executed against form events, like Form Sent
etc.

Description of User Information Variables

User information variables allow you to use data specific to your process Incident
and use it in your forms. The values of these variables change with each Incident
and, in fact, with each step.

The following user information variables are available:

• User Name: Name of the user performing the step.
• User's Job Function: The current user's job function, as defined in the

Ultimus Org Chart.
• User's Department: The Department in the Ultimus Org Chart to which

the current user belongs.
• User's E-Mail Address: E-Mail address for the current user.
• User's Supervisor: Supervisor of the current user.
• User's Manager: Manager of the current recipient.
• Group Members: If the step recipient is a group, this variable lists all of

the members in the group. When you select the group members variable,
the Group combo box appears below and lists all of the groups which
have been defined in the Org Chart. Select the specific group from the
Group combo box.

Linking Controls with Spreadsheet Cells

As described previously, you can link controls on a form to local spreadsheet
cells by using the Control Links. Ultimus also allows you to link controls
graphically. You can link a control, such as a single-line edit field, to an individual
cell or, in the case of a multi-line edit field, to a range of cells.

To link a control to a single cell or a range of cells:

1. In the Form View, click the Spreadsheet Link button . The local
spreadsheet appears on the right.

2. Select the control.
3. Click on the cell of the local spreadsheet, or select a range of cells. The

control displays the Source and Destination cells as a Tooltip.

Note: When you link a control to a local spreadsheet cell, the cell border
turns blue. When you select another control, the cell border turns red. This
gives you a visual indication of which cells have been linked.

Linking Controls to Separate Source and Destination Cells

The linking process described above assumes that the Destination Cell(s) and
the Source Cell(s) are the same. However, some controls, such as Combo and
List Boxes, require the Source Cell(s) to be different from the Destination Cell.
You may also want Edit Fields and other controls to have different Source and
Destination cells. For more detailed information on the linking controls to local
spreadsheets, see the "Description of Control Links" section in this chapter.

To link separate Source Cells and Destination Cells:

1. In the Form View, click the Spreadsheet Link button . The local
spreadsheet appears on the right.

2. Select the control.
3. Right-click on the control and select Control Links. The Control Links

window appears and defaults to the Spreadsheet tab.
4. Enter the address of the Destination Cell in the Destination Cell combo

box.
5. Close the window.

Note: When using a range of cells as the Source Cells, they must be
contiguous. The Destination Cell does not have to be contiguous to the
Source Cells. It can be anywhere on the spreadsheet. This allows you to,
for example, use the same Source Cells with many list boxes.

To graphically link separate Source Cells and Destination Cells:

1. In the Form View, click the Spreadsheet Link button . The local
spreadsheet appears on the right.

2. Select the control.
3. Hold down the CTRL key and click on the cell(s) in the spreadsheet pane.

A tool tip appears over the control listing only the Source Cell(s). Release
the CTRL key.

4. Click on the Destination cell(s) in the spreadsheet pane. The Destination
cell(s) appear in the tool tip over the control.

Note: If you link a control (without pressing the CTRL key) to a cell or range
and the source cell(s) have already been defined, only the destination
cell(s) are linked.

Linking Controls to Workflow Variables

As described previously, you can name spreadsheet cells as variables and link
controls on a form to these variables. You can link a control, such as a single-line
edit field, to a single cell variable, or in the case of a multi-line edit field, to a
range type multi-celled variable.

To link a control to a single cell or a range variable:

1. In the Form View, right click the control and select the option "Control
Links". The control links property page appears:

2. Select the desired destination variable from the combo box labeled

'Destination Cell(s)/Variable'.
3. Select the desired source variable from the combo box labeled 'Source

Cell(s)/Variable'.
4. Close the Control Links property page.
5. The selected control is linked to the specified variables.

Modeless Dialogs

Some of the dialogs provided by Ultimus BPM Studio are "modeless". This
feature gives users the ability to open a dialog for one control, make changes to
it, and then select the other control in the background to toggle to it's dialog and
make changes to it. This saves the user from three separate mouse-clicks to
move from one dialog to another.

Ultimus Form Controls

Ultimus forms support all standard controls found in web-based forms, such as
edit fields, combo boxes, and check boxes. In addition, Ultimus also provides
proprietary controls, such as a signature control, an attachment control, a
spreadsheet grid, and a placeholder for use with custom or third-party controls.
Controls are linked as described in the previous chapter. In this chapter, each
control and its unique functions are discussed in detail.

Advanced Combo Box Control

The advanced combo box control is like the standard combo box, but offers
greater functionality. A combo box displays a list of choices to the user and
allows him to select one. The advanced combo box control allows you to
determine which type of combo box is displayed in the form, sort its contents,
and check for duplicates.

Advanced combo box controls in a form must be linked to the local spreadsheet
or a recordset. Combo boxes require separate Destination and Source cell(s).
The procedure for linking combo boxes is explained in the previous chapter.

Advanced Combo Box Control Properties

In addition to the standard properties for all controls discussed previously, the
advanced combo box control has the following unique properties.

General Tab

• Type: Select the type of combo box to be used from the following:
o Simple: A combo box for which the choice list does not drop down,

it is always displayed below.
o Dropdown: Standard combo box for which the choice list drops

down.
o Dropdown Editable: Allows the user to select an item from the

dropdown list as well as enter a value in the edit field.
• Sort: Select whether or not you want to sort the List Box contents in

ascending or descending order.
• No Duplicates: If checked, this function checks for and eliminates

duplicates from the List Box contents.

Advanced Edit Control

The advanced edit control is like the standard edit control, but offers greater
functionality. Advanced edit controls are used for entering data in forms. Each
advanced edit control must be linked to a cell in the local spreadsheet or a
recordset. When the form is displayed, each advanced edit control displays the
contents of the cell to which it is linked. When a User enters data, the contents of
the linked cell are updated. Validation for maximum characters is performed as
the user types.

Every advanced edit control in a form should be linked to a local spreadsheet
cell(s) or a recordset column. A local spreadsheet cell may be linked to multiple
edit controls. When the form is created, the contents of the spreadsheet cell are
used as default values in the advanced edit control. When the user enters data in
the field, it is transferred to the spreadsheet cell where it is processed and
forwarded to other forms via the Main spreadsheet. Advanced edit controls are
linked to local spreadsheet cells just like any other control as described in the
previous chapter.

Advanced Edit Control Properties

In addition to the standard properties for all controls discussed previously, the
advanced edit control has the following unique properties.

General Tab

• Multi-line: Ultimus allows you to configure an advanced edit control to
have multiple lines of text and link it to more than one cell. You must link
the multi-line advanced edit control to a range of cells in a single column.
For each linked cell, the advanced edit control can accommodate one line
of 255 characters.

• Password: If you use an advanced edit control for password entry, you
can use this property to display "*" instead of the characters entered by
the User. The linked local spreadsheet cell contains the correct data.

• Filter: Select one of the following:
o Numeric: Prevents the user from entering any characters other

than 0-9.
o Alphabetic: Restricts the user from entering any characters other

than letters.
o Upper Case: Forces the text to upper case characters.
o Lower Case: Forces the text to lower case characters.
o Mask: Select this to put a character mask in the Mask field below.

The following masks are available (all other characters appear as
they are):

Mask Description
a Lowercase alphabetic characters.
A Uppercase alphabetic characters.
X Alphanumeric characters.
9 Numeric characters only

o For example, if you have an advanced edit control in which the user
enters a phone number. The mask for the advanced edit control
would be as follows:

o (999) 999-9999
o When the user fills out the form, the result is as follows:
o (919) 678-0900.
o Date: If the advanced edit control is used to enter a date, this

option verifies that it is in the correct format. Ultimus gets the date
format from the Windows regional settings.

o Valid Time: If the advanced edit control is used to enter a time, this
option verifies that it is in the correct format. Ultimus gets the time
format from the Windows regional settings.

• Alignment: Select from Left, Right, or Center.

Advanced List Box Control

The advanced list box control is like the standard list box, but offers greater
functionality. The advanced list box control allows you to select multiple items,
check for duplicates, and sort the contents.

Advanced list box controls in a form can be linked to the local spreadsheet. They
require a destination cell(s) and source cell(s). The procedure for linking
advanced list box controls has been explained previously in this chapter.

Advanced List Box Control Properties

In addition to the standard properties for all controls discussed previously, the
advanced list box control has the following unique properties.

General Tab

• Multiple Selection: If checked, this function allows you to select multiple
items in the list box control.

• No Duplicates: If checked, this function checks for and eliminates
duplicates from the list box contents.

• Sort: Select whether or not you want to sort the list box contents in
ascending or descending order.

Attachment Control

Ultimus offers an advanced attachment control which allows users to attach
documents to workflow forms. When a document is attached to a form, the
attachment control shows the icon for the file. Attachments can be files of any
type. The Ultimus attachment control works much like attaching a file to an e-mail
message. However, unlike e-mail, attached files are only downloaded on
demand. Files selected to be viewed are downloaded to a temp directory on the
user's PC.

The number of files attached to a form depends on the number of cells linked to
the attachment control. A designer should link the attachment control to a
number of cells equal to the number of documents to be attached through that
control. If users attach more documents than there are linked cells, excess
documents will not be passed to the next step. Ultimus recommends notifying
your users of the maximum number of documents that can be attached to a
control.

Attached files are stored in a directory labeled "Attachments" in the Ultimus
installation directory. Each attached file is also stored in a subdirectory based on
the process name. While the workflow incident is active, the names of attached
files are prefixed with an incident number to prevent them from being overwritten.
For example, an attachment for a process named "ECO" is named
"05561e9d278e11d5951b00a0d21a4a92~ECO.doc."

Attached files are "checked in" and "checked out." When a file is checked out,
other Client users of the process can only read the file, but cannot make
changes. When the user who has made changes saves them, the file is "checked
in" and another Client user is free to make changes.

Attachment controls are inserted into a form in the same manner as other fields.
You can perform the variety of operations for attachment controls which have
been described in previous sections. The following are additional properties that
are unique to an attachment control.

Attachment Control Properties

In addition to the standard properties for all controls discussed previously, the
attachment control has the following unique properties.

General Tab

With the General tab, you name the Source Directory for the attachment control.

• Caption: The text for the Attachment Control button.
• Source Directory: The default directory that comes up when the control is

clicked. Selecting a default directory is not required. Also, if you do select
a default directory, the user may still browse to another directory.

Attachment Type Tab

• Attach Files of Type: Ultimus allows you to attach files to the forms. This
field lets you select all or a specific file type. You can select a file type by
clicking on its icon from the list. You may select all by clicking on the
empty space in the list box showing different file icons.

Note: Selecting a file type creates a default file type, hence making it
possible to attach that file type only . The user cannot select .wfl type as it
is not supported by Ultimus.

Attachment Control Links Properties

In addition to the standard Control Link properties described in the previous
chapter, attachment controls also have the following properties.

Attachment Validation Tab

• View Only: Similar to Read Only, If this property is checked, attachments
can be opened, but not edited, no new attachments can be added and no
existing attachments can be deleted.

• View Attachment Required: Similar to Required, the user must open the
attached file before sending the form. A message is displayed if the user
tries to send the form without opening the attached document.

• Attachment Required: The user must attach a file before sending the
form. A message is displayed if the user tries to send the form without
attaching a document.

Adding Attachment Controls

The following steps demonstrate inserting an attachment control for a single
document and multiple documents:

To configure an attachment control:

1. Place an attachment control on the form.
2. Right-click on the control and select Properties. The Properties window

appears.
3. Define the properties as described previously, and click OK.
4. Perform one of the following:

o If the attachment control is for a single document only, link the
control to a cell in the local spreadsheet.

o If the attachment control is for multiple documents, link the control
to a range of cells in the local spreadsheet.

Note: You must link the attachment control to more than one cell if allowing
users to attach more then one file. The number of cells selected represents
the maximum number of documents that can be attached. If the attachment
control is linked to a single cell, the first attachment is the only one that will
go to the next step in the workflow process.

Using Attachments

The following steps demonstrate the use of the attachment control in a form as it
appears in a web browser:

To attach a document:

1. Click the "Attach Files" button on the control, or right-click on the control
and select Attach. The Open window appears.

2. Select the file and click Open. The file name and its icon appear in the
attachment control.

To remove an attachment:

• Right-click on the attachment and select Remove.

To open an attached document:

• Right-click on the document and select Open. This launches the
document's application or viewer. You can also open the document by
double clicking on the document icon.

Note: To successfully open an attached document, you must have the
correct viewer or application registered with Windows. If the viewing
program is not available, Ultimus displays an error message.

Check Box Control

Check boxes allow users to make choices and select options. Thus, a typical
result of a check box selection is represented by either 0 or 1, with 0 representing
no selection and 1 representing a selection. The results are placed in the cells
linked to the check boxes.

When a check box is placed on the form, its caption reads, "Check Box" by
default (this text can be changed). After you have placed a check box on the
form, you can perform a variety of operations for controls as described in
previous sections.

Every check box must be linked to a local spreadsheet cell or a recordset. A
spreadsheet cell may be linked to multiple check boxes. When the form is
created, the value of the local spreadsheet cell is used as the default value for
the check box. If the cell content is 0, the default check box selection is "off." If
the cell content is 1, the default check box selection is "on." When the User clicks
on the check box, its status is immediately transferred to the local spreadsheet
cell (i.e., the cell is set to 0 if the check box is off, or set to 1 if the check box is
on).

Check Box Control Properties

The check box control does not have any properties other than the standard
properties discussed previously.

Combo Box Control

A combo box displays a list of choices to the user and allows him to select one.
Once you have placed a combo box on the form, you can perform a variety of
operations for controls as described in previous sections.

Every combo box control in a form must be linked to the local spreadsheet or a
recordset. Combo boxes require separate Destination and Source cell(s). The
procedure for linking combo boxes is explained in the previous chapter.

Combo Box Control Properties

The combo box control does not have any properties other than the standard
properties discussed previously.

Control PlaceHolder

A "PlaceHolder" control allows users to allocate real-estate on the form for
custom or third-party controls. It also allows you to specify the script to be used
by the control. Sophisticated users can, therefore, design custom controls to
implement unique functions or capabilities which are not being offered by
Ultimus. These controls can also interact with the Ultimus workflow variables
though the javascript specified as a part of the control. The controls may be
developed in Visual Basic, C, or Java. This capability, therefore, provides
practically unlimited means for expanding the Ultimus user interface.

Inserting a PlaceHolder Control on a Form

Ultimus provides two methods for inserting third-party controls on a form:
inserting a registered control or a user-defined control. When inserting a
registered control, the control is mostly pre-configured. User-defined controls are
completely configured by the user.

To insert a PlaceHolder control:

1. Click the button for the PlaceHolder control in the HTML Controls Palette.
The cursor changes to the cursor for the PlaceHolder control.

2. Click on the form where you want to insert the PlaceHolder control. The
Insert Custom Control window appears.

3. Perform one of the following:

o To insert a registered control, click the Insert Registered Control
radio button (this is the default setting).

o To insert a user-defined control, click the Insert User Defined
Control radio button.

4. Click OK. The PlaceHolder control appears on the form. In some cases,
the look of the control changes to reflect the type of control inserted.

5. Adjust the size of the PlaceHolder to fit the selected control.

Note: You may need to use the preview mode to adjust the PlaceHolder to
the correct size.

Registered PlaceHolder Control Properties

Registered PlaceHolder controls are pre-configured for the control's unique
properties. However, some registered controls require additional information,
such as a URL to a referenced file (such as a sound file) or font and color
configuration. Each registered control has its own unique requirements. You
should be familiar with working with controls of a particular type before inserting
them in an Ultimus form.

To modify the registered PlaceHolder control properties:

1. Right-click on the PlaceHolder control and select Control Properties. The
properties window for the control appears.

2. Modify the properties of the control as required.
3. Click OK.

User-Defined PlaceHolder Control Properties

In addition to the standard properties for all controls discussed previously, the
user-defined PlaceHolder control has the following unique properties.

General Tab

The PlaceHolder Properties window allows you to associate an OBJECT Tag or
a custom script to the custom control. You may enter values in the fields to insert

HTML code into the OBJECT tag, or add a custom script.

• Object Tag: Inserts an object, such as an image, document, applet, or
control, into the HTML document. The type of control being used (such as
Applet or ActiveX) determines which of the fields are used. The
parameters are as follows:

o Class ID: ID of the ActiveX control. Identifies the object
implementation. The syntax of the URL depends on the object type.
For registered ActiveX controls, the syntax is: CLSID:class-identifier
(e.g., CLASSID=CLSID:E9DF2E07-761B-11D2-A5FB-
00104B098B7B).

o Code: When using an Applet, the Code tag contains the name of
the file containing the compiled Java class (e.g.,
CODEBASE="http://NT40SRVR/UltWeb/FormControlObject.class")
.

o Codebase: Identifies the location of the object. The syntax of the
URL depends on the object (e.g.,
CODEBASE="http://NT40SRVR/UltWeb/Applets/." You may also
identify a cab file after the path).

o Codetype: Specifies the Internet media type for code (e.g.,
CODETYPE="application/x-oleobject").

• Parameters: Additional OBJECT parameters, such as ALIGN, BORDER,
and their associated values. For example, ALIGN="left" and
BORDER="1."

• Custom: Write a custom script for the control.

To modify the PlaceHolder control properties:

1. Select the PlaceHolder control, right-click on it, and select Properties. The
control Properties window appears.

2. Click on the <OBJECT> tag radio button if it is not selected by default.
3. Enter the Class ID, Code, Codebase, and Codetype in the appropriate

fields.
4. Click the New button to create a new parameter. Editable fields for the

Parameter and Value appear below.
5. Enter the parameter name and value in the appropriate fields, the click

inside the pane to confirm.
6. Close the window.

To add a custom script to a PlaceHolder control:

1. Select the PlaceHolder control, right-click on it, and select Properties. The
Control Properties window appears.

2. Click on the Custom radio button.
3. Type a custom script in the edit pane below.
4. Close the window.

Edit Control

Edit controls are used for entering data in forms. Each edit control must be linked
to a cell in the local spreadsheet or a System Variable. When the form is
displayed, each edit control displays the contents of the cell to which it is linked.
When a User enters data, the contents of the linked cell(s) are updated.
Validation for maximum characters is performed as the user types.

Every edit control in a form should be linked to a local spreadsheet cell(s). A local
spreadsheet cell may be linked to multiple edit controls. When the form is
created, the contents of the spreadsheet cell are used as default values in the
edit control. When the user enters data in the control, it is transferred to the
spreadsheet cell where it is processed and forwarded to other forms via the main
spreadsheet. Edit controls are linked to local spreadsheet cells just like any other
control as described in the previous chapter.

Edit Control Properties

In addition to the standard properties for all controls discussed previously, the
edit control has the following unique properties.

General Tab

• Multi-line: Ultimus allows you to configure an edit field to have multiple
lines of text and link it to more than one cell. You must link the multi-line
edit field to a range of cells in a single column. For each linked cell, the
edit field can accommodate one line of 255 characters.

• Password: If you use an edit control for password entry, you can use this
property to display "*" instead of the characters entered by the User. The
linked local spreadsheet cell will contain the correct data.

Frame Control

The frame control is used for drawing lines on a form to separate different
sections. It can also be used to draw boxes to enclose various sections and
controls. Lines and boxes make a form clear and user-friendly.

Frame Control Properties

In addition to the standard properties for all controls discussed previously, the
frame control has the following unique properties.

Borders Tab

• Border Type: Select the type of border for the frame.
• Border Width: Select the width of the border.

Creating Boxes with the Frame Control

The frame control can be used for drawing boxes on a form.

To insert a box on a form:

1. Insert a frame on the form.
2. Select the frame and right-click on it. Select Properties.
3. Click on the Colors tab. Change the Background Color to the box color

desired.
4. Click on the Borders tab. Select a Border Type and Width.
5. Close the frame control Properties window.
6. Change the length and the width by using the handles on the selected

frame.

7. De-select the frame by clicking on another control or empty space on the
form to see the completed box.

Grid Control

The grid control provides powerful capability of inserting a spreadsheet into a
form. This is an excellent way of displaying or entering tabular data. It has all the
calculation capabilities of a regular spreadsheet program, such as Microsoft
Excel. By placing formulas in the local spreadsheet cells to which the grid control
is linked, the grid can be used to perform functions on user data entered into the
grid.

Grid Control Properties

In addition to the standard properties for all controls discussed previously, the
grid control has the following unique properties.

General Tab

• No. of Rows: Select the number of rows in the grid control.
• No. of Columns: Select the number of columns in the grid control.
• Show Row Headings: Enable/disable grid row headings.
• Show Col. Headings: Enable/disable grid column headings.

Cell Properties

In addition to grid control and grid control links properties, the grid has Cell
Properties. Cell Properties are modified using the Activate function. Normally,
you move the grid control on the form by clicking and dragging. Activate allows
you to select a range of cells without moving the grid control. Once Activate is
enabled, you can right-click on the select cells and modify their properties. The
following Properties can be changed for individual cells or a range of cells:

• Alignment
• Formatting
• Fonts
• Border

• Patterns
• Protection

To access the cell Properties:

1. Select the grid control.
2. Right-click on it and select Activate.
3. Select a cell or range of cells.
4. Right-click on the selected cell(s) and choose Formatting. The Format Cell

window appears.

Number Tab

The Number tab allows you to format how numbers are displayed in the cell. For
example, if you format the cell for Currency and enter "317", it is automatically
displayed as "$317.00."

To format numbers displayed in the cell:

1. Access the Format Cells window as described previously.
2. Select a number category from the Category menu. The Category

selected determines the choices displayed in the Type list box.
3. Select a number type from the Type list box. The selected type appears in

the Type field above, and a sample is displayed below.
4. Click OK.

Alignment Tab

The Alignment Properties determine how the cell data is aligned in the cell. For
example, if Center Horizontal and Bottom Vertical are both selected, then the
data is centered at the bottom of the cell.

• Horizontal: Set the horizontal alignment.
• Vertical: Set the vertical alignment.
• Wrap Text: Wraps the data within the cell.
• Merge Cells: This function is not used by Ultimus.

Border Tab

You can place borders around a single cell or a range of cells using this property.
It can outline all of the cell or any individual side. The color and the type of border

can also be changed.

Pattern Tab

The Pattern tab is used to change the background of a cell or range of cells. You
have the choice of changing the style of pattern, plus the foreground and
background colors.

Protection Tab

You can lock any cell or range of cell(s) in a grid. When a cell is locked, the user
is unable to change the contents of that cell. For example, a cell that contains a

formula should be locked. The Hidden checkbox is not used by Ultimus.

Validation Tab

The fields in this tab are not used by Ultimus.

Linking a Grid to Local Spreadsheet Cells

Every grid should be linked to a range of local spreadsheet cells or recordset
columns. Local spreadsheet cells may be linked to multiple grids on a form.
When the form is created, the contents of the cells are used as default values for
the grid. If the user changes the grid, the local spreadsheet is updated when the
focus is removed. The changed cells in the spreadsheet are used for further
processing and forwarded to other forms. Grids are linked to local spreadsheet
cells in range-to-range fashion.

Note: When linking a grid control to the local spreadsheet, the cells must
be contiguous and have the same number of rows and columns.

Using Formulas with a Grid

In many cases, you will want to use a spreadsheet grid to perform calculations on
the data entered. For example, in a purchase order process, you will want the
figure in a quantity column to be multiplied by the figure in a cost column to
produce the result in a line total column. Formulas are placed in the local
spreadsheet cells to which the spreadsheet grid is linked. Calculations are then
performed when a cell loses focus. The mathematical and logical functions are
very similar to those provided by Microsoft Excel. A list of valid functions which
you can enter in the Spreadsheet is provided in the Ultimus document

"Spreadsheet Functions," which is included on the Ultimus CD as an Adobe
Acrobat PDF file.

Linking a Grid to Recordset Columns

You may also link a spreadsheet grid to a recordset table. When you launch the
form, the cells of the grid are populated by the recordset data. By adding Buttons
and defining them for database Actions, you can use the form as a "front end" for
entering and modifying data in the database. For more information on defining
database Event Actions for Buttons, see the previous chapter. For detailed
information on working with databases, see "Using Databases with Forms."

Image Control

The image tool allows you to place images on your form. Since the Ultimus form
is a web page created with Dynamic HTML and Java, form images work much
the same as standard web images. GIF, Animated GIFs, and JPEG images can
all be used on Ultimus forms.

Image Control Properties

In addition to the standard properties for all controls discussed previously, the
image control has the following unique properties.

General Tab

• Image: Use the browse button to select a GIF, Animated GIF, or JPEG
image to appear on the form.

Notes: Images do not need to be resized. They resize automatically when
you select an image.

Only the first frame of Animated GIFs appear in the form Designer.
Animated GIFs can only be previewed in Test Mode or Simulation.

Using an Image in a form

To place and use an image in a form:

1. Insert an image control on the form.
2. Select the image control, right-click on it and select Properties.
3. Click on the General tab.
4. Use the Browse button to select a web-compatible image.
5. Close the image control Properties window. The image control resizes

itself automatically and previews the selected image.

List Box Control

A list box is used to display several choices to the user of a form. List box
controls are inserted in a form using the form design Toolbar as described earlier
in this chapter.

Every list box in a form can be linked to the local spreadsheet. List boxes require
a destination cell(s) and source cell(s). The procedure for linking list boxes has
been explained previously in this chapter.

List Box Control Properties

In addition to the standard properties for all controls discussed previously, the list
box control has the following unique properties.

General Tab

• Multiple Selection: If checked, this function allows you to select multiple
items in the list box control.

Note: When using the list box for multiple selection, you must link the
Destination cells to a range of cells. The number of cells in the range
represents the maximum number of items that can be selected.

Push Button Control

Buttons enable users to perform pre-defined actions. They can be placed
anywhere in the form. In addition to database functions, buttons can be used to
invoke subforms, return from a subform, or invoke custom scripts.

Once you have placed a button on the form, you can perform a variety of
operations for controls as described in previous sections.

Push Button Control Properties

The push button control does not have any properties other than the standard
properties discussed previously.

Radio Button Control

Radio buttons are used to prompt users to select one of several options. Thus,
they are generally placed in groups. When a radio button is placed on the form, it
displays the words "Radio Button" by default (this text can be changed). Once
you have placed a group of radio button on the form, you can perform a variety of
operations as described in previous sections.

Every radio button in a form must be linked to a local spreadsheet cell. When the
form is created, the content of the spreadsheet cell is used as the default value
for the radio button. If the cell content is 0, the default radio button selection is
"Off." If the cell content is 1, the default radio button selection is "On." When the
user checks the radio button, the status is immediately transferred to the
spreadsheet cell.

Radio Button Control Properties

In addition to the standard properties for all controls discussed previously, radio
buttons have the following unique properties.

General Tab

• Caption: The label placed next to the button. The label is always left
justified.

• Group: The name of the Group with which the radio button is associated.
For example, you have a form with two sets of radio buttons. The first set
is for the user to select which type of computer he is using. The second
set is for the user to select which operating system is installed. Thus, in
order for the Buttons in each set to work correctly, all the radio buttons in
the first set would have "Computer" in the Group field, and all the radio
buttons in the second set would have "OS."

Note: Once the radio buttons are grouped, the buttons will work together
and only one may be selected at any given time. You can have multiple
groups of radio buttons in a form.

To make a group of radio buttons:

1. Place two or more radio buttons together.
2. Select both, right-click on them and choose Properties, or select

Properties from the Edit Menu. The control Properties window appears.
3. Type a Group name in the Group field. The Group name will apply to all

selected radio buttons.

Notes: You can repeat this process to create multiple groups of radio
buttons.

Signature Control

Ultimus provides an advanced signature control that allows users to "sign" forms.
When a form containing a signature control is used by the Client, the user clicks
the sign button, which opens the signature verification window. The window
prompts the user to enter her password. If the user enters a valid password, the
user's name is entered in the signature field with a "signature" bitmap image. The
signature field with the name of the Client user and the signature image may be
displayed in the forms for subsequent steps in the process for the benefit of other
users. The other users will then know who has signed the document.

Double clicking on a signature control in a form brings back the signature
verification window. The user can remove the signature by checking the Remove
Signature box.

Ultimus uses Directory passwords for simple signature verification. However, if
customers wish to implement advanced signature verification and display using
their own or third party algorithms, Ultimus allows them to replace the Ultimus
Security DLL with their own signature verification DLL. This allows users to
implement any signature scheme of their choice within the Ultimus framework.

Every signature field in a form should be linked to a local spreadsheet cell. When
the user signs the form, the data is transferred to the local spreadsheet cell
where it is used for further processing and forwarded to other forms through the
main spreadsheet.

Signature Control Properties

The signature control does not have any properties other than the standard
properties discussed previously.

Using Signature Controls

The following demonstrates the use of a signature control in a form as it appears
in the web browser.

To sign a form:

1. Click the button in the control. The Validation for User <UserName>
window appears.

2. Type the password in the Password field and click OK.
3. The signature is entered and the custom "signature" pattern appears in

the background.

To remove a signature:

1. Double-click the signature control. The Validation for User <UserName>
window appears.

2. Click the Remove Signature check box and click OK.
3. The signature is removed.

Note: Event Actions only execute after the control has been signed.

Custom Signature Images

You may use the default signature image or create unique signature images for
each workflow user who will sign a form. Custom signature images must be in
GIF format and stored in "C:\InetPub\wwwroot\ultweb\signatures" on the Web
Server. The name of the file must be in the following format:

Client Name.gif

"Client Name" must match the Client login name of the user. For example, if a
user logs into the Client as "Fred Heflin," then the file name of his custom
signature image must be "Fred Heflin.gif" (spaces are allowed). The default
dimensions of the signature image are 150 pixels x 47 pixels, but you can make it
any size. Realize, however, that if the signature image is too small for the control,
the image is tiled. Animated GIFs can also be used.

Testing Your Form Design

When you enable the test mode in the forms Designer, the form is displayed in
your web browser just as it will when deployed. You can enter data, make
selections from list boxes, and operate all the other controls. While in the test
mode, you can also display the local spreadsheet window. This lets you see,
interactively, how the actions you take on the form affect the data in the local
spreadsheet.

To invoke the Test Mode in the forms Designer:

1. Click on the Test Mode button . The form appears as it will in the web
browser.

2. Click the "View Spreadsheet" button to view the local spreadsheet.
3. Click the appropriate tab to view other pages in the form.
4. You can perform any action on the form to test its behavior and interaction

with the local spreadsheet.

To exit the Test Mode:

• Click the Test Mode button again to return to the forms Designer.

Text Control

Text controls are used in forms to provide headings, titles, labels, instructions,
and comments. Text is for display only. When a User uses the form to enter data,
he cannot change the text. Once you have placed a text control on the form, you
can perform the variety of operations described in previous sections. Properties
which are unique to the text control are described below.

Text Control Properties

In addition to the standard properties for all controls discussed previously, the
text control has the following unique properties.

General Tab

• Text: Data entered in the text field is displayed in the text control. You can
use text controls as labels for other controls.

• Alignment: Align the text to the left of the control, the right of the control,
centered in the control, or Justified on the left and right.

Text Control Link Properties

The text controls are mostly used for display purposes. Control Links properties
have limited usage. In addition to the standard control Link properties described
in the previous chapter, text boxes also have the following properties.

HTML Tab

The HTML Tab allows you to define any text control as an HTML link. It also
allows you to configure the link to open in a new window.

• HTML Link: Type a URL into the field. You can only type a fully qualified
URL address for example 'http://www.ultimus.com'.
Clear: Click to clear the field.

