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CHAPTER

13

OBJECTIVE METHODS
FOR CONTRUCTING PROFILES
AND BLOCK DIAGRAMS

OF FOLDS |

Steven Woijtal

13-1  INTRODUCTION

A slice or section through any three-dimensidnal object
prevides a useful visual image of its interior. Geologists

often construct sections of the earth to 1llustrate its internal -

structurc. A section thal is oriented perpendicular to the
surface of the earth is called a cross section (Appendix 1),
Block diagrams (Appendix 1) combine data from maps and
cross scctions (o provide a perspeclive image of a 1hrec-
dimensional block of the carth,

Cross scctions and bleck diagrams are influential tools
that you can use (o convey your ideas aboul the geologic

structure of an area 1o other geologists. They arc also often

used as data  when analyzing the tectonic history or
resource patential of an area, so it is important that they be
as accurate and truthlul as possible. Constructing cross
sections and block diagrams tests your understanding of the
geometry ol deformed rocks, The central problem that you
encounter when constructing a c¢ross section or block
diagram is, How can surface data be extrapolited 1o depth?
Extrapolation, as you will see, depends in part on objective
geometric techniques of projecting struciures and in part on
subjeclive interprelaton.

In this chapter we examine some of the objective
geometric techniques (Busk method, kink method,
dip-isogon mcthod, and down-structurc projection) used to
project surface data on [old geometry 10 depth. We will

< also se¢c how Lo incorporale drill-hole and seismic daa in

such sections, Finally, we will describe how to represent
accurately the three-dimensional configuration of rock

structures in block diagrams that have geologic maps on
their upper surfaces and geologic cross sections on their

_sides. Additional aspects of cross-section construction are

introduced in Chapter 14. It is important to emphasize at
the outsel that the reproducibility of cross sections and
block diagrams drawn using the technigues described in this
chapter must not be confused with the truthfulness of these
representations. Natural geologic structures rarely conform
10 ideal geomeltries; thus, real geology may deviate
markedly*{rom seclions drawn using geometric models.

13-2 FOLD STYLES AND SECTION LINES

Cylindrical and Cylindroidal Folds

Objective techniques for projecting fold geometry to depth
can be applicd only to folds whose shapes have a certain
degree of regularity. Cylindrical or cylindroidal folds are
two types of folds whose shapes are sufficiently regular
that data on fold shapes at the surface can be used to
characterize fold shapes at depth, The techniques are not
{casible in regions where [old shapes are very irregular
(folded layers thicken or thin dramatically, and fold trains
arc disharmonic); in such regions, knowledge of fold
geomelry al the surface will aot help us predict fold
geometry at depth,

As described in Chapter 8, the axis of a cylindrical fold
is 4 straight ling that, when moved parallel 1o itsclf, can
"trace oul” the folded surface (Fig, 13-1). Because of this
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Figure 13-1. Map,cross sae.
tion, and profile views. (a) if the
axis of a circular cylinder {ling a}
plunges, the map pattern of the
cylinder on a horizontal surface jg
an ellipse, and the intersection of

Profile View

the cylinder with a vertical cross.
saction plane is an ellipsa. Like.
wise, the shape of .a plunging fold
is distorted in the map and crosg.
section planes; (b) distarteg
shapes in the map plane; (c) tryg
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property, the shape of a cylirid_rical fold can be projected
orthographically along the fold axis onto a plane that is

- normal o the axis. Few real folds are cylindricat, but

many real folds arc eylindroidal. In a cylindroidal fold,
segments of the hinge line are nearly straight lines, but no
single straight line can trace out the entire fold. In
practice, we can construct representations of eylindroidal
folds by assuming that they are composed of several
cylindrical segments, where the axis of cach segment is not

exactly parallel 10 the axes of the adjacent segments.

(Ramsay and Huber, 1987; Langenberg and others, in
press). - - .

Choosing the Line of Sectlon

You will reeall from earlier chapters that the inclination of
a dipping layer in a vertical section equals the tayer's true

dip only if the section is oricnted perpendicular o the -

layer's sirike. Likewise, the truest representation ol any

cylindrical fold is a section taken perpendicular o the [ald's

axis (Fig. 13-1; sec also Suppe, 1985). A section that is
oriented perpendicular to fold axes in a region is called a
profile section or, more commonly, a profile, and 21 section
that is oblique 1o the axis of a structure is called an olblique
section. The traces of the folded layers exhibil their
maximum curvature in a profile planc, The profile plane
of a nonplunging cylindrical fold is vertical and strikes

(c) ' shapes in the profile plane.

perpendicular 1o the strike of the folded layers. The profile
plane of a-plunging cylindrical fold must be an inclingg
ptane. Since the fold is cylindrical, proliles drawn g all
points along the fold axis must be identical. If a folg is
cylindroidal, folded layers exhibit different shapes
different sections along the length of the fold. Sectiong
that show the maximum curvature of the folded layers g

different points along the fold axis have different strikes and . .

dips, There is, therefore, no such thing as a single profile
of a cylindroidal fold. We can draw a section that
approximales a fold profile for an individual segment of 4

cylindroidal fold by positioning the section normal 1o (he 4 _:

local fold hinge.

In a given map arca it is best 1o draw sections of foldg i
so that the surface trace of the section, called the fing of

section, crosses regions where surface geology s well

constrained and/or there are seismic or drill-hole datg -,
available. The tine of section should intersect severy il
the spacing between attitude /R

aititude measurements;
measurcments along the line of section must be legs thap

the wavelength of the folds.

Parallel and Nonparallel Folds

In'_somc geologic seltings layered sequences of rock are
folded in such a manner that (1) individual layers are ng
appreciably thickened or thinned during lolding, and the
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thickness of an individual layer measured perpendicular to
its local dip is nearly the same al all points around the fold;
and (2) successive layers in the [old are conformable or
harmonic, Folds that fit these criteria are called paraliel
folds. Some paralicl folds have smoothly curved broad
hinge zones (Fig. 13-2a), whercas others have narrow
angular hinge zones that scparate domains in which layers
have nearly constant dips (Fig. 13-2b). The Busk method
of scction construction (Busk, 1929) is appropriate for
smoothly curved paralle! folds, whereas the kink method
(e.g.. Suppe, 1985) is appropriate for parallel folds with
angular hinge zones and straight limbs. These methods
produce rcliable cross sections only if the assumption of
parallel folding is valid; they cannot be used flor
extrapolation 1o depth in regions of nonparallel or
disharmonic Tolding. 11 we cannot assume that lolds arc
parallel, we use the dip-isogon method or one of several
orthographic projection techniques to construct sections.
Keep in mind that there are geologic scitings where none of
these lechniques yields a truthful representation of
subsurlace structure.

(b)

Flgure 13-2, Styles of parallel folds
refeired to in the text. (a) Concentric parallel
folds; (b) angular parallel folds,

L

13-3 BUSK METHOD OF CO.N'STF{UCTING
SECTIONS OF NONPLUNGING FOLDS

The Busk method is the most popular method lor
constructing scctions of paralle!l lolds with smooth,
rounded hinges, An aliernative.method that uses "evolutes”

and "involutes" (lypes of curves; see Bronshstein and
Semendyayev, 1973) was proposed by Mertie (1947; see
also Roberts, 1982), but this method is considerably more
diflicult and usually does not yield cross sections that are
sulficiently more accurate than those constructed with the
Busk methed to be worth the trouble.

The Busk method permits us to reconstruct the traces
of layers in a section plane from surface or subsurface
mcasuremenls of the attitudes of the folded layers. The
geometric basis of this method is the assumption that
folded layers are cverywhere langent to circular arcs. In
practice this assumption means that (1) the trace of each
folded layer in a profile plane can be divided into a number
of secgments each of which is either a portion of a circular
arc or a straight line. Along each circular-arc segment, dip
values change smoothly and continuously.  Adjacent
circular-arc segments are connected either by inflection
points or by straight-line segments; and (2) Folding is
harmonic and the traces of adjacent layers in profile are
concentric ares of differcnt radii (Fig. 13-2a).

Busk Method for Two Polnts

Problem 13-1 (Busk method using data
at two points)

Stations A and B lie 140 m apart along a N45°W -
trending section line across a horizontal parallel fold; the
clevation of A is 5 m higher than the elevation of B. The
attitude of bedding at A is N45°E,10°SE, and the attitude
at B is N45CE,35°SE. Use the Busk method to reconstruct
the segments of folded layers that pass through A and B.

Method 13-1 _

Step I: Draw a profile planc to scale. In this
problem the plane is vertical and is perpendicular to the
axis of the fold. If stations fall directly on the section line,
as. in this problem, just plot them at their appropriate

~ relative elevations and lateral spacing. (If a station does

not fall directly on the section line, plot its projection on
the section line by drawing a projection line parallel 10 the
fold axis from the station to the section line. The

- intersection of the projection line with the section line

gives the station's relative position along the section line;
plot a projected station at the same elevation as the original
slation,) o .

Step 2: In this problem the section line is
perpendicular to the strike of the Lhe beds, so the true dips
of the beds can be shown in the profile plane. If the
section line is not perpendicular to strike, we can still carry
culL a Busk construction, but the dips indicated in the
profile planc must be apparent dips. Once the appropriate
apparent dip value in the profile plane has been determined,
indicate the dip values on the profile plane by short line
scgments drawn in ink (e.g., line segments 1 and 2 in
Figure 13-3a).
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Flgure 13-3. lllustrations for Busk construction Problem 13-1.. {a)
Tha location of stations A and B plotted along a line of section, Line
sagments 1 and 2 give ihe dip values in the plane of section at A and B,
respectively; (b) crosh section completed in step 3; (c) completed
Busk recanstruction of layers passing through A and B. The dip value
increases from A to B, so the circular arcs are antifermal.

Step 3: We assume that the wraces of beds passing
through A and B arc segments of concentric circular arcs.
We must now find the common center of these circular
arcs. To do this, recall that the radius of a circle is
perpendicular 10 the trace of the circle at all poinis along
the circle. Draw line AC perpendicular to line segment 1
at A and BD perpendicular to line segment 2 at B. Extend
lines AC and BD to intersect at point O (Fig. 13-3b).
Point O is the center of the concentric circular arcs.

Step 4: Next, obtain a compass and place ils anchor
needle on point Q. With the compass's pencil, draw one
circular arc that passes through point A and inlersects
radius OB at point E, and a second circular arc that passes
through point B and intersects the exiension of radius OA
at point F. The two circular-arc segments, AE and BF, are
the profile wraces of bedding that we desire (Fig. 13-3¢).
Note that arc segments AE and BF are concentric, but have
different radii, and that points A and B do not lie on the
same arc segmeat. [t is important that the arc segments

not be extended beyond their inlersections with rays OA

and OB, for the traces of layers outside the rays are fixed by
dip readings at other station locations.

In Praoblem 13-1 note that if, for cxample, point A .

was the outcrop of a stratigraphic contact, arc segmenl AE
would be the Busk reconstruction of that stratigraphic
contact. Note also that the layer thickness is uniform

along the fold segment between stations A and B (i.e,, AF '

= BE). The relative dip values at stations A and B

Figure 13-4a, where the dip at B is less than the dip at A),

line across a horizontal parallel fold. The horizoma |
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determine whether the center of curvature for circular-are
segments passing through the two points lies below the
ground surface (as in Figure 13-3¢c, where the dip at B i
greater than the dip at A} or above the ground surface (asin

The circular arcs rcprescn'Ling the folded layers drawn using
these cenlers will be either antiformal (Fig. 13-3c) or
synformal (Fig. 13-4a).

in Problem 13-1 the dips at our two stations were
different. If the dip readings at two adjacent stalions are
identical, the normals to the line segments representing the
dipping layers do not intersect. The "arc” segments
connecling these two dip stations will be straight lingg
(i.e., they will have an infinite radius of curvature; Fig.
13-4b).

Busk Method tor Three or More Points
Problem 13-2 (Busk method using data

at three points)
Sialions A, B, and C lic on a N45°W-trending sectioy

distance between A and B is 190 m, and the horizontg] |
distance between B and C is 200 m. The clevation at A i
150 m, at B is 160 m, and at C is 170 m. The attitude of -
bedding at A is N4SCE,10°SE, the atiitude at B i3 ]
N45°F,35°SE, and the attitude at C is NASOE,70°8g, I
Use the Busk method to construct the traces of the foldey i
beds passing through A, B, and C. '
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Figure 13-4, Busk consiruction,
centinued. (a) i dip values
decrease from A {where the
attitude is N45°E,40°SE) 1o B,
{where the allitude is N450E,
109SE), the center of curvature for
the arc segments passing through
A and B lias above the points, and
the foldad surfaces are synformal;
(b} il strike and dip readings at two
adjacent stations along a line of
section are the same (N459F,
30%SE at both A and B), the limb
sagments between the two points

ars straight-line segments, (a)

Method 13-2

Step I: Draw your section line, locate the positions
of the stations along the section ling, and plot line
scgments representing the dips at these stations (Fig.
13-53a). In this problem the dips indicated on the line of
section are true dips,

Step 2: Draw the normals to line segment 1 at A
and linc segment 2 at B, lines AD and BE respectively
(Fig. 13-5b). Extend these lines (o intersect at point O,

Step 3: Place the anchor necdle of your compass at
point O and draw circular arcs AF and GB. These arcs
represent the segments of the folded layers bctwccn stations
Aand B,

Step 4: Draw the normal to line segment 3 at C,
line CH. Extend line CH 1o intersect the radius OB at O'
(Fig. 13-5¢). The point Q"' is the center of concentric
circular-arc segments that are tangent to line segment 2 at
B and tinc scgment 3 at C. The centers of the two sets of
circular-arc segments must lic on a single straight line
normal to line segment 2 at B (e.g., ']ine' OB in Fig.
13-5¢}.

Step 5: Move the anchor needle of the compass to
point O', and draw arc sepments BJ and CI. To finish the
drawing, return the anchor needle back to point O and draw
arc segment IL (Fig. 13-5¢).

Once again, the relative spacing of stations A, B, and.
C and the relative magnitudes of the dips at these stations
determine Lhe locations of the centers of concentric circular
arcs passing through three stations along & single line of
section {sce Fig. 13-6).

So far, we have not worked with problems where a
single marker bed is exposed at several localities along a
line of section. If we have an insufficient number of
surface or subsurf‘u:c dl]’)S along the line of section, the

TIETTAHNE -
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Busk method may predict surface exposures of a horizon
that do not correspond with known surface exposures, If a
particular marker bed appears at the ground surface two or
more times long the line of section, it is possible to test
the consistency of the Busk construction of the fold with
the surface data. The following method is taken from
Billings (1972).

Problem 13-3 (Busk method applied
to a marker horizon)

We know the attitude of bedding at four points along a
N459W-trending linc of section across a horizontal parallel
fold: - N45°E,15°NW at point A, N45°E,40°SE at point
B, N45°E,60°NW at point C, and N459E,159SE at point
D. Adistinctive conformable stratigraphic contact crops
out at points A and D along a séction line. Use the Busk
method to reconstruct the folded layers between points A
and D. Be sure that your solution conforms with known
pasitions of the contact, -

Method 13-3

As we will see, if we simply apply the steps of
Mcthod 13-2 to the data given here, we obtain a cross
section that cannot be correct (Fig. 13-7a). The arc
s¢gment that passes through point A does not connect with
the drc segment passing through point D, Next, we
illustrate how such a mistake can be corrected.

Step I: Draw the lin¢ of section, locate the measure-
ment stations, and plot the appropriate line segments 1, 2,
3, and 4 representing the dip values at each station.

Step 2: Draw the normal to line segment 1 at A and

-the normal 1o line segment 2 at B, and extend them to

intersect at Q. Place the anchor needle of a cornpass at O,
and draw circular-arc ségment AE. Point E does not
coincide with point B, but based on the field data that we



274 Special Topics  Pan |}
NW B C SE
! - 3 P
i e
100m :
(a)

Flgure 13-5. Busk construction for Problem 13-2. (a) Stations A, B,
and C, plotted on a cross section plane; (b) partial construction after
completing step 3 of Mathod 13-2; (c) completed cross section.

have, we do not expect the layer passing through A 1o crop
out at B, _ :

" Step 3: Draw the normal to line segment 3 at C,

and extend the normal 10 line segment 2 at B (line OB) to

where they intersect (point P). Use a compass to draw

circular-arc segment EF. Once again, Fiand C do not
‘coincide, but this is consistent with our field data, -

' Step 4: Draw the normal to linc segment 4 .at D,

and extend it 10 intersect the normal 10 line segment,3 al

point Q. Place the anchorneedle of your compass at Q,

' and draw circular-arc segment FG (Fig. 13-7a). G docs not

coincide with D, Ficld data indicate, however, that the
same contact crops out ai both points A and D. Therefore,
barring faulis, point G should coincide with,.point.D.
~ Obviously, our section al this stage is not correct, and, we
must modify it. . .. e
. Wealler the construction (o con form with surface data
by interpolating a dip value between the, two stations: thal
are most widely spaced, (B.and C) and by replacing the
: | [

AR

Nw

single arc segment (EF) between those two stations with
. two arc segmenis,

Step 5: Place the anchor needle of your compass at
Q, and draw arc DW (Fig. 13-7b).