• Open in New Window: Click this checkbox if you want the browser to
open a new window when the URL is opened.

Using Databases with Forms

Ultimus allows you to link popular databases with the electronic forms for each
step in a workflow process. This allows you to make "intelligent" forms which can
do several things for the user:

• Fields in a form may be filled automatically from a database table or a
query.

• Contents of form fields can be automatically saved in a database for future
use.

• Choice lists in list boxes and combo boxes may be automatically filled
from a database.

• Users may be given the option of browsing or deleting a record in a
database for maintenance purposes.

You can design forms which perform complex database operations. For
example, you can search one database table using a value entered by the
user. The result of the search may be used to search another database
table and fill the contents of other fields in the form.

How Databases Are Used

Ultimus provides powerful forms connecting to databases even though the form
is browser-based. All connections with the database are real-time over a TCP/IP
link and do not require the form to be submitted. This means that the form is
"alive" with a connection to the database just as a true client/server application.
On the server-side, a single ODBC connection has to be made to a datasource.
Ultimus supports widely-used enterprise databases which include the following:

• Oracle
• SQL Server

Note: For the examples seen in this chapter, we have used the sample
"Northwind" database.

Database Rules, Definitions, and Guidelines

1. Before using a database, you must first define a datasource using the
ODBC Configuration in the Microsoft Windows Control Panel. A DSN to be
used in Database Flobot must not contain "/" or "\" in its name.

2. Ultimus allows users to specify a user name and password for accessing a
database. This feature allows Ultimus to use datasources which are
secure.

3. Ultimus uses the concept of database "Connection" for communicating
with databases. Every connection is a combination of Datasource and
Login/Password. Datasource determines the database with which form will
communicate and Login/Password determines the rights/roles that have
been granted to different users on the database server. This enables
Ultimus to provide different levels of security for different users.

4. Under every database connection, you can define one or more than one
"Recordsets" or "Actions".

5. Recordsets allow users to link workflow variables to a single database
table, database query, or "set of records." Any action performed on the
database is reflected on all of the variables linked to this database. By
defining a number of recordsets, the user can create a form whose various
parts work independent of each other. Ultimus recordsets use an
independent ISAPI DLL for scalability and performance.

6. A Recordset can be based either on a database table or a database
query. Recordsets based on a database table can communicate with a
single table while the recordsets based on database query communicate
with all the tables included in the query.

7. Each recordset can be associated with a filter. A filter allows you to specify
a simple or complex SQL statement to query the data or subset of records
which are associated with the recordset. You may use local spreadsheet
cells as arguments in the SQL statement. Since local spreadsheet cells
can be linked to controls and populated by accessing recordsets, or to

other local spreadsheet cells, you can use this capability to create
powerful database user interfaces with multiple layers of filtering which
can work with a large number of records.

8. Recordsets have three loading options from which to choose: they can be
downloaded as the form loads, after the form loads, or on-demand. This
allows recordsets to be available when the form is loaded with slower form
load times, not available until after the form is loaded with faster fast form
load times, or only loaded when selected.

9. Recordset fields can be linked with form controls or workflow variables.
10. Certain controls in the form may be linked to fields in a Recordset. The

controls which can be linked are edit fields, combo boxes, list boxes,
check boxes, buttons, advanced edit controls, advanced list boxes, and
advanced combo boxes.

11. Grid controls can be linked to recordset tables, but only the entire table
and not to individual fields.

12. If a control is "linked" to a database field, the control is updated with the
contents of the database field when data is read, and vice versa when
data is saved.

13. If a recordset is created to add records or update records, you must also
link all of the controls linked to this recordset to the local spreadsheet in
order for the updates to work.

14. A recordset must be linked to a destination cell in the local spreadsheet if
the value is to be used as a filter for a recordset.

15. Actions allow the users to execute any SQL99 compliant statement
including complex queries that work on multiple tables. Workflow variables
can be inserted into the SQL statement, allowing the values of those
workflow variables to be sent/retrieved to/from the target database.

16. With the ability to execute any SQL99 compliant statement, actions such
as executing SQL Triggers and Stored Procedures can be easily
accomplished.

17. Actions also give users the flexibility to use powerful database functions
supported by Structured Query Language (SQL) such as SUM, DIFF etc.

18. An action can execute a single SQL statement. For executing more than
one SQL statement multiple actions can be created.

19. An action can only be linked to workflow variables.
20. Actions cannot be used to execute Data Definition (DDL) commands like

DROP_TABLE, CREATE_TABLE etc.
21. Depending upon the specified settings, actions are executed against form

event actions or control event actions.
22. A form can be linked to multiple database connections. Each database

connection may have multiple database tables.
23. For passing values to date type database fields, Ultimus does not support

date value earlier than March 1900.
24. Changes made to the Table, Database, Connection etc. will only be visible

once refreshed.

Creating Database Connections

Ultimus uses the concept of database "Connection" for communicating with
databases. Every connection is a combination of Datasource and
Login/Password. Datasource determines the database, with which form will
communicate, and Login/Password determines the rights/roles that have been
granted to different users on the database server. This enables Ultimus to
provide different levels of security for different users.

Note:

Before attempting to create connections, you must first define a
datasource using the ODBC Configuration in the Microsoft Windows
Control Panel.

To link to a datasource and define connections:

1. Click the Recordsets button in the Form View. The recordsets pane
appears on the right hand side of form view as shown below. If no
database connection has already been created, the "Create New
Connection" dialog is also shown to you:

Note: If you have already defined some database connections and
want to create another one, in the recordset pane, click on any of the
already defined database connections and then click on the new
button :

2. To create a new database connection you have to specify following
information in the "New Connection" dialog:

o Data Source Name: From this combo box, select the name of valid

data source.
o User ID: Specify a valid login name for the selected DSN.
o Password: Specify password for the selected DSN.

3. The created database connection appears in the recordsets pane as
follows:

Working with Recordset Pane

In form view, as you click on the Recordset button , Recordset Pane is shown
to you on the right hand side of form view. Recordset Pane shows you all the
database connection, recordset and actions created in a Repository Window
View. Every node in the Repository Window View has '+' or '-' sign attached to it.
The sign '+', means that you can expand this node. Every database connection
that you create has by default two nodes, Recordset and Action, under it.
Recordset node lists all the recordsets created under a database connection
while Action lists the actions.

Using the Recordset Pane you can perform following actions:

• Create New Database Connections.
• Modify/Delete already defined database connections.
• Under any database connection create new Recordset.
• Modify/Delete already defined recordsets.
• Under any database connection create new Actions.
• Modify/Delete already defined Actions.

You can perform these options by either using the Tool bar show at the top of
Recordset Pane or by using the Pop up Menu shown against different nodes in
Repository Window View. Both of these have been explained separately below.

Working with the Tool Bar

Tool bar in the Recordset Pane contains following buttons:

Button Name Description

New
Button

New button allows you to create a new Database Connection,
Recordset or Action. The button works intelligently to
determine what actually do you want to create from the above
three. You can create a Database Connection, Recordset or
Action by first clicking on the respective node in the
Repository Window View and then clicking on the new button.
For example if you want to create a new database connection,
you can do it as follows:

• To create a new database connection, click on any of a
database connection node shown in the tree and click
on the New Button.

Delete
Button

Delete button allows you to delete Database Connection,
Recordset or Action. The Delete button also works just like the
New button to determine what do you want to delete. For
example if you want to delete a Recordset, click on the
recordset node and then click on the delete button.

Properties
Button

Properties button allows you to modify already created
Database Connections, Recordset or Actions. Again this
button works the same way as the New or Delete Button.

Creating Recordsets

Ultimus uses the concept of "recordsets" for segregating a group of form controls
that work with a database table. A filter or query may also be associated with the
recordset. A recordset consists of one or more variables linked to a table. Any
action performed on the database is reflected on the recordset as a whole. By
defining a number of recordsets, the user can create a form whose various parts
work independently of each other.

Note: Before attempting to create recordsets, you must first define a
Database Connection.

To define recordsets:

1. Perform one of the following:
o Click on a Recordset Node in the Recordsets Pane and then click

on the New button.
o Right-click inside the Recordsets pane and select the option New

and then Recordsets. The Recordsets window appears.

2. Type the name of the new recordset in the Recordset Name field.
3. A recordset can either be based on a database table or a database query.

By default the option Table is selected. If you want to base your recordset
on a table, select the desired table from the Table Combo box. Details
about creating recordsets based on database query see the section
"Creating Custom Recordsets".

4. Select one of the following Load Options:
o After Form is Displayed: The recordset is loaded while the form is

being displayed. This allows the user to quickly view the form as it
is being loaded, however, the controls associated with the
recordset are disabled until the recordset is fully loaded

o Before Form is Displayed: The form is displayed after the recordset
is loaded. This increases the form load time, but, the form is ready
for use as soon as it is displayed.

o On Demand: The recordset is loaded only when its controls are
displayed. If the form has only one page, or the controls of that
recordset are on the first page, the recordset will be loaded every
time the form is loaded. This defeats the purpose of this option. If
this recordset controls are on any other page, the recordset is
loaded only when that page is displayed. This allows the user to put
all rarely used recordset controls on a separate page for faster load
time in most cases.

5. Click OK. The new recordset appears in the Recordsets Pane.
6. Click Close.

Linking Recordset Fields to Variables

After you have defined all the recordsets needed, you can link Spread Sheet
variables to the database fields as follows:

• In Recordsets pane, click on the '+' sign to expand the recordset you want
to link to variables. The recordset fields are shown to you in the tree.

• Right click on the field you want to link and select the option Link. Link
Variable dialog is shown to you:

• From the combo box select the variable you want to link to this field and

click OK.
Note: For date type fields, Ultimus does not support date value
earlier than March 1900.

• The field is linked to the specified variable and the fetched in this field is
stored in the linked variable.

Note: Recordset use the concept of Row Indexing for passing/retrieving
data to/from workflow variables. It is strongly recommended that you link
only those variables to database recordsets that do not have any other
variable declared below them on the spreadsheet. For example on the
spread sheet you have declared two variables as follows:

Cell B2= VarOne
Cell B4= VarTwo

In the example given above, linking the variable VarOne can result in
abnormal functionality of recordsets since another variable, VarTwo, has
been defined on the spread sheet below this variable.

• From the combo box select the variable you want to link to this field and
click OK.
Note: For date type fields, Ultimus does not support date value
earlier than March 1900.

• The field is linked to the specified variable and the fetched in this field is
stored in the linked variable.

To delete a recordset:

1. In tool bar click on the Recordsets button. The Recordset pane is shown
to you on the right hand side of form view.

2. Select the Recordset in the Recordset Pane.
3. Click the Delete button . A warning window appears.

4. Click Yes. The recordset is deleted.

Creating Custom Recordsets

Recordsets allow you to easily design web-based forms that can perform
complex database actions. While the table based recordsets allow you to fetch
data from one table at a time, Custom Recordsets allow you to link to a database
and fetch the most desired data from multiple tables. You can specify the data
requirements using structured query language.

Note: Custom recordsets are read only and cannot be used to update,
delete or insert records.

To define recordsets:

1. Perform one of the following:
o Click on a Recordset Node in the Recordsets Pane and then click

on the New button.
o Right-click inside the Recordsets pane and select the option New

and then Recordsets. The Recordsets window appears.

2. Type the name of the new recordset in the Recordset Name field.

3. Select the option Query and click on the Build button. Recordset Query
dialog is shown to you:

4. The Build Query dialog allows you to create an SQL query on which you

want to base your custom recordset as follows:
o You can type in the query in the Query text area.
o You can also use any workflow variables in the query. For

convenience the workflow variables are shown to you in the
variables list box. You can type in the name of the variable in the
query text area are double click on its name in the Variables list
box.
Note: For date type fields, Ultimus does not support date value
earlier than March 1900.

o Name of all the available columns are shown to you in the combo
box. As you select a table from this combo box, all of its fields are
shown to you in the list box below.

o In your query statement you can use the name of table field by
simply typing it or you can insert it in the query statement by double
clicking on it in the table fields list box.
Note:
Enclose field names/table names in square brackets if they
contain a blank space in name. All field names used in the
query statement must be prefixed with a corresponding table
name for example "[My Table1].[My Field1]"
SQL joins can be used in specified SQL Statements only with
MS SQL Server.

5. Once you have entered the complete text of desired query, click the OK
button, you would return to main recordsets window.

6. Select one of the following Load Options:

o After Form is Displayed: The recordset is loaded after the form is
displayed for faster form load time.

o Before Form is Displayed: The recordset is loaded as the form is
being displayed for slower form load time.

o On Demand: The recordset is loaded only when the form or control
is selected for faster form load time.

7. Click OK. The new recordset appears in the Recordsets Pane. Under
custom recordsets the names of table fields are shown in the format
"TableName.ColumnName".

8. Click Close.

Modifying Custom Recordset

After you have defined all the recordsets needed, you can link Spread Sheet
variables to the database fields as follows:

• In Recordsets pane, click on the '+' sign to expand the recordset you want
to link to variables. The recordset fields are shown to you in the tree.

• Right click on the field you want to link and select the option Link. Link
Variable dialog is shown to you:

• From the combo box select the variable you want to link to this field and

click OK.
• The field is linked to the specified variable and the fetched in this field is

stored in the linked variable.

To delete a recordset:

1. In tool bar click on the Recordsets button. The Recordset pane is shown
to you on the right hand side of form view.

2. Select the Recordset in the Recordset Pane.
3. Click the Delete button . A warning window appears.

4. Click Yes. The recordset is deleted.

Modifying Recordset Properties

After the recordset has been created, Ultimus allows you to modify the properties
to perform various functions. In addition to changing the general properties, you
can create data "Filters" with multiple layers and arguments, and define "Event
Actions" to be performed when the form is sent or returned.

To edit a recordset:

1. Select the Action in the Recordsets Pane and click on the properties
button in the recordset tool bar or right click on the Action you want to
modify and select the option "Properties" from the popup menu. The
Action Properties window appears.

2. Modify the Properties as described previously.

Note: If you modify an action and change the database table or
database query, all the links of database fields and variables/controls
are removed.

3. Click OK to close the Properties window.
4. Click Close.

Defining Recordset Event Actions

You can define actions performed on the recordset when the form is sent or
when it is returned.

The following combo boxes are available:

• On Form Send: Select one of the following Actions to be performed when
the form is sent:

o No Action: No action is performed.
o Add record(s) in the Recordset: Add value(s) contained in the

control as a new record(s) in the linked database table.
o Update record(s) in the Recordset: Update linked database table

with value(s) contained in the control.

Note: If Add or Update Recordset fails on send, the send operation is
aborted and an error message is displayed. The user must take some
corrective action before continuing.

o Delete record(s) in the Recordset: Delete the database record(s)
linked to the control.

• Abort on Fail: Click the checkboxes to abort the recordset Send or
Return actions if the actions fail. This prevents the process from stalling
and allows the workflow to move forward.

• On Form Return: Select one of the following Actions to be performed
when the form is returned:

o No Action: No action is performed.
o Add record(s) in the Recordset: Add value(s) contained in the

control as a new record(s) in the linked database table.
o Update record(s) in the Recordset: Update linked database table

with value(s) contained in the control.
o Delete record(s) in the Recordset: Delete the database record(s)

linked to the control.
• Refresh Recordset when record Updated or Added or Deleted in the

Recordset Table: When clicked, this function refreshes the linked
recordset if the table is changed. If this checkbox is not selected any
changes that are made to the table will reflect only by refreshing the
recordsets manually.

To define a recordset's event actions:

1. Open Recordsets View window.
2. Select the recordset in the Recordset Name column.
3. Click the Properties button . The Properties window for the selected

recordset appears. Click the Event Actions tab.
4. Select an Action from the On Form Send combo box. This action takes

place when a form is completed and sent.
5. Select an Action from the On Form Return combo box. This action takes

place when a form is returned.
6. Click OK.

Defining Recordset Filters

Ultimus allows you to associate a filter, or query, with each recordset. You can
create a simple filter, or define a complex filter using workflow variables. This
powerful feature means that you can define dynamic queries based on workflow
values. The queries result in a sub-set of records that are associated with the
recordset. Furthermore, the result of one query may be used to define another
query.

To define a recordset filter:

1. Click on the Recordset Button in tool bar. The Recordset Pane appears on
the right hand side of Form View.

2. Select the recordset in the Recordset Pane.
3. Click the Properties button . The Properties window for the selected

recordset appears. Click the Filters tab.
4. Select either the Filter or Custom Filter radio button. Using these two

options, you can either define a simple filter or complex filter involving
workflow variables.

5. Click the New button . The fields for a new filter appear.

6. Select the database column from the Column Name combo box.
7. Select the operator from the Operator combo box.

8. Type the name of the local spreadsheet cell or select a global workflow
variable from Step SS Cell combo box.

9. Click anywhere in the window. The formula appears in the Query
Expression pane below.

10. Repeat steps 5-9 as needed to add other statements.

Note: The first Operator combo box is disabled until you add a
second statement. When adding another statement, select AND or
OR from the first Operator combo box.

11. Click OK.

To edit the query filter:

1. Open the Properties window for the recordset as described above.
2. Select the statement you wish to edit.
3. Click the Edit button . The combo boxes for the columns in the selected

statement are activated.
4. Make the changes as described previously.
5. Click OK.

Defining Custom Filter Expressions

Ultimus also allows you to define custom filter expressions. This requires a
thorough knowledge of SQL statements. You can use the filter functions above to
create a basic filter and then edit it to your specific needs, or create the filter from
scratch.

To edit the filter manually:

1. Open the Properties window for the recordset and create a filter as
described above.

2. Click inside the Filter Expression pane.
3. Make the desired changes to the formula.
4. Click OK.

To define a custom filter expression:

1. Open the Properties window for the recordset as described above.
2. Click the Custom Filter radio button.
3. Use the Available Table Columns window to add table columns. To insert

a table column in the custom filter statement, double click on the name of
table column in "Available Table Columns" list box.

4. Operators and Cell Numbers must be entered manually.
5. You can use workflow variables in the custom filter statement. To insert

workflow variables or linked cells in the custom filter statement click on the

button labeled "Variable". Variable insertion dialog is shown to you.
Double click on the variable you want to insert and the variable is inserted
at the current cursor position in the filter expression. The name of
workflow variables must be enclosed in "[]".
Note: For passing values to date type database fields, Ultimus does
not support date value earlier than March 1900.

6. Click OK.

Linking Form Controls to Database Tables

Linking form controls to database tables allows users to read and write
information to the database when using the form. You can fill form fields, such as
List Boxes and Combo Boxes, from database tables, and update tables based on
the actions performed in the form. You can also link a spreadsheet grid and use
the grid to modify the contents of the database.

To link a form control to a database table:

1. Click the Recordset Links button in the Form Designer Toolbar. The
Recordset pane appears and displays all recordsets.

2. Select the form control.
3. Select the recordset field. The link appears as a tool-tip on the control and

is listed beneath the recordset field.

To unlink a control from a recordset:

1. Click the Recordset Links button . The Recordset pane and Link tool-
tips appear over the controls.

2. Click on the "+" signs of the Recordsets directory tree so that the Links
appear.

3. Right-click on the Recordset Link in the directory tree and select
Delete/Unlink. The link is deleted.

Linking a Grid Control to a Recordset

Linking the grid control to a recordset involves two different actions. First you link
the control to a recordset which creates an association between the control and
the recordset. Afterwards, you can link columns in the control to columns in the
recordset.

To link a grid control to a recordset:

1. Click the Recordset Links button in the Form Designer Toolbar. The
Recordset pane appears and displays all recordsets.

2. Select the grid control, then the recordset. The link appears as a tool-tip
on the control and is listed beneath the recordset table.

3. Close the Recordset pane .
4. Link the grid control to a contiguous range of cells in the local

spreadsheet. The number of rows and columns linked in the spreadsheet
should match those of the grid control, and the link should be uni-
directional -- to Destination cells only.

To link grid columns to recordset columns:

1. Open the Control Links window for the grid control and click on the
Recordset tab which is now available. The numbers under grid column
equate with the columns in the grid control. For example, A=1, B=2, and
C=3.

2. Select the column under grid column.
3. Click on the selection under Column Name. A combo box appears.
4. Select the Recordset field.
5. Repeat steps 2-4 for each grid column.
6. Close the window.

Notes: You can also add buttons and define them for actions, such as
"Update the current record in the Recordset" and "Create new record in the
Recordset." These are the primary actions you will use because the other
actions relating to moving to records do not affect the grid control.

You can link buttons to the same recordset as the grid control, as in the
note above, but you cannot link other controls, such as edit fields, list
boxes, or combo boxes. These must be linked to a separate recordset.

If the number of rows in the grid control is greater than those contained in
the recordset table, you can use the grid control to add a record to the
bottom of the database.

Creating Database Actions

Actions allow the users to execute any SQL statement including complex queries
that work on multiple tables. Workflow variables can be inserted into the SQL
statement, allowing the values of those workflow variables to be sent to/from the
target database. With the ability to execute any SQL statement, actions such as
executing SQL Triggers and Stored Procedures can be easily
accomplished. Actions also give users the flexibility to use powerful database
functions supported by Structured Query Language (SQL) such as SUM, DIFF
etc. An action can execute a single SQL statement. For executing more than one
SQL statement multiple actions can be created.

Note: Actions cannot be used to execute Data Definition (DDL) commands
like DROP_TABLE, CREATE_TABLE etc.

To define database actions:

1. Perform one of the following:
o Click on a Actions Node in the Recordsets Pane and then click on

the New button.
o Right-click inside the Recordsets pane and select the option New

and then Actions. The Actions window appears.

2. Type the name of the new action in the Action Name field and Click Next,
Build Query dialog appears.

3. The Build Query dialog allows you to create an SQL query as follows:

o You can type in the query in the Query text area.
o You can also use any workflow variables in the query. For

convenience the workflow variables are shown to you in the
variables list box. You can type in the name of the variable in the
query text area are double click on its name in the Variables list
box.
Note: For date type fields, Ultimus does not support date value
earlier than March 1900.

o Name of all the available columns are shown to you in the combo
box. As you select a table from this combo box, all the fields of this
combo box are shown to you in the list box below.

o In your query statement you can use the name of table field by
simply typing it or you can insert it in the query statement by double
clicking on it in the table fields list box.
Note:
Enclose field names/table names in square brackets if they
contain a blank space in name. All field names used in the
query statement must be prefixed with a corresponding table
name for example "[My Table1].[My Field1]"
SQL joins can be used in specified SQL Statements only with
MS SQL Server.

4. Once you have entered the query text, Click "Next".
o If you have specified a "Select" query, the field linking dialog is

shown to you. Using this dialog you can link workflow variables with

database fields. Output of the specified query is stored in the linked
variables. Moreover you can specify the maximum number of rows
to be fetched from the database.

To link a workflow variable to a database field, click under the
column labeled variable in front of the desired column name. A
combo box appears showing the names of available workflow
variables. Select the variable you want to link to this column. Click
any where else on this dialog and the variable gets linked to the
database column.

Retrieving Database Records to Workflow Variables:
The Database Actions use Row Indexing to store data in workflow
variables.

Example:
Lets suppose using a Database Action, we want to read all records
from Table A to the workflow variables. Tables A is shown below. It
has two fields ID and Name and contains the data as shown below:
Table A

ID Name
1 Marsha Barrett
2 Ann Puck
3 George Taylor

We want to retrieve the data from fields ID and Name to the
workflow variables WorkflowID and WorkflowName respectively.
Both WorkflowID and WorkflowName are single cell variables.
However, the Database Action will return three records. Row
Indexing allows the Database Action to automatically increment
rows to store all returned values in the linked variables as follows:

If we declare the variables WorkflowID and WorkflowName as
multiple cell variables comprising of four cells each, as shown
below:

Using "Row Indexing", the database flobot will increment rows
taking each chunk of four cells as a single cell. This is shown
below:

Notes:

The Database Actions use the concept of "Row Indexing" for
reading and writing data to workflow variables. It is strongly
recommended that only those variables that do not have any
other variable declared below them on the spreadsheet be
used with Database Actions. For example, on the spread sheet
two variables are declared as follows:

Cell B2= VarOne
Cell B4= VarTwo

Linking the variable VarOne with the database Action can
result in abnormal functionality since another variable,
VarTwo, has been defined on the spread sheet below this
variable.

o If an Update, Delete or Insert Query is specified the above dialog is
not shown since such SQL statements do not have any output.

5. Once you have specified the query and linked the columns to workflow
variables, the action is created and finishing screen is shown to you.

6. Click on the button labeled "Finish" and the new action appears is in the

recordsets pane.
7. A recordset can either be based on a database table or a database query.

By default the option Table is selected. If you want to base your recordset
on a table, select the desired table from the Table Combo box. Details
about creating recordsets based on database query see the section
"Creating Custom Recordsets".

8. Select one of the following Load Options:
o After Form is Displayed: The recordset is loaded after the form is

displayed for faster form load time.
o Before Form is Displayed: The recordset is loaded as the form is

being displayed for slower form load time.
o On Demand: The recordset is loaded only when the form or control

is selected for faster form load time.
9. Click OK. The new recordset appears in the Recordset Pane.
10. Click Close.

To delete a database action:

1. In tool bar click on the Recordsets button. The Recordset pane is shown
to you on the right hand side of form view.

2. Select the Action you want to delete, in the Recordset Pane.

3. Click the Delete button. A warning window appears.

4. Click Yes. The action is deleted.

Modifying Actions Properties

After the action has been created, Ultimus allows you to modify the properties
and perform various functions. Action properties allow renaming actions,
modifying SQL Statements and variable links.

To edit an action:

1. Select the Action the Recordsets Pane and click on the properties
button in the recordset tool bar or right click on the action and select the
option "Properties" from the popup menu. The Action Properties Window
appears:

2. To rename an action modify the action name in the Action Name field and

click the button Apply.
3. To change the SQL Statement of an action, select the tab Specify SQL

Statement and modify the SQL statement.

Having modified the SQL Statement, click the Apply button to apply the
specified settings. If in the modified SQL statement, selected fields are
different from the previously specified ones, following warning message is
displayed and all the filed links are deleted.

Note: Action Properties dialog box does not allow changing the
query types. For example if you modify the type of an SQL Statement
from 'Select' to 'Insert' following warning message box is displayed:

4. To modify the links of a database action, open the properties window for a

database action and select the SQL Action Linking tab.

On this tab modify the links as desired and click the Apply button.

Examples of Using Recordsets in Forms

Using a Recordset Filter

This example shows the process of linking controls to a recordset and using the
filter. In this form, the user selects a country from a combo box. The form extracts
and displays the client name, company, and city from the database. The steps
below take you through the process of building and linking the example form to a
database.

In this example, we use the "Customer" table from the sample "Northwind"
database. We assume that you are connected to a datasource and are familiar
with creating forms and recordsets.

To define the form using recordset filters:

1. Define the following cells and auto labels in the local spreadsheet:

2. Switch to the Form View and create the form as shown below.

3. Select Recordsets from the Edit menu. The Recordsets Pane appears.

4. Create a database connection to work with the Northwind Database.

5. Under this database connection, create three recordsets named
"ClientList1," "ClientList2," and "ClientList3," respectively. In this example,
we used the "Customers" table from the "Northwind" database. Refer to
the directions for creating recordsets at the beginning of this chapter, if
needed.

6. Click the Properties button to modify the Properties for ClientList2.
Configure "Country=B1" as the filter.

7. Configure "City=B2" as the filter for ClientList3 and close the Recordsets
window.

8. Click the Spreadsheet Links button and link each control to its
corresponding spreadsheet cell.

9. Click the Recordset Links button . The Recordset Links pane appears
on the right and lists the three recordsets.

10. Link the Country list box control to the Country table of ClientList1. This is
the first filter.

11. Link the City List Box to the City table of ClientList2.
12. Link the ContactName Field to the ContactName table of ClientList3.
13. Test the form. Select different countries in the Country List Box. The data

in the City List Box changes accordingly. Select a City and the contact
person appears in the Contact field. You can define multiple layers of
filters throughout the forms.

Using Buttons for Database Actions

Ultimus allows you to use buttons for navigation, search, and creation and
maintenance of records in a database. Each button can perform one task and
can be linked only to one recordset. You can have multiple buttons linked to the
same recordset.

This example shows the process of linking a button to a recordset and using the
button to move from one data record to the next. In the following steps, we
assume that you have connected to a datasource and defined your recordsets as
described in previous sections.

To use a button with a recordset:

1. Create the form as shown below as well as a "Customer Information"
recordset. The text in the button reads "Next."

2. Link the Name and Company fields to the appropriate recordset fields.
3. Link the button control to the entire recordset (i.e., click on the Customer

Information node at the top). The link will appear at the bottom, under the
Fax node.

4. Close the Recordsets pane.
5. Select the button control, right-click and select Control Links. The Control

Links window appears.
6. Click the Event Actions tab. Use the default "Clicked" in the Available

Events combo box.
7. Select "Move to next record in the Recordset" from the Assigned Action

combo box.
8. Click Set and close the window. The button will now perform the specific

function for the recordset.
9. Test the form. When you click the Next button to move through the

records in the recordset.

Using Buttons and a Grid Control

This example shows the process of linking a grid control to a recordset and using
buttons to manipulate the data. The recordset is used to populate the cells of the
grid. The buttons are used to modify records in the database and create new
records.

We assume that the user is familiar with the process of creating controls and
linking them to the local spreadsheets. We will only cover the process of linking
the database to the forms.

To define the form using a grid and buttons:

1. For this example, we created the following database table and configured
it as an ODBC datasource named "Tools."

2. Create the form as shown below.

3. Select Recordsets from the Edit menu. The Recordsets window appears.
4. Create a recordset named "Tools." In this example, we used the

"Products" table from our database. Refer to the directions for creating
recordsets at the beginning of this chapter, if needed.

5. Click the Recordset Links button . The Recordset Links pane appears
on the right and lists the recordset.

6. Link the grid control and the buttons to the Product List table. Make sure
that you do not link them to individual fields.

7. Close the Recordset links pane.
8. Open the Control Links for the grid and, under the Spreadsheet tab, enter

"A1:F20" in the Destination Cell(s)/Variables combo box.
9. Click on the Recordset tab and link the grid columns to the recordset fields

as shown.

10. Select the Add button. The Control Link properties for the Add button
appear.

11. Click on the Event Actions tab.
12. Select "Clicked" from the Available Events combo box and "Create new

record in the Recordset" from the Assigned Action combo box, then click
the Set button.

13. Select the Update button and change the Event to "Clicked" and the
Action to "Update the current record in the Recordset," then click the Set
button and close the window.

14. Test the form. In row nine, enter the following data:
o ID=9
o ProductID=120
o ProductName=Drill
o QPerUnit=1
o UnitPrice=65
o InStock=102

15. Click the Add button to add this newly added row to the database.
Likewise, you can modify the data in one of the other rows and/or add a

new row by clicking the Update button. After you have used the form, you
can verify the contents of the database to see that the values have
changed.

Working with Query Based Recordsets

This example demonstrates how to create recordsets that work on multiple
tables. It also shows how to use SQL functions in recordset queries. Query
based recordsets allow you to execute any SQL command and include SQL
function in the query statement. This allows you to easily handle complex query
statements. In this example we assume that on a workflow step, we want to find
out the name of Top 20 customers whose purchases amount more than $1000.
We also want to find the total purchase made by these customer in a descending
order.

Note:

Extended Query only allows you to execute only SELECT SQL statement.

To understand this query you need to know the structure of Northwind
database. Since the example given here, works on multiple tables its
important to know how they are linked. For easy reference, mapping
diagram of the tables used in this query is given below:

To execute this query, we create a recordset as follows:

1. Create a new recordset under as shown below:

Select the option Query and click on the build query button .