Step.6: Draw line WX perpendicular to QP, and
draw linc EY perpendicular to OP. Lines WX and EY
intersect at point R, S

Step 7: Draw a straight line between points E and
W. Drop a perpendicular from the line EW to peint R, and
extend it 1o intersect the ground surface at U. The
inclination of the line EW is, in effect, an interpolated dip
value at U for the layer passing through A and D.

" Step 8§ Extend line RU upward io intersect Lhe

' extension of OB. The intersection of these two lines is

. point S.. Line SR, which is perpendicular (o the
interpolaled dip at U, intersects line PQ at point T.

. .Step. 9:. With the compass anchor at S, draw

i circular-arc segment EH, With the compass anchor at T,

. draw, circular-arc segment HW. Curve AEHWD (Fig,
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Flgure 13-6. llusiration showing *hat the relative positions of the
centers of concentric arc segments pessing through three stations in a
Busk construction change as distances between stations and dip
values at the slations change. (a) Dip values in the plane of section
increase from A (109) to B (359) to C (60%). Comparing this figure with
Fig. 13-5¢, we nota that the center O’ may fall between points F and B or
between points O and F, dapending upon *he dip values at stations and
the spacing between stations; {b) construction for the case where the
dip at the intermediate station (station B) is lass than the dip values at
the two ends. Dip values are 60° at A, 10° at B, and 4G° at C.

Curvature changes from syniormal to antifors al. Curvature will change

from antiformal to synformal if the d1p at a sta. on is greater than dips at

the two adjacent stations. .
gy L

~__nd

and
and
- he
i dip

- the
s is

il thic

iraw
t T,
_ Tig,

S at 13-7b) is the trace of a surface that fits the known dip data

and passes through both points A and D,

f

Problems with the Busk Method

%

Figure 13-8 shows a cross scction drawn 'by applying the

Busk mcthod o seven dip readings along a line of soction.
Remember that, by definition, the hinge of a fold is the
line along which the curvature ol the fold is a maxinitm.
If the trace of a layer is drawn as.a circular arc (ie., OB in
Fig. 13-8), the curvature of the layer is constant, so
lechnically, we cannotl define a unigue hinge, In Busk

‘constructions, we arbitrarily place the hinge at the

midpoint ol an arc. ZZ' is the trace of onc antiform's hinge
surface in Figure 13-8.

Lock again at Flgurc 13-8. At points U and X along
linc 22", concave-up arc qq,mcnls ol adjacent synforins

interscel (there is no intervening antiformal arc). The t
of the. the folded layer has infinite curvature at such poi
Points of infinite curvature, called singularities, o
appear in Busk constructiofis of folds whose wavelen
arc short relative to the thicknéss of the layered seques
Singularitics, such as those that occur at points U and
are a consequence of the assumptions that folded layers
concentric circular arcs. Smgularmes are rarely observe
oulcrap, $0 we must question whether Busk-construc
folds actually represent reality. Badgley (1959) sugges
replacing singularities in Busk reconstructions with cur
line scgments, but, as Ragan (1985) noted, this alters
appearance of the reconstruction without necessa
making it more truthful. If several singularities appear
Busk construction of an area but none are observed
surface cxposures, we probably should find an alternat
methed 1o reconstruct the subsurface geology of the area
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Figure 13-7. Steps in the Busk
construction of Problem 13-3. (a)
Incorrect cross section drawn
using dip values at four stations;
(b} interpolating 2 dip reading at an
intermediate focation in the Busk

construction (after Billings, 1972).

Figure 13-8. Completed Busk
~ raconstruction of folded Devonian
sirata near Kingston, New York,
(See Marshak and others, 1988.)
sl = sea levsl; a through g are
different stratigraphic horizons.
Line ZZ' is a fold hinge. Note the
infinite curvature (singularities) at.
points U and X along the hinge.
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: 13-4 KINK-STYLE CONSTRUCTION
; OF NONPLUNGING FOLDS

Kink Geometries

o recent years geotopists have recogmized that many folds,
pariicularly those in fold-thrust belis, have S\.ra‘\'gh\'-\’\'m\)s

~and angular hinges (cf. Faill, 1969, 1973 Laubscher,
1977; Thompson, 1981). Angular folds produce domainal
dip patierns on maps. A dip domain on such a map is an
arca in which strala have ncarly conslant dips. Adjacent dip
domains are scparated by narrow belts in which dips change
abruptly (Fig. 13-9). The formation of these angular folds
is often accommodated by interlaycr slip, and it oficn
occurs without appreciable thickening or thinning of strata.
We model these angular folds as kink folds and use a
method that relies on Lhe geometric properties of kink folds
to draw cross scctions of regions exhibiting domainal dip
patierns. ‘

Figure 13-8. ' Dip domains on a map of.
angular folds. The map in this figuré shows
attitude measurements on bedding in & small
area. The map can be divided into three
distinct dip domains (A, B, and C) wiiare layer "
dips are fairly constant. - Baits’ between
domains are fold-hinge zonas {(i.e., domain
boundaries). '

_ In an idea! kink fold, layering abruply changes its
attitude across an imaginary planar boundary called a kink
plane (Fig. 13-10), which is the fold's axial surface.
Layers in adjacent limbs of a kink [old mcet along a kink
axis; the change in attitude between adjacent limbs can be
described by a rotation around this axis. If layers do not
thicken or thin during folding, the kink plane bisects the

- angle belween adjacent limbs. 1 the layer thickness docs
change, the kink plane does not bisect the angle between
adjacent limbs, :

A kink band is composed of two parallel kink planes
whose kink axes are parallel but have the opposité sense of
rotation (Fig. 13-10). Intersecling kink bands produce
folds with straight limbs and angular hinges (Fig. 13-1ia).

"Flgure. 13-10,
- showing folded layers, two kink planes (P4

Idealized kink band,

and Py) and kink axes A4 and Ay, (From Faill,
1969.)

. . N -
‘j . N\ ..-...“_‘I Az

H (b)

Figure 13-11. Geomelry of folds formed
by intersecting kink bands. (From Faill, 1969.)
{a) A cylindrical angular fold is generated
when two kink bands, By and B,, with kink
junction axes Aq and A, intersect along a kink
junction axis J that lies in bedding; (b) if the
kink junction axis J is oblique to bedding,
intersacting kink bands form noncylindrical
folds.
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The line at which the {wo kink bands join is called the
kink junction axis {line J in Figure 13-11a). If the kink
junction axis lies in the plane of layering (Fig. 13-11a),
the resulting fold is cylindrical, but if the kink junction
axis is not in the plane of layering, noncylindrical folds
result (Fig. 13-11b}. In a section through either type of
angular fold, the traces of contacts are straight, parallel
lines whose inclinations change abruptly at fold hinges (the
kink planes). .

We can use the Busk method to construct sections of
kink-style folds, but by doing4o, we disregard the unique
properties of kink folds, The kink method (Faill, 1969,
1973; Suppe, 1985) takes advantage of the unique
properties of kink-style folds. In the kink method we draw
the traces of layers as straight-line segments!between
adjacent fold hinges. As we will see, we locate and use
known stratigraphic contacts to draw our cross.section at
the outset, thereby avoiding difficulties 'like those
encountered in Problem 13-3. Because the kink method
allows us to construct cross sections of angular folds
rapidly and reliably, it has become popular in recent years.
The boundary-ray meihod of section construction (Badgley,
1859, after Coates, 1945, and Gill, 1953) was also
developed to accommeodate angular folds, but because it
requires data other than strike and dip readings and because
it is quite complex, it is not widely used. The kink
method is the method of choice for drawing sections of
angular folds,

Kink Method Applied to Folds
with Constant Layer Thlckness

Problem 13-4

The stratigraphic contact between a limestone and a
shale crops out at points X and Y along a N75°W-trending
line of section across an angular paraliel fold (Fig. 13-12a).