2. As you specify the information on "New Recordset" window and click OK
button following dialog is shown to you. On this dialog you can specify the
SQL statement you want to run. In our example we want to search for the
top 20 customer based on the amount of purchases they have made. This
is done using the following SQL statement:
Select [Customers].CompanyName, Sum([Products].UnitPrice) as
TotalPurchases from
[Products], [Customers], [Orders], [Order Details] Where
[Customers].CustomerID= [Orders].CustomerID AND
[Orders].OrderID= [Order Details].OrderID AND

[Products].ProductID=[Order Details].ProductID
Group By [Customers].CompanyName
Having Sum([Products].UnitPrice)>1000
Order By Sum([Products].UnitPrice) Desc
This query fetches the name of customers with their respective purchases
in descending order

3. On this dialog link the output columns or the specified query as shown
below. In the Maximum Rows, specify 20, since we only want top 20
customers to be fetched from the database.

On execution, this recordset fetches the desired data from Northwind database to
the linked columns.

Working with Actions

Using Actions you execute any SQL statement. In this example we assume that
we want to delete the "lost" customers from database. "Lost" customer are
defined as those customers who have not placed any order since January 1998.
This action can be defined as follows:

1. Define an action as follows:

2. In the query list box we specify following query:
DELETE FROM [Customers] WHERE [CustomerID] IN
(Select [Customers].CustomerID FROM [Orders] WHERE
[Orders].OrderDate={d '1999-08-01'})

When this action is executed, all such customers who have not placed any order
since August 1999 are deleted from the database.

Working with Thin Forms

Ultimus Thin Forms use pure HTML to provide lightweight forms as user interface
that can be used in any HTML 3.2-compliant browser, such as UNIX, Macintosh,
Linux, and PDAs. While the Ultimus standard Client and forms provide
sophisticated capabilities, they use ActiveX or Java controls that may not function
in every browser. Thin forms do not support all the functionality of the standard
Ultimus forms, but are lightweight, fast, and the ideal solution for users who need
to deploy workflow solutions in a true cross-platform environment.

The Thin Form Designer

The Thin Forms Designer is a simple HTML editor that works just like a standard
word processor. For every user step in a workflow process, you may create a thin
form using the Thin Forms Designer. This form can work in conjunction to a
standard form for a step, or be the only form associated with the step, depending
upon the needs of your process and the requirements of your users.

Ultimus Thin Forms use pure HTML to provide lightweight forms as user interface
that can be used in any HTML 3.2-compliant browser, such as UNIX, Macintosh,
Linux, and PDAs. While the Ultimus standard Client and forms provide
sophisticated capabilities, they use ActiveX or Java controls that may not function
in every browser. Thin forms do not support all the functionality of the standard
Ultimus forms, but are lightweight, fast, and the ideal solution for users who need
to deploy workflow solutions in a true cross-platform environment.

Users familiar with HTML can extend the functionality of thin forms by inserting
their own HTML code. You can also use third party tools to design custom HTML
pages and include them in thin forms. Thin Forms also allow the users using the
Active Server Pages (ASP) as Thin Forms. While the Standard Forms provide
sophisticated capabilities matching most of the workflow automation
requirements, Thin Forms allow the users create highly customized front ends.
By allowing the users import custom ASP pages, Thin Forms allow the workflow
designers create powerful forms that can work with popular databases at the
backend or run advanced ActiveX controls or connect to third party applications.

Note: While we expect all HTML 3.2 compliant content to function with
Ultimus Thin Forms, we cannot guarantee or provide technical support for
content generated outside the Ultimus Thin Forms Designer. Ultimus will
fully support the standard HTML controls provided in the Thin Forms
Designer.

The Thin Form View

The Thin Form view for a step allows you design Thin Form for a step. You can
switch to the Thin Form as follows:

To Invoke the Thin Form View:

From the Map View:

In map view you can view thin form designer for a step by using any of the
following methods:

1. Select a step in the process map. The Form View button is activated. Click
on the down arrow beside the Form View button and select Thin Form
View. The thin form for the step appears. OR

2. Right-click on the step and select Form menu and then the Thin Form
Menu. The Thin Form for the step appears. OR

3. Select a step and from the View Menu select the option Thin Forms. The
Thin Form for the step appears.

From the Data View

In data view you can view thin form designer for a step by using any of the
following methods:

1. Select the Spreadsheet tab for the step. Click on the down arrow beside
the Form View button and select Thin Form View. The thin form for
the step appears.

2. Select the Spreadsheet tab for the step. From the View Menu select the
option Thin Forms. The Thin Form for the step appears.

Thin Form View has following toolbars:

Thin Form View Toolbar

The Thin Form View Toolbar contains command buttons and functions unique to
the Form View. The Formatting Toolbar contains functions for formatting text
within the form, and the form itself. The Controls Palette contains standard HTML
controls that can be used in forms, in addition to two Ultimus controls for
attachments and electronic signatures.

The Thin Form View Toolbar contains the following buttons:

Button Name Function

 Test Mode Preview the thin form to see how it will behave when
the process is running.

 Page Selection
Combo Box

Displays the selected page and allows switching
between different pages.

 New Page Create a new page for a multi-page thin form.

 Delete Page Delete the selected thin form page.

 Save HTML File Save page as an HTML file that can be modified with
a third-party HTML editor.

 Load HTML File Load an HTML file created with a third-party HTML
editor.

 Properties Display the properties of the selected control.
 Show/Hide Details Show or hide HTML tags.
 Edit HTML Display the HTML code for the thin form so that it can

be edited within Ultimus.
 Spreadsheet Display the local spreadsheet for the thin form.

 Spreadsheet Links
Display the local spreadsheet for the thin form and
control links. Also enables linking controls with
spreadsheet cells.

 Form Tags
Click this button to include Form Tags. A Page having
form tags can pass and receive data from the Thin
Server.

 Step Selection
Combo Box

Displays the selected step and allows switching
between Thin Forms of different steps.

The Formatting Toolbar

The Formatting Toolbar contains the following buttons and controls specific to the
Thin Forms Designer:

Button Name Function
 Decrease Indent Decrease the paragraph indentation.
 Increase Indent Increase the paragraph indentation.
 Bullet List Create a bulleted list.
 Numbered List Create a numbered list.
 Paragraph Break Insert a paragraph break.
 Line Break Insert a line break.

 Background Color Combo Box Change the color of the form page.

 Text Color Combo Box Change the color of the selected text.

Rules and Guidelines

• The Thin Forms Designer is a simple HTML Editor that works like a
standard word processor.

• While designing a form, its appearance and logic can be immediately
tested in Test Mode.

• The Thin Forms designer allows creating a Thin Form that contains more
then one page.

• A Thin Form can also consist of Persistent Pages. Persistent pages are
not processed by the Thin Server, rather these pages are once extracted
and stored in the 'Ultweb' folder on the server. Whenever a call for a
Persistent page is received by the Thin Server, the page is displayed
without any processing.

• Controls of a Persistent page cannot be linked with the workflow variables
or spreadsheet cells.

• When using multiple pages in a Thin Form, one page must be set as the
Default Page. The Default Page of a Thin Form is the page that is shown
before all the other pages.

• The Default Page may contain links to other pages included in the Thin
Form of a Step. Ultimus sets the first page created in Thin Forms as the
Default page. A different page can be set as the Default Page using Page
Properties.

• When using multiple pages in a Thin Form, one of the pages must contain
Ultimus
Submit Button that submits tasks on the BPM Server.

• When using multiple pages in a Thin Form, a user can design only one
page at a time.

• A Thin Form can also include Active Server Pages (ASP). ASP pages
allow the workflow designers create customized forms that can work with
popular databases at the backend or run advanced ActiveX controls or
connect to third party applications.

• The Thin Forms Designer does not allow visually modifying the look and
feel of ASP pages. An ASP page can only be created/modified by
pasting/modifying its code in the Edit HTML window.

• ASP pages are included as Static Pages and the controls of an ASP page
cannot be linked to workflow variables.

• The Test Mode only works for HTML forms. ASP forms cannot be
executed in Test Mode.

• ASP Pages are not executed during simulation of a process.
• The Thin Forms Designer allows using HTML pages that contain frames.

A page containing frames can only be created by copying its code in the
Edit HTML window. For details see "Working with Frame Pages".

• The Thin Forms Designer does not allow visually modifying the frame
page, or the pages referenced in its frames.

• Any page of a Thin Form that has to submit data to the BPM Server must
include Form Tags. All the controls must be placed between Form Start

and Form End tags.
• Ultimus does not support using tables in Thin Form pages.

Creating Thin Forms

For every user step in a workflow process, you may create a thin form. This form
can work in conjunction to a standard form for a step, or be the only form
associated with the step, depending upon the needs of your process and the
requirements of your users. The text and background color of a Thin Form can
be modified as follows:

Modifying Text and Form Colors

Ultimus allows you to change the color of any text within a thin form, as well as
the background color of the form itself.

To change the color of text in a thin form:

1. Select the text in the thin form.
2. Select a color from the text color combo box .

To change the background color of a thin form:

• Select a color from the background color combo box .

Working with Multiple Pages in a Thin Form

Every Thin Form is a collection of HTML Pages. As you switch to Thin Form
View, one page is added to the Thin Form by default and is also set as the Main
Page. The Main Page of a Thin Form is the page that is shown before all the
other pages. More pages can be added to the Thin Form using the New Page
button.

To modify the properties of a page, double click any where on the page, following
properties dialog appears:

On this dialog specify:

• Page Name: Name of the page. Ultimus uses this name to identify a
page.

• Page Extension: From the editable combo box, select .asp extension if
asp is being used or .aspx extension if asp.net is being used. By default
the extension would be .html. The save as persistent page checkbox also
needs to be checked for these pages. This has to be done before editing
the code in the edit html window.

• Default Page: Check this checkbox, to make this page as the Default
Page of the Thin Form. The Default Page of a Thin Form is displayed
before all of the other pages. It is the entry point of a user accessing a
multiple-page Thin Form. Any Thin Form can have at the most one
Default. To make other pages of a Thin Form accessible to a user, links to
other pages must be included on the Default Page.

• Save as persistent page: To create a Persistent page check the
checkbox labeled "Save as Persistent Page". Persistent pages are not
processed by the BPM Server, rather these pages are once extracted and
stored in the Ultweb folder on the server. Whenever a call for a Persistent
page is received by the BPM Server, the page is displayed without any
processing. Controls of a Persistent page cannot be linked with the
workflow variables or spreadsheet cells. All ASP pages are saved as
Persistent Pages. For details see the section "Including ASP Pages in
Thin form".

A page added to Thin Form can be deleted using the Delete Page Button.

Working with Controls

A thin form is made up of a number of objects, called "controls". Controls have
properties, attributes, and perform specific functions. In this section, we explain
how controls are used in general and define the actions common to all controls.
In subsequent sections, we focus on the specific properties of individual control
types.

The Thin Forms Controls Palette

The Thin Forms Controls Palette allows you to insert standard HTML controls,
such as text fields, radio buttons, combo boxes, and more. These are standard
HTML controls that work in any web browser. The Thin Forms Controls Palette
also offers two Ultimus-specific controls, the signature control and attachment
control, which also work in any web browser.

By default, the Thin Forms Controls Palette appears on the right side of the Thin
Form View. However, you can move the Palette below the Main Toolbar or make
it a floating window. Each button is associated with a "control" which performs a
certain function and behaves in a certain way. You make forms by placing these
controls on a blank form, link some controls with the local spreadsheets, and
define the properties of the controls.

The Thin Forms Controls Palette buttons are as follows:

Button Name Function
 Edit Box Insert an edit box control.
 Multi-Edit Box Insert a multi-line edit field control.
 Check Box Insert a check box control.
 Radio Button Insert a radio button control.
 Combo Box Insert a combo box control.
 List Box Insert a list box control.
 Signature Control Insert a signature control.
 Attachment Control Insert an attachment control.

 Image Control Insert Image in Thin Form.

 Submit Button Insert Button that submits Workflow Task.

To move the Palette:

• Click on one of the divider lines in the Palette and drag it to the new
location. If you drag it to the Main Toolbar, it switches to a horizontal
configuration. If you drag it to the workspace, it becomes a floating
window.

To insert controls in the form:

• Click the button for the control in the Palette. The control appears at the
cursor position.

To change the size of a control:

• Select the control. Click on one of the handles that appear and drag it to
resize the control. The location of the handle determines how the control is
resized, such as height and width. Corner controls adjust the size
proportionally.

Deleting a Control:

To delete a control:

• Right click on the control and select the option "Delete" or “Cut”.
• Select the control and press "CTRL+X" keys from key board.
• Select the control and click on the button “Cut” in shortcut toolbar.
• Click on the workspace next to the control to be deleted and press the

backspace key.

Linking Thin Form Controls with Spreadsheet Cells

You can link controls on a thin form page to local spreadsheet cells graphically or
by using the Control Links. You can link a control, such as a single-line edit field,
to an individual cell or, in the case of a multi-line edit field, to a range of cells. All
the controls must be placed between the Form Start and Form End
Tags in order to enable them to send/receive data from the local spreadsheet.

To link a control to a single cell or a range of cells:

1. In the Thin Form View, click the Spreadsheet Link button . The local
spreadsheet appears on the right and a tree list of all controls in the thin
form appears on the left.

2. Select the control in the form.
3. Click on the cell of the local spreadsheet, or select a range of cells. The

Source and Destination cells appear beneath the control in the tree list
with icons indicating the type of link.

Notes: When you link a control to a local spreadsheet cell, the cell border
turns yellow. When you select another control, the cell border turns blue.
This gives you a visual indication of which cells have been linked.

When graphically linking controls to spreadsheet cells, the cell address is
displayed in the tree list. When linking controls via the Control Links
properties (described below), the variable name appears in the tree list.

Link Types: Data Flow

When you link a workflow variable with a local variable, Ultimus allows you to
specify the type of "data flow". This allows you to control whether data flow is

unidirectional or bi-directional for each link. The data flow choices are described
below. Each choice is associated with a symbol, which is displayed beneath the
control name in the tree list on the left. This allows you to graphically determine
not only if the step is linked, but also the direction of data flow.

• Input: Specifies that data will flow from the local spreadsheet to the
control. The symbol indicates that data is flowing into the control.

• Output: Specifies that data will flow from the control to the local
spreadsheet. The symbol indicates that data is flowing out of the control.

Linking Controls to Separate Source Cells and Destination Cells

 The linking process described above assumes that the destination cell(s) and
the source cell(s) are the same. However, some controls, such as combo and list
boxes, require the source cell(s) to be different from the destination cell(s). You
may also want edit fields and other controls to have different source and
destination cells.

To link separate source cells and destination cells:

1. Link the control to a spreadsheet cell as described previously.
2. Select the control.
3. Right-click on the control and select Properties. The Properties window for

the selected control appears.
4. Click on the Control Links tab.

5. Enter the cell address of the destination cell in the Destination Cell combo
box, or select a workflow variable.

6. Click OK.

Note: Source cells are a range of cells in the spreadsheet. Thus, they must
be contiguous. The destination cell does not have to be contiguous to the
source cells. It can be anywhere on the spreadsheet. This allows you to, for
example, use the same source cells with many list boxes.

Linking Thin Form Controls to Recordsets

Linking thin form controls to database tables allows users to read and write
information to the database when using the thin form. You can link list boxes and
combo boxes to database tables.

To link a combo box or list box to a database table:

1. Link the control to a spreadsheet cell as described previously.
2. Select the control.
3. Right-click on the control and select Properties. The Properties window for

the selected control appears.
4. Click on the Control Links tab.

5. Click the Datasource check box. The Datasource fields are activated.
6. Enter the user name and password for the database in the Login and

Password fields.
7. Select a database DSN from the Recordset combo box.
8. Select a table from the Table Name combo box.
9. Select a column from the Column Name combo box.
10. Click OK.

To unlink a combo box or list box from a recordset:

• Click the Datasource checkbox. The datasource links are deactivated.

Description of Thin Form Controls

Ultimus thin forms support common HTML controls as well as two Ultimus-
specific controls for form design. Each control and its properties are described
here.

Button Control
Check Box
Combo Box
Edit Field
Image Control
List Box
Multiline Edit Control
Radio Button
Signature Control

Button Control

Every Thin Form must have a Submit Button on at least one of its pages. The
Submit Button is used to submit the completed task to the BPM Server. The
Ultimus Button Control can be trained to perform four different function, including
Submit Form, as follows:

• Value: This is the text that appears on the face of the button.
• Submit: Select this option to configure the submit Button to submit the

Workflow Task.

• Return: Select this option to set the button to Return the Workflow Task to
the previous step.

• Refresh: Select this option to configure the button to refresh the form
contents.

• Other: Select this option to set custom action against a Submit Button.
Click OK. Right-Click and select View Properties. When this option is
selected the Properties change as follows:

Specify the Name of the Submit Control in the text box labeled 'Name'.
Name of a submit control is used for identifying the control on a page.

Note: If the option "Other" is selected for a Submit Button, you must
click "Edit HTML" and write your custom code in the HTML Pane to
set an action to be taken against this button.

Check Boxes

Check boxes allow users to make choices and select options. Thus, a typical
result of a check box selection is represented by either 0 or 1, with 0 representing
no selection and 1 representing a selection. The results are placed in the cells
linked to the check boxes.

Every check box must be linked to a local spreadsheet cell. A spreadsheet cell
may be linked to multiple check boxes. When the thin form is created, the value
of the local spreadsheet cell is used as the default value for the check box. If the
cell content is 0, the default check box selection is "off". If the cell content is 1,
the default check box selection is "on". When the User clicks on the check box,

its status is immediately transferred to the local spreadsheet cell (i.e., the cell is
set to 0 if the check box is off, or set to 1 if the check box is on).

Check boxes have the following properties:

• Name: This is the name used by Ultimus to distinguish the control from
other controls in the thin form.

• Initial Value: Initial value of the control.

Combo Boxes

A combo box displays a list of choices to the user and allows him to select one.
Once you have placed a combo box on the form, you can perform a variety of
operations for controls as described in previous sections.

Every combo box control in a form must be linked to the local spreadsheet or a
recordset. Combo boxes require separate destination and source cell(s). The
procedure for linking combo boxes is explained in the "Linking Controls to
Separate Source Cells and Destination Cells" section of this chapter.

Combo boxes have the following properties:

• Name: This is the name used by Ultimus to distinguish the control from
other controls in the thin form.

Edit Fields

Edit fields are used for entering data in forms. Each edit field must be linked to a
cell in the local spreadsheet or a system variable. When the form is displayed,
each edit field displays the contents of the cell to which it is linked. When a user
enters data, the contents of the linked cell(s) are updated. An edit field consists
of one line of text with up to 255 characters. Validation for maximum characters
is performed when the user sends the form.

Every edit field in a thin form should be linked to a local spreadsheet cell(s). A
local spreadsheet cell may be linked to multiple edit fields. When the thin form is
created, the contents of the spreadsheet cell are used as default values in the
edit field. When the user enters data in the field, it is transferred to the
spreadsheet cell where it is processed and forwarded to other forms via the main
spreadsheet. Edit fields are linked to local spreadsheet cells just like any other
control as described in the "Linking Thin Form Controls with Spreadsheet Cells"
section of this chapter.

The thin form edit field has the following properties.

• Name: This is the name used by Ultimus to distinguish the control from
other controls in the thin form.

• Initial Value: Initial value of the control.
• Length of Characters: Set the width of control.
• Password: Check this checkbox to make it a signature field. For details

about signature field see "Signature Control".

Image Control

Image control allows inserting images on Thin Form pages. Using the image, an
image can be browsed and embedded in a Thin Form page.

The image control has following properties:

• Name: Name of the image control.
• Image: Use the browse button to specify the image to be displayed in the

image control.

List Boxes

A list box is used to display several choices to the user of a form. List box
Controls are inserted in a form as described earlier in this chapter.

Every list box in a form can be linked to the local spreadsheet. List boxes require
a destination cell(s) and source cell(s). The procedure for linking list boxes has
been explained previously in the "Linking Controls to Separate Source Cells and
Destination Cells" section of this chapter.

List boxes have the following properties.

• Name: This is the name used by Ultimus to distinguish the control from
other controls in the thin form.

• Height: The line height for the field.
• Multiple Selection: If the Yes radio button is selected, this function allows

you to select multiple items in the list box.

Note: When using the list box for multiple selection, you must link the
destination cells to a range of cells. The number of cells in the range
represents the maximum number of items that can be selected.

Multi-line Edit Fields

Multi-line Edit fields are used for entering data in forms. Each multi-line edit field
must be linked to a cell in the local spreadsheet or a system variable. When the
form is displayed, each edit field displays the contents of the cell to which it is
linked. When a user enters data, the contents of the linked cell(s) are updated. A
multi-line edit field consists of multiple lines of text with up to 255 characters per
cell. Therefore, if you link the multi-line edit field with three cells, it can
accommodate 765 characters. Validation for maximum characters is performed
when the user sends the form.

Every multi-line edit field in a thin form should be linked to a local spreadsheet
cell(s). When the thin form is created, the contents of the spreadsheet cell are

used as default values in the multi-line edit field. When the user enters data in
the field, it is transferred to the spreadsheet cell where it is processed and
forwarded to other forms via the main spreadsheet. Multi-line edit fields are
linked to local spreadsheet cells just like any other control as described in the
"Linking Thin Form Controls with Spreadsheet Cells" section of this chapter.

The thin form multi-line edit field has the following properties.

• Name: This is the name used by Ultimus to distinguish the control from
other controls in the thin form.

• Initial Value: Initial value of the control.
• Length of Characters: Set the width of control.
• Number of Lines: The maximum number of lines allowed in the multi-line

edit field.

Radio Buttons

Radio buttons are used to prompt users to select one of several options. Thus,
they are generally placed in groups. Every radio button in a thin form must be
linked to a local spreadsheet cell. When the thin form is created, the content of
the spreadsheet cell is used as the default value for the radio button. If the cell
content is 0, the default radio button selection is "off". If the cell content is 1, the
default radio button selection is "on". When the user checks the Radio button, the
status is immediately transferred to the spreadsheet cell.

The radio button has the following properties:

• Group Name: The name of the group with which the radio button is
associated. For example, you have a thin form with two sets of radio
buttons. The first set is for the user to select which type of computer
he/she is using. The second set is for the user to select which operating
system is installed. Thus, in order for the buttons in each set to work
correctly, all the radio buttons in the first set would have "Computer" in the
group field, and all the radio buttons in the second set would have "OS".

Note: Once the radio buttons are grouped, the buttons will work together
and only one may be selected at any given time. You can have multiple
groups of radio buttons in a thin form.

Signature Control

Ultimus provides a signature control that allows users to "sign" thin forms. When
a thin form containing a signature control is used by the client, the user enters a
network password, which is displayed as asterisks. If the user enters a valid
password, the password acts as a digital "signature".

Ultimus uses Directory passwords for simple signature verification. However, if
customers wish to implement advanced signature verification and display using
their own or third party algorithms, Ultimus allows them to replace the Ultimus

Security DLL with their own signature verification DLL. This allows users to
implement any signature scheme of their choice within the Ultimus framework.

Every signature field in a thin form should be linked to a local spreadsheet cell.
When the user signs the form, the data is transferred to the local spreadsheet
cell where it is used for further processing and forwarded to other forms through
the main spreadsheet.

The signature control has the following properties.

• Name: This is the name used by Ultimus to distinguish the control from
other controls in the thin form.

• Initial Value: Initial value of the control.
• Length of Characters: Set the width of control.
• Password: Uncheck this checkbox to make it an edit field. For details

about an edit control see "Edit Field".

Note:

• "Length of Characters" property will not work for a control, once its
size is changed manually.

• As you view the properties of a control by invoking the properties
window, it becomes disabled. Once you are finished setting
properties of the control and have clicked OK button on the

properties window, you must click once on the form to enable the
selected control on form.

• When the Domain Prefix is enabled, it is mandatory to create a
\DOMAIN NAME directory in the \ULTWEB\SIGNATURE folder,
furthermore the folder must also include its signature images.

Attachment Control

Ultimus offers an attachment control which allows users to attach documents to
thin forms and works in much the same way as e-mail attachments. When a
document is attached to a thin form, the attachment control shows the file name
and path to the file. Attachments can be files of any type. Like the ActiveX
Attachment Control, the thin form can send multiple attachments, one for each
cell to which the control is linked.

Attachment controls are inserted into a thin form in the same manner as other
fields. The Attachment Control has the following properties.

• Name: This is the name used by Ultimus to distinguish the control from
other controls in the thin form.

• Size: The length of attachment control.

Using Attachments

The following steps demonstrate the use of the attachment control in a thin form
as it appears in a web browser:

To attach a document:

1. Click the Browse button on the control. The Open window appears.
2. Select the file and click Open. The file name and its path appear in the

attachment control field.

To attach multiple documents:

1. Attach the first file as described above.
2. Click Refresh Button.
3. The form data is “saved” without submitting the form. The path for the

attached document appears as a hyperlink below the attachment control.
You may attach as many files as there are cells linked to the control.

4. Attach another file as described previously.

To remove an attachment:

To remove an attachment, click the "Remove" button that appears next to every
attachment.

To open an attached document:

• Click on the document's hyperlink below the attachment control. This
launches the document's application or viewer.

Note: To successfully open an attached document, you must have the
correct viewer or application registered with Windows. If the viewing
program is not available, Ultimus displays an error message.

Viewing Thin Form's HTML Code

Every Page designed in Thin Forms Designer is an HTML page. Just like
standard HTML Editor, while the page is being visually created in Thin Forms
Designer, its HTML is automatically generated. While designing a page it may
sometime become necessary to manually edit the HTML. Ultimus allows this by
displaying the editable HTML code of a Thin Form page. Using the Edit HTML
Pane the functionality of a Thin Form can be extended to include:

• Dynamic Pages based on ASP
• Frame Pages

To view the HTML code for a thin form:

1. Click the Edit HTML button in the Thin Form Toolbar. The Edit HTML
Pane
appears and displays the HTML code for the form.

2. Modify the HTML code.
3. Click Edit HTML button. The Edit HTML Pane is closed and the form is

updated with the changes.

You may edit the HTML code of the thin form within Ultimus, or export the form to
an external file. This allows you to modify the form in any HTML editor, such as
FrontPage. You can then re-import the file back into Ultimus. You can also create
forms in another HTML editor and import them into Ultimus.

To save/export a thin form as HTML file:

1. Click the Save HTML File button . The Save As window appears.
2. Name the thin form and save it to the desired location. The form can now

be opened with any HTML editor for further modification.

To import an HTML file as a thin form:

1. Click the Load HTML File button . The Open window appears.
2. Select the HTML file and click Open. The HTML file is loaded into the thin

form view.

Notes: When you load an external HTML file, it will replace anything
currently in the thin form view. These items cannot be retrieved once the
thin form has been saved.

With Thin Forms, Ultimus only supports the controls provided by Thin
Forms Designer (see Working With Controls). Other controls included in the
imported HTML files may or may not work.

When you save a thin form as an HTML file and import it back into the same
step, any links previously created are lost.

Including ASP Pages in Thin Forms

Thin Forms Designer allows including ASP based Dynamic Pages in a Thin
Form. Dynamic pages allow the creation of pages that are customized for each
user on the fly. The Dynamic page can be designed to use Advanced ActiveX
controls, connect to Databases or work with a third party application to perform
customized actions.

To create a Dynamic ASP Page:

An ASP Page can be included in a Thin Form in any of the following two ways:

• Click the Edit HTML Button . The Edit HTML Pane appears. Paste the
complete code of ASP Page in the HTML Pane window, replacing the
already displayed in the Pane. Click again the Edit Button to close the Edit
HTML Pane. The ASP based Dynamic page is added to the Thin Form.

• Click the import HTML Page button. Browse to select the ASP Page you
want to include. Click OK and the selected ASP page is included in the
Thin Form.

Note: ASP Pages are saved as Persistent Pages. An ASP page cannot be
visually modified in Thin Forms Designer. The Control Palette and
Formatting Tool Bars are disabled when an ASP page is imported. Controls
on the ASP page cannot be linked with the workflow variables.

ASP Pages are not executed during Simulation or Test Mode. It is therefore
recommended to include an ASP page in a Thin Form, only after it has been
tested for all the errors.

Working with Frame Pages

Thin Forms Designer allows creating pages that use frames. A frame page can
only be created by pasting its HTML code in the Edit HTML Pane.

To Create a Frame Page:

1. Open Thin Form for a Step and select the page that requires to be frame
based.

2. Click the Edit HTML Button.
3. The HTML Code is displayed in the Edit HTML Pane.
4. Paste the following HTML Code replacing the already displayed HTML

Code:
<HTML><HEAD><TITLE>Ultimus Frame Page</TITLE>
</HEAD>
<FRAMESET cols=257,69%>
<FRAME name=contents src="C:\workflow.htm" scrolling=yes
target="main">
<FRAME name=main src="http://www.google.com">
<NOFRAMES>
<body>
<p>This page uses frames, but your browser doesn't support them.</p>
</body>
</NOFRAMES>
</FRAMESET>
</HTML>

Note: The frame page source can be a valid Local Path, Network Path
or internet path. The file specified here is automatically saved with
workflow process.

5. Click again the Edit HTML Button to apply the changes. The Frame
Page is displayed in Thin Forms Designer as follows:

Note: The Frame Page cannot be visually modified in Thin Forms
Designer.

Creating Frame Page that Uses Ultimus Designed Forms

This section describe how you can create a Frame Page whose Frames
reference other HTML pages included in the same Thin Form. Suppose we have
created a Form that has three pages, Page1, Page2 and Page3. We want Page1
to be a Frame based page that has two Frames namely FrameA and FrameB.
We want FrameA to display Page2 and FrameB to display Page3. This is done
as follows:

1. Switch to the Thin Forms View.
2. Click the New Page button twice to include two new Pages. Thin Forms

Designer displays the following:

3. Note the name of this page as displayed in the status bar (as indicated

above).
4. Using the Switch Page Combo box, switch to Page2 and Note the name of

this page as well.
5. Enter text on Page2 as shown below:

6. Switch to Page3 and enter text as shown below:

7. Switch to Page1.
8. Click the Edit HTML button. The HTML Pane appears. Delete the existing

HTML code and paste following:

<html>

<head>
<title>New Page 1</title>
</head>

<frameset cols="370,*">
<frame name="contents" target="main" src="Page2.htm">
<frame name="main" src="Page3.htm" scrolling="auto">
<noframes>
<body>

<p>This page uses frames, but your browser doesn't support them.</p>

</body>
</noframes>
</frameset>

</html>

9. Click again the Edit HTML button. Thin Forms Designer displays the
following:

10. Note that the Frame Pages does not allow directly modifying the

referenced pages. To modify the referenced pages you have to switch to
the referenced page. For example to modify Page2, switch to Page2.
Place two text boxes as shown below:

11. Move back to Page1 and Thin Forms designer displays the updated

Page2 in its respective frame.

Testing Your Form Design

When you enable the test mode in the thin forms designer, the thin form is
displayed just as when viewed in your web browser. You can enter data, make
selections from list boxes, and operate all the other controls. While in the test
mode, the local spreadsheet is also displayed at the top. This lets you see,
interactively, how the actions you take on the thin form affect the data in the local
spreadsheet. Thin forms can be tested, but not used in simulation. Only Standard
Forms can be simulated.

To invoke the test mode in the thin forms designer:

• Click on the Test Mode button . The thin form appears as it will in the
web browser.