The contact between the shale and a sandstone crops out at-

points W and Z, and the top of the sandstone crops out at
point V. Line segments 1, 2, and 3 al poinis A, B, and C,
respectively, give the dip values of different domains,
Points ¥ and W fall in dip domain 1 (N15°E,50°W), point
X falls in dip domain 2 (N15°E, 10°W), and points Y and
Z fall in dip domain 3 (N15°E,25°E). Use the kink
method to draw a profile of the fold.

Method 13-4

Step 1: First, we locate the fold hinges. We assume
that the limestone/shale contact that passes through point
X is a straight-line segment. This line must have ‘an
inclination in the plane of the section that corresponds to
the dip value of this domain, so we draw this segment of
the contact parallel to line segment 2 at B, Likewise, draw
the segment of the limestone/shale contact that passes
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through poim Y parallel to line segment 3 at C. The two
segments of the timestone/shale contact intersect at point L
(Fig. 13-12b), Point L is the intersection between the
trace of a kink hinge plane and the limestone/shale contact,

Step 2: To determine the trace of the hinge plane
that passes throngh point L, bisect angle XLY. The
hinge-plane trace is line ab (Fig. 13-12h).

Step 3: Draw the segment of the shale/sandstone
contact trace passing through Z as a straight line parallel 1o

--YL. This line intersects hinge ab at point M. To continue
- the trace of this contact beyond the hinge, draw a line from
M that is parallel to XL.

. Step 4: Next, we pomuon the second hinge-plane
trace, The segment of the shale/sandstone contact passing
- threugh W must have an inclination in the plane of section

. that p_pnqsponds to the dip value for its domain. Draw the
. segment of this shale/sandstone contact passing through W

11888, eraighL-lmc segment paratlel to line segment 1 at A,
This portion of the shale/sandstone contact intersects the
segment of the conlact passing through M at the point N,
Risect £ WNM to determine. the orientation of the second
hinge-plane trace, which is line cd (Fig. 13-12c).

Step 5: Now we can complete the outer portion of
the fold. The limestonefshale contact inlersects line cd at
point O. We can extend this contact beyond hinge cd as
line segment OP, where angle POd = £ X0Od. Draw the
upper contact of the sandstone (QV parallel to PO, elc.).

Step 6:  When any two kink-fold hinge traces
intersect, they are supplanted by a single hinge trace that
bisects the angle between the remaining opposing limbs
(provided the layers' thicknesses remain constant). Hinge
traces ab and cd intersect in the subsurface at point e. To
position the traces of layers in the core of the fold, draw e$
parallel to OP and eT paraliel to LY. Draw fold hinge ef
so that it bisects the angle between eS and eT.

Kink Method Applied to Folds
with Changing Layer Thickness

In many cases surface dala indicate that corresponding
layers on opposing limbs of folds have different
thicknesses. In these cases the fold hinges cannot bisect
the interlimb angle, so the axial angle between each limb
~and the fold. hinge is different for opposing limbs,
-Consider a kink fold where layer thickness changes
abruptly from. T on one limb (Fig. 13-13) to T' on the
other 11mb The two axial angles are vand Y, where

Y= MBD #7'=MBE,
A comparison of ma_nglcs MBD and EMB indicates that

Tjsin y = BM = Tfsin v - (Eq. 13-1)
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Figure 13-12. Illustrations for
kink-method construction of
Problem 13-4. (a) Haw dip data on
a cross-section plane. . Line -
segmenis 1, 2, and 3 give tha dips
at points A, B, and C, respeclivaly,
and represent the attitudes af
different domains; (b) fold profile
after completing step 3 in Method
13-4} {c) completed fold profile.
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or,

TYT = sin ¥/sin v (Eq. 13-2),
If we can locate a fold hinge and we know the dips of the
opposing fold limbs, we can measure the axial angles vy

and ¥ and can use Equation 13-2 to find the relative

orthogonal thicknesses of layers on opposing limbs. If,
alternatively, we know T and T' from feld data, we can use
Equation 13-2 to calculate the axial angles and orient the
fold hinge in our reconstruction.

Flgure 13-13. An.angular fold with differ-
ant layer thicknesses (T and T') on opposing
fimbs and unequal axial angles (£ DBM = £
MBE}.

Problem 13-5 _

Field mapping has established that a single stratum in
a region of angular parallel folds crops out at poinis A and
C along a line of section (Fig. 13-14a). A fold hinge is
exposed at point h between the two limbs. Line segments
1,2, and 3 give domainal dip values at poinis A, B, and C,
respectively, Dipmeter readings in the borehole at D dre
also plotted on the figure. Note that two distinct dip
domains are defined by the measurements in the drill hole,
Use the kink method 10 draw a profile of the {old.

Method 13-5

Step I: First, draw the 'Lracc of the fold hinf;_b '

passing through point h. ‘Locate point i in the drill hole
hallway between two nonparallel dip measurements in the
bore hole, and draw line ih. Extend this line into the sky.

Step 2: Draw a siraight-line segment parallel to line
segment 3 through point C, and extend it to intersecl the’
fold-hinge trace at point G. Draw a straight line parallel 1o
line segment 2 through point B, and extend it to intersect
the fold-hinge wace atE. -

" Bpeciai Topics  Part ll

Step 3: Draw line GJ parailel to BE and line EF

parallel to CG. Note that the axial angle JGE is not

equivalent 10 the axial angle CGE and that layer thickness
JB is not equivalent to layer thickness-CF. By inspecling
Figure 13-14b, we see that the eastern limb was thinned to
83% of Lhe thickness of the flat-lying limb during folding.

*Step 4: To complete the outer portion of the fold:

profile, we must position the fold hinge between dip
domains 1 and 2 in the western portion of the profile.
Changes in layer thickness in the eastern portion of the
profile make us wary about applying the parallel folding
assumption elsewhere in the profile. We need field data,
however, on the relative thickaesses of fayers in Lhe limbs
of this open fold to draw this western fold hinge. Lacking
such data, we assume here that layering neither thickened
nor thinned as this open fold formed. This is reasonable
because changes in layer thicknesses in angular folds are
often restricted to folds with relatively tight interlimb
angles. Thus, draw a straight line parallel to line segment
1 through A, and extend it to intersect the continuation of
GJ at K. Bisect angle AKJ to find the trace of the second
fold hinge (line Im). Extend BE {0 intersect Im at N, then
draw NO parallel 1o AK. The shallower levels of the fold
can be traced out by drawing lines parallel tc established
contacts.

Step 5: A problem arises below the depth at which
fold-hinge traces hi and Im intersect (point 8). Because of
the thinning of the eastern Iimb, we cannot simply bisect
the angle between opposite limbs to determine the hinge
trace below point 8. In order to complete the fold profile,
it is necessary 10 know how much layer thinning occurred
at depth. For the sake of argument, assume that the ratio
of thicknesses in opposing limbs in the subsurface is equal
to that observed in the cuter porton of the fold. Wilh thig

_assumption, we can position the fold hinge graphically by

drawing lithologic contacts at depth parallel 10 established
contacts while maintaining a fixed ratio between the
orthogonal thicknesses of the eastern and westemn limbs
(Fig, 13-14c).

Alternatively, we could substitute this ratio of
orthogonal thicknesses into Equation 13-2. We know that
the two axial angles together must equal angle RST,
measured (with a protractor) to be 94°. We have, then,
two equations (Equation 13.2 and ¥ + ¥ = 94°) with two
unknowns and can solve for the values of the two axial
angles in this portion of the fold, We begin by
subslituling 94¢ . v for o info Equation 13.2, Using the
rigonometric identity for the sine of the difference between
two angles, we can rewrite ihis equation in terms of sin ¥
and cos y. Combining terms and rearranging, we have y=
arctan {sin 949/(0.84 + cos 94°)], or y= 52.3%and ¥' =
41.7°, the same values we determined graphically.
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(a)

Flgure 13-14. [llustrations for

kink-method construction of a fold

with nonconstant layer thickness,

describad in Problem 13-5. {a} Raw

data plotied on a cross-section .
plane. A drill hole at point D

provides subsurface data; (b)

partially compieted fold profila

after stap 4 in Method 13-5; (c)

completed {old profile.
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13-5 DIP-ISOGON METHOD
OF CONSTRUCTING FOLD PROFILES

I[ we have information on the characteristic way in which
layer thicknesses vary in a region (variations that are

commonty a function ol lithology), we can  construcl '

reasonable profiles of the folds in the region, even when it
is not possible, because of the layer-thickness variation, 10
use Methods 13-3, 13-4, or 13-5. Variations in layer
thickness are readily described by dip-isogon patterns
(Ramsay, 1967), which indicate the relative curvatures of
the outer and inner ares of folded layers (sce Chapter L1).
Remember that a dip isogon is a line in the prolile planc
that connects poinls with equal dip values on successive
contacts. Characleristic dip-isogen patterns can be derived
by examining well-expased minor felds in the region of
interest or by studying well-constraincd proliles in the
region. Once the characteristic dip-isogon pattern is known
for a sequence ol beds al one location in a region, it can be
used as a guide in constructing profiles of folds involving
similar sequences of beds elsewhere in the region.