To exit the test mode:

• Click the Test Mode button again to return to the thin forms designer.

Using with PDF Forms

Ultimus allows using PDF forms as the front end of a user step. This allows
designing powerful PDF forms and incorporating them in the workflow process.
The controls of a PDF form can be linked to the workflow variables and the data
specified in the PDF form is passed to the workflow variables.

Note: When using Acrobat Forms, the user must have Acrobat Reader 5.0
or 6.0 installed on the client machine

Working with PDF Forms

To use a PDF form at a step in the workflow process follow the steps given
below:

1. Switch to the map view in Ultimus BPM Studio.
2. Right click on the user step, select the option Form and Adobe PDF from

the popup menu. The following dialog appears:

On this dialog you can specify the following:

3. Select PDF: Click the browse button and select a valid PDF Form file. As
a form is selected, the form fields appear in the Acrobat Form Fields list
box.

Note: The specified PDF form must include:
A Submit button added manually in Acrobat. When configuring this
button in Acrobat, The name of the button should be SubmitForm;
the action, on mouse up, should be “SubmitForm”; The URL to
submit to should be
http://WorkflowServerName/ultweb/ultisapi/ultpdfsapi.dll?#FDF
Where the WorkflowServerName is to be replaced with the Ultimus
BPM Server Name. This name must exactly be the same as the one
that is specified in Ultimus Client. Contact your network
administrator if you do not know the BPM Server Name.

4. Link Variables: To link the workflow variables to PDF Form fields:
1. Click the variable to select it.

2. Click the Acrobat Form Field.
3. Click the link button. The specified variable is linked to the form

field. The link appears in the Links List box.
5. Unlink Variables: To unlink a variable from a Form Field, select its link

entry in the Links List box and click the Unlink button. The variable is
unlinked from the form field.
Note: After linking the workflow variables, if a different PDF file is
specified, the Form Trainer checks the PDF File and all the links are
broken except for the controls that still have the same name.

6. Clicking the Unlink All button removes all the links.
7. Click the OK button when finished.
8. Right click on the User Step and select Properties
9. Set the Default Form value to "Acrobat Form". This will ensure that when

process participants click on the task in the Ultimus Client, the Client will
correctly invoke the Acrobat Form.

This completes specification of PDF Form on a step.

Working with InfoPath Forms

To use a InfoPath form at a step in the workflow process follow the steps given
below:

1. Switch to the map view in Ultimus BPM Studio.
2. Right click on the user step, select the option Form and InfoPath from the

menu. The following dialog appears:

On this dialog you can specify the following:

3. Select InfoPath Form: Click the browse button and select a valid
InfoPath (.xsn) Form from a file. The InfoPath Schema for the form
appears.

Note: The specified InfoPath form must include:
A Submit button added manually to InfoPath. When configuring this
button in Infopath, The name of the button should be SubmitForm;
the action, on mouse up, should be “SubmitForm”; The URL to
submit to should be
http://WorkflowServerName/ultweb/ultisapi/ultpdfsapi.dll?SubmitInfo
pathForm

Where the WorkflowServerName is to be replaced with the Ultimus
BPM Server Name. This name must exactly be the same as the one
that is specified in Ultimus Client. Contact your network
administrator if you do not know the BPM Server Name.

4. Link Variables: To link the workflow variables to InfoPath Schema fields:
1. Click the variable to select it.
2. Click the InfoPath Schema Field.
3. Click the link button. The specified variable is linked to the form

field. The link appears in the Links List box.
5. Delete Variables: To delete a linked variable from a InfoPath Schema

Field, select its link entry in the Links List box and click the delete button.
The link is deleted from the form field.

6. Click the OK button when finished.
7. Right click on the User Step and select Properties
8. Set the Default Form value to "InfoPath Form". This will ensure that when

process participants click on the task in the Ultimus Client, the Client will
correctly invoke the InfoPath Form.

Note: When defining your InfoPath Forms which will be linked to Ultimus,
make sure that the forms have default values for any of the following field
types in the form schema;

1. Date
2. Time
3. Number (double) types

These data types must have default values due to a .NET Framework
limitation.

This completes specification of InfoPath Form on a step.

Note: to change a previously published InfoPath form, follow the steps
given below;

i) Using InfoPath, re-publish the changed (new version) form

ii) In Ultimus, retrain the InfoPath Form linkages for the User Steps where it
is leveraged

iii) Re-publish the process

Failing to do so will result in the older form being opened in Ultimus Client.

Working With Flobots

Business workflow involves people and applications, such as databases, ERP,
accounting, word processors, and spreadsheets. People perform tasks and make
decisions. They also use business applications to produce reports, search for
information, do analysis, and produce charts and graphs. To automate workflow
processes, it is important that the software provide a seamless interface between
the workflow and commonly used business applications, and allow the
applications to be used in the workflow without human intervention.

How Flobots Are Used

Ultimus Flobots provide a powerful means of using third-party applications to
perform specific tasks as steps in a workflow process. Flobots are to business
workflow automation as robots are to an automated factory. Hence the name
"Flobots," which stands for "workflow robots." A robot is a flexible machine. It can
be trained to do a variety of different tasks, depending on the work at hand.
Before a robot is used to perform a task, it must be trained for that task. A robot
may be trained, or programmed, for many different tasks. When it is instructed to
run program A, it performs one set of tasks, and when it is instructed to run
program B, it performs a different set of tasks. Likewise, desktop applications,
such as word processors, spreadsheets, or modern databases, are flexible,
general purpose applications that can do many different things. Ultimus Flobots
allow users to "train" an application to perform a specific task as a step in the
process. When that step is invoked during the actual execution of a workflow
incident, the Flobots cause the application to perform the specific task. Like a
robot, the application may be "trained" to perform many different tasks for
different steps in the process, or for steps in different workflow processes.

Ultimus Flobots consists of two parts: Trainer Flobots and Real Time Flobots.
Trainer Flobots are used during the design of a process to train the application to
perform a specific task. Real Time Flobots, on the other hand, are used in the
actual execution of the workflow to make the application perform the task.

Some examples of the use of Flobots are as follows:

• At a certain step in the workflow, a report has to be printed. The process
designer creates a Word template document as the skeleton of the report
during the training. He inserts fields in the template document and links
them to variables in the workflow process. During the execution of the
process, when the workflow reaches the Word Flobot step, the template is
filled with information gathered during the process and the report is
generated automatically.

• A business process for monthly forecasting requires the printing of a graph
which shows forecasted bookings as compared to departmental budgets.
The process designer creates a spreadsheet and a macro for printing the
graph during the training. Each month, the process is automatically
initiated and the departmental managers are asked for their forecasts. At
the next step, departmental forecasts are fed into the spreadsheet and a
macro is executed to create and print the graph.

• A business process requires that employee information be read from a
database for annual performance review. The Database Flobot is trained
to pull out the appropriate information from the employee database, such
as current salary, grade, and date of last review. This information is used
in subsequent steps of the workflow to complete the performance review.

Ultimus FloStation

The Ultimus FloStation hosts the Flobots. It can be used as a stand-alone
application or as a service. Multiple FloStations may be configured for
convenience and scalability. A Flobot task may be routed dynamically to a
FloStation based upon run-time conditions and data. Furthermore, FloStations
may be configured locally on a LAN, or at a remote location where they connect
with the BPM Server via HTTP or HTTPS. In the latter configuration, the Flobots
can be used to interact with external vendors, partners, and customers.

Inline Flobots

A flobot can either be hosted at a flostation or it can be made an Inline Flobot.
Inline Flobots differ from standard Flobots in following ways:

• Inline Flobots work directly with the Ultimus BPM Server and no FloStation
is required to host them.

• Inline Flobots are much faster than Flobots run on the Flostation because
they run instantly, while the Flostation polls periodically for new Flobot
tasks.

Inline Flobots are trained just like other Flobots. While training the flobot you can
specify whether you want to host the flobot on some FloStation or you want to
make it Inline Flobot.

Note: Following Flobots cannot be run as Inline Flobots:

• Word Flobot
• Excel Flobot
• Acrobat Flobot
• Exchange Flobot
• Custom Flobots
• Web Services Flobot

Rules and Guidelines for Using Flobots

1. Flobots are run from the FloStation. You may install the FloStation on the
same server as the BPM Server, or a dedicated PC. You may also install
multiple Flostations on different PCs or declare them a "group" for
scalability.

2. A Flobot must be added on the FloStation before it can be used in the
workflow. Ultimus Flobots are automatically installed when you install the
software.

3. A step for the Flobot must be included in the process map.
4. The Form for the Flobot step must be created which lists all the variables

used by the Flobot.

5. The Flobot must be trained in the BPM Studio to perform the tasks
required. The training information is automatically sent to the FloStation,
where the Flobot runs.

6. Ultimus also provides a Flobot API that enables advanced users to
develop Flobots for other applications and integrate Ultimus workflow
tightly with their environment.

7. A Flobot fails after predefined time-out interval but the executable does
not terminate.

8. System variable Step name does not appear in Word ,Excel and
Exchange Flobots.

9. Parallel Flobots cannot be run as Inline Flobots.

Adding Custom Flobot in BPM Studio

You can place flobot steps in a process using Ultimus BPM Studio. In real time
these Flobots are executed at the FloStation specified while designing the
process. At design time if you simulate a process to test its working, the Flobots
used in it run locally on the machine on which BPM Studio is installed. For details
of process simulation see "Workflow Simulation". BPM Studio has a copy of all
flobot's application files. These Flobots are executed during process simulation.
All Flobots available to BPM Studio for simulation testing of a process are shown
to you in the properties window of a flobot step. If you want to add a new flobot in
BPM Studio to be available for simulation follow the steps given below:

• Place your new Flobot’s exe into the Flobots folder in the ULTIMUS
WORKFLOW directory

• Start Ultimus BPM Studio.
• Select Tools/Options from the main toolbar. The following dialog

appears.

• Select the Flobots tab and click the Add Flobot button. Following dialog
appears:

• Double click on the sign shown on left side of flobot. The sign should

change to a green check mark .
• You can change the name of this flobot by clicking on its name in the Add

Flobot window shown above.
• Click OK to close the dialog boxes.

Desired flobot is added to the Ultimus BPM Studio.

Note: Please ensure that a custom flobot is added with the same name at
BPM Studio and FloStation.

Defining Flobot Steps

Inserting Flobot Steps in a Workflow Map

A Flobot step is like any other step in the workflow map. You can link a Flobot
step to other steps, create the local spreadsheet for the Flobot step, and link data
from the local spreadsheet of the Flobot step to the main spreadsheet.

When a Flobot step is first inserted in the workflow map, its icon has a red robot,
which indicates that it hasn't been trained. After the Flobot has been trained, the
icon changes to reflect the application with which it works. The icons for the
various Flobots are shown below.

Icon Name Function

Acrobat
Flobot Flobot for integrating acrobat forms with workflow.

 ASCII Flobot Flobot for ASCII file output for legacy applications

Custom
Flobot
(Yellow)

Custom Flobot created with Flobot API. This icon can be
changed by clicking the browse button beside the icon and
selecting a graphic from the directory.

Database
Flobot Flobot for ODBC databases.

 E-Mail Flobot Flobot for sending e-mail messages

 Excel Flobot Flobot for Microsoft Excel

Exchange
Flobot

Flobot for Microsoft Exchange Server and Outlook
automation.

 File Flobot Flobot for common file operations

Web Services
Flobot Flobot for calling Web Services

 .NET Flobot Flobot for calling .NET code.

Untrained
Flobot
(Red)

The Flobot must be trained before the workflow can be
executed.

 Word Flobot Flobot for Microsoft Word

 XML Flobot Flobot for exchanging information with XML-compliant line-
of-business applications.

Defining Flobot Step Properties

To define or edit Flobot step properties:

1. Right-click on the Flobot step and select Properties. The Step Properties
window appears and defaults to the Flobot Step Properties tab.

2. Define the following properties:
o Label: Enter the label for the step. This label identifies the step and

is used by the BPM Studio if it has to report any errors. It is also
used in the workflow Reports. The label must, therefore, be unique.
The label is displayed under the step icon in the process Map.

o Flobot Name: Select the Flobot to be used at that step in the
process.

o Inline: Check this checkbox if you want to make this flobot an Inline
Flobot. For details about Inline Flobots please see "Inline Flobots".

o PC Name: Select the name of the individual Flostation or Flostation
Group on which the Flobot will run. If you select a FloStation group,
the Flobot will run on the first available FloStation PC in the group.
This field is disabled if you select the option of Inline Flobots.

Note: You must first use the Ultimus Administrator to specify the
PCs on which FloStations have been installed.

o Completion Time, Extension Time, and Delay Time: These fields
are identical to those in the User Step Properties window and
perform the exact same functions as described in "Designing
Process Maps."

o Time Out: Its the time interval for which flostation (server in case of
Inline Flobots) waits before marking an active flobot failed.

3. Click OK.

Creating a Spreadsheet for a Flobot Step

Creating a local spreadsheet for a Flobot step is identical to creating a
spreadsheet for a User step. Similarly, you can use workflow variables and local
variables to pass information to the Flobots, just like for any other step (for more
information, see "The Data View").

Creating a Flobot Variable List for the Flobot Step

Flobot steps enable third-party applications to perform a specific task in the
workflow. Thus, instead of a Form, Flobot steps have a Flobot Variable List. This
is a list of variables in the local spreadsheet of the Flobot step. The list specifies
the spreadsheet variables (cells) which the Flobot passes to the application and
receives from the application. When the workflow is executed, the contents of the
variables are passed to the application. The application uses the values for
whatever it is "trained" to perform, and updates the values. The new values are
passed back to the local spreadsheet, and on to the next step in the process.

Note: For passing values to date type fields, Ultimus does not support date
value earlier than March 1900.

To create the Flobot Variable List:

1. Select the Flobot step and click the Form View button, or right-click on the
step and select Form. The Flobot Form View appears. On the left is an
empty list box labeled "Flobot Variables for Step_Label," where
Step_Label is the label for the Flobot step. On the right is the local
spreadsheet.

2. Click the Link button in the Form View toolbar. The cursor changes to the
link cell cursor.

3. Select a cell in the local spreadsheet.
4. Click in the Flobot Variable list box. The cell address appears in the list

box. If the cell has been named, the name is listed next to its address. The
border of the cell turns red.

5. Repeat steps 3-4 as needed.
6. Click the Link button. The cursor returns to the normal cursor mode.

Notes: We strongly recommend that you name all the cells to be used as
variables for Flobot steps. Since these cells are used for "training" a third-
party application, it is very useful to have a descriptive name during the
training to remind you what the variable is.

After you have placed a cell in the Flobot Variable List and exit the Link
mode, whenever you select a variable in the list, the program highlights the
variable and the cell to which it is linked. Likewise, if you select a linked
cell in the local spreadsheet, if the cell is in the Flobot Variable List, it is
also selected in the list.

If you click on a cell which is already linked, a highlight cursor is placed on
the Flobot Variable List showing the name of the cell in the list. If you
attempt to link it again, the software will simply beep.

To delete variables from the Flobot Variable List:

1. Select the cell in the local spreadsheet or the variable name in the Flobot
Variable Form. The cell address and variable name are highlighted.

2. Click the Cut button. The variable name and Link are deleted.

Note: If a local Spreadsheet variable say A1 is linked and later unlinked it
will still appear in the flobot trainer window, because when a local variable
is linked it is declared on the Spreadsheet. After deleting it from the
Spreadsheet it will cease to appear in the trainer window.

Training the Flobots

Before Flobots can be used in a workflow process, they must be "trained."
Flobots are trained in the BPM Studio as you design a workflow process. Flobots
can also be invoked during Simulation. This allows you to completely develop
your application and test it before deploying it to multiple users. When you install
the workflow process, the information regarding the training is automatically
forwarded to the FloStation from where the Flobot will run.

To train a Flobot:

1. Create the Flobot Variable List as described previously.
2. Click the Train button. This invokes the Flobot training session. Train the

Flobot as described below in the section dedicated to the particular Flobot
you wish to train.

3. After you have trained the Flobot, return to the Map View. The Flobot icon
changes to indicate the application for which it was trained (see table at
the beginning of this section). This indicates that the Flobot has been
trained and is ready to be used.

You can re-train the Flobot at anytime by going to the Form View for the Flobot
step and clicking the Train button. More details of the steps involved in training
the different Flobots are provided in the following sections of this chapter.

Note: A Flobot must not contain workflow variables not listed in the
Variables field. This may happen if you have redesigned a process and are
now using a different set of variables with the same Flobot step. If a
workflow variable is present in the document but not in the Variables list
box, the Word Flobot will not know what value to assign it during the actual
execution of a workflow incident. To prevent this, use the Scan button to
get a list of the workflow variables in the document template. When you
click the Train button, the Flobot button searches the document template
for variables not in the Variables list box. If it finds one or more such
variables, it displays them in a window. Training is not allowed to proceed
unless you remove all such variables from the document template.

Invoking a Flobot in Simulation

Flobots can be invoked in the simulation mode to test their behavior just like any
other step. However, you must first have trained the Flobot as described
previously.

To invoke a Flobot step during Simulation:

• When the process reaches a Flobot step, the step turns light green. Click
the Flobot step to invoke the Flobot, just like any other step during
Simulation. When the Flobot is invoked, it performs the actions for which it
was trained.

When the Flobot step is complete, you can go to the local spreadsheet for the
Flobot step and check the values of the variables used by the Flobot.

Running the Flobot in Test Mode

A Flobot can be tested for its real time working using the Test Mode run. The
Test Mode allows you pass local spreadsheet values to a trained flobot and see
the results produced by trained flobot using the specified spreadsheet values.

For example after training an email flobot you may like to test its working when
some specific values are passed to it. You can do it in following the steps given
below:

• Train the Email Flobot. For details on training an Email Flobot see the
section "Training Email Flobot".

• Close the Email Flobot Trainer window and open the local spreadsheet for
Email Flobot.

• Specify some values on the local spreadsheet in the linked
fields/variables.

• Switch to the map view and then double click the Email Flobot to switch to
the Form View.

• In the tool bar, click on the Test Mode Button.
• The Flobot Application is executed and the flobot values are passed to the

Flobot. During Flobot execution a progress bar is shown to you.

• On successful run, the trained email flobot sends mail to specified address
and a message is shown to you.

Note: In test mode, the flobot does not return any values to the local
spreadsheet. In test mode if a flobot fails to perform the specified task, you
can check the flostation log for details about the causes of failures.

Word Flobot

The Word Flobot allows you to use Microsoft Word to perform tasks as
a step in a workflow process. You can use all the word processing capabilities of
Microsoft Word to format, produce, print, and fax reports, forms, documents, and
tables.

How the Word Flobot is Used

The Word Flobot provides the following capabilities:

• Run a Word macro which you can program. This macro is run before any
data transfer takes place.

• Insert variables from your workflow process as fields in a Word document
template.

• Print or save the document.
• Run another Word macro after the workflow variable fields have been

updated.
• Fax the document.

Training the Word Flobot

To train the Word Flobot:

1. Create the Flobot Variable List as described previously.
2. Click the Train button. This invokes the Word Flobot training session.

Ultimus launches Microsoft Word and the Word Trainer window appears
on top of it. The variables that you included in the Variable List appear in
the Variables field. The Process Name and Step Name are shown at the
top.

Note: When the train button is clicked, Word opens a blank document.
To create a new template, begin typing and inserting variables in the
blank document. To add variables to an existing document, do not close
the default document. Go to File/ open in Word without closing the
default document

3. Use Word to format and create a document template.
4. When you want to insert a variable from the workflow as a field in the

document template, select it in the Word Trainer window.
5. Move the cursor to where you want the variable to appear in the Word

document.
6. Click the Insert button in the Word Trainer window. The variable appears

in the Word document.
7. Click the Scan button in the Word Trainer window to search for all

workflow variables that have been inserted. The Ultimus Trainer window
appears, listing workflow variables found in the document template.

8. Repeat steps 6-7 as needed.
9. Click the Train button. The Training Complete window appears.

Notes: A workflow variable may be inserted multiple times. Furthermore,
you can use all the formatting capabilities of Word to format the fields and
the document template.

10. Use the Training Complete window to specify the Actions you want
performed when the Word Flobot is invoked:

o Save As: Check if you want the resulting document saved as a
Word file. Specify the path and file name in the Filename edit box.
You may type it in, or use the combo box to select a workflow
variable that contains the file name. If you choose the latter, you
can specify a different file name for each incident of the workflow.
Note: It is recommended that the specified "Save As" path
must not be a mapped drive path.

o Print: Check if you want the resulting document to be printed.
o Run Before: Check if you want to run a macro before any of the

above operations are performed. Use the Macro Name combo box
to select a previously-defined macro.

o Run After: Check if you want to run a macro after any of the above
operations are performed. Use the Macro Name combo box to
select a previously-defined macro.

o Fax: Check if you want to fax the document. This feature works
only with Microsoft Exchange. Specify the Profile and Fax Number.
Either type in the values, or select workflow variables from the

combo boxes. If you use the latter, the values can be changed
dynamically depending on each workflow incident.

o Error Status: Select a workflow variable in which to store error
messages from the Error Status combo box.

11. Click OK. This closes Word and ends the training session.

Note: You do not have to save the document template created during the
Flobot training. It is stored with the process Map and is sent to the
FloStation when the process is installed.

Error Status Codes Returned by the Word Flobot

When you train the Word Flobot for an action, you can specify a workflow
variable to record the Error Status Code. After the execution, a code (integer) is
returned to the workflow variable. The codes are as follows:

Error Code Message
0 Successful Completion
1 Unspecified Error
2 Cannot create ActiveX control for MS Word
3 Unable to print Document
4 Unable to Send Fax
5 Unable to run Macro
6 Unable to Save As
7 Unable to Save File, File Name Cannot be Empty
8 Unable to Start Word Application
9 Unable to Open Template Document

Word Flobot in Operation

When the Word Flobot step is invoked as a step during the actual execution of a
workflow incident, the following events take place automatically:

1. Word Flobot starts Microsoft Word and loads the document template
created during the training.

2. If Run Before was checked during training, the specified macro is
executed.

3. The actual values of the variables are transferred to the fields in the
document template.

4. If Run After was checked during training, the specified macro is executed.
5. If Save As was checked during training, the document template is saved

as a Word document.
6. If Print was checked during training, the document is printed.
7. If Fax was checked, the document is faxed.
8. The document template is closed and Word terminated.
9. The workflow proceeds to the next step.

Notes: Ultimus Word Flobot does not support nested objects.

Web Service Flobot

The Ultimus Web Services Flobot enables the Ultimus BPM Studio to invoke web
services in external applications in an automated manner. When Ultimus Web
Services is installed, the Web Services Flobot will automatically be added to the
list of available Flobots in Ultimus BPM Studio.

Training the Web Services Flobot

1. Create the Flobot Variable List.
2. Click the Train button. The Web Services Trainer window appears. The

Process Name and Step Name are shown at the top.

3. Click the New button to create a new Action. The Name of Action
window appears.

4. Type in a name for the Action and click OK. The Action window appears.

5. Type in the URL path for WSDL location. An example of a WSDL URL
is http://<machine>/plwebservices/processname.asmx?WSDL

Note: Ultimus supports the consumption of Web Services that
comply with the following standards:

i) SOAP 1.1 - defined at http://www.w3.org/TR/SOAP

ii) WSDL 1.1 - defined at http://www.w3.org/TR/wsdl

6. Click connect
7. Select the Web Services Method from combo box.
8. In the Ultimus Variables selection list, select the variables that you want to

link to the Web Services Parameters.
9. In the Web Services Parameters selection list, select the parameters that

you want to link to the Ultimus variables.
10. Click the Link button. The Web Services Parameter to Ultimus Variable

link appears in the list box below.

Note: This represents that it is an In and Out or Out Parameter i.e.
return type while represents that it is an In Parameter i.e. Method
Parameter.

11. Linking variables to a Web Services repeating array can be accomplished
through linking a variable that spans a continuous range of cells to the
particular Web Services parameter. At run-time, Ultimus will cycle through
the range of cells linked to the variable, and link the values in each cell to
the Web Services array parameters until it encounters an empty cell, or
reaches the end of the cell range.

12. As an optional step, select a workflow variable in the Error Status combo
box. At run time, this variable will capture the Error Status Code returned
by the Web Services Flobot. For the complete list of Error Status Codes
and their definitions, see the following section, "Error Status Codes
Returned by the Web Services Flobot."

13. Click OK. The defined Action appears in the Web Services Flobot Trainer
window. You can now train subsequent Actions for the Flobot.

14. Click the Train button to save your changes and close the window. The
training is now complete.

Notes: Ultimus does not support consumption of Web Services that
contain multi-dimensional parameter arrays. User has an option to set the
value in the destination spreadsheet cell as an Ascii value or as a character
for the following types System.SByte, System.UInt16 or System.Char.

Notes: Repeated arrays in Nested structure are not supported. Nested
structures with repetitions at more than one level are not supported. If we
have a structure DeptSalary having another nested structure Emp which is
repeated. Then only Emp can repeat. If we want to repeat both Employee, it
wont be supported.
If a function parameter is of type structure and that structure has an array
of another structure inside it (Arrays in Nested Structure) like :

Suppose a structure has the following definitions;

Public Structure Emp
Public strName As String
Public iSal As Int32
End Structure

Public Structure DeptSalary
Public iID As Integer
Public strName As String
Public stdeptEmps() As Emp
Public iSal As Int32
End Structure

Due to the limitation in Spreadsheets, Ultimus does not currently support
the following data types for Web Services and .NET Code.

• System.Byte
• System.Decimal
• Timespan
• All reference types (e.g. System.UIntPtr and System.IntPtr)
• System.Int64 signed/unsigned
• Arrays of all the above
• Enumeration
• Overloaded Methods

While reading from the spreadsheet, Web Services Flobot does not verify
the value, therefore, it must be ensured that the value used is within the
specified data type's range.

When a call to any web service is about to execute the proxy assembly of
the web service is generated and cached in the folder
"UltimusInstallFolder\Resources\AssemblyCache. Errors may occur when

a previously cached web service is changed at the web server. For example
some method parameter has been modified, that had been trained
previously. Perform the following tasks
1.Train that Web Service method again
2.Remove the cached assembly from the cache folder.

Unlinking Workflow Variables and Web Services Parameters

Select the previously linked Web Services Parameter. The Unlink button will then
be enabled. Click the Unlink button and the link will disappear.

Working with Web Services Flobot Actions

After you have created several Web Services Flobot actions in the Web Services
Flobot Trainer window, you can re-arrange the order in which they occur, edit
Actions, and also delete Actions.

 To change the order of Actions:

1. Select an Action.
2. Use the Up and Down arrow buttons to move it in the list.

To edit an Action:

1. Double-click on the Action. The Properties window for the Action appears.
2. Make the desired changes and click Done.
3. Click the Train button to close the window and save your changes.

To delete an Action:

1. Select the Action.
2. Click the Delete button . The Action is removed.

Error Status Codes Returned by the Web Services Flobot

When you train the Web Services Flobot for an action, you can specify a
workflow variable to record the Error Status Code. After the execution, a code
(integer) is returned to the workflow variable. The codes are as follows:

Error Code Message

0 Action executed successfully
1 Action not executed successfully
2 Unable to Connect To Remote Server

.NET Code Flobot

.NET Code Flobot can be used to call .NET Code i.e. C# or VB.NET Code in an
intuitive point-and-click manner.

Training the .NET Code Flobot

To train the NET Code Flobot:

1. Create the Flobot Variable List as described previously.
2. Click the Train button. The .NET Code Flobot Trainer window appears.

The Process Name and Step Name are shown at the top.

3. Click the New button to create a new Action. The Name of Action
window appears.

4. Type in a name for the Action and click OK. The Action window appears.

5. Click the browse button to add .C# or VB.NET Code file from the directory.
6. Click the drop down to select the object.
7. Click the properties button.

Note: An Object type is not of simple type and therefore it will not
appear in the trainer window.

This dialog can be used for maintaining state across multiple separate
Actions in the. NET Code Flobot (where each action may call a different
method in the .NET Code).

8. Select Object Property and Workflow Variable from the drop down menus.
9. Select Get or Set radio button
10. Select an Error Status code
11. Click OK

A class can have methods and attributes. A method can be invoked and
properties/fields/attributes can be Set or Get.

12. To Set methods for the .NET Flobot. Click the methods button

13. Select Method name from the drop down menu
14. A list comes up initially of all the .NET Code variables, the Workflow

Variables column is blank. Click twice on the rows in the Workflow
Variables column, a pop up list box appears.

15. Select workflow variables from the list box and link them to the
corresponding .NET Code variable in that row.

16. Select Error Status from the drop down menu
17. Click OK

Ultimus also provides an advanced feature for Referencing External .NET
Assemblies When Calling .NET Code

Notes: Structures and Classes are not supported by .NET Code Flobot. If
Sbyte data type is being used, hard code 0 into the destination field to
obtain a numeric return value.

Due to the limitation in Spreadsheets, Ultimus does not currently support
the following data types for Web Services and .NET Code.

• System.Byte
• System.Decimal
• Timespan
• All reference types (e.g. System.UIntPtr and System.IntPtr)
• System.Int64 signed/unsigned
• Arrays of all the above
• Enumeration
• Overloaded Methods

While reading from the spreadsheet, the .NET Code Flobot does not verify
the value, therefore, it must be ensured that the value used is within the
specified data type's range.

To change the order of Actions:

1. Select an Action.
2. Use the Up and Down arrow buttons to move it in the list.

To edit an Action:

1. Click the Edit Button. The Properties window for the Action appears.
2. Make the desired changes and click Done.
3. Click the Train button to close the window and save your changes.

To delete an Action:

1. Select the Action.
2. Click the Delete button . The Action is removed.

Error Status Codes Returned by the .NET Code Flobot

When you train the .NET Code Flobot for an action, you can specify a workflow
variable to record the Error Status Code. After the execution, a code (integer) is
returned to the workflow variable. The codes are as follows:

Error Code Message
0 Action executed successfully
1 Action not executed successfully

Excel Flobot

The Excel Flobot allows you to use Microsoft Excel to perform tasks as
a step in a workflow process. You can use the extensive capabilities of Microsoft
Excel to analyze, graph, plot, and chart data used in your workflow.

How the Excel Flobot is Used

The Excel Flobot provides the following capabilities:

• Link local variables from a workflow process to cells in an Excel workbook.
This allows you to read and write data from Excel cells.

• Run a pre-defined Excel macro before data is written to Excel, and a
different pre-defined macro after data is written. In both cases, you define
the macro using Excel's powerful macro programming capabilities.

• Print or save the Excel workbook as a new file, or update the contents of
the existing workbook.

Thus, the Excel Flobot allows you to transfer information collected as a part of
the workflow incident into an Excel workbook, run Excel macros to perform pre-
defined tasks which can include analysis, graphing, and plotting, and read data
from the Excel workbook. You can also automatically print a graph or a report.

Train The Excel Flobot

To train the Excel Flobot:

1. Create the Flobot Variable List as described previously.
2. Click the Train button. This invokes the Excel Flobot training session.

Ultimus launches Microsoft Excel and the Excel Trainer window appears.
The variables that you moved to the Variable List appear in the Variables

field. The Process Name and Step Name are shown at the top.

3. Use Excel to create and format worksheets for the task to be performed.

You can also define the two macros to be executed when the Excel Flobot
is invoked.

4. To link a variable from the workflow to a cell in the workbook, select it in
the Excel Trainer window.

5. Select the direction in which the data will flow by clicking on the
appropriate radio button: Variable to Excel, Excel to Variable, or Both.