The following problem/method (based on procedurcs
outlined by Ramsay and Huber, 1987) illustrales how 0
use characteristic dip-isogon patterns to reconstruct fold
profites. In the problem we refer to Lwo angles: (1) & is
the angle between a specified reference line and the tangent
(o any folded fayer at a point. We use the same reference
line to measure all 3 values in a single profile. The
reference line may have any attide, bul normally we
choose a horizontal line or a normal (o the fold hinge as a
reference line (Fig. 13-15a). If a fold-hinge plane is
vertical, the normal Lo the hinge is horizontal, and & values
equal the local dip values. {2) @ is the angle beiween the
normal 1o a folded layer at a point and the dip isogon that
passes through that point (Fig. 13-15a). We call ¢ the
deflection of the isogon. By convention, angles that open

RL
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in a clockwise scnse arc negative, and angles thal open in 2
counlerelockwise sense are positive. The deflection angle
usually changes as we Lrace an isogon from cne rock type
(o another; @ is usually greater in less-competent layers
(Fig. 13-15b). In plots of # against 3, the curves
connecting {#, Y) pairs for points on the surfaces of
diflerent layers are generally different.

Problem 13-6a (Characterizing dip-isogon
patterns)

Figure 13-15b is a profile of folded quartziles and
phyllites scen in a vertical roadcut.  Assume thal this
profile indicates how quartzites and phyllites typically
behaved during folding in this area, and determine the
characteristic dip-isogon patierns for folded quartzites and
phyllites in this arca.

Method 13-6a

Step 1: Draw the hinge-surlace trace ab on the
profile. Draw a reference line for measuring & values at
different points on the layers. In Figure 13-15b (he
reference line RL is perpendicular to the fold hinge ab.

Step 2: At several points around the fold (at regular
intervals, such as 5° or 10° increments, along cach
lithologic contact), draw a short line segment tangent to
the contact. Measure the angle between this line segment
and the reference tine (Fig. 13-15a). In Figure 13-15b, for
example, the outer arc of the phyllite bed has a dip value of
§ = +600 &t point X, the outer arc of the quariziic bed hasa
dip value of § = +60° at point Y, and the inner arc of Lhe
quarlzite bed has a dip value of § = +60° at point Z.

Step 3:  Draw straight-line scgmenls across layers
connecting equat dip (8) values. These segments are the
layers' dip isogons. In Figure 13-15b XY, is the +60° dip
isogon for the phyllite bed, and YZ is the +60° dip isogon
[or the quarizite bed, Draw normals to layering where each

a

Retference line

Phyllite

(a)

™ Flgure 13-15. lllustrations of
dip-isogon mathod of f{old
construction described in Problem
13-6. {a) Convention for measur-
ing dip {8} valuas with respect to a
given reference line and dip-isogon
" deflection a; {b) profile of a
wall-axposad minor fold in tha
"westarn portion of the Great
' Smoky Mountains, Tennessaee
Appalachians, invelving a quartz-
ite layer and a phyllite layer. The
fold hinge is ab; several isogons

\

Quartzite . .
are shown. XYZ is the +60° isogon
(b) in this fold: (c) plot of dip-isogon

;;
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{c)

NW

horz

deflection {@} versus dip values (8}“ o
for the quartzite layer (dashed line) * + -
and the phyllite layer (solid line) in ™ '
(b); (d) topographic profile across
Bales Mountain (from King, 1964),
which is near the location of the
fold shown in (), with dip values'at
saveral locations. Quartzites crop
out between D and E, a distinclive
phylliite layer crops out at G, and -
the fold hings {with strike and dip
NEOPE,BOSE) crops out at G; (e)
profile after step 5 in Method
13-6b.

(e)
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isogon intersects a lithologic contact, and measure the
deflection angle of each isogon. In Figure 13-15b, ¢ =
-32° for isogon-XY, and g = -15° for isogon YZ.

Step 4: Tabulate values of 8 and p for cach layer in

- the profile, and plot these data on a graph with & on the

horizontal axis and g on the vertical axis. Note that the the
g-versus-8 curve for phyllite is different from the
g-versus-d curve for qudrtzite in Figure 13-15¢, If we
assume that the dip-isogon pattern in Figure 13-15b is
typical of folds in this area, this graph characterizes the
dip-isogon pailerns for lolded quartzite/phyilite sequences in
this area. We use this graph {o reconstruct a foid profile
from dip data along a line of section.

Problem 13-6b (Dip-isogon canstruction
of a fold prafile)

Figure 13-15d is a topographic profile showing
outcrop patterns and dip values along a N30°W-trending
line of section across a folded quartzite/phyllite sequence
near the location of Figure 13-15b. The fold's hinge crops
out at point C; Lhe sirike and dip- of the hinge is N60°E,
80°SE. The top of a quarizite bed crops out at pdint D; its
base is exposed at E. A distinctive phyllite layer crops out
al G. Assume that the fold does not plunge, and consiruct
a profile of this fold.

Method 13-6b
Step I: First, draw a reference line on the section

‘with an orientation comparable 10 that in our characteristic
 profile (i.e., normal to the fold hinge). Draw the trace of

the hinge surface, ab, on the profile, and draw reference line
R perpendicular 10 ab, : .

Step 2: Measure the angle § between the dip mark at
each station along the line of section and the reference line
R, and labulate the measurements, For example, 8 = +10°
at point D, § = +20° at point E, and § = +40° at point F,

Step 3: Find the characteristic isogon dellection that
corresponds to the dip value at each point along the profile.
For example, & = +10° at point D. Figure 13-15¢
indicales that the characteristic isogon deflection at points
where 8 = +10° in folds in this area is -5° in quartzile

layers and -9.5° in phyllités; Draw a normat to layering at-

D (Np). Draw the +10° isogon (i} with a deflection of
-9.59 in the phyllite above D'and with a deflcclion of -5°

in the quartzile below D. & = +20° at point E. The.

characteristic isogon deflection at poinis where § = +209 is

-10% in quartzites and -189 in phyllites. Draw a normal to _

layering at E (NEy, and draw the +20° isogon (izp) with ¢
= -10¢ in the quartzite above E and ¢ = -18° in the phyllite

_ below E. Dip values are consiant along any isogon.” As

Ramsay and Huber (1987) suggest, indicate Lhis by drawing
several small tick marks, each parallel to the local dip,
across each.isogon. ' _

Step 4: We assume thal the isogon pattern in the
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fold in our section in Figure 13-15d is comparable to (hat
in the characteristic profile, The phyllite/quartzite contact
that crops cut at D must have a & valuc of +20° when it
crosses isogon ipg above E. Using a french curve ora
flexible ruler, extend the phyllite/quartzite contact 10 point
H cn the +20° isogon, making sure that this contact
parallels the tick marks across the isogon at H. Similarly,
the quartzite/phyllite contact exposed at E must have a §
value of +10° when it crosses isogon ijg below D,
Extend the quartzite/phyllite contact from E to point J on
the +10° isogon, making sure that this contact parallels
the Lick marks across the isogon at J.