6. Select a cell in the spreadsheet.
7. Click the Link button in the Excel Trainer window. The worksheet name

and the name of the linked cell appears in the Trainer window with an
arrow indicating the direction of the Link. The Link button changes to
"Unlink."

8. Repeat steps 6-9 as needed.

9. Click the Train button. The Training Complete window appears.

10. Use the Training Complete window to specify the Actions you want

performed when the Excel Flobot is invoked:
o Save As: Check if you want the file saved as a different Excel

workbook. Specify the path and file name in the Filename edit box.
You may type it in, or use the combo box to select a variable that
contains the file name. If you choose the latter, you can specify a
different file name for each incident of the workflow.
Note: It is recommended that the specified "Save As" path
must not be a mapped drive path.

o Print: Check if you want to print spreadsheets in the workbook.
Select the spreadsheets by clicking on them.

o Execute Macro Before Updating: Check if you want to run a
macro before updating the spreadsheet. Use the Macro combo box
to select a previously-defined macro.

o Execute Macro After Updating: Check if you want to run a macro
after updating the spreadsheet. Use the Macro combo box to select
a previously-defined macro.

11. Click OK. This closes Excel and ends the training session.

Error Status Codes Returned by the Excel Flobot

When you train the Excel Flobot for an action, you can specify a workflow
variable to record the Error Status Code. After the execution, a code (integer) is
returned to the workflow variable. The codes are as follows:

Error Code Message
0 Successful Completion
1 Unspecified Error.
2 Active X control for MS Excel could not be created.
3 Unable to print doc.
4 Unable to run to pre macro.
5 Unable to run post macro.
6 Unable to Save As.
7 Unable to start Excel Application.
8 Unable to Open Template Document.
9 Unable to update template Document.

Excel Flobot in Operation

When the Excel Flobot step is invoked as a step during the actual execution of a
workflow incident, the following events take place automatically:

1. Excel Flobot starts Microsoft Excel and loads the workbook created during
the training.

2. If the Execute Macro Before Update check box was checked during
training, the specified macro is run.

3. The actual values of the workflow variables for which the data direction is
specified as "Both" or "Variable to Cell" are transferred to the cells in the
workbook.

4. If the Execute Macro After Update check box was checked during training,
the specified macro is run.

5. Contents of the Excel workbook cells linked to variables are transferred to
the workflow variables for all variables for which data transfer is specified
as "Both" or "Cell to Variable."

6. If the File Save As check box was checked during the training, the
workbook is saved in the specified file.

7. If the Print check box was checked during training, the selected
worksheets are printed.

8. Excel is closed.

Note: Microsoft does not support of MS Office applications with FloStation
Service.

ASCII Flobot

The ASCII Flobot allows you to export workflow data into ASCII files.
Since ASCII files can be imported by a large number of "legacy" applications, this
Flobot is useful for transferring workflow data to almost any application.

How the ASCII Flobot is Used

The ASCII Flobot provides the following capabilities:

• Output variables from your workflow process to fields in an ASCII file.
• Either use a fixed filename for the output file, or make it a workflow

variable so that it can be changed for each workflow incident.
• Specify the field prefix.
• Specify the field suffix.
• Specify the field separator.
• Specify if a Header Record is to be created. A Header Record is created

for a new file. It consists of the variable names written in the ASCII file.
The variable names use the same prefix, suffix, and separators specified
for the data.

• Specify if variable data from each incident is to be written into a new file,
or appended to an existing file.

• Indicate how many fields will be written based on the value of the workflow
variable selected in the Row Count combo box.

Thus, the ASCII Flobot transfers information collected as a part of the workflow
process into a new ASCII file, or appends it to an existing one.

Training the ASCII Flobot

To train the ASCII Flobot:

1. Create the Flobot Variable List as described previously.
2. Click the Train button. The ASCII Flobot Trainer window appears. The

variables that you moved to the Variable List appear in the Variables list.
The Process Name and Step Name are shown at the top.

3. Specify the following options:

o ASCII File: Specify the name of the output file. You may type it, or
use the combo box to select a workflow variable that contains the
file name. If you choose the latter, you can specify a different file
name for each incident of the workflow.

o Append/Overwrite: Specify if you want to append the file each
time the step is invoked or overwrite it with a new ASCII file.

o File Header: Check if you want the Flobot to write a new file
header as the first record every time a new file is created.

o Row Count: Select a workflow variable that contains a numerical
value. The Flobot writes multiple records, incrementing one at a
time, until the Row Count value is reached.

Note: The contents of this workflow variable are used by the ASCII
Flobot to determine the number of fields written to the ASCII file. For
example, we select the workflow variable "Row_Count." Let's say
that the fields are linked to workflow variables which represent cells
A1 through C1. If the value of Row_Count = 5, the first fields written
to the file contain the data in A1 through C1. The ASCII Flobot then
increments the row count by 1 and writes the data contained in A2

through C2. This is repeated until the row count is reached. In this
case, the last entry contains data from cells A5 through C5.

o Field Prefix: Specify the prefix for each field. The prefix
character(s) are added before the field data.

o Field Suffix: Specify the suffix for each field. The suffix
character(s) are added after the field data.

o Field Separator: Specify the character(s) to appear between fields.
Type in a character or use the combo box to select a Tab or a
space.

4. Determine the variables to be inserted as fields in the ASCII document.
Select the variables in the Variables list, then use the Add or Add All
button to add them to the Fields in ASCII File list.

Note: The order in which the variables appear in the list dictates the
order in which they will appear in each row.

5. Select a workflow variable from the Error Status combo box.
6. Click the Train button. The training is now complete.

Error Status Codes Returned by the ASCII Flobot

When you train the ASCII Flobot for an action, you can specify a workflow
variable to record the Error Status Code. After the execution, a code (integer) is
returned to the workflow variable. The codes are as follows:

Error Code Message
0 Successful Completion
1 Missing Out Put File Name
3 Invalid Path / Write permission failed

ASCII Flobot in Operation

When the ASCII Flobot step is invoked as a step during the actual execution of a
workflow incident, the following events take place automatically:

1. The ASCII Flobot opens the ASCII file specified during the training. If this
is the first incident of the workflow process, or if the Overwrite option is
specified during training, the ASCII Flobot creates a new file and writes
the Header record if the File Header check box is marked during training.
The header record has the following format:

#Variable1$/#Variable2$/.............

Where #, $, and / are the prefix, suffix, and separator characters specified
in the training. "Variable 1" and "Variable 2" are the names of the variables
in the order they appear in the Field in ASCII File column in the Trainer.

2. The ASCII Flobot then creates a data record and writes it to the ASCII file,
or appends it to an existing file if the Append option is selected. The
format of the data record is as follows:

#Data1$/#Data2$/.............

Where #, $, and / are the prefix, suffix and separator characters specified
in the training. "Data 1," "Data 2" are the values of the workflow variables
in the order they appear in the Field in ASCII File column in the Trainer.

3. The ASCII Flobot closes the file and sends a message to the BPM Server
that the Flobot step is complete.

Notes: ASCII flobot does not transfer more then 256 characters. The ASCII
Flobot fails after predefined time-out interval but the executable does not
terminate.

Database Flobot

The Database Flobot is the next generation of ODBC Flobot, and provides
much greater functionality. This flobot can read, write, update, delete and query
ODBC compliant databases. It can also execute any valid SQL statement. The
Database Flobot will accept valid SQL commands for every action. These SQL
commands are executed when the flobot is executed in real time.

Database Flobot Vs ODBC Flobot

The Database flobot provides a number of features that are not supported by the
ODBC flobot including:

• Execute ANY Valid Data manipulation (DML) command for example
SELECT, INSERT, DELETE etc.

• Use any of the powerful functions supported by SQL like sum(), Diff(),
Avg() etc.

• Execute nested SQL statements.
• Graphical linking of workflow variables to SQL or Oracle Databases.
• Execute SQL Stored Procedures.
• Call database triggers.
• Perform database search operation based on multiple tables.
• Graphically create complex query statement.

Rules about Database Flobot

• Database flobot does not support the execution of Data Definition (DDL)
commands like CREATE_TABLE, ALTER_TABLE etc.

• A Login Name containing blank spaces (e.g., "My DSN User Name") can
be specified as follows:

o For a Datasource configured with an Oracle database, enclose the
Login Name in single quotes like 'Oracle DSN User Name'.

o For a Datasource configured with SQL server database, enclose
the Login Name in square brackets like [SQL DSN User Name]

• A DSN to be used in Database Flobot must not contain "/" or "\" in its
name.

• Define at least one action under every database connection. If a database
connection is created with no action under it, this connection will not be
stored with the flobot training

• For passing values from a workflow variables to FBIT type database field,
use TRUE for 1 and FALSE for 0. If the value passed is zero or one,
Ultimus variables consider it as integer type values. To pass Boolean type
values, the value of a workflow variable must be set as TRUE or FALSE
on the spreadsheet.

• The Database Flobot cannot be linked to "Binary" or "Var Binary" type
database fields. 'Binary' and 'Var Binary' fields are not shown on the
variable linking page.

• Database Flobot does not support passing/retrieving date values earlier
than March 1900.

• Ultimus does not allow using following field types in filter statements:
o FTEXT and NTEXT on SQL Database Server
o FLONG on Oracle Database Server.

• To retrieve data from database field to workflow variables, range type
workflow variables can only be used if character/text type data is to be
retrieved to the workflow variable.

• In the Database flobot, parameters are passed separately. The % used as
part of the query should be in the variable itself e.g.
SELECT CustomerName, Address from Customers where CustomerID
LIKE [VariableName] ensuring that VariableName itself contains a value
like "CID%"

• If the first cell of a range of cells is left empty at real time, the data will not
be concatenated and no record will be made to the database.

• If invalid data like " hagsfdh " is added to numeric fields, 0 will be added to
the database instead of null.

• To fetch any record and filter through Unique ID field the value has to be
in the correct format e.g {EB220616-FA3F-4581-BA62-592156CF22C1}

• If some invalid value is added to the Date time field a default date will be
added and when it is retrieved, it will return 0 in the date field instead of
default date.

Database Flobot Actions

Using the Database flobot you can define six different action types. Each action
type has its own usage and benefits. The action types are:

• Read: This action uses Select statements to fetch data from a single
database table. You can also fetch filtered data based on a specified filter.
Output of a Select Statement is stored in linked variables.

• Add: This action adds new records to a table. The Flobot reads data from
workflow variables and stores them in a database table.

• Delete: This action deletes records from a database table. A filter can be
specified to delete specific records.

• Update: This action updates one or more existing records in a database
table. A filter can be specified to update specific record(s).

• Custom Query: This action allows any SQL “SELECT” statement to be
executed by the Flobot. Custom Query supports data retrieval from
multiple tables. This statement can also include SQL functions like sum()
and diff(). Example of a custom query: “Select Name,Count(Customers)
From CustomerTable”

• Execute SQL: This action allows the Flobot to execute any SQL
statements other than Select statements. This provides the process with
the capability to execute statements that cannot be specified using the
standard Database Flobot actions (Read, Add, Update). Workflow
variables can be inserted into the SQL statement, allowing the values of
those workflow variables to be sent to/from the target database. With the
ability to execute any SQL statement, actions such as executing SQL
triggers and Stored Procedures can be easily accomplished.

The SQL statement must contain the correct Syntax. In the event of
incorrect syntax, Database Flobot returns an error message. (See New
Actions dialog/Error Description for additional information on SQL error
reporting.)

Training the Database Flobot

To train the Database Flobot:

1. Create the Flobot Variable List as described previously.
2. Click the Train button. The Database Flobot Trainer window appears. The

Process Name and Step Name are shown at the top.

This window allow you to:
a) Create new database connections/actions .
b) Delete database connection/actions .
Note: If a connection is deleted, all the actions defined under that
connection will also be deleted.
c) Edit existing connections/actions .
d) Change the execution order of connections/actions.

Click the New button to create a New Connection. The New
Connection window appears.

Ultimus uses the concept of database "Connection" for communicating
with remote databases. Every connection is a combination of Datasource
and Login/Password. Datasource determines the database Ultimus is
connected to and Login/Password determines the rights/roles that have
been granted to different users on the database server. This allows
different levels of security to be set for different users. In the new
connection window specify the following:
Datasource: From the given combo box, select a datasource.
Login User: Specify the Login Name.

Note:

• To specify a Login Name containing blank spaces (e.g., "My
DSN User Name") as follows:

• For a Datasource configured with an Oracle database,
enclose the Login Name in single quotes like 'Oracle
DSN User Name'.

• For a Datasource configured with SQL server database,
enclose the Login Name in square brackets like [SQL
DSN User Name]

• Define at least one action under every database connection. If
a database connection is created with no action under it, this
connection will not be stored with the flobot training

Login Password: Specify the Password and confirm the password.

3. Click OK on the New Connection window. The connection name appears
in the list view of Database Flobot Actions window.

4. Using this window add new actions under a connection or create new

database connections as follows:
1) and then click on the new button. The new connection window
appears. Using this window create multiple actions.
2)To create a new action click the Actions Node and then click the new

icon.
5. The Database flobot supports multiple actions under a single database

connection. To create an action under a database connection, click the
Actions node under that database node, then click New . The New
Action window appears:

New Action Dialog

• Action Name: Specify the name of the action in this
text box.

• Action Type: Specify the type of the action you want
to create. You can select from following options
shown to you in this combo box:

o Read: To read records from a database table.
o Add: To add records to a database table.
o Delete: To delete records from a database

table.
o Update: To update records in a database

table.
o Custom Query: To read records from multiple

database tables and process the information
using SQL functions.

o Execute SQL: To execute any complex SQL
statement including stored SQL procedures.

• Table Name: Specify the table name on which to
perform some database operation. This combo box is
disabled for Custom Query and Execute SQL, since
these actions can effect multiple tables.

• Error Status: The database flobot returns an error
code for any error that may occur while executing the

specified action. From this combo box, select the
variable in which the error code will be returned.

• Error Description: The database flobot also returns
the description of the error that may occur while
executing the specified action. From this combo box
select the variable in which the error description will
be returned

• Enable Variable: Enable variable specifies how to
proceed if an error has occurred in an action. An
Action is only executed if Enable Variable is blank or
0. Any other value will prevent the action from being
executed.

Note: Ensure that the tables being used are those whose decimal scales
have been defined.

Read:

To read from a database table:

1. In the "New Action" dialog, select Read, specify the other required
information and click OK. The Output specification dialog appears:

On the output tab, specify the variables in which the retrieved database

records will be stored. Do not specify any variable in the output that has
another variable defined below it on the spread sheet. See the Note given
above.

2. To link a field to a workflow variable, click once on the table field name
under "Table Columns" and then click to the right, under the column
labeled "Variable Names". A combo box will appear listing all available
workflow and system variables.

3. Select the desired variable. The database field is now linked to this
workflow variable.

Note: Data is retrieved only from the linked database fields. Unlinked
fields are not included in the query.

4. To unlink a linked variable:
1. Click once on the linked variable name to select it.
2. Click on it once more and a blank combo box appears.
3. Click on the drop down button of the combo box to see the list.
4. With out selecting any entry from the list, click again on drop down

button of the combo box to close the shown list. An empty combo
box will appear.

5. Click any where else on the dialog and the linked variable is
removed from the link.

5. The data read can be filtered.

For details about creating filters see "Working with Filters"

Add

If you want to add some new records to a database table, follow the steps given
below:

1. To add new records to a database table, follow the steps given below.

Linking Table Columns to Workflow Variables
Use this page to specify the variables from which to transfer the data to a
database table. To link a database column to a workflow variable, click
once on the name of a database column, then click to it’s right, under the
column labeled "Variable Names", a combo box appears, select the
variable to link to the table column. Once specified, at runtime, the Add
action will be executed, and the contents of each respective workflow
variable will be transferred into the associated database column.

Multiple Rows
By default, the Add function of the Database Flobot adds only one record
into a linked database table. It passes data only from the first row of linked
variables. If the "Multiple Rows" check box is selected, data from each row
of the variable will be passed to the database table until a NULL row is
encountered. A Null row is defined as containing no data. This function of
the Database Flobot uses Row Indexing, retrieving multiple rows from the
linked variables incrementally

Notes: Numeric field precision can only be set up to to a maximum of
18.

Delete
To delete records from a database table:

1. On the "New Action" dialog, select DELETE, specify other required
information and click OK. The filter specification dialog appears.

Use this dialog to configure a filter. For details about creating filters see
"Working with Filters"

Update

1. On the "New Action" dialog select UPDATE, specify the required
information and click OK. The Input specification page appears.

This dialog has two tabs. On the Input tab, specify the workflow variable
from which to the flobot will pass the data to the database columns. On
filter tab, specify a filter for the records returned. For details about creating
filters see "Working with Filters"

Custom Query
To retrieve data from multiple database tables, use "Custom Query". For
advanced users, the Ultimus Database Flobot provides the option to execute
complex and multi-table SELECT SQL statements. This allows the users to
select data from multiple tables or base the filter expression on multiple tables.
The extended Query action provides the power of Structured Query Language
(SQL). Use any SQL function like sum(), diff() etc. in the SQL statements
specified under this action.

To select data from multiple tables:

1. On the "New Action" dialog, select EXTENDED QUERY, specify other
required information and click OK. The Query specification dialog appears

Enter the required SQL statement in the Query text box. All available
workflow variables and table columns are displayed. Column names are
shown in the "[TableName.ColumnName]" format. Include the names of
workflow variables or columns fields in an SQL statement by entering
them in the Query text box or auto insert them by double clicking on their
name in the respective list box.

Note: Table name must be defined in the SQL statements, as it
cannot be chosen from the New Action dialog when the Action Type
is set to Custom Query. If the table name contains blank spaces, it
must be enclosed in square brackets like [My Table]. When using the
like operator ensure that % sign is used in the workflow variable
name.

2. Type in the desired query and click NEXT. The Output specification
window appears.

Link the workflow variables to the database columns.
Note: For DSN configured on Oracle database server, the table
names for selected fields are not shown on the variable linking
window.

3. Specify the maximum number of rows to be retrieved from the database.

Execute SQL
 "Custom Query" allows only the execution of SELECT statements. "Execute
SQL" permits the execution of SQL statements other than Select. This includes,
for example, executing Stored SQL Procedures. This makes the Database
Flobot, a perfect front end for supported databases.

To execute an advanced SQL statement:

1. On the "New Action" dialog, select Execute SQL, specify other required
information and click OK. The Query specification page appears:

Enter the required query in the list box labeled "Query". All of the available
workflow variables and table columns are displayed. The column names
are formatted like "[TableName.ColumnName]". Include the names of
workflow variables or columns fields in the SQL statement by directly
typing them in the Query text box or auto insert them by double clicking on
their name in the respective list box. The column/workflow variable names
must be enclose in "[]".

2. Once finished, click OK. The action appears in the Actions List box.

Note: If an attempt is made to enter some invalid statement like 'abc' and is
checked in at real time, the flobot will fail and return the following error,
"Could Not Find Stored Procedure "abc".

Using Workflow Variables with Database Flobot

Workflow variables can be used for passing/retrieving data to/from database
fields. The Database Flobot uses Row Indexing to store data in workflow
variables.

Example:
Lets suppose using Database Flobot, we want to read all records from Table A to
the workflow variables. Tables A is shown below. It has two fields ID and Name
and contains the data as shown below:
Table A

ID Name
1 Marsha Barett
2 Ann Puck
3 George Taylor
We want to retrieve the data from fields ID and Name to the workflow variables
WorkflowID and WorkflowName respectively. Both WorkflowID and
WorkflowName are single cell variables. However, the Database Flobot will
return three records. Row Indexing allows the Database Flobot to automatically
increment rows to store all returned values in the linked variables as follows:

If we declare the variables WorkflowID and WorkflowName as multiple cell
variables comprising of four cells each, as shown below:

Using "Row Indexing", the database flobot will increment rows taking each chunk
of four cells as a single cell. This is shown below:

Notes:

The Database flobot uses the concept of "Row Indexing" for reading and
writing data to workflow variables. It is strongly recommended that only
those variables that do not have any other variable declared below them on
the spreadsheet be linked to the Database flobot. For example, on the
spreadsheet two variables are declared as follows:

Cell B2= VarOne
Cell B4= VarTwo

Linking the variable VarOne with the database flobot can result in abnormal
functionality of database flobot since another variable, VarTwo, has been
defined on the spreadsheet below this variable.

For passing values from a workflow variables to FBIT type database field,
use TRUE for 1 and FALSE for 0. If the value passed is zero or one, Ultimus
variables consider it as integer type values. To pass Boolean type values,
the value of a workflow variable must be set as TRUE or FALSE on the
spreadsheet.

Forms can also be linked to databases via server-side ODBC. The purpose
of the Database Flobot is that, in many cases, a process may need to
perform database operations without having a person involved with a Form
on the screen. To support human interaction when reading or writing to a
database, use the Form. Otherwise, use the Database Flobot.

Ultimus has tested the Database Flobot to work with Oracle and SQL
Server. Other databases are not supported and may or may not work with
the Database Flobot.

If we link a workflow variable with any table field which has been declared
as auto number the Database flobot will fail to execute and will return the
following error:

[Microsoft][ODBC SQL Server Driver][SQL Server]Cannot insert explicit
value for identity column in table 'Categories' when IDENTITY_INSERT is
set to OFF.

Working with Filters

A Filter can be created in one of the following two ways:

1. Filter: This is the first radio button on this dialog. If you select this option
you can specify a filter as follows:

I. Click on the new button .
II. The filter condition appears in the list box as shown below:

III. Select the column on which to create a filter from the Column name

combo box.
IV. From the combo box under the column labeled Operator, select the

filter operator.
V. From the combo box labeled Workflow Variable select the variable

whose value to compare with the linked field.
VI. Click any where outside those columns and the specified filter

appears in the list box:

VII. Created filter also appears in the Filter Expression list box:

VIII. To edit an existing filter click on it and then click on the edit button.
IX. To delete a filter, click on it and then click delete.

2. Custom Filter: For advanced users, the Database flobot provides the
option to simply type in the filter. Specify you’re a custom filter by selecting
the Custom Filter radio button. As "Custom Filter" is selected, the
"Available Columns" and "Filter Expression" list boxes are enabled.

In the "Filter Expression" type the desired filter statement. Include the
names of table fields in the filter statement. For convenience, names of all
the available table fields are shown in the "Available Table Columns" list
box. Enter the name of a table field by enclosing it in square brackets or
insert it by double clicking it. To insert workflow variables or linked cells in
the custom filter statement, click "Variable". The Variable insertion dialog
appears. Double click on the variable to insert and the variable is inserted
at the current cursor position in the filter expression. Workflow variable
names must be enclosed in square brackets"[]".

Working with Database Flobot Actions

After creating several Database Flobot Actions in the Database Flobot Trainer

window, actions can be edited, deleted and the order of execution can be
changed.

To change the order of Actions:

1. Select an Action.
2. Use the Up and Down arrow buttons to move it in the list.

To edit an Action:

1. Select an action and click Edit .
2. Make the desired changes and click Done.

To delete an Action:

1. Select the Action.
2. Click Delete . The Action is removed.

Error Status Codes Returned by the Database Flobot

When training the Database Flobot for an action, specify a workflow variable to
record the Error Status Code. After execution, a code (integer) is returned to the
workflow variable. The codes are as follows:

Error Code Message
0 Successful Completion
1 Ultdb2 initialization Fail.
2 Unable to Connect to Database
3 Due to some syntax error, unable to execute the query.
4 Unable to parse the query.
5 Unable to proceed, Enable Variable is not equal to zero.

Database Flobot Examples

This section provides examples on different database actions. These examples,
use the "Northwind" sample database included with SQL Server 7.0.

Read Operation

The following example illustrates how to use a database query as a step in a
process. In this example, a Database Flobot step is defined to search an
employee database and retrieve the names of all employees who joined the
company during the current month. This information is used to launch
Performance Review processes in the subsequent step of the process. For this
step, we define a Flobot Variable List that contains the following variables:

• LastName: Last name of the employee.
• FirstName: First name of the employee.
• Title: Job title of the employee
• Anniversary: Month and day the employee was hired.
• Status: The employee status. If employment was terminated, the status

returns the character "T."
• Term_Symbol: The constant "T."
• Month_First: First day of the current month, such as 7/1.
• Month_Last: Last day of the current month, such as 7/31.

The employee information is contained in a datasource called Northwind, in a
database table called EMPLOYEE. This database table has several columns,
which include the following:

• LAST_NAME: Last name of the employee.
• FIRST_NAME: First name of the employee.
• EMP_TITLE: Job title of the employee.
• HIRE_DATE: Month and day employee was hired.
• NOTES: Notes about employee. If the employee no longer works for the

company, this column contains the letter "T."

A new action is created in the Database Trainer window as follows:

Step 1:

• Create a New action:

Step 2:

• On the output tab link the table columns to workflow variables:

Step 3:

• Specify the filter:

When the Database Flobot step is executed, the Flobot finds all records that
match the specified filter. For each matching record found, the first name, last
name, anniversary date, title, and status are returned. Since each table column is
linked to a workflow variable, the result of the query for the variable is returned in
the range of cells starting from the linked cell. For example, if the column 'Last' is
linked to cell B3, the value of column 'Last' from the first record goes to B3, the
value from second record goes to B4, and so on.

Add Operation

In this example, a Database Flobot step is defined to add records to an employee
database whenever a new employee joins the organization. This information is
received by the database from the Employee Recruitment Process. For this step,
a Flobot Variable List is defined containing the following variables:

• LastName: Last name of the employee.
• FirstName: First name of the employee.
• Title: Job title of the employee
• HireDate: Month and day the employee was hired.
• Address: Address of the employee.
• City: City of the employee.
• PostalCode: Postal Code of the employee.

• Country: Name of the country, to which the employee belongs.
• HomePhone: Residential contact number of the employee.
• Extension: Extension number if applicable.
• Notes: Any other notes related to the employee.
• Reports: Name of the supervisor for the employee.
• PhotoPath: Directory path of employee's photo.

Under the same connection created above, add a new connection and link
workflow variables to the table columns as follows:

Step 1:

• Create an action:

Step 2:

• Link the workflow variables:

When the Database Flobot step is invoked and this action is executed, all
records in the linked variables are transferred to the respective linked fields.

Delete Operation

In this example a database flobot step is defined that deletes discontinued
products from the database. Under the same connection created above, a new
action is added and trained:

Step 1:

• Create a new connection:

Step 2:

• Link the spreadsheet cell A1 to the database column 'Discontinued':

In Step 2 cell A1 is linked to the “Discontinued” column. Cell A1 contains the
value 1. On execution of this action, the Database Flobot will search and delete
all products in the products table whose discontinued column has been marked
YES.

Update Operation

In this example we define a database flobot step that updates an employee's
contact number and address in the database. Under the same connection
created above, we add a new action and train it as follows:

Step 1:

• Create a new action:

Step 2:

• Link the workflow variables:

Step 3:

• On the filter tab, create a filter:

On execution of this action, the database flobot updates the address and contact
number of the employees whose name matches the specified first and last name.

Custom Query Operation

The Database Flobot’s Custom Query Operation executes any SELECT
command that has to work on multiple tables. This allows Ultimus to easily
handle complex query statements. In this example, assume that on a workflow
step, we want to find out the name of Top 20 customers whose purchases
amount to more than $1000. We also want to find the total purchase made by
these customers in descending order.

Note:

Custom Query allows you to execute only SELECT SQL statements.

To understand this query you need to know the structure of the Northwind
database. Since the example given here, queries multiple tables its
important to know how they are linked. For easy reference, a mapping
diagram of the tables used in this query is provided:

To execute this query:

Step 1:

• Create a new action:

Step 2:

• Specify the information on the "New Action" window. Click OK . The
following dialog appears. Specify the SQL statement to run. In our
example, we want to search for the top 20 customers, based on the
amount of purchases they have made. This is done using the following
SQL statement:
Select [Customers].CompanyName, Sum([Products].UnitPrice) as
TotalPurchases from
[Products], [Customers], [Orders], [Order Details] Where
[Customers].CustomerID= [Orders].CustomerID AND
[Orders].OrderID= [Order Details].OrderID AND
[Products].ProductID=[Order Details].ProductID
Group By [Customers].CompanyName
Having Sum([Products].UnitPrice)>1000
Order By Sum([Products].UnitPrice) Desc
This query fetches the name of customers with their respective purchases
in descending order.

Step 3:

• Link the output columns or the specified query as shown below. In
Maximum Rows, specify 20, since we only want top 20 customer records
to be fetched from the database.

On execution of this action, the Database flobot fetches the desired data from
Northwind database to the linked columns.

Execute SQL

Execute SQL allows the flobot to execute SQL99 compliant statements. In this
example, we assume that we want to delete the "lost" customers from the
database. "Lost" customers are defined as those customers that have not placed
an order since January 1998. This query can be defined as follows:

Step 1:

• Define an action:

Step 2:

• In the query list box, specify the following query:
DELETE FROM [Customers] WHERE [CustomerID] IN
(Select [Customers].CustomerID FROM [Orders] WHERE
[Orders].OrderDate={d '1999-08-01'})

When this action is executed, the Database flobots deletes all such customers
from the database who have not placed any order since August 1999.

File Flobot

The File Flobot allows you to perform basic file manipulation functions
as a part of the workflow. Variables from the workflow process, usually file
names, are passed to the File Flobot. The File Trainer Flobot can be trained to
perform actions such as Copy, Delete, Rename, and Run files.

How the File Flobot is Used

Like other Flobots, the File Flobot is used as a step in the workflow to
automatically perform file operations. The File Flobot performs the following file
operations:

• Copy: Copy the contents of one file to another.
• Rename: Rename a file.
• Delete: Delete a file.
• Run: Run an executable file.

Training The File Flobot

To train the File Flobot:

1. Create the Flobot Variable List as described previously.
2. Click the Train button. The File Flobot Trainer window appears. The

Process Name and Step Name are shown at the top. The Help Prompt
field at the bottom displays instructions during training.

3. Select one of the following actions from the top Action combo box: Copy,

Rename, Delete, or Run.

4. Specify the first argument for the file operation. You may type it in, or use
the combo box to select a variable which contains the argument as
determined by the workflow.

5. Specify the second argument for the file operation. You may type it in, or
use the combo box to select a variable which contains the argument as
determined by the workflow. This argument is disabled for the Delete
operation.

6. Specify the variable to return the error status of the file operation with the
Error Status combo box.

7. Click the Train button. The Flobot saves this information and the training is
complete.

Use of Arguments

The following table describes the use of the arguments for each of the actions in
the File Flobot Trainer window:

Action Argument 1 Argument 2
Copy Name of source file Name of destination file
Rename Current name of file New name of file
Delete Name of file to delete None
Run Name of file to execute Command line argument (optional)
The error status codes are as follows:

Error Status Significance
0 Action completed successfully.
1 Copy failed. Argument 1 does not exist.
2 Copy to Argument 2 failed.
3 Rename failed. Argument 1 does not exist.
4 Rename failed. Argument 2 already exists.
5 Rename failed. Source & target drives should be same.
6 Delete failed. Argument 1 does not exist.
7 Unable to attach file.
8 Flobot Failed. See Error Log for details.

File Flobot in Operation

When the File Flobot step is invoked during the execution of a workflow incident,
it automatically causes the actions for which it was trained to be performed. If any
errors occur during these actions, it returns an error message.

E-Mail Flobot

The Ultimus E-Mail Flobot allows you to design workflow processes
which can easily send e-mail messages with attachments at any stage in the
workflow. For example, the E-Mail Flobot can notify a user that a document
request has been approved and send a copy of the document as an attachment.