Step 5: Draw a normal 10 layering through point F
(N, and then draw the +40° isogon through this point
(i40)) with the appropriate deflection angle for phyllites
(-33%). Exiend the quartzite/phyllite contact 1o point K on
the +409 isogon, making sure that it is parallel 10 the tick
marks across the isogon. The deflection of the +4(°
isogon must change from a value appropriate for phyllite
to one appropriate for quartzite above K. Draw a normal 1o
layering at K (N}, and extend the +40° isogon above K
with ¢ = -13°. We can then extend the phyllite/quartzite
contact from H to L. Repeat steps 4 and 5 until you have
completed the profile of the fold,

Fold profiles constructed by the dip-isogon method
will show changes in layer thickness similar (o those seen
in the characteristic profile. Because the dip-isogon method
uses the shapes of folds seen in well-constrained profiles as
moedels for other profiles instead of assuming that layer
thickness does not change around folds or changes abruptly
across fold hinges, this methed is conceptually more
attractive than the Busk and kink methods. As Ramsay and
Huber (1987) note, however, fold profiles drawn by the
dip-isogon method becorne less reliable as we extend our
profiles farther from data constraints.

13-6 CONSTRUCTING PROFILES
OF NONPARALLEL FOLDS
BY ORTHOGRAPHIC PROJECTION

Accurate and well-constrained profiles of nonplunging folds
can be constructed direcily from observational data obtained
in regions where folds are cylindrical and topographic relief
is sufficiently high that large portions of {olds are exposed.

The technique introduced next involves orthographic
profection and can be used for either parallel folds or

“nonparallel folds. It is particularly useful for nonparallel
lolds, for which ih(f, Busk and kink metheds cannot be

applied.

~ To visualize how a cross section of a nonplunging fold
can be constructed, consider the patterns defined by the
intersections between a cylindrically folded surface and the
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ground surface. A cylindricaily folded surface intersects a
horizontal ground surface in a serics of straight lines that
parallel the fold axis (ab, ef, and ij are parallel to cd and gh
in Fig. 13-16a). This map patlern, a series of straight
lines, tells us lite about the shape of the fold in profile.
If the folded surface intersects a verlical quarry wall,

(c)

Figure 13-16. Traces of folds. (a} The
tracas of nonplunging cylindrical folds on a
horizontal surface are straight fines; (b) trace
ot a cylindrically folded surdace abdc on a
vertical face is curve ij; (c) trace of
cylindrically foldad surface abfe on an
iregular topographic surtace is curve k.
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however, the trace of the fold on the vertical surface gives
the true shape of the folded layer (Fig. 13-16b). If the
ground surface is irregular, the folded surface intersects the

ground along an irregular trace (Fig. 13-16c). The shape of
each segment of this irregular trace is controlled by the

‘strike and dip of one portion of the folded layer. We can
‘'us¢ this map trace to construct a profile of that folded

contact, To-define a folded layer, we need to know the map
trace of both the upper and lower boundary of the layer.
Next, we show how to construct a profile of a folded

“contact from its trace on an irregular topographic surface.
‘This problem is the inverse of the problem of calculating

outcrop traces that was described in Chapter 2. Note that
this method can also be uséd for parallel nonplunging folds
that are exposed in regions of high reljef.

Problem 13-7 :

Figure 13-17a is a map of a cross-bedded quartzite
(stippled) that is overlain by miarble (M) and is underlain
by state {(S). The attitude measurements on the map
indicate that this meta-sedimentary sequence has been
folded, and a stéreogram of the poles to bedding (not
shown) indicates that folding is cylindrical around a

“horizontal axis. The arrow FA above the map gives the

bearing of the fold axis. Draw a profile of the folded
layers. '

Method 13-7 .

Step 1: Draw a folding line (F1) perpendicular to the
fold axis at the edge of the map, and swing up the
cross-sectional view into the plane of the map projection,
Draw a suite of lincs parallel to the folding line on the
rotated cross section, These lines are spaced to represent

the djfference in elevation between contour lines. The
~ vertical scale on the cross section must be the same as the

map scale..

~ Step 2: Locate the points on the map where the top
and"bouom contacts of the quartzite layer cross contour
lines, From cach point, draw a straight line parallel to the
fold axis (and, therefore, perpendicular (o the folding line)
to the corresponding contour line in the rotated
cross-scctional plane. For example, the quartzite/marble
contact at A, on the map projection outcrops at 100 m; we
draw a straight line from Ay across to the 100-m grid line
on the rotated ¢ross section. This point plots as point A'
on the grid, Notice that point A, on the map also plots as

" A’ on the grid, Points By and B, on the map plot as point

B' on the rotated cross section,

Step 3: Repeat the procedurc of step 2 for a
sufficient number of points to define the profile trace of the
lower contact. (For cxample, points C and D on the map
plot as C' and D' on the rotated cross section). Then,
repeat the procedure for points on the upper contact.

Step 4: Connect the points on the rotated cross
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Flgure 13-17. llustration of

120 , , .
profila construction of a horizontal

cylindrical fcld in a region of
topographic relief, as described in
Problem 13-7. (a) Map showing the
- outerop belt of a unit (stipple
pattern). Tha grid at the right is the

80

40_ cross-section plane rotated into

the map plane around folding line

(b)

section 10 trace out the upper and lower folded surfaces
(Fig. 13-17b). The resulting profile automatically shows
the variation in the thickness of the quartizite Jayer around
ihe fold. '

13-7 CONSTRUCTING PROFILES

‘OF PLUNGING FOLDS

We staled earlicr that the truest image of the shape of a
cylindrical fold is a profile of the fold, drawn op a plane
normal to the fold axis. The profile plane for a plunging

F1; {b) complsted profile of the
fold.

fold is necessarily inclined. Sections other than proliles
(e.g., vertichl cross sections, oblique sections, or maps)
yicld fold forms with distorted limb thicknesses, distoried
inierlimb angles, and incorrect hinge positions (Fig. 13-18:
see also Roberls, 1982; Ramsay and Huber, 1987).
Foriunately, the very fact that the fold plunges makes it
possible for us 10 sec large portions of the fold on a map,
Map data can, thercfore, allow us Lo construct a profile of a
plunging fold. Likewise, subsurface data in a drill hole
that is not perpeadicular to the fold axis can also be used to

~construct fold profiles, if it is available. Next, we

illustrate how to construct profiles of plunging folds from
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Figure 13-18. Illustration of the distortion
of a plunging fold that oceurs on a map. (See
Schryver, 1966.) (a) Map of a plunging
asymmetric fold, The lines connadtihg zodes
of maximum curvature in the map traces (thin
dashed lines) do not give the true positions of
tha hinge traces (thin solid llnes) {b) prohle of
the fald.

map and subsurface data. The specific technique that must
be used depends on whether the fold is exposed in a région
ol high topographic rclicl or i oa rcgion of low
topographic relief. ! :

Constructing Profiles of Plunglng Folds
from Maps of Regions

with Low Topographic Relief

In regions of low {opogmphiL relicl (i.c., the heights of
hills in the map arca are significantly less than the
amplilude of the folds in the arca), the map planc is
essentially an oblique scction through the fold.  To
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visualize this principle, refer back o Figure 13-1.
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Nol

- how the intersection of the plunging circular cylinder wil
. both the map plane and the vertical cross-sectional plane :
“'ah cllipse; only on a profilé planc oriented perpendicular 1
* the cylinder dg you seé a circular section, There are tw
“oways lo use the map patiern to construct a profile,

(1) Down-Stracture Viewing and Freehar

: Skerchmg The first mcthod is gcnera]ly referred te

‘of 1he plunging csrcu!ar cylinder in Figure 13-1, simp

' grical your line of sight so that it parallels the axis of tl

structure. When viewed: from this angle, the ellipse wi

*appear 1o be a circie. In the field, to obtain

down-structure view of a fold, you should place yourself :
" that you are looking down (or up) the hinge of a fold (Fi
13-192). Sometimes, it is necessary to get into :
awkward position in order to properly view a structy
(Fig. 13-19b)! When positioned properly, you will sec ¢
‘profile form of the fold. It takes practice to ¢

: down-plunge viewing easily. It may help to relax yo
" eyes or close one eye and trick yourself into ignoring yc

natural depth perception, sa that the oblique section of t

fold on the outcrop surface appears foreshortened onic

single planc that is orietted perpendicular to the hing
" Sketch the shape of the fold that you sce frechand.

I B
(b)

~ Figure 13-19, lilustration of down-

structure viewing, (a) Obsaerver positioned so

that her line of sight is parallel is coincidant

with the hinge of the fold; (b) obsarvar

_ posmcned to view a shallowly piunging fold
. that intarsects the ground surface.
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We can also use the technique of down-slruciure
viewing to view maps (Mackin, 1950). The only
difference between down-structure viewing of a map and
down-structure viewing of an outcrop is thal in order to
orient yourself properly to view the map, you must read
the astitude symbols on the map so that you know the
plunge direction of the folds, Place the map on a lable, and

position your line of sight 1o view it down strucfure. As.

before, you can skeich the profile of the fold frechand as
you view the map from this angle. Typically, the frue
amplitude of a fold (the amplitude in profile) wili be much
less than the apparent amplitude that is indicated in the
map plane, and apparent thickening in the hinge may
vanish (Figs. 13-1b and ¢, 13-18).  Also, the (rue
symmetry or asymmetry of a, fold will be obvious in the
(2) Grid Method of. Profile Construction:
The grid method (Roberts, 1982; Ragan, 1985) is a
graphical technique thal allows us 10 construct accyrate
profites of plunging folds in regions of low relief from a
map of the fold. To understand the basis of this methed,
again consider the plunging circular cylinder of Fagure
13-1. We saw that the map-plane image of the plunging
circular cylinder is an ellipse. ‘The line WX, across the
ellipse (Fig. 13-20), which is perpendicular 1o the bearing
of the cylinder axis, is the same as the diameter (D) of the

Profile
View”

| o)

Profile

Map

'

Figure 13-20. Profile versus map views
of a plunging circular cylinder. {a) A plunging .
circular cylinder produces an elliptical trace
on a harizontal map; (b) a comparison of the
map and prolile sactions -of the circular
cylinder. &
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circular profile of the cylinder, but the line YZ across the
ellipse, which has the same bearing as the cylinder axis, is
greater Lthan the diameter (D) of the circular profile. 1f we
are given the length of YZ (called DY), we can calculate D
from the equation

D =D'(gin Wy (Eq. 13-3),.
where |4 is the plunge of the axis of the cylinder.

Now consider a map of a plunging fold. Distances
between points on the fold surface measured along lines
that are perpendicular to the bearing of the hinge are
undistoried, whereas distances measured along lines that are
parallel to the bearing of the hinge will be greater than they
would be in profile. The distance in profile between any
two points along a line on the map that is paraliel to the
bearing of the fold axis can be found by applying Equation
13-3, In other words,

Profile distance between — Distance observed (sin 1)
two points on the map on the map
(Eq. 13-4,

Kecping this equation in mind, we can transfer contact
posilions from a square map grid onio a profile grid in
which one direction is foreshortened according o Equation
13-3, as demonstrated in the following problem (see also
Roberts, 1982; Ragan 1985).

Problem 13-8,

Figure, 13-21a is a map of a plunging fold in an area
where the lopographic relief is small relative Lo the
amplitude of the folds. Stereographic projections of poles
to bedding {rom this map arca lie along a single great
circle, indicaling that the folds are cylindrical. The fold
axis (the normal to the great circle on the n-diagram) is
oriented 30°,0409, Draw an accurate profile of this fold by
using the grid method.

Method. 13-8 _

Step 1: On a transpareni overlay large enough to
cover the map area, draw a square grid composed of
mutually orthogonal suites of lines. The spacing belween
lines'in a suite is an arbilrary distance § (S should be
chosen so that a reasonable. number of grid lines are drawn;
i.e., it should be possible to locate points on the folded
contacts accurately with respect to the grid). Use a thicker
pen to draw the lines at the left edge of he grid and at the
bottom of the grid; these two lines are reference lines.

Step 2: On a scparate piece of drafting paper,
construct a rectangular grid (here called the foreshortened
grid) composed of two mutually orthogonal suites of lines,
The lines in one suile should be spaced at a distance S
apart, and the lines of the second suite should be spaced ata

e e @SR PR REE
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s |
500m

FA

Figure 13-21. |llustration of
the grid method for construcling
proliles of plunging folds. (a) Map
of a fold that plunges 30° in the !
direction given by FA; (b) map with
square grid superimposed on it; {c)
the profile plane illustrating the

foreshortened grid. Ses Method o !
13-8 for more explanation. ’

distance S' apart, where §' = $(sin 30°) = 0.55. There
should be the same number of lines in the rectangular grid
as there arce in the square grid.. Use a thicker pen o draw
the reference lings, | - e
Step 3: Sccurc the map 10 your dralting table with
the up-plunge portions of the fold ncarest Lo you. Place
the square grid over the map with one set of lincs parallel
to the trend of the fold axis, and sccure the overlay in place
(Fig. 13-21b). Securc the foreshorténed grid to the table
next to the map and overldy; the foreshortened grid should
be positioned so the suite of lincs that arc §' apart are
oriented perpendicular to the fold-axis bearing (Fig.

(b

13-21¢). The lines spaced S' apart ar¢ horizontal lines in
the prolile plane. The lincs spaced ai a distance 5 apart are
parallel to the bearing of the [old axis; they are parallel to
the dip direction of the inclined profile plane--they do not
represent vertical lines.

Step 4: Now we use the square grid to locate points
on the map traces of the folded layers, and the rectangular
grid to position the corresponding points in a profile plane.
For cxample, locate point P in Figure 13-21b. It coincides

‘with the intcrsection of two grid lines; one line is two
‘lincs up from the botlom reference line and the other line is

{he lefy reference line. We plot the image of P on the
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profile plane by finding the corresponding location on the
rectangular grid (Fig. 13-21¢). Point P' on Figure 13-21¢
is also located at the intersection of the left reference ling
with a line two lines up from the bottom reference line.

Step 5: Locate other points on the map of the fold
trace with respect to the square grid, and plot the
corresponding image points on the profile plane (i.e., the
rectangular grid).  Using the positions of the points
plotied on the rectangular grid as a guide, trace out the
image of the folded surface on the rectangular grid. This
image (Fig. 13-21c) is the properly foreshortened image of
the fold.

An alternative approach is to stide the foreshortened
grid over the square grid and, with one of the "horizontal"
lines (those spaced distance S' apart) over the corresponding
line in the square grid, make tick marks where each comact
crosses the line. Repeat this for each "horizontal” line in
the profile plane, and use the tick marks to trace out the
image of the folded comacts,

Constructing Fold Profiles from Maps «

of Regions with High Rellet

When topographic relief js high (the heighis of hills
approach or exceed the amplitudes of folds in the area), our
map is no longer a single oblique section through a
plunging fold. Different portions of the map may be
differeni oblique sections through the fold, but the
composile map image is not simply related to the fold
shape in profile. If, however, we know the orientation of
the fold axis, we can pass a straight line parallel 1o the Told
axis through each point along the map trace of a folded
layer and extend these lines lo pierce a profile plane. The
piercing poinis collectively define the layer's trace on the
prefile plane. Next, we introduce a graphical method for
finding the piercing points on a profile plane and
constructing a profile of the fold. This method works both
for paralle! and nonparaliel cylindrical folds.

Problem 13-9
Figure 13-22 is a map of a folded marble (M),

sandstone (Ss), and shale (Sh). An equal-area plot of

poles-to-bedding readings from this region (not shown)
indicates that the attitude. of the fold axis is 300 ,0450,
Draw an accurate profile of these folded layers,

Method 13-9

Step '1I: Align the map so that the plungmg fold
axis points away from you. Place a sheet of tracing paper
over the map,

Step 2: On 1he right side of 1he overlay, draw hnc
AB parallel 1o the bearing of the fold axis. Nexl, draw
lines AD and BC normal to AB, with AD across the

Special Topics  Part ||

up-plunge edge of the map, and BC across the down-plunge
edge of the map. Rectangle ABCD outlines that part of the
map that we will project onto the profile plane.

Step 3: Let line AB be a folding line (F1), and
swing down a vertical cross-sectional plane around F1 (note
that we arc swinging down an imaginary plane thal had
extended up into the sky), Draw a suite of parallel lines in
the rotated cross-section plane that are parallel o AB and
whose spacing, at the scale of the map, equals the map's
contour interval. The lowest contour (in this case Lhe
100-m line) should be placed closest to AB. Draw line BQ
in the rotated cross-section plane so that it makes an angle
of u (that is, the plunge of the fold) with AB. Line BQ

- represents the fold axis; note that it plunges to the NE.

Step 4: Find the perpendicular 10 line BQ that
passes through A, and extend it to intersect BQ at point J,
We now have right riangle AJB inscribed in our vertical
cross-section plane. Line AB is horizontal, and line JB ig
parallet to the fold axis. Line AJ, which is perpendicular
to JB, is the trace of a profile plane on the vertical section,
You may wish to erase- the contour lines in the
cross-section plane that are outside this right triangle.