How the E-Mail Flobot is Used

The E-Mail Flobot provides the following capabilities:

• Send e-mail using any MAPI- (Exchange) or SMTP-compliant mail
system.

• Use fixed information for sender, recipient, subject, message, and file
attachments, or make them workflow variables so they can be changed
dynamically for each workflow incident.

• Send workflow data to any individual as an e-mail message.

Training the E-Mail Flobot

To train the E-Mail Flobot:

1. Create the Flobot Variable List as described previously.

2. Click the Train button. The E-Mail Flobot Trainer window appears. The
Process Name and Step Name are shown at the top.

3. Specify MAPI or SMTP mail system using the radio buttons.
4. Depending upon which mail system you choose, perform one of the

following:
o MAPI: Specify the required Profile in the Use Profile field.
o SMTP: Specify the Host Server and Sender in the appropriate

fields. If you select this option you also have to specify following
information:

 Authentication: Using this combo box, select one of the
following options:

 No Authentication: If you select this option the Email
Flobot sends email messages without any
authentication.

 Authentication Using POP: If you select this option,
the Email flobot sends email messages using POP
authentication. For this option to work you also have
to specify a valid Login Name and Password.

 Authentication Using SMTP (Clear Text Only): If you
select this option, the Email Flobot sends emails
messages using SMTP authentication. For this option

you also have to specify a valid Login Name and
Password.

Note: Except the Password field, in all of the fields, you can either type in
the information or insert a workflow variable. This capability allows you to
specify unique information for each workflow incident.

5. Specify the following information:
o To: Specify recipient(s) for the e-mail message. Multiple recipients

should be separated by a semi-colon (;).
o Subject: Specify the subject of the e-mail message.

6. Enter the body of the e-mail message in the Message field. You can use
the Insert Variable button to insert a workflow variable that contains the
entire message, or insert multiple variables to provide conditional text for
the body of the message.

Note: To insert a workflow variable, click inside the edit field, then
click the Insert Variable button. The E-Mail Flobot variables window
appears. Select a variable and click Insert. The variable appears in
the edit field.

7. Specify any files that will be automatically attached to the e-mail message
in the Attachments field. You may also insert a workflow variable to
dynamically determine the attachment during execution of the workflow
process.

8. Select a variable to store any error messages that are returned from the
E-Mail Flobot.

9. Click Train. The training is complete.

Error Status Codes Returned by the Email Flobot

When you train the Email Flobot for an action, you can specify a workflow
variable to record the Error Status Code. After the execution, a code (integer) is
returned to the workflow variable. The codes are as follows:

E-Mail Flobot in Operation

When the E-Mail Flobot step is invoked during the execution of a workflow

incident, the following events take place automatically:

1. The E-Mail Flobot logs into the Mail System specified during the training.
2. The E-Mail Flobot then creates an e-mail message from the information

provided during training.
3. E-mail message is sent and the Flobot disconnects from the mail system.
4. The E-Mail Flobot closes and informs the BPM Server that the Flobot step

is complete.

Error Code Message
0 Successful Completion
1 Unspecified Error
2 MAPI DLL Initialization Fail
3 MAPI Initialization Fail
4 MAPI Logon Fail
5 SMTP Initialization Fail
6 Unable to Create SMTP Socket
7 Unable to Connect to Mail Server
8 File Name or Path not Found
9 Unable to send mail. See error log for more details.

10 SMTP authentication failed using the specified Login,
Password and Server name.

Exchange Flobot

The Exchange Flobot automatically executes a Microsoft Exchange function
as step in a workflow process. For corporate users that use Outlook as their
client for Exchange server, the Exchange Flobot can send mails or meeting
requests and set tasks in the task list. All this can be done based on the workflow
routing and the values of workflow variables.

How Exchange Flobot is Used

Exchange Flobot provides the following functionality:

• Send task assignments to recipients chosen from the Outlook address
book or based on workflow variables. The Flobot will automatically place
assignments in the task list and generate an email notification that action
was taken.

• Send meeting requests to recipients chosen from the Outlook address
book or based on workflow variables.

• Send an email to recipients chosen from the Outlook address book or
based on workflow variables. Email content can also be based on
workflow variables. Email may be sent to both MAPI and SMTP recipients.

Training the Exchange Flobot

To Train The Exchange Flobot:

• In Ultimus BPM Studio create the Variable List and click on the button
Train. The Exchange Flobot trainer window is displayed.

• This window is used to:

o Create new actions .

o Delete existing Actions .
o Edit existing actions by double clicking on them .

o Change the execution of order of existing actions .
• Click the new button and the "Name of Actions" dialogue box (shown

below) appears.

Specify the name of the action to be created and select the Action Type.
Select from one of the following available action types:

o Email: Train the Flobot to send emails to different users.
o Task: Train the Flobot to set tasks in the users' task list.
o Event: Train the Flobot to send meeting request to users.

Select an action and click "Continue". The Trainer dialog box for the
selected action is shown. The Trainer dialog for each action is
explained below:

• Email Trainer Window:

On this dialog specify:

o Use Profile: Enter a valid user profile configured on Exchange
Server. Exchange Flobot uses this profile for sending mails.

o To: Identify email recipients. This can be hard coded entering the
profiles, can be specified using workflow variables OR can be
specified using the list of available profiles on Exchange Sever. To
see the list of addresses click the "To" button. The Recipient
Selection Dialogue Box appears. From this dialogue box insert the
required addresses. For details please see the section "Linking
fields to workflow variables".

o Subject: Specify the subject of the email.
o Message: Specify the message for this mail.
o Attachments: Attach files to the email as follows:

 To attach a files click the "Open" button, the following
dialogue box appears:

 Select the file to attach and click Open.

Note: Only files present on a network path can be
attached. Attaching any other file shows following error
message:

 Detach Files: To detach a file attached with mail, select the

file and click the "Cut" button. The selected file is
removed.

Note: Multicell variables are not supported by the
Attachment field.

o Error Status: The Exchange Flobot returns an error code for any
error that may occur while executing the specified action. From this
combo box select the variable in which the error code will be
returned.

To link any field to a variable right click on the
field OR click on the field and then click on the
button "Variable". The variable insertion
dialogue box appears. Select the desired
variable from this field and click OK. For further

details see the section "Linking fields to
workflow variables".

• Task Trainer Window: To train the Flobot to assign tasks to
different users, select Task and click Continue. The Task Trainer dialog is
displayed:

On this dialog specify:

o Use Profile: Enter a valid user profile configured on Exchange
Server. The Exchange Flobot uses this profile to send the mail.

o Assign To: Address of the user to which the tasks will be assigned.
This can be hard coded, specified as a workflow variable
containing address OR selected from the exchange users list. To
see the list of addresses click "Assign To" button and the "Select
Address" Dialogue Box appears.

Select the recipients and click OK. For details please see the
section "Linking fields to workflow variables".

o Subject: Specify the subject of the task to be set.
o Due Date: Specify the Due Date for this task.
o Start Date: Specify the Start Date for this task.
o Priority: Specify the priority of this task.
o Comments: Enter any tasks in the given text box.
o Error Status: The Exchange flobot returns an error code for any

error that may occur while executing the specified action. From this
combo box select the variable in which you want the error code to
be returned.

To link any field to a variable right click on the field
OR click on the field and then click on the button
"Variable". The variable insertion dialogue box
appears. Select the desired variable from this field
and click OK. For further details see the section
"Linking fields to workflow variables".

• Event Trainer Window: To train the flobot to send meeting
requests, select the Event Option and click Continue. The Event Trainer
dialog appears.

On this dialog specify:

o Use Profile: Enter a valid user profile configured on Exchange
Server. Exchange Flobot uses this profile to send meeting
requests.

o Attendee: Specify the addresses of the users to which the flobot
will send meeting requests. This can be hard coded, specified using
workflow variables or by using Exchange address list. To see the
address list click the "Attendee" button. The Recipient Selection
dialog box appears. Insert the required attendees. For details
please see the section "Linking fields to workflow variables".

o Subject: Specify the subject of meeting.
o Location: Specify the location where meeting is to be held.
o Start Date: Date on which meeting begins. Select a variable or type

in a date.
o Start Time: Time at which meeting begins. Start Time cannot be

linked to any variable. You have to select from one of the options
given in the combo box.

o End Date: Date on which meeting ends. Select a variable or type in
a date.

o End Time: Time at which meeting ends. Select an end time from
the End Time combo box.

o Priority: Specify the priority of this meeting.
o Comments: Specify any comments for this event.
o Error Status: The Exchange flobot returns an error code for any

error that may occur while executing the specified action. From this
combo box select the variable in which you want the error code to
be returned.

To link any field to a variable right click on the field
OR click on the field and then click "Variable". The
variable insertion dialogue box appears. Select the
desired variable from this field and click OK. For
further details see the section "Linking fields to
workflow variables".

Linking Fields to Variables

Variable Insertion Dialog Box:
You can link all fields, except "Priority", "Start Time" and "End Time", to workflow
variables. To link a text box to a workflow variable, click the text box then click
"Variable". The Variable insertion window appears.

From this window, select the variable to which you want to link this field and click
“insert”. The variable will be inserted in the field with square brackets around it.

Note: Exchange flobot does not support the linking of range variables
(variables comprising of more than one cell) or ranges of cells. Therefore,
passing data to exchange flobot only as single cells or single-cell
variables.
Exception: the MESSAGE or COMMENTS fields do accept variable ranges.

Note: If there are multiple actions in the exchange flobot and the first action
fails to execute due to any reason for e.g. invalid recipient specified, the
flobot will fail and no further action will take place.

Note: If no recipient is mentioned in the linked Workflow variable at run
time the flobot will fail and return the following message, "Recipient List is
empty or at least one of the recipient is null."

Error Status Codes Returned by the Exchange Flobot

A workflow variable can be trained to record the Error Status Code. After
execution, a code (integer) is returned to the workflow variable. The codes are as
follows:

Error Code Description
0 Successful Completion.
1 Flobot fail, see log for details.
2 Recipient does not exist in the MAPI list.
Note: The Flostation service is unable to complete Tasks and Events. For
all such actions user will have to complete tasks using Flostation
Application.

Script Flobot (Read-Only)

Note: In BPM Studio, Script Flobots are only available for processes
created in earlier versions and cannot be edited.

Viewing Action of Script Flobot

Double-click on an existing Script Flobot in a process. The Action window
appears. Flobot variables appear in the Variables list box.

Click on the Script button. The Script Editor window appears.

The Save As menu option and button is available so existing Scripts can be
converted to .NET Code.

Error Status Codes Returned by the Script Flobot

When you train the script Flobot for an action, you can specify a workflow
variable to record the Error Status Code. After the execution of the script, a code
(integer) is returned to the workflow variable. The codes are as follows:

Code Definition
0 Script Executed successfully
1 Script File not extracted successfully
5 Invalid procedure call or argument
6 Overflow
7 Out of memory
9 Subscript out of range
10 Array fixed or temporarily locked
11 Division by zero
13 Type mismatch
14 Out of string space
28 Out of stack space
35 Sub or Function not defined
48 Error in loading DLL
51 Internal error
53 File not found
57 Device I/O error
58 File already exists
61 Disk full
67 Too many files
70 Permission denied
75 Path/File access error
76 Path not found
91 Object variable or With block variable not set
92 For loop not initialized
94 Invalid use of Null
322 Can't create necessary temporary file
424 Object required
429 ActiveX object can't create object
430 Class doesn't support Automation
432 File name or class name not found during Automation operation
438 Object doesn't support this property or method
440 Automation error
445 Object doesn't support this action
446 Object doesn't support named arguments

447 Object doesn't support current locale setting
448 Named argument not found
449 Argument not optional
450 Wrong number of arguments or invalid property assignment
451 Object not a collection
453 Specified DLL function not found
455 Code resource lock error
457 This key already associated with an element of this collection
458 Variable uses an Automation type not supported in VBScript
500 Variable is undefined
501 Illegal assignment
502 Object not safe for scripting
503 Object not safe for initializing
1001 Out of memory
1002 Syntax error
1003 Expected ':'
1004 Expected ';'
1005 Expected '('
1006 Expected ')'
1007 Expected ']'
1008 Expected '{'
1009 Expected '}'
1010 Expected identifier
1011 Expected '='
1012 Expected 'If'
1013 Expected 'To'
1014 Expected 'End'
1015 Expected 'Function'
1016 Expected 'Sub'
1017 Expected 'Then'
1018 Expected 'Wend'
1019 Expected 'Loop'
1020 Expected 'Next'
1021 Expected 'Case'
1022 Expected 'Select'
1023 Expected expression
1024 Expected statement
1025 Expected end of statement
1026 Expected integer constant
1027 Expected 'While' or 'Until'

1028 Expected 'While', 'Until', or end of statement
1029 Too many locals or arguments
1030 Identifier too long
1031 Invalid number
1032 Invalid character
1033 Non terminated string constant
1034 Non terminated comment
1035 Nested comment
1037 Invalid use of 'Me' keyword
1038 'Loop' without 'Do'
1039 Invalid 'Exit' statement
1040 Invalid 'For' loop control variable
1041 Name redefined
1042 Must be first statement on the line
1043 Can't assign to non-By Val argument
1044 Can't use parenthesis when calling a Sub
1045 Expected literal constant
1046 Expected 'In'
32766 True
32767 False
32811 Element not found
Any other error Unknown run time error

XML Flobot

The XML Flobot allows an Ultimus workflow process to exchange data with
any XML-compliant application. It can read information from and write information
to any XML schema and post it to an HTTP server. Therefore, the XML Flobot is
an ideal means of exchanging workflow information with e-commerce, EDI and
other applications that rely on XML.

Training the XML Flobot

To train the XML Flobot:

1. Create the Flobot Variable List as described previously.
2. Click the Train button. The XML Flobot Trainer window appears. The

Process Name and Step Name are shown at the top.

3. Click the New button to create a new Action. The Name of Action

window appears.

4. Type in a name for the Action and click OK. The Action window appears.

Flobot variables and system variables appear in the Variables list box.

5. Select one of the following radio buttons:

o Read: Flobot reads data from an XML file and passes that to the
next step. Read flobot reads data in an XML document or searches
data (based on the value given in local spreadsheet) from an XML
file and passes that to the next step. If no value is given in
spreadsheet then the Flobot will bring all the data from XML
document else it will search the data according to the value given in
the sheet.
Note: Search feature of XML flobot will only work if the XML
document does not contain repeated child nodes in any
parent node. For example if there is an XML document with the
following structure:
<Schema>
 <NodeA>
 <SubA></SubA>
 </NodeA>
 <NodeA>
 <SubA></SubA>
 <SubA></SubA>
 </NodeA>
</Schema>

o Submit: Flobot gets data and stores it in an XML file according to
an XML schema, which is specified by the user, and then posts it to

the server. Depending upon the training XML flobot can submit this
document to an HTTP server path
(http://MyServer/MyRootDirectory/XYZ.asp) or save it in a file on an
UNC path (C:\MyXMLFile.xml). In later case, you have to specify
name of the file with XML extension.

6. Enter a number or select a workflow variable in the Row Count combo
box. The row count can be any number. It determines the number of
nodes XML Flobot will read in an XML document or store in an XML
document.
Row count can be specified as a hard coded number or it can be a linked
to some variable.
Linking Row Count:
To link a variable to row count, follow these steps

1. In case of “Read” action type, select the variable from the row
count combo box to be linked as row count variable.

2. In case of “Submit” action type, you can specify different row count
for different nodes. To do this just select the node for which you
want to specify the row count and then selected a variable form row
count combo box. The functionality of Row Count is different for
“Read” and “Submit” flobot types. Its functionality in both cases is
explained below:
Read
If flobot is of read type then row count specifies how many nodes
flobot will search/read in the specified XML document. XML flobot
searches/reads all the nodes of an XML document if row count
value is specified zero. Row count also returns a value as
explained below:

Row Count Return
If the flobot is of “Read” type then Row count
returns the number of nodes read in the
specified XML document. Row count returns
the value in the linked variable. For examples if
in a variable linked to row count we specified
the value to be 5 and with the given criteria it
read only three nodes then 3 will be returned to
the linked variable as a return row count.
Note: Row Count will only return a value if
flobot type is set to “Read”.

Submit
In case of “Submit” type flobot, row count can be linked to
multiple variables allowing you to specify different row count
for different nodes. This gives you the capability to generate
any type of XML document by passing data from the

workflow variables while specifying how many times each
node will be repeated in the resulting XML document.

7. Click the browse button to select an XML Schema. The schema nodes
appear in the Schema list box. The Flobot uses this schema to store the
data in an XML file. The file is submitted to the XML. Ultimus XML flobot
supports XDR and XSD standards for generating XML documents as
follows:

XDR (Extended Data Representation Standard):
For an XML document based on XDR standard, XML flobot only
reads the attributes “Name” and “Type” for every node. No other
attribute is read for any node.

XML Schema (XSD):
For an XML document based on XSD schema, nodes of only
following types are supported/read by the XML flobot:

• Include
• Sequence
• Simple
• Content
• Extension
• Choice

XML flobot reads the above nodes but does not show them in
the tree view of trainer window. Following nodes are read by
XML flobot and shown in tree view window. Complex Type

Simple Type Attribute

Note: XML Files should not contain nodes with a space in the
nodes names.

Note:

XML flobot does not use the specified schema for validation of
generated XML document.
Suppose in an XML schema, for node “Membership” you have
specified the value of attribute ‘minOccurances =3’ and
‘maxOccurance =5’ to specify the number of repetitions for
this node. This means that node “Membership” should be
repeated, at least 3 times and at most 5 times, in the generated
document. You can control this repetition using row count of
this node but flobot itself does not check for all the attributes
of a node in schema for validating the generated document
against specified values. It is therefore your responsibility to

train the flobot so that it generates XML document as per the
given the schema.

In case of XSD based XML document, if an unsupported type
of node is present in the specified XML schema then schema-
tree view may show an incorrect structure for the specified
schema.

For further details please see "XML Flobot Example".

8. Specify the path and file name in the Source/Destination edit box. You
may type it in, or use the combo box to select a variable that contains the
file name. This can be a local or HTTP path.
Notes: If using HTTP protocol with port 81 (where as default is set at
80) the destination path would be as follows :
htp://localhost:81/ultweb/ultisapi/ultisapi.dll?
If the action is of type Read, you have to specify the path of the
source XML file that contains the data. If action is of type Submit,
you have to specify the path of an XML server to which the XML
document created by the Flobot will be submitted.

9. Select a workflow variable in the Variables list box.
10. In the Schema list box, select the XML node to which you want the

variable linked.

11. Click the Link button. The workflow variable to XML node link appears in
the list box below.

12. Select a variable to store any error messages that are returned from the

XML Flobot.
13. Click Done.
14. The defined action appears in the XML Flobot Trainer window. You can

now train subsequent actions for the flobot. Click Train to close the XML
Flobot Trainer window and save the actions.

To Unlink a variable:

• Select the link, in bottom list box and click the Unlink button. The selected
flobot variable and XML node return to their respective list boxes.

To Unlink all variables:

• Click the Unlink All button. The flobot variables and XML nodes return to
their respective list boxes.

Working with XML Flobot Actions

After you have created several XML Flobot Actions in the XML Flobot Trainer
window, you can re-arrange the order in which they occur, edit Actions, and
delete unnecessary Actions.

To change the order of actions:

1. Select an action.
2. Use the Up and Down arrow buttons to move it in the list.

To edit an Action:

1. Double-click on the action. The Properties window for the action appears.
2. Make the desired changes and click Done.
3. Click the Train button to close the window and save your changes.

Note: If you click Cancel, even changes made in the XML flobot trainer
window are not saved.

To delete an Action:

1. Select the Action.
2. Click the Delete button . The action is removed.

Error Status Codes Returned by the XML Flobot

When you train the XML Flobot for an action, you can specify a workflow variable
to record the Error Status Code. After the execution, a code (integer) is returned
to the workflow variable. The codes are as follows:

Error Code Message
0 Action executed successfully
1 Destination XML value not given in spreadsheet
2 Failed to get spreadsheet variables indices
3 Failed to extract variable values from sheet
4 Action not executed successfully
5 Failed to save locally.

10 Failed to load the document
11 Failed to initialize UltFlo COM object.

XML Flobot Example

Generating XML Document with Different Repetitions:

This example explains how to create an XML document using workflow data.
Suppose there is a situation where you want to create an XML document based
upon the schema shown in the picture below:

This schema contains four nodes namely “MAIN” which is the parent node, under
this node there are two child nodes “SUB1” and “SUB2”. Node “SUB1” has
another sub node “CHILD”. Now we assume that based upon this schema we
want to generate following XML document:

<Schema>
<Main> Main One
 <Sub1>‘Sub1’ 1st in Main One</Sub1>
</Main>
<Main> Main Two
 <Sub1>‘Sub1’ 1st in Main Two
 <Child>Child 1st in Main Two</Child>
 <Child>Child 2nd in Main Two</Child>
 </Sub1>
 <Sub1>‘Sub1’ 2nd in Main Two
 <Child>Child 1st in Main Two</Child>
 <Child>Child 2nd in Main Two</Child>
 </Sub1>
 <Sub2>‘Sub2’ 1st in Main Two</Sub2>
</Main>
<Main> Main Three
 <Sub2>‘Sub2’ 1st in Main Three</Sub2>
 <Sub2>‘Sub2’ 2nd in Main Three</Sub2>
 <Sub2>‘Sub2’ 3rd in Main Three</Sub2>
</Main>
</Schema>
In this XML document node “Main” is repeated 3 times with different values
passed to it. Moreover you also want to specify that for each repetition of “Main”
node, the sub nodes are repeated different number of times. For example in our
case in the schema give above we need to have following structure of our XML
document:

 In first repetition of “Main” node we want:
 Node “Sub1” is created once.

 Node “Child” is not created.
 Node “Sub2” is not created.
 In second repetition of “Main” node we want:
 Node “Sub1” is created twice.
 Node “Child is created twice.
 Node “Sub2” is created once.
 In the third repetition of “Main” node we want:
 Node “Sub1” is not created.
 Node “Child” is not created.
Node “Sub2” is created three times.

Using the Row Count to Generate Required Document

To generate the XML document specified in the example above you need to
specify a different row count variable for different nodes. The criterion for linking
different variables with different nodes has been specified above. To explain how
various row counts will work for different nodes we assume that we have
following row count variables:

You can specify any single cell variable as row count for a parent. Row count
variable specified for a sub node, whose parent node is to be repeated more than
once, must conform to following restrictions:

• The specified variable must be a multiple cell variable.
• The variable must contain as many cells as many times the parent

node is to be repeated. These cells must be in a column. (In our case
since main node is to be repeated three times so every variable linked to
any sub node as row count contains three cells in a column. See in the
sheet shown above in table). Multiple cells in row count variables ensure
that different value is passed as row count for every next repetition of main
node.

Setting Values in the Row Count Variable:
To generate the desired XML document given in the above example we have to
pass different values of row count for different nodes. We want the parent node
(which is node “Main” in our example) to be repeated three times. For this we
have to set the value of variable mainRowCount as “3”, see this in the sheet-

XML Node Variable Linked
as Row Count

Linked Variables shown in Data
Sheet

MAIN mainRowCount
SUB1 sub1RowCount
SUB2 sub2RowCount

CHILD childRowcount

picture above. Now we take the case of “Sub1” which is a child node. The row
count variable specified for this node is “sub1RowCount” and contains three
cells. Values in these cells have been specified as follows:

Variable Cell Working

First Cell

First cell of this variable contains
“1”. This means that in first
repetition of parent node “Sub1”
will be created once.

Second Cell

Second cell contains “2”. This
means that in the second
repetition of main node “Sub1”
will be repeated twice”

Third Cell

Third cell contains “0”. This
means that in the third repetition
of main node “Sub1” will not be
created, as row count specified
for this repetition is zero.

This way for each repetition of parent node you can specify different row count
for child nodes by passing values in corresponding cells. It is same for other
variables.

Passing Data to Repeating Nodes:

To pass data to an XML document, the workflow variable must be declared as
per the rules given below:

• You have to specify a multiple cell variable for a parent node if the
row count specified for this node is greater than one. This variable
must have more than one cell in column format. This variable is
shown in the picture.

Since the main node is to be repeated three times
in desired XML Document, its data variable
contains three cells in a column format.

• For any sub node, whose parent node is to be repeated more than one
time, linked variable must be two-dimensional multiple cell variable.
This variable must have number of rows equal to the largest value
specified in its row count variable. While it’s number of columns
should be equal to the number of times its parent node is to be
repeated. All sub variables are to be declared in this way. Variables
linked with Sub1, Sub2 and Child are shown below:

Sub1

Explanation Row Count
Variable Data Variables

Data variable for this node
contains two rows since
largest value in its row
count variable is "2" (see
the figure shown in next
column. This variable has
three columns as its main
node is to be repeated
three times.

Child

Explanation
Row
Count
Variable

Data Variable

Data variable for this node
contains two rows since
largest value in its row count
variable is two (see the figure
shown in next column. This
variable has three columns as
its main node is to be
repeated three times.
Note:Incase of childDataVariable there are three columns but 1st and
3rdcolumns are blank, this is so because we have specified that in first and
thirdrepetitionofMainnode, child nodewillnotbecreated but still we need to have
thesecolumns present for the variable.

Sub2

Explanation
Row
Count
Variable

Data Variable

Data variable for this node
contains three rows since
largest value in its row
count variable is three
(see the figure shown in
next column. This variable
has three columns as its
main node is to be

repeated three times.

Inthis way you can generate any type of XML document that contains
varyingrepetitions of different nodes using XML flobot.

Note:Though you can use row count variable to generate XML documents
of anystructure, Ultimus strongly recommends you to use this feature very
carefully.You must not specify a row count variable for top level schema
node.
You can specify the row count variable for a schema node only if it has
morethan one child node. If you have specified row count for a schema
node,restrictions stated above does not hold true. In this case XML Flobot
will workin the following way:

RowCount Working with Nested Nodes

• Supposeyou have specified row count value 3 for a schema node. In this
case, theschema node will be created once and its inner structure will be
createdthree times. For example if there is the XML schema given below:
<Schema>
 <Node A>
 <Node B>
</Schema>

If the row count specified for schema node is three then the
resultingstructure will be as shown below:
<Schema>
 <Node A>
 <NodeB>
 <Node A>
 <Node B>
 <Node A>
 <Node B>
</Schema>

• Incase you specify row count of 3 for main node and 2 for some of its
childnode, then the child node will be repeated six times.

PassingData:

• Inthis case if you want to pass data to repeating nodes, the linked
datavariable have to be multiple cell variable in column format. For
example iffor a schema node you have specified the row count 3, and for
its child nodeyou have specified row count 2 then as mentioned above this
child node willbe created six times in the generated XML document. To
pass data to thisvariable you must link a variable to child node that has six
cells in columnformat for example range of cells A1:A6.

• Forpassing data to repeating attribute type node, XML flobot reads value
fromrange type variable by switching columns. For example if you want to
passvalues to an attribute type whose parent node is to be repeated three
times,you should link a range variable comprising of cells A1:C1. On
execution,the XML Flobot will read data from cell A1, when the main node
is createdfirst time, second time it will read the data from cell B1 (shifting
to thenext column) and so on.

Completing a Workflow Step Using XML Flobot

This example illustrates how XML Flobot can be used for integrating two
workflow processes. In most of the business scenarios, information generated at
one step is used to complete a task at some other step in either a same workflow
process or a different workflow process. For situations where the information
passed by a step in a workflow process is used to complete the task for a step in
another process, XML Flobot can be used. In the following it has been explained
how XML Flobot can be used for across-processes step completion.

1. Suppose we want the XML Flobot to pass the Account Number and
Amount to a bank for the transfer of funds, as shown in the snap below:

2. To train the XML flobot for performing the desired action, open the Budget

Allocation Process in Ultimus BPM Studio.
3. Create the following global variables:

1. ProcessName: Used for passing the process name. In this
example the process name to be passed is "Accounts
Management".

2. IncidentNumber: Used for passing the incident number.
3. StepOwner: Used for passing the Step Owner.
4. StepName: Used for passing the Step Name. In this example the

step name to be passed is "Cash Transfer".
5. BudgetAccountNumber: Used for passing the Account Number to

which we want the amount to be transferred.
6. BudgetedAmount: Used for passing the Amount.

4. Double Click the XML Flobot step to switch to the Form View.
5. Add the variables "BudgetAccountNumber" and "BudgetedAmount" in the

variables list. For details see "Defining Flobot Steps".

6. Click the Train Button. The Actions window Appears.

7. Click New button to create a new action. Specify the Name of the

Action and click OK. The Action Trainer Window Appears:

8. Select the option Submit.
9. Select the schema file. The schema must be the same as give below:

<Schema>
<?xml version="1.0"?>
<ElementType name="comment" content="eltOnly" model="closed">
 <element type="Request" maxOccurs="1" minOccurs="0"/>
 <element type="UltimusXML" maxOccurs="1" minOccurs="0"/>
</ElementType>

<ElementType name="WfMessageHeader" content="eltOnly"
model="closed">
 <element type="comment" maxOccurs="1" minOccurs="0"/>
</ElementType>

<ElementType name="WfMessageBody" content="eltOnly"
model="closed">
 <element type="ProcessName" maxOccurs="1" minOccurs="0"/>
 <element type="StepName" maxOccurs="1" minOccurs="0"/>
 <element type="StepOwner" maxOccurs="1" minOccurs="0"/>
 <element type="Incident" maxOccurs="1" minOccurs="0"/>
 <element type="LocalVariables" maxOccurs="1" minOccurs="0"/>
</ElementType>

<ElementType name="WfMessage" content="eltOnly" model="closed">
 <element type="WfMessageHeader" maxOccurs="1" minOccurs="0"/>
 <element type="WfMessageBody" maxOccurs="1" minOccurs="0"/>
</ElementType>

<ElementType name="UltimusXML" content="empty"
model="closed"></ElementType>
<ElementType name="StepOwner" content="empty"
model="closed"></ElementType>
<ElementType name="StepName" content="empty"
model="closed"></ElementType>
<ElementType name="Request" content="empty"
model="closed"></ElementType>
<ElementType name="ProcessName" content="empty"
model="closed"></ElementType>

<ElementType name="LocalVariables" content="eltOnly" model="closed">
 <element type="ACC_NUMBER" maxOccurs="1" minOccurs="0"/>
 <element type="AMOUNT" maxOccurs="1" minOccurs="0"/>
</ElementType>

<ElementType name="Incident" content="empty"
model="closed"></ElementType>

<ElementType name="CompleteStepSchema" content="eltOnly"

model="closed">
 <element type="WfMessage" maxOccurs="1" minOccurs="0"/>
</ElementType>

<ElementType name="ACC_NUMBER" content="empty"
model="closed"></ElementType>
<ElementType name="AMOUNT" content="empty"
model="closed"></ElementType>

</Schema>

Note: The variables names "ACC_NUMBER" AND "AMOUNT" should
be replaced with the variable names as declared in the "Account
Management" process. Using same schema as above, make sure two
global variables have been declared in the Account Management
process with the exact name as "ACC_NUMBER" and "AMOUNT".

10. Select the destination
Note: If using HTTP protocol with port 81 (whereas default is set at
80) the destination path would be as follows:
htp://localhost:81/ultweb/ultisapi/ultisapi.dll?

11. Link the variables as follows:
 ProcessName with ProcessName
 StepOwner with StepOwner
 StepName with StepName
 StepOwner with StepOwner
 IncidentNumber with Incident
 BudgetAccountNumber with ACC_NUMBER
 BudgetedAmount with AMOUNT
Note: While training the XML Flobot for step completion,
SYS_SUMMARY and SYS_PRIORITY can be linked on the trainer
window. No other SYSTEM variable should be linked using the
trainer window.

12. Click the Done Button.
13. On Execution the XML flobot, completes the "Cash Transfer" step in the

Accounts Management process for a give incident.

Acrobat Flobot

The Acrobat Flobot allows an Ultimus Process to export workflow data to
into PDF forms. The workflow data filled form can then be saved to a specified
location or printed. This extends the functionality and flexibility of Ultimus
Workflow Suite by allowing it to fill in any PDF form.

Note: An Acrobat Flobot trained for printing PDF forms, can only be
executed on a FloStation that has Acrobat Reader 5.0 installed.

How Acrobat Flobot is Used

The Acrobat Flobot provides the following capabilities:

• Linking workflow variables to fields an existing PDF form.
• Save the completed PDF form to specified location as an FDF File.
• Either specify a fixed filename for the output file or make it a workflow

variable so that it can be changed for each workflow incident.
• Print completed form to a printer.
• Fax the completed form.

Training the Flobot

To train the Acrobat Flobot:

1. Create the Flobot variable list.
2. Click the train button. The Acrobat Trainer window appears.

This trainer window is used to specify:

3. PDF Form: Specify the name and path of the PDF form. This form can be
located anywhere on the network. Workflow data is embedded in this form
and saved as an FDF file. When the PDF form is selected, its fields are
listed in the "Acrobat Forms Fields" list box. Fields are shown with
different icons as follows:

Name Icon

Check Box
Text Box
Combo box/List Box
Radio Button

4.

5. Field icons appears as nodes in a tree structure. Fields with a “+” can be
expanded to show possible values for that field

6. Action: Specify whether the form will "Print", "Save" or both by checking
the respective check boxes. When selecting Save, specify the path to
which the file will be saved.
Note: In case of Save, the file can only be saved on a local path.

7. Link Variable: To link the variables with form fields, select the variable
and the field that you want to link by clicking the variable, the field then the
link button.
Note:
Acrobat Flobot does not support the linking of range type variables
(variables comprising of more than one cell) or range cells with a
form field. Therefore for passing data can be linked only to single
cells or single-cell variables.
Once the PDF form fields are linked with any variable, the PDF form
cannot be changed or the following message is displayed:

8. Encoding Schema: This edit box is provided for Encoding Strings to

create a FDF file in localized versions using the Acrobat Flobot. A FDF file
during its creation, requires an Encoding Scheme if the file is to be created
in versions other than English. These encoding strings are available on
the Adobe site. An example of a encoding scheme for simplified Chinese
language is GB (must be in capital letters).

9. Error Status: The Acrobat Flobot returns one of five error codes. Select
the variable to which the error code should be returned.

10. Click "Train". This completes the Flobot Training.

Acrobat Flobot in Operation

When the Acrobat Flobot is invoked as a step during the actual execution of a
workflow incident, the following events take place automatically:

• The Acrobat Flobot loads the PDF form specified during training.
• It takes the values from workflow variables and creates an FDF file for the

specified PDF file, with the values in the linked workflow variables.
• If the Save option was checked during training, it saves the PDF and FDF

file to the destination specified during training.
• If the Print option was specified, the file is opened in Acrobat Reader on

the FloStation while keeping the Acrobat Reader window minimized. The
print job for the opened FDF file is sent to the printer configured on the
FloStation and the Acrobat Reader is closed.

Error Codes returned by Acrobat Flobot

During training a workflow variable is defined to record the error status code.
After the execution, a code (integer) is returned to the workflow variable. The
codes are as follows:

Error Code Message
0 Successful Completion.
3 Acrobat Reader is not installed.
4 Cannot Load Acrobat Reader, Unspecified Error.
5 Unable to save file on the specified path.
6 Printer not installed.

Reusing Process Objects

BPM Studio users have the ability to easily leverage existing development efforts
by dragging and dropping steps from one process into another.

Benefit:

Reduced design effort through leveraging existing design elements of other
processes.

Reusing Steps

Ultimus BPM Studio provides the user with the ability to drag and drop a step
from one process to another. To do so,

• Open a previously designed process in the Build Editor
• From the Repository Window View select a step from another process.
• Drag and drop the selected step into the open process in Build Editor.

This makes a copy of the step in the process map and has no reference to its
source. The Step's Properties, Forms and Local Spreadsheet will be copied
when a Step is reused.

Note: The Process from which the Step is being dragged must be either
checked in or locked for this functionality to work.

Reusing Entire Processes

Ultimus BPM Studio provides the user with the ability to drag and drop an entire
process into another process. To do so,

• Open a previously designed process in the Build Editor
• From the Repository Window View select a process.
• Drag and drop the selected process into the open process in Build Editor.
• This creates a Maplet in the process.

This operation creates a reference in the target process map to the original
process that was dragged and dropped into the Build Editor; it does not make a
copy of the process map. The benefit of this approach is that if the original
process map is changed, the target process will not have to be updated.

Note: The Process from which the Step is being dragged must be either
checked in or locked for this functionality to work.

For more information on working with Maplet Steps in processes, please view the
Defining Maplet Step Properties section.

Defining Inlets (Segmenting Processes)

Users have the ability to define continuous sections of a process as an Inlet (or
inline process). Inlets allow process owners to segment processes into exclusive,
independent sections, and users can then work individually on those different
sections without overwriting each other’s work. Thus, not only does BPM Studio
support granular access control at the process and object level, it also provides
fine-grained security for individual sections in processes.

How to define inlets

1. Open a process in Build editor
2. Hold down left-click mouse button and select the area of the process for

which you want to define the inlet.
3. A dotted boundary appears showing the inlet area.

4. Right-click the process and select Make Inlet from the menu option.
5. The following dialog appears

6. Type in a name for the inlet.
7. Click OK

Inlets allow multiple users to work on different sections of the process
collaboratively without interfering with each others work.

Editing rights of the inlet are set through Role-Based Security by the
administrator. Editing options are described in the Defining Object Security
section.

Inlets are edited just like any other object and when a specific inlet is being
edited, you cannot work on any other portion of the process.

Simulation

Simulation is a powerful tool which lets you thoroughly test the workflow
application you have designed before you install it. Ultimus enables you to test all
the following features of your workflow design using simulation:

• The appearance and layout of electronic forms
• Form attributes and properties
• Database links
• Flow of the process
• Routing logic
• Event conditions
• Data links in spreadsheets
• Calculations
• Behavior of Flobots
• Task assignment
• Memos and attachments

Using Simulation

Essentially, everything about a workflow process can be tested before the
application is installed. To appreciate the significance of this tool, it is important
to realize that workflow is a "distributed" application. If you develop a workflow
application which is used by many users, it is logistically impractical and time
consuming to test the application after it is installed. You will have to walk to each
user's computer to test each step, and even a simple modification requires you to
re-install the process and start over. Simulation avoids all this. You test the
process thoroughly on the same PC on which you designed it. Once you have
tested it, you can install with the confidence that it will work properly.

Rules and Guidelines About Simulation

1. To simulate a workflow process, you must complete the design and save
it. If you make a change in the design and try to simulate, the Ultimus
BPM Studio prompts you to save it first.

2. Simulation checks everything that it possibly can. It uses the exact same
code as the BPM Server to ensure that you will get consistent behavior
during Simulation and live testing.

3. When the user clicks on a step that has been assigned to a group, a pop-
up menu appears listing up to 20 members of the group. The user selects
a group member to test the step. You must test the process for each
member of the group (except for the Begin Step, which only requires one
user to perform the step). However, if you want to test it for fewer
members, you can change the Minimum Response field to a lower
number, then delete that number when you install the process.

4. During Simulation, the workflow status data is kept in memory. This data is
a replica of the Ultimus BPM Server database (Ultimus Workflow). Every
time you re-simulate a process, the simulation begins with a new incident.

5. You can run multiple incidents of a workflow process during simulation.
6. Simulation is for testing only. During simulation, you cannot change the

design of forms, or the contents of the spreadsheets. But you can look at
the contents of the spreadsheets to check your workflow logic and
calculations.

7. If you are using Flobots in your workflow, you will not be able to run
simulation unless you have trained all the Flobots.

8. Only Standard Forms can be used in simulation. Thin forms can be tested,
but not used in simulation.

9. During simulation Maplet step is not activated, i.e., no maplet process is
invoked when control goes to Maplet step. During simulation, Maplet step
works like a Junction Step and passes the control to next step without
initiating the specified child process. For detail of a Maplet Step see,
"Maplet Steps".

10. Simulation displays the status of the workflow graphically by using the
process map. Once a step has been made active, the recipient name

appears in green under the step. The step names change color to indicate
the status. The following color codes are used:

o Active Steps (steps you can invoke): Light Green.
o Completed Steps: Dark Green.
o Returned Steps: Red.
o Aborted Steps: Dark Red.
o Inactive Steps: Normal colors.
o Skipped Steps: Normal colors.
o Resubmitable Step: Blue.

Simulating a Workflow Process

The simulate function lets you test the process on one computer before
deploying for all users. Running a simulation shows you exactly how your
process will run when installed, except that all steps are completed on the same
computer. You will be able to follow the process from step to step, and watch
how the data is moved from person to person.

A process can be simulated in multiple cases:

• when it is being edited in Build Editor,
• when it is simply checked-out, but not being edited
• when it is checked-in
• when it is locked

The following numbered subsections discuss the various functions of running an
Ultimus simulation.

1. Starting Simulation

When you start simulation, the program starts the Ultimus BPM Server. It also
verifies the integrity of the application you are simulating and checks version and
recipient information. Depending on the complexity of the process, this might
take some time.

To start a Simulation:

1. Complete your workflow design and save it.
2. Click the Simulate button or right-click on a process and select Simulate

from the Object menu. The simulation server initializes the steps. When
the process is ready, the Begin Step is highlighted.

Note: Through this quick simulation you are not able to view variables
through the watch window or view the spreadsheet. To do so initiate
simulation when in Edit (Build) mode.

2. Invoking a Workflow Step

When you invoke a step in the process, the form for that step is displayed. If
multiple steps are active, it means that these steps can be executed in parallel by
several users.

Steps can be assigned to both single-users and groups. In either case, a user's
name appears beneath the step. For group steps, the BPM Server selects a
random name from the group. When invoking a group step during simulation, you
will select a member of the group to perform the task.

To invoke a single-user step:

• Click on a highlighted (light green) step. The form for that step appears.

To invoke a group step:

1. Click on a highlighted (Light Green) step. A pop-up menu appears, listing
up to 20 members of the group.

2. Select a member from the Group menu.
3. The form for that step appears.

3. Completing a Form

When you invoke an active step, the program displays the form associated with
the step. The view buttons are still in view, but most are disabled during
simulation.

Note: You can test the functionality of only standard forms using simulation i.e.,
during simulation only standard form is shown for a selected step and you cannot
see thin form a step during simulation.

Ultimus forms are used just like any other electronic form, particularly forms that
appear on a web page. You can check all the features designed for the form,
including the calculations. If you are prompted to enter a password for an
electronic signature, however, you can type anything because password
checking is disabled during simulation. You can also attach documents, write
memos, and switch to other pages of the form by using the functions provided.

The following buttons are available when testing forms:

• Send: Sends the form to the next step.
• Return: Returns the Form to the previously performed step.

• Memo: Write a memo to subsequent workflow participants, and view and
print memos from previous workflow participants. For more information
about memos, see the Ultimus Client online Help.

To complete a form:

• When you finish entering a form, click the Send button. The form closes,
and the simulation engine resumes operation.

When you complete a step by sending the form, it turns dark green on the map.
The engine then decides which step to invoke next, and those step(s) become
active. You can, therefore, keep on "role-playing" as different users. Complete
the forms for each step until the process is complete.

4. Returning Steps During Simulation

In simulation, you can return a step to test the behavior of your application, just
as in a real-life situation.

To Return a Step:

• Click the Return button in the Form View.

5. Resubmitting Steps During Simulation

In simulation, you can resubmit a step to test the behavior of your application,
just as in a real-life situation. In order to resubmit a step, it must be enabled for
resubmit when the process is designed (see "Designing a Workflow Map"). When
a resubmitable step is completed during simulation, the step icon turns blue.

To resubmit a step:

• Click the resubmitable step (blue). The Form View appears.

6. Working with Memos During Simulation

The memo function behaves in exactly the same way as it does when running an
actual process.

To open a memo:

1. Click on the Memo button in the form. The Memo window appears.

Note: If this is not the first step in the workflow and a memo has
already been written in a previous step, the Memo button flashes.

2. Enter the text for the Memo. The User Name, date and time are entered
automatically.

3. Click the Print button to print the memo.
4. Click OK.

7. Checking the Contents of the Spreadsheets

At any point during simulation, you can switch to the Data View. In the Data
View, you can check the contents of any cell in the local spreadsheet or the main
spreadsheet and see if your calculations and links are working properly. You may
not edit the contents of the spreadsheet in simulation mode.

By looking at the spreadsheets, you can determine the values and status of the
variables used in the process. Since you can look at the spreadsheet at any
stage in the workflow, you can watch the variables change. This is a very useful
diagnostic tool to check and debug the logic of your process and the user
interface.

Note: this capability is only available when simulating processes from within the
Build Editor

8. Working With Flobot Steps

During simulation, you can invoke Flobot steps just like any other step. The
Flobot performs the operations for which it has been trained. When the Flobot
step is complete, it turns dark green and the simulation automatically moves to
the next step. You can then go to the local spreadsheet for the Flobot step or the
main spreadsheet to check the variables modified by the Flobot.

To invoke a Flobot Step in Simulation:

• Click on the highlighted (light green) Flobot step. The Flobot performs the
operation for which it was trained.

9. Using the Watch Window

The Watch window is a tool to make it easier for you to debug and test your
workflow applications. It lets you monitor the values of the workflow variables.
Thus, as you run a simulation and the values of the variables change, you can
observe them on the screen, without having to switch to the Data View. This
allows you to easily identify problems and debug your workflow application.

To work with the Watch Window:

1. Click the Watch Window button . The Watch Window appears at the
bottom of the screen.

2. Select a workflow variable from the Workflow Variables combo box and
click the Add button. The variable appears in the list box below.

3. During simulation, observe the value of the selected workflow variables as

they change from step to step. The Watch window provides graphical
indication if the value of a variable has changed after the last step as
follows:

o A green check mark signifies that the value of the variable has not
changed after the last step.

o A red exclamation point signifies that the value of the variable has
changed after the last step.

4. You can hide the Watch window by clicking the Watch window button
again. When you bring it back, it remembers the names of the variables
selected for observation.

Note: this capability is only available when simulating processes from within the
Build Editor

10. Ending and Restarting Simulations

You can end the simulation when the process is complete or at any time during
the process. You can also restart the simulation from the beginning.

To end a Simulation:

• Click the Simulation button .

To restart a Simulation:

• Click the Simulation button again .

Creating Technical Documentation

As companies develop complex, enterprise-wide workflow processes, the need
to document these processes becomes essential. Once the final version of a
workflow process has been designed and the key requirements, exceptions and
special conditions have been documented, it is often necessary to render the
design in to an electronic document that could be reviewed and shared with
others. Documentation is a laborious, time-consuming and costly activity. Ultimus
BPM Studio provides the capability to take the process design and produce an
electronic document that describes the model, its objects and requirements. This
printable technical description of the business process can contain the following
information:

• Business Process Name
• Business Process Map
• Business Role Definition
• Process Design Instructions
• Event Conditions and Instructions
• Step Descriptions
• Maplet Descriptions
• Form Inputs, Actions, and Outputs
• Flobot Specifications

With Ultimus' powerful process documentation capability, you can define report
templates using Microsoft Word and specify which parts of the process you wish
to show in the documentation. When a report is selected and printed, the Ultimus
BPM Studio automatically creates a Word document to define the process.

Documentation Variables

Ultimus provides a list of pre-defined documentation variables, which can be
broken down into three categories: Process-related, Step-related, and Loop.

Process-Related Variables

Process-related variables deal with the entire process, and generally refer to one
piece of data in a report. They are as follows:

• Process Name: Name of the workflow process.
• Process Owner: Owner of the workflow process.
• Process Description: Description of the process.
• Process Creation Date: Date the process was created.
• Process Modified Date: Date that the process was last modified.
• Process Map: Image of the process map.
• Total Number of Steps: Total number of steps used in the process.
• Number of User Steps: Total number of user steps used in the process.
• Number of Flobot Steps: Total number of Flobot steps used in the

process.
• Number of Maplet Steps: Total number of maplet steps used in the

process.
• Number of Junction Steps: Total number of junction steps used in the

process.
• Main Spreadsheet: Image of the main spreadsheet.
• Process Variables: List of all System and workflow variables.

Step-Related Variables

Step-related variables refer to specific steps in the workflow process, rather than
the whole process. Step-related variables are generally used in a loop (see next
section). The step-related variables are as follows:

Step Label: The label of the step.

Step User: The recipient of the step.
Note: The documentation does not show any value for the step recipients if
the recipient of a step is determined during Realtime execution of a
process (For recipient types such as Queue and Sequential Groups etc.)

• Step Task Cost : The cost rate at which the user performs the task.
• * Step Recipient Notes: Notes about step recipients.
• *Step Completion Time Notes: Notes about step completion Time.
• *Step Extension Time Notes: Notes about Step Extension Time.
• *Step Delay Time Notes: Notes about delay time for the step.
• *Step Notes: Notes about the step.
• *Step Inputs: Details about step inputs.

• *Step Outputs: Details about step outputs.
• *Step Actions: Details about step actions.
• Step Completion Time: Time allowed to complete the step.
• Step Extension Time: Extension time (grace period) allowed to complete

the step.
• Step Delay Time: Delay time associated with the step.
• Step Variables Table: Workflow variables associated with the step and

their values.
• Step Conditions Table: Conditions table for the step.
• Step Local Spreadsheet: Local spreadsheet for the step.

* Available in Process Designer Stand-Alone only.

Loop Variables

One of the most useful features of the process Documentation function is the use
of the Begin Step Loop and End Step Loop variables. When you place a step-
related variable between the two loop variables, Ultimus provides the values of
that step variable for every step in the process. Therefore, if you wish to know the
Step User, Step Task Cost, Step Completion Time, and Step Delay Time for
every step in the process, you insert the following variables:

Begin Step Loop
Step User
Step Task Cost
Step Completion Time
Step Delay Time
End Step Loop

Ultimus automatically "loops" through all the steps and prints the values of the
documentation variables for each.

The loop variables are as follows:

• Begin Step Loop: Triggers the beginning of the loop.
• End Step Loop: Triggers the end of the loop.

Creating a Documentation Template

Ultimus allows you to create a Documentation Template that specifies the format
and content of the documentation. You can create multiple Document Templates
and use them for different processes.

Creating a Documentation Template

To create a Documentation Template:

1. Right click on Documentation node from the Repository Window View.
2. Select New From the menu. A node called New_Documentation appears

node appears.
3. Right click the object and select check-out from the menu.
4. Right click the checked out object and select edit from the menu
5. Ultimus launches Microsoft Word and the Documentation variables list

window appears on top of Word. You can now use all the capabilities of
Word to create a report template.

6. Type in the desired field labels on the report template and format them as

you wish.
7. For each label, select a variable from the Documentation window and

click the Insert button, or double-click on the variable.
8. The variable appears in the Word document.
9. After you have inserted all the needed variables, click on the Done button

in the Documentation window.
10. Ultimus closes the Word document and the Documentation variables

window.

Editing a Document Template

To edit a Documentation report template:

1. Select Documentation from the Repository Window View.
2. Select a report template from the Reports list box.
3. Click Edit.
4. Modify the report template as described previously.

Creating a Documentation Report

To create a documentation report:

1. Select Documentation from the Repository Window View menu.
2. Right click the desired documentation object.
3. Select the Run Report option.
4. Ultimus compiles the report and opens Microsoft Word to display the

results.

Working With Form Object Library Editor

Ultimus BPM Studio includes the timesaving feature, which allows you to create
and save reausble "form objects" in a library. A standard set of form controls can
be grouped and saved in the Form Object Library (FOL) for insertion in any
Ultimus Form in a process. Controls and objects in the Form Object Library retain
their positioning, spreadsheet/recordset/action links, and formatting properties.

This allows designers to easily create consistent forms. Any change to an object
in the library can be propagated to all of those objects in all Ultimus Forms.

Creating Form Object Libraries

Form Objects can be used in different steps or different processes. When an
object is modified, the changes can be inherited by all steps and processes,
which use that Object (for more information, see the subsection "To update
objects in a Form"). Forms objects can be reused without limitations. They retain
all original formatting, such as size, color, variable links, scripts, recordset/action
links, and position, and can also be moved to a new location.

To create a form object library:

1. Right-click on the Form Object Libraries node in the Repository View
Window and select New from the menu.

2. Right-click on the 'NewFOL' node and select new from the menu. The
following dialog appears.

3. Enter the name of the new object in the Object Name field.
4. Click OK. The object appears under the 'NewFOL' node.

To modify form objects in a library:

1. Right-click on the object and select Check Out from the menu.
2. Right-click on the checked-out object and select Edit from the menu.
3. The object may also be dragged and dropped to the main window to open

in the FOL Editor.
4. Make the desired changes, close and save the form and check the form

back in.

To create a folder:

Right-click on the Form Object Libraries node in the Repository View Window
and select Create Folder from the menu. A 'Form Objects' node is added.

To rename an object in a library:

Right-click on an object in the Form Object Libraries node in the Repository View
Window and select Rename from the menu. The object is renamed.

Note: The Form Object Library must be checked-out before the Object is
renamed.

To delete an object from a library:

Select the object in the Form Control Library tree and click on the Delete button,
or right-click on the object and select Delete Object.

Note: The Form Object Library must be checked-in before an Object is
deleted.

To insert objects in a form from the Form Object Library tree node:

• Open the form on to which the objects are to be inserted
• Drag and drop the desired FOL object node from the tree on the open

form
• Inserted objects appear with a blue background.
• The top of the form object appears at the mouse position.

Note: If an attempt is made to add FOL objects previously present in the
form, the following dialog appears

This dialog shows all the conflicts, which appear on the form. The conflict can be
in controls, Recordset/actions and Variables. When you click OK, previous
controls, their links, variables and recordset/actions are overwritten.

To update objects in a Form:

When changes are made to an FOL object, the changes can be propagated to all
areas where the object is referenced by following the steps below:

1. Check Out a process
2. Edit the process in Build Editor by selecting Edit (Build) from the Object

menu
3. Select 'Update FOL objects in Map' from the Tools menu.
4. The List of Objects to be Updated window appears. The red X changes to

a green checkmark when it is double clicked.

5. Click the Update Map button to apply the changes to the process.

Using controls from existing forms:

This allows you to get controls from existing processes into the FOL. To do so

1. Open a process in Build Editor
2. Copy the desired Controls
3. Close the Build Editor
4. Open FOL object in FOL Object Editor
5. Select Paste

Using Recordsets with Form Objects

Ultimus also allows you to add recordsets to form objects. When a recordset-
linked control is placed on a form, the recordset links are preserved. This allows
you to easily insert commonly used controls that are linked to recordsets. For
example, you may want to use in list box linked to a data record of product stock
numbers in a series of forms.

To create a form object linked to a recordset/database action:

Insert a control on the form and link it to a recordset or a database action. For
complete details on linking recordsets to controls, see "Using Databases with
Forms."

Advanced Design Features
In this chapter, we discuss some advanced BPM features offered by Ultimus.
Some of these features include the ability to set periodic launches for Ultimus
process, and leveraging dynamic groups and dynamic routing They are as
follows:

• Dynamic Groups
• Dynamic Routing Based On Cell Contents
• Indexed Links
• Periodic Launches
• Initiating Processes via Web Links
• Maplet Steps
• Repeating Maplet Steps
• An Example of Using Periodic Launches and Repeating Maplet Steps
• Working with Databound Variables
• Using Scripts
• System Variables

Dynamic Groups

As discussed in "Designing Process Maps," each Step in a workflow process has
a "recipient" who performs the task at that Step. The recipient is specified when
you design the workflow, either by providing a user name, a job function, or a
group. A group is a collection of users that you define in the Organization Chart.

These different ways of specifying the recipient assume that you have prior
knowledge of who the recipients will be. That is, you must decide who the
recipients are when you design the process. The individuals who launch a
process incident, or participate at some other Step in the process, cannot decide
who will be the recipient of some subsequent Step.

For some types of workflow processes, it may be advantageous to enable the
individual who participates in the process to decide, at the time an incident of the
process is executed, who the recipient will be for a subsequent Step in the
process. For example, if you want to create a process which forwards a
document for review by several individuals, you do not know when designing the
process who the reviewers will be. You may want the flexibility of designing a
process that allows the individual who launches a process incident to decide who
will review the documents. The "dynamic group" feature allows you to do just
that. Dynamic groups are defined as the process is executed. For each incident
of the process, the recipients may be different. This capability is also sometimes
called "ad hoc" routing.

Define a Dynamic Group for a Step

A dynamic group for a Step is defined by selecting any one of the following
recipient types for the Step:

• Cell Contents: The step recipient is the individual named in a
spreadsheet cell.

• Supervisor Cell Contents: The step recipient is the supervisor of the
individual named in a spreadsheet cell.

• Manager Cell Contents: The step recipient is the manager of the
individual named in the spreadsheet cell.

• Relative Job Function (Cell Contents): The step recipient is the job
function closest to the individual named in the spreadsheet cell.

If one of these recipient types is selected, you then select the name of a single
column cell range in the main spreadsheet as the recipient. The contents of the
cell range in the main spreadsheet are used to define the dynamic group. It is up
to you to ensure that the cell range is populated by registered names. When the
Step is invoked, the BPM Server looks at the cell range and uses the contents to
determine the recipients of the Step.

To define a dynamic group:

1. Use the Data View to name a range of one or more cells in the main
spreadsheet. For example, you can call this range by the name
"Reviewers."

2. Go to the Map View.
3. Right-click on the user step for which you want to define the dynamic

group and select Properties. The User Step Properties window appears.

4. Select either Cell Contents, Supervisor Cell Contents, Manager Cell
Contents, or Relative Job Function (Cell Contents) from the Recipient
Type combo box.

5. The Recipient combo box now contains a list of all named cells and cell
ranges in the main spreadsheet. Select a cell name or range, such as
"Reviewers." When this Step is invoked, the BPM Server looks at the
contents of the range to find out who the recipients are for the Step. It is
up to you to make sure that the range named in the main spreadsheet is
populated by valid user names. If any cell in the range is blank, the BPM
Server ignores the cell.

6. Enter a minimum response number in the Min Resp. field if it is not
necessary for all members of the dynamic group to perform the task.

Note: It is up to you to decide how the range will be populated based upon
your workflow logic. You can do this by having a user type the names in a
form and link it to the main spreadsheet, read names from a database, or
by using a server-side DLL to populate the names. This gives you a lot of
flexibility in deciding who will be members of the group. Group members
can be both user names and Job Functions.

A Simple Example of Using Dynamic Groups

We want to design a process which allows an employee to solicit and receive
feedback from three reviewers. The reviewers are selected by the employee
when she launches the process incident. The process map appears as follows:

The recipients for each Steps are declared as follows:

Step Recipient
Type Recipient Comments

Begin Group All
Employees

Any employee can launch a process
incident.

Review Cell
Contents "Reviewers"

Contents of the range named "Reviewers" in
the main spreadsheet determine the
recipients.

Feedback Initiator Feedback is given to individual who
launches process incident.

The form and the local spreadsheet for the Begin Step appear as follows:

Note that each of the three fields in the form are linked to cells B1, B2, and B3 in
the local spreadsheet of the Begin Step.

The main spreadsheet for the process is shown below:

The main spreadsheet B1:B3 are named as a global variable, "Reviewers." The
process works as follows:

1. An employee initiates a process incident with the Begin Step form. The
employee names the three reviewers.

2. The names of Reviewers #1, #2, and #3 are entered in cells B1, B2, and
B3, respectively, of the local spreadsheet. The three edit fields in the form
are linked to these cells.

3. When the employee "sends" the form to launch the incident, the contents
of B1, B2, and B3 in the local spreadsheet are sent to cells B1, B2, and B3
in the main spreadsheet because these cells are linked as the global
variable called "Reviewers."

4. The BPM Server invokes the Review Step. The recipient type for this Step
is specified as "Cell Contents" and the recipient is the range B1:B3 named
"Reviewers." The BPM Server looks at the contents of the range B1:B3
and sends the Review Step form to the individuals named in cells B1, B2,
and B3.

5. When the Review Step is complete (i.e., the individuals named in B1, B2,
and B3 have completed their tasks), the BPM Server invokes the
Feedback Step. The Initiator is the Step recipient.

Dynamic Routing Based On Cell Contents

Ultimus allows you to dynamically route workflow to users, groups, job functions,
job function groups, and departments on an ad hoc basis determined by cell
contents. In the workflow, the user names the individual recipient, the group, job
function group, or department previously defined in the Org Chart and the
workflow is routed based on the user's selection.

The data entered by the user must adhere to the following format and entered as
the contents of a spreadsheet cell:

 Format/Content Example
To route to a
User [User_Name] Lisa Evert

To route to a
Group GROUP:[group_name] GROUP:ECO

Committee
To route to a
Job Function [chart_name]\[job_function_name] Marketing\Publishers

To route to a
Job Function
Group

JFG:[chart_name]\[job_function_group_name]JFG:MIS\Tech
Support

To route to a
Department DEPT:[department_name] DEPT:Marketing

If you are using domain prefixes:
To route to a
User DOMAIN:[domain_name]\[user_name] DOMAIN:Admin\Lisa

Avert

Notes: There cannot be any spaces between the colon and the group, job
function group, or department name. If there is a space, the workflow is
routed to the SYSTEMUSER. In case of user name, you can specify either
short or full name.

It is the responsibility of the user to enter correct user name, group name
etc. If in the cell content, the name of a non-existent user, group etc. is
specified, the task is routed to the inbox of a dummy user. If this scenario
becomes true, the task routed to dummy user will have to be re-assigned
by the workflow administrator.

For details about domain prefixes, see the Ultimus Administrator Help.

Workflow tasks are sent to all the members of the named group, job
function group, or department simultaneously.

Examples of Using Dynamic Routing Based on Cell Contents

In our Org Chart for DEF, Inc., we have three groups defined: ECO Committee,
Review Committee, and Social Committee. In the following two examples, we'll
use a simple two-step process to route the workflow to one of the committees
based on the contents of a cell. In the first example, we'll type the name in an edit
field. In the second, we'll select the group from a combo box. These examples
assume that you have a working knowledge of Ultimus and can easily define
spreadsheets, place controls, and set the properties for steps in a workflow map.

Notes: The examples given only demonstrate groups; however, the same
principals are true for job function groups and departments.

In order to perform the steps in the examples below, you should have at
least one group defined in your org chart.

To dynamically route workflow based on cell contents entered in an edit
field:

1. Create a process map with two steps, the Begin Step and one user step,
which we will name "Group" at a later step.

2. Create a global variable in the main spreadsheet called "Reviewers." In

this case, we used cell B1.
3. In the Begin Step, create a simple form with an edit field labeled "Group"

and link it to the "Reviewers" global variable.

4. Return to the Map View and open the Step Properties for the Begin Step.

Set the user to someone in your org chart.
5. Open the Step Properties for the Group step (Step 2 if you haven't named

it yet).

6. Label the step, select Cell Contents as the Recipient Type, and select the
"Reviewers" workflow variable as the Recipient.

7. Simulate the process . Open the form for the Begin Step and type the
following in the edit field, "GROUP:ECO Committee" (no quotes).

8. Send the form. The Simulation returns to the process map and the Group

step is activated.
9. Click on the group step and a pop-up menu appears, displaying all of the

members in the group. Select a group member to open the form (which in
this case is blank). You may click the Send button to complete the step
and do the same for all members of the group to complete the process.

Using the same process, we can also name the recipient of the Group step
based on the selection from a combo box.

To dynamically route workflow based on cell contents entered in a combo
box:

1. Create a process map with two steps, the Begin Step and one user step,
which we will name "Group" at a later step. You may use the same

2. Create a global variable in the main spreadsheet called "Committees." In
this case, we used cell B6.

3. Go to the local spreadsheet for the Begin Step and enter the following
data in the spreadsheet cells shown:

Cell Address Type In This...
B7 GROUP:ECO Committee
B8 GROUP:Review Committee
B9 GROUP:Social Committee

4. Open the form for the Begin Step and insert a combo box labeled
"Committees" and link it to the "Committees" global variable.

5. Open the Control Links for the combo box and type "B7:B9" in the Source

Cell(s)/Variable field.

6. Return to the Map View and open the Step Properties for the Begin Step.
Set the user to someone in your org chart.

7. Open the Step Properties for the Group step.
8. Label the step (if you haven't done so already), select Cell Contents as the

Recipient Type, and select the "Committees" workflow variable as the
Recipient.

9. Simulate the process . Open the form for the Begin Step and select a
committee from the combo box.

10. Send the form. The Simulation returns to the process map and the Group

step is activated.
11. Click on the group step and a pop-up menu appears, displaying all of the

members in the group. Select a group member to open the form (which in
this case is blank). You may click the Send button to complete the step
and do the same for all members of the group to complete the process.

Indexed Links

When a step with a "group" as the recipient is invoked, the form for that step
goes to all users named in the group. The form and local spreadsheet for the
step is actually replicated and a copy is sent to each user named in the group. If
the task involves collecting information from the group, the contents of the form
are placed in the local spreadsheet. Since there is a local spreadsheet for each
user, the information entered goes into the local spreadsheet at the user's
computer.

If the cell in the local spreadsheet is linked globally to a single cell in the main
spreadsheet, the data entered by all the users goes into the same cell in the
main spreadsheet. Therefore, you will be unable to collect the information from
the entire group in the main spreadsheet. You will get only the input from the
user who happens to perform the step task last.

Indexed links are designed to solve this problem. A link from the local to the main
spreadsheet can be specified as output indexed. Instead of transferring the
contents of a local spreadsheet cell to the main spreadsheet cell to which it is
linked, the row address of the main spreadsheet cell is incremented by one each
time the link is executed. Thus, if cell B1 in the local spreadsheet is linked to cell
B1 in the main spreadsheet and the link is configured as output indexed, the first
response from the group goes to B1, the second goes to B2, the third goes to B3,
and so on.

Defining Indexed Links

Defining indexed links between local spreadsheet cells and main spreadsheet
cells is described in "The Data View." When defining the link, be sure to select
"Output Indexed" as the data flow.

An Example of Using Indexed Links

Let us expand the example of using dynamic groups provided in the previous
section to illustrate the use of Indexed Links. For the Review step, we want each
reviewer to enter their name and a numeric grade between 0 and 100 based on
their review. In the last Feedback step, we want the initiator to be notified of the
name of each reviewer and the numeric grade given by the reviewer.

To provide this capability, we can design the form for the second Review step as
follows:

Ultimus can automatically enter the user's name when the form is invoked. To do
so, select the edit field and open the Control Links window. Select "User Name"
from the Source Cell(s)/Variable combo box and enter "D5" in the Destination
Cell(s)/Variable combo box. When the process is run, the name of the user filling
in the form will end up in cell D5 of the local spreadsheet. This can be done with
any control.

The Grade edit field is linked to cell E5 of the local spreadsheet. In the Properties
window for this field, we have declared it to be a required, numeric only field with
a range between 0 and 100. Thus, when the user invokes the form, she will be
required to enter a grade in the range 0 to 100. The grade is sent to cell E5 of the
local spreadsheet.

The local spreadsheet of the Review step is linked to the main spreadsheet as
follows:

Note that each Link from the local spreadsheet to main spreadsheet is specified
as Output Indexed. This means that the contents of D5:E5 in the local
spreadsheet of the first responding recipient in the group are written to cells
D5:E5 in the main spreadsheet. The row address of the main spreadsheet linked
cells are then "indexed," or incremented by one. The contents of D5:E5 in the
local spreadsheet of the second responding recipient, therefore, are written to
cells D6:E6. Next, the contents of D5:E5 in the local spreadsheet of the third
responding recipient are written to cells D7:E7.

Once we have gathered the names and grades assigned by each Review step
recipient, we pass this information to the Feedback step. The form for the
Feedback step is as follows:

The three Reviewer edit fields are linked to cells D5, D6, and D7, and the three
Grade fields are linked to cells E5, E6, and E7 of the local spreadsheet.
Furthermore, the local spreadsheet of the Feedback step is linked to the main
spreadsheet as follows:

Note that each link from the main spreadsheet to the local spreadsheet is an
input. This means that the contents of the range D5:E7 in the main spreadsheet
are written to the cell range D5:E7 in the local spreadsheet.

Thus, the Review and Feedback steps behave as follows:

1. When the BPM Server invokes the Review step, it sends the form to the
three recipients in the range named "Reviewers" (described previously in
the section "Dynamic Groups").

2. When the first Reviewer responds, her name and the numeric grade she
assigned go to main spreadsheet cells D5 and E5, respectively.

3. When the second Reviewer responds, his name and grade go to the main
spreadsheet cells D6 and E6.

4. Likewise, when the last reviewer responds, main spreadsheet cells D7
and E7 receive the name and the grade assigned by the last Reviewer.

5. The BPM Server then determines that the Review step is complete
because all the recipients have responded. It then invokes the Feedback
step.

6. When the Feedback step is invoked, the BPM Server sends the contents
of the range D5:E7 in the main spreadsheet to the same range D5:E7 in
the local spreadsheet of the Feedback step. The BPM Server also knows
that the recipient for Feedback step is the initiator. When the initiator
invokes the form for the Feedback step, he receives the names and the
grades assigned by each of the Reviewers.

Note: Ultimus also supports Input Index, which is the reverse of Output
Index. With Input Index, you can actually send different pieces of
information to different members of the group which will appear in the
same form.

Periodic Launches

Most workflow processes are launched by individuals. However, in some cases it
is advantageous to launch a process automatically on a periodic basis. For
example, if a company implements a weekly Time Sheet process, the process
launches automatically every Friday morning. When the employees come to
work, their Time Sheets are ready and waiting to be filled out. This takes out the
human factor of someone having to launch the weekly Time Sheet process
manually.

Other examples of processes that can be launched periodically are as follows:

• Monthly Departmental Forecasts
• Annual Performance Reviews
• Weekly Order Reports

Any process that is done repetitively on a periodic basis benefits from this
feature.

Defining Periodic Launch Steps

A periodic launch step is a special case of the Begin Step.

To configure a Periodic Launch step:

1. After defining the workflow map, select the Begin Step.
2. Right-click on the Begin Step and select Properties. The Begin Step

Properties window appears.

3. Use the Launch Type combo box to select a periodic launch type, such as

"Every Monday," "Every Friday," or "Every First of the Month." The
following is the complete list of periodic launch types:

Every Sunday Every Monday
Every Tuesday Every Wednesday
Every Thursday Every Friday
Every Saturday
First of Every Month Last of Every Month
Day of the Month Every Day
Every Hour

4. If you Select a "Day of the Month" launch type, select the day you want
the process launched from the Day of the Month combo box.

5. Select the launch Frequency (between 1 and 10) from the Frequency
combo box. For example, if you select the launch type "Every Monday"
and a Frequency of 5, the process is launched automatically every fifth
Monday.

6. If you select a launch type of "Every Day," or "Every [Day_of_Week]," you
may also specify an exact hour, such as 08:00 AM. If no launch time is
specified, it defaults to 00:00 AM. Time of day is defined in 24 hour time.

7. Click OK.

Note: When a Begin Step is configured for a periodic launch, the process is
launched automatically without any user involvement. Therefore, the Begin
Step does not need a form or local spreadsheet. If you define a form and
local spreadsheet for a Begin Step which has been configured for periodic
launch, they are ignored.

Initiating Processes via Web Links

Ultimus processes can also be initiated via from a web page link. For standard
recipient types (e.g., user, job function, department), the user must enter her user
name and password before she can access the Begin Step form. However, if
Anonymous User has been named as the recipient, anyone who accesses the
link can launch the process. Using the web link in conjunction with the
Anonymous User is very helpful for processes in which the initiator does not have
any input into the process beyond the Begin Step.

To create a link in your web page for the process, you must adhere to the
following format:

http://[Server_Name]/ultweb/ultisapi/ultisapi.dll?[Process_Name]

e.g.: http://myserver]/ultweb/ultisapi/ultisapi.dll?Expense Report

For registered users, a login page appears.

After the user enters his login information, the form page appears, bypassing the
Client. Using this method, the Client user is given a choice of accessing the
Standard Form or thin form for the process. Anonymous Users are taken directly
to the form (though, if this is the first time the user accesses Ultimus, she will
have to wait for the controls to download).

You may also set up the link to take Client users directly to the thin form via a "/t"
switch at the end of the link.

http://[Server_Name]/ultweb/ultisapi/ultisapi.dll?[Process_Name]/t

If this link is used with a process that has a registered user named as the Begin
Step recipient, the user still has to log in before accessing the form.

Maplet Steps

A Maplet step invokes a workflow process from within a process. This function
allows you to design workflow processes that are modular, manageable, and
properly structured. It also enables you to break complex workflow processes
into simpler sub-processes.

For example, most companies have a formal procedure for Engineering Change
Orders (ECOs). When an employee suggests an engineering change to improve
a product or eliminate a defect, generally, the request must be approved by
several individuals in Engineering, Manufacturing, and Marketing. If the change is
approved, a formal ECO is issued which goes through its own sequence of steps
until the change is made and documented. Instead of designing one complicated
process, it is more advantageous to break this down into two workflow processes
-- the Engineering Change Request (ECR) process and the ECO process. The
ECR process can automatically trigger the ECO process if the change request is
approved.

Defining a Maplet Step

To define a Maplet step:

1. Insert a Maplet step in the workflow map as described in "Designing
Process Maps"

2. Right-click on the Maplet step and select Properties. The Step Properties
window appears.

3. Type the name of the Maplet step in the Label field.
4. Click the browse button beside the Maplet Name field and select the

process to be launched at this step.

5. Type a number in the "Repeat Count" combo box, or select a workflow
variable if you want the Maplet to repeat. if you leave this field blank, it will
only be launched once. For more information on multiple launches, see
the next section, "Repeating Maplet Steps."

6. Check the "Wait for Completion" box if you want the calling process to wait
for the completion of the Maplet before proceeding to the next step in the
process.

7. Check the "Transfer Global Variables" checkbox if you want to transfer the
global variables (and their values) of the calling process to the Maplet.

Notes: When you transfer global variables, the global variables are
linked and then transferred to the exact same cells in the main
spreadsheet of the Maplet. For this reason, care should be taken in
designing spreadsheets for Maplets so that they match the parent
process.

You may also link main spreadsheet variables to any cell location in
the local spreadsheet of the Maplet step. These variables are then
passed to the sub-process. This is helpful if the main spreadsheets
of the processes do not match and you are, therefore, unable to use
global variables. This is handled in the same manner as linking local
variables to main spreadsheet variables for any step (see "The Data
View.")

8. Click OK.
9. Switch to the Data View . You will notice that Ultimus BPM Studio has

automatically copied the local spreadsheet of the Begin Step for the
Maplet and inserted it as the local spreadsheet of the Maplet step.

Notes: Make sure that the cells linked to the form of Begin Step in the
Maplet receive the correct data from the main spreadsheet of the calling
process.

If you want to launch the Maplet on a conditional basis, right-click on the
step and select Event Conditions. Use the event conditions table to define
the conditions under which the Maplet step is invoked. The event
conditions table is described in "Documenting Event Conditions ."

When the Maplet step is invoked, the BPM Server sends the contents of the
linked cells from the main spreadsheet to the local spreadsheet of the Maplet
step. The BPM Server automatically launches the Maplet by taking the form for
the Begin Step and filling all fields with the contents of the local spreadsheet.
Thus, an incident of the Maplet is launched automatically by using data passed to
it by the calling process.

Viewing Maplets

Ultimus allows you to view the workflow map of a Maplet from the parent
process. This is very helpful when designing a process that uses a Maplet
created by another designer. Maplets can only be viewed from inside the parent
process, they cannot be edited.

To view a Maplet:

• Double-click the Maplet step in the workflow map. The Maplet View
window appears and displays the Maplet.

Note: This feature will only work if the ".wfl" files of child
process and parent process are in the same directory.

Defining a Process as Maplet Only

Maplets can be complete processes that are used independently, or partial
processes that are only used in within other processes. For partial processes, it
is best to define them as Maplet Only. Maplet Only processes can only be
launched as Maplets and do not show up within the Ultimus Client. Likewise, they
do not count as installed processes.

To define as process as Maplet Only:

1. Open the Begin Step properties for the Maplet process.

2. Select Maplet Only from the Launch Type combo box.

Repeating Maplet Steps

A Maplet step can be repeated multiple times. This powerful capability allows one
process to launch multiple incidents of another process. This allows you to
design a process which spawns many incidents of another process.

For example, in many companies it is normal for every employee to be reviewed
annually. This review is typically given in the month the employee joined the
company. Thus, the employee review process actually consists of two distinct
processes:

Process 1: At the start of every month, someone in Human Resources creates a
list of all the employees who joined the company that month.

Process 2: For every employee whose anniversary is in that month, the Human
Resources person has to initiate a Review process.

Defining Repeating Maplet Steps

Repeating Maplet steps are defined exactly the same way as Maplet steps
(described in the previous section) with the following two exceptions:

1. In the Step Properties window for the Maplet, the "Repeat Count" combo
box is used to select a named main spreadsheet cell that contains a
repeat count. The BPM Server uses the contents of this main spreadsheet
cell to determine the number of times the Maplet step is invoked.

2. The links between the cells in the main spreadsheet and the local
spreadsheet of the Maplet step determine the data passed from the main
spreadsheet to the local spreadsheet. Once the data is in the local
spreadsheet, it may be passed to the Begin Step of the Maplet as
discussed above. When the Maplet step has a repeat count of more than
one, the main spreadsheet cell links are indexed. For this reason, you
cannot use global variables in Repeating Maplet steps. You must use
Input Indexed Links.

For example, we create the following links between the main spreadsheet and
the local spreadsheet of the Maplet:

If the repeat count is 3, the Maplet step is repeated 3 times, one after the other.
The first time, the contents of D5:E5 in the main spreadsheet are passed to the
local spreadsheet of the Maplet step, then the Maplet is launched. The second
time, the contents of D6:E6 in the main spreadsheet are passed to the local

spreadsheet, then the Maplet is launched. The third time, the contents of D7:E7
in the main spreadsheet are passed to the local spreadsheet, then the Maplet
launched.

This capability allows you to invoke a Maplet step multiple times as controlled by
the contents of a cell in the main spreadsheet. Each time the Maplet step is
invoked, a different set of values may be passed to the local spreadsheet of the
Maplet step, and from there to the Begin Step of the Maplet.

An Example of Using Periodic Launches and Repeating Maplet
Steps

In this example, we describe a process that demonstrates the use of Periodic
Launches, Flobot steps, and repeating Maplet steps. In our example process, we
want to accomplish the following:

1. The Performance Review process is launched periodically the first day of
the month, every month.

2. It searches the company's Employee database to find the names of all
employees who joined the company in the current month. For the purpose
of this example, the number of employees whose reviews are due each
month does not exceed 10.

3. The Performance Review process then launches a number of Individual
Review Maplets, one for each employee who joined the company in the
current month.

4. The first step of the Individual Review Maplet is completed by the
Supervisor of the employee.

5. The last step of the Individual Review Maplet is completed by the Human
Resources Manager.

In the following pages, we describe the most significant aspects of designing
such a process. We focus on the advanced features discussed in this chapter
and elsewhere in the manual. For the sake of brevity, we do not cover the details
of designing the forms for each step.

First, we discuss the Individual Review Maplet. The process map for the
Individual Review is as follows:

The steps for this process are configured as follows using the step Properties
window:

Step Recipient
Type Recipient Comments

Begin Job Function HR Manager The HR Manager can launch a process
incident.

Supervisor Supervisor
Cell Contents

Supervisor of
"Employee"

The Supervisor of the employee named
in the cell "Employee" in the main
spreadsheet is the recipient for this
step.

HR Job Function HR Manager The HR Manager reviews and
completes the review.

Note that for the Supervisor step, we declare a dynamic group with one member.
The employee who is to be reviewed, and consequently the supervisor of the
employee, is determined by the HR Manager when she launches the process
incident.

The form for the Begin Step of the Individual Review process appears as follows:

The Employee, Current Salary and Current Rating edit fields are linked to cells
A1, B1 and C1 in the local spreadsheet of the Begin Step. The local spreadsheet
of the Begin Step is linked to the main spreadsheet as follows:

Cell A1 in the main spreadsheet is labeled "Employee."

The Individual Review process behaves as follows:

1. When the HR Manager initiates the process incident, she is required to fill
in the form for the Begin Step shown above. She enters the name of the
employee to be reviewed, his current salary, and current rating in the form
fields provided. For example, she enters "John Doe" for the employee
name.

2. The employee name, current salary, and current rating go into cells A1,
B1, and C1 of the local spreadsheet.

3. When the HR Manger "sends" the form, the contents of A1:C1 in the local
spreadsheet are sent to the cells A1:C1 in the main spreadsheet because
of how we defined the links. Cell A1 in the main spreadsheet is labeled
"Employee" and gets the name "John Doe," the employee to be reviewed.

4. The BPM Server then invokes the next step, labeled Supervisor. It
determines that the recipient type is "Supervisor Cell Contents" and the
recipient is the cell named "Employee," whose current content is "John
Doe." The BPM Server, therefore, sends the task to the Supervisor of
John Doe. By linking main spreadsheet cells with the cells in the local
spreadsheet of the Supervisor step, you can pass other information to the
step.

5. When the Supervisor step is complete, the BPM Server invokes the final
step, labeled HR.

The Performance Review process uses the Individual Review process described
above as a Maplet. The process map for the Performance Review Maplet
appears as follows:

The periodic launch step is configured as follows:

Launch Type: First Day of Month
Frequency: 1
Since the Begin Step is configured for periodic launch there is no need to specify
a form and local spreadsheet for the step.

The second step is a Flobot step configured as follows:

Flobot Name: ODBC
The Database Flobot for this step is trained to search the Employee database
and fill the range A1:C10 in the local spreadsheet with the results of the search.
The search is programmed to check the database for all employees who joined
the company in the current month. The names of the Employees are returned in
cells A1:A10, their current salaries are returned in cells B1:B10 and their current
rating are returned in cells C1:C10. Furthermore, the Flobot is trained to return
the count of the number of records found in cell D1.

The local spreadsheet for the Database Flobot step is linked to the main
spreadsheet as follows:

The third step is a process step and is configured as follows:

Launch Process: Individual Review Process
Repeat Count: "Review Count"
Cell D1 in the main spreadsheet is named "Review Count."

The local spreadsheet of the process step is linked to the main spreadsheet as
follows:

Since the launch process for the process step is the Individual Review process,
we can link the field in the first step of the Individual Review process to the local
spreadsheet cells as follows:

Field Local Spreadsheet Cell
Employee A1
Current Salary B1
Current Rating C1
The Performance Review process behaves as follows:

1. The periodic launch step is invoked automatically by the BPM Server on
the first day of each month.

2. The BPM Server then invokes the Database Flobot step.
3. The Database Flobot queries the Employee database and find the names,

current salary, and current ratings of all employees who joined the
company in the current month. These records are saved in the local
spreadsheet range A1:C10. Moreover, the Flobot returns the number of
records found to local spreadsheet cell D1.

4. When the Flobot step is complete, the contents of A1:C10 and D1 in the
local spreadsheet are transferred to the corresponding cells in the main
spreadsheet.

5. The BPM Server then invokes the process step. It knows that the process
step has to be repeated the number of times specified in cell D1, named
"Review Count." It also knows that the process to be launched is the
Individual Review process.

6. The BPM Server transfers the contents of main spreadsheet cells A1, B1,
and C1 to cells A1, B1, C1 in the local spreadsheet of the HR Manager
Client.

7. It then launches the Individual Review process. The Client takes the
contents of cells A1, B1, and C1 in the local spreadsheet and uses them

to automatically fill the Begin form of the Individual Review process and
launch an incident.

8. The BPM Server repeats the Previous step by the number of times
specified in main spreadsheet cell D1, named "Review Count." This cell is
filled with the number of records that were found by the Database Flobot
in the Previous step. Each time the BPM Server invokes the process step,
it indexes, or increments, the main spreadsheet cell addresses linked to
the local spreadsheet of the process step. Thus, the second time the
process step is invoked, the contents of A2, B2, and C2 from the main
spreadsheet are transferred to A1, B1, C1 in the local spreadsheet. The
third time the contents of A3, B3, and C3 from the main spreadsheet are
transferred to A1, B1, C1 in the local spreadsheet of the process step.
This repeating process causes the Individual Review process to be
launched the number of times specified by the "Review Count" cell. For
each launch, a different employee, current salary, and current rating is
filled in the Begin Step form.

This example demonstrates the power of using a database search to launch
multiple incidents of a process. Likewise, more complex processes may be
designed using these advanced features.

Working with Databound Variables

Workflow variables can be used as databound variables. Every databound
variable is linked to a distinct database field. During the execution of the workflow
process, whenever a workflow Incident is initiated and executed, the Ultimus
BPM Server automatically updates the linked database fields after every step.
Before a workflow variable can be declared as a databound variable, the process
map must be linked to a database table in the Map Properties (see "Designing
Process Maps"). The example given below explains the usage of databound
variables. (The reader is assumed to have a fair knowledge of Ultimus BPM
Studio)

Using Databound Variables

In general databound variables are used to store information about individual
workflow incidents and tasks. If in a particular business process, all the tasks on
a step are identified using a corresponding invoice number, its better to list tasks
by invoice number than by process name. By default the task list in Ultimus client
displays following information against every task:

• Process Name
• Summary
• Incident Number
• Step
• Priority
• Time Due
• Client
• Process Owner
• Process Version

This information is displayed for every task in Ultimus Client as shown in the
snap below.

Using databound variables, you can change the information displayed for every
task. This proves very helpful for the users participating in a workflow process
and sometimes this may even become a requirement to display custom
information in the client list. For example the task list for the above mentioned
process will look much more meaningful to a user if it displays the following
information for every task:

This example illustrates how databound variables can be used to store custom
information about individual tasks. Assume we want to display the Invoice
Number, Shipment Date and Company in the client list. To create such a
workflow process using Ultimus BPM Studio follow the steps given below:

Step A: Create a database table

• Databound variables are workflow variables linked to a database field. To
create databound variables in Ultimus BPM Studio, you need a database
table that must have two fields with following settings:

Field Name Data type
Name char(16)
Incident Int(4)

• In this example we use SQL Server to create a table for storing
information entered in databound variables. For the purpose of ease,
Northwind database has been used. This sample database is included
with SQL Server. On the database server, open Enterprise Manager and
browse to the Northwind Database, as shown in the picture below:

• Right click on the node Tables and select the option "New Table". The
'Create New Table' dialog appears. On this dialog create a table as shown
in the snap below:

Note: For any table to be linked to databound variables, it must have the
fields "Name" and "Incident" as shown above.

• Save the table with the name of DataBound and close Enterprise
Manager.

• Create a DSN with the name "Northwind", pointing to the Northwind
database.

Note: For details of DSN creation, contact your network administrator.

Note: Ultimus does not recommend using databound variables for large
cell ranges. This may impair the performance.

Step B: Create Workflow Process

To create a workflow processes with databound variables, follow the steps given
below:

• Open Ultimus BPM Studio and create a new process, as shown below.

• From the File menu, select the option "Map Properties". The Map
Properties dialog appears. This dialog defaults to General Tab, select the
'Databound Database' tab.

• On this tab enter the information as shown below:

Note: Contact your network administrator, if you do not know the DSN etc.

• Click OK on the Map Properties dialog. On Ultimus BPM Studio switch to
Data View.

• Select the Main Spread Sheet and declare a variable as shown below:

Enter following information on "Main Variable" dialog:

o Name: Enter "InvoiceNumber" as the variable name.
o Bound Column: This combo box will list the names of fields in the

linked databound table. You would notice that the fields "Name"
and "Incident" are not displayed. These two fields are not displayed
since these are used and populated by Ultimus. Select the field
"InvoiceNum".

o Set the other settings as shown above and click Save button.
• Repeat the above process to declare two more variables named ShipDate

and Customer. Link these two variables to bound columns "Shipment" and
"Customer" respectively.

• Switch to form view for first step, and design a form as shown below:

• On this form link the text box labeled Invoice Number to variable named
InvoiceNumber, Shipment Date to ShipDate and Company to Customer.
For details about linking controls to workflow variables see, "Description of
Control Links".

• Create a similar form for the step labeled "Approve Invoice".
• Save the workflow process with the name "Databound Process".
• Open Ultimus Administrator and install the workflow process.

Step B: Configure Client and Test Process

• Once the process has been installed, the client task list can be configured
to display the databound variables as follows:

o Open client for the second step user of above designed process.
o Click the view button. The View Configuration dialog is shown to

you. Select view "Inbox" and from the Process Name combo box
select the process named "Databound Process".

o Click on the button labeled "Columns". Column selection dialog
appears. Uncheck all columns except the last three, as shown
below:

Note: For further details about customized views, please see Ultimus
Client Manual.

• Having configured the client view, open client for the first step in above
created process and initiate two new incidents for the process with
following data:
Incident#1

 Incident#2

• Open client for user on second step of the above created process and
switch to the inbox view. Following task list is displayed:

The task list displays customized databound columns.

Using Scripts

Note: Existing Scripts & DLLs that are called from Event Conditions and
Control Event Actions are available for viewing only. These have to be
replaced with the ability to call .NET code, since no changes are allowed to
existing Scripts & DLL calls.

Referencing External .NET Assemblies When Calling .NET Code

BPM Studio provides the ability to call .NET Code from the following areas:

• Event Actions of Ultimus Forms, Pages and Form Controls
• Event Conditions in Ultimus Steps
• The Ultimus .NET Code Flobot

When calling .NET Code from Ultimus, in certain cases, you may want to
reference an external Assembly in your .NET Code. In order for Ultimus to
correctly reference this Assembly, you will need to ensure that this Assembly is
listed in the Ultimus Global.REF file. The Ultimus Global.REF file can be found in
the Ultimus /Install Folder/Resources folder.

If you open this file in Notepad, you will see that the file lists the default
“System.*.DLL” Assemblies provided with the .NET Framework. By listing these
Assemblies in the Global.REF file, Ultimus is able to correctly call any .NET Code
that references these .NET Framework Assemblies. By simply adding the name
of a .NET Framework Assembly to the Global.REF file (full path to the Assembly
is not needed), other Microsoft .NET Framework Assemblies can also be
referenced.

However, the Global.REF file can also be used to call custom Assemblies that
are created outside of the .NET Framework. Calling custom Assemblies can be
accomplished in two ways:

a. By registering the custom Assembly in the default .NET Assembly Cache
(Microsoft .NET Framework configuration). In this case, only the name of
the custom Assembly must be listed in the Global.REF file (example
“MyAssembly.DLL”)

b. Or by placing the custom Assembly file into the windows /system32 folder
on the BPM Server. In this case, the full path of the custom Assembly
must be placed in the Global.REF file (example:
c:\winnt\system32\myassembly.dll)

Referencing Ultimus Enterprise Integration Kit (EIK) .NET Methods from
Ultimus Processes

In order to call Ultimus EIK .NET methods from Ultimus processes, you will need
to ensure that UltEIK.dll (normally at C:\inetpub\wwwroot\ultweb\bin\UltEIK.dll) is
referenced in the Global.ref file. For real time execution, UltEIK.dll, with all its
dependencies, should be in Windows system32 folder.

If you have any additional questions about this functionality, please contact your
regional support center.

System Variables

System variables are workflow variables that are common to the entire process.
They function in the exact same way as global variables and can be used at any
Step in the workflow. The only difference is that these are pre-defined. You do
not have to define or link them.

Ultimus allows users to display and even modify system variables during the
process. For example, you can let a user see the priority of the process and
change it as the situation demands.

All system variables are saved in pre-defined cells in the main and local
spreadsheet. Local spreadsheet cells can be linked to the forms to display or edit
the system variables. The following is the list of available system variables and
the spreadsheet cells in which they are saved:

Cell
Number

System
Variable

Name
Description

A10002
Process
Name
(Display Only)

The name of the workflow process. You may display this
information, but there is no reason to change it.

A10003 Priority
(Modifiable)

The priority of the workflow. By linking an edit field to this
system variable, you can have the user specify or
change the priority of the incident at any Step.

A10004 Initiator
(Display Only)

The name of the person who started the process. This
field is automatically assigned by Ultimus, based on who
initiated the workflow incident.

A10005
Incident
Summary
(Modifiable)

The incident summary description. An incident is
identified by the process name, incident number, and an
incident summary. For good workflow design, you
should have an incident summary field in the first Step of
the process, so the initiator can enter a brief description
of the incident. You can then display the summary in
other Steps. Also, the incident summary is automatically
displayed in the Client task list and various places in the
Ultimus Administrator where incidents are listed.

A10006 Incident No.
(Display Only)

The incident number of the process. The incident
number is automatically assigned by the Ultimus BPM
Server after an incident is initiated. You may seed the
number in the Begin Step when designing the workflow
process so that it always begins with a certain number
(see "Designing Process Maps").

A10007 Disable Abort
(Modifiable) If set to 1, the incident cannot be aborted.

Linking System Variables to Form Controls

You can link form controls to system variables. In this way, you can use the
control to display or modify the value of system variables. As shown in the table
above, some system variables are modifiable, and some are for display only. For
the modifiable system variables, you must link both the Source and Destination
for the control. For display only system variables, you only link the source.

To link system variables to a form:

1. Create the sample form shown below using the Forms Designer.

2. Select the "Process Name" Edit field, right-click on it, and select "Control

Links." The Control Links window appears and defaults to the
Spreadsheet tab.

3. Select "Process Name" from the Source Cell(s)/Variable combo box. All
system variables are listed in this combo box.

4. Click OK.
5. Repeat steps 2-4 for the Initiator and Incident No. edit fields.
6. Open the Control Links window for the Priority edit field.
7. Select "Priority" from the Destination Cell(s)/Variable and Source

Cell(s)/Variable combo boxes and click OK.
8. Repeat steps 6-7 for the Incident Summary and Disable Abort edit fields.

You can test the system variables by creating the form shown previously
and designing and simulating a two-step process. The first Step is the
Begin Step and the second is a user Step. When you run simulation, you
will input values in the Priority, Incident Summary, and Disable Abort edit
fields.

Notes: Remember that system variables are global variables linked
automatically by Ultimus and are available at each Step. You do not have to
worry about linking them to other steps.