Step 5: Draw a sccond rectangle EFGH at the
up-plunge end of the map, with EF (farther from you) and
GH (closer to you) parallel to DA and equal in length to
DA. FG and EH are colinear with CD and AB,
respectively, If rectangle EFGH were positioned so that
GH coincided with DA and EH coincided with JA, then we
could consider EFGH 1o be a "frame” in the profile plane
through which we could view the plunging folds. Because
EFGH represents an inclined plane, lines parallel to EF are
horizonial, but those paraltel to FG are inclined.

Step 6: To draw the fold profile in the “frame" of
EFGH we first find a point on the map plane where the
trace of the geologic contact intersects a contour line. We
choose point L, which lies on the 200-m contour,
Through point L we draw two lines; one parallel to AB and
one parailel to DA. Extend the line parallel to DA across

triangle ABJ 1o point M, which lies on the 200-m contour
" line of the rotated cross-section plane. Extend the line

parallel to AB across.rectangle EFGH; this line intersects
EF at N and inlersects GH at O.
.Step 7: Return to the triangle ABI. Draw line MP

- ; parallel to BJ. Measure the length of segment JP along

line Al. Point L', which is thé projection of L in the
profile plane (EFGH), lies along line NO; the length of
segment NL' equals the length of segment JP,

- Step 8: Repeat the procedure for many other points.
For example, §' is found by drawing lines SV and ST.
Line SV intersects rectangle EFGH at U and V. Line ST
ends where it crosses the contour line in iriangle AJIB in
the vertical section plane whose elevation equals the
elevation at S. Draw line TW parallel to BJ. Plot point §'
along line UV so that the length of segment US' equals the

S - -
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" Figure 13-23. Fold prolfile of
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Figure 13-22. lllustration of F
method for constructing profiles of D
plunging lolds that crop out in _
areas of high reiiel, as descrived in ~ Fpi—Y E
Problem 13-9. Map of folded
sandstone {Ss), marble (M and
stippled}, and shale {Sh) )
sequence; topographic contours in R
meters. Triangle ABJ at right is a - g
vertical cross saction folded down
into plane of the map. Rectangle . H
. " ) . o v
EFGH is a profile plane positiocned

in the plane of tha map.

length of segment JW alotg AJ, By connccting the profile

images of several points along a particular contact, we can
trace out the profiie image of that contact (Fig, 13-23).

In the preceding method, lines EF and GH were used as
reference lines 10 delerming the positions of points L' and
§". Nole that we can draw contour lines on thé profile
plane, but that the spacing of the contours will not be the
samg as the spacing on triangle ABJ. Remember thal ABJ
represents a vertical plane, whercas EFGH represents an

F

inclined profile plane, Therefore, the spacing of contours
on EFGH is

-

spacing = d/fcos L (Eq. 13-5),
where d is the distance between contours in triangle ABJ,
and 1t is the plunge of the [old axis,

The graphical procedure just described is very tedious if
there are many points to be transferred from the map to the
profile plane. Section 13-8 provides an algebraic version

E

m 600

the contact between the marble \ .
(M) and the sandstone {Ss) shown - | . S

400

on the map in Figure 13-22. L' and
S" are points determined in Method

B : 200

13-9. . G
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of the projection procedure, which can be easiiy converted
into a computer algorithm, thereby making it possible for
a computer o construct the profile,

13-8 CONSTRUCTING BLOC;( DIAGRAMS

A block diagram, with a geologic map on its top face and
geologic cross sections along its side faces, is an effective
means of portraying geologic structures, In this section we
examine how to draw block diagrams with any orientation
that correctly portray geologic structurcs in perspective.
We also learn how to plot geologic data on Lhe diagrams.
The metheds require the use of an orthographic net (Fig.
13-24). .

The Orthographic Net
An orthographic projection of a sphere ean be constructed

by simply passing a suite of parallel projection lines
through the sphere so that they intersect a projection plane;
-

N -
‘(@)

‘Flgures 13-24,

Tha orthagraphic nat.

Special Topics  Part |l

the projection plane must be perpendicular to the projection I

lines (Fig. 13-24a). To help you visualize an orthographic
projection, consider that the view of the moon that we have
from earth is essentially an orthographic projection of half
the moon's surface, Imagine a sphere on which lines of
latitude and longitude have been drawn. An orthographic
projection of this graticule (see Appendix 1) onto any
vertical great circle will appear as a grid of lines within the
circle. The lines of latitude (which are small circles) appear

. as straight lines paralle! to the equator, and the lines of

longitude {which are great circles) appear as elliptical arcs
running from pole to pole. This grid is called an
orthographic net (Fig. 13-24b) or orthonet. We can plot
lines. and planes or rotate geomelric elements on an
orthographic net exactly like we have done on a stereonet,
As is the case with a stereonet, we portray only
lower-hemisphere spherical projections on an orthonet, so
the projection lines are vertical, and the projection plane is
heorizontal,

The propertics of an orthographic net allow you 1o

- rotate figures to simulate the effect of changing your line

{a} Construction of an

orthagraphic net. O is the center.ol the projection sphers, Z'is its zenith,
and N is its nadir. GC is the uppar-hemisphere spherical projection of a

plane passing through the center of the net. Wa find the arthographic
projaction of any point on the surface of the projection sphere (such as
point S} by drawing a line that is parallel to ZN through the point and
finding where it pierces a plane parpendicular to ZN. In this way we can
draw the orthographic projection of the great circle (GC'). We 'show the
upper-hemisphere projection only because it is easier to see in this
drawing; (b) a completed orthagraphic net.
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of sight; thus, it is very usclul fot constructing isometric
block diagrams (Appendix 1; also sce Mclntyre and Weiss,
1956). ' L o

Constructlng a Cube o TRt
with an Onrthographic ‘Net Lo

Let us begin by examining how to render a cube with a

horizontal top face that is viewed along different lings of '
sight. 1f we view the cube along a norial 10 is top face,

we see the cube as-a square (Fig. 13-25a). Other [faces,
edges, and vertices on the cube are hidden by this face. We
can see Lthe cube's other components only by rotating the
cube or by changing our viewing axis. Next, we show a
method ocutlined by Lisle (1980) to draw, in proper
perspective, a cube of any orientalion viewed along any
line of sight,

Problem 13-10

Begin with a cube whose top face is horizontal and

whose side faces are aligned northeast and northwest. Draw
how the cube would look when viewed along a line
oriented 309,005°, o

Method 13-10

Step 1: Prepare an overlay for -use with the
orthographic net as you did [or the sierconct (i.c., push a
pin through the center of the net and puncture the overlay
with the pin; sce Chapter 5). On the overlay, trace the
primitive of the orthographic net, and draw a tick- mark o
indicate north. Place the north mark on the overlay over
the north mark on the net.

Step 2: First, plot three points, each representing
the orientation of one edge of the cube (these are called the
principal dircctions of the cube). One edge is vertical and is
represented by point V at the center of the the net (Fig.
13-25b). The northeast-trending horizontal cdge plots as
point X on the primitive, and the northwest-trending
horizonial edge plots as point W on the primitive. By
drawing VX, VW, and line scgments parallel to them, we
have an image of the cube viewed along a vertical line of
sight, with north at the top. of the page (Fig. 13-25b).

Step 3: To plot the point representing the line of
sight, mark the bearing of the line on the primitive of
your overlay. Revolve the overlay so that the bearing {50
east of north) mark lies on the equator. (or over the north
mark on the grid). Count in from the primitive by 309 1o
locate point L. Because grid lines arc very closcly spaced
near the primitive, it is useful to check the location of any
poinl by counling out the complement of this angle (60%)
from the center of the nct. Point L is the lower-
hemisphere orthographic projection of the linc of sight
(Fig. 13-25b). '

Step 4: To obtain a cube that appears 10 be viewx
along our new line of sight (L), we rotate L about

“héfizorital axis so that it moves to the center of the ne

To/do this, we let the notth-south axis of the net be t
folation axis and revolve the overlay so that point L lies

" he equatoe; Move L along the equator by 60° to the cen

of the niet. ‘This rotation brings the point representing 1i

‘of sight to the center of the net (i.e., the line of sig
‘bacomes vertical). We also rotate V, W, and X through-

same angle about the same horizonlal axis, To do this,
V.-arid "W move along small circles by 60° to their rota
positions at X', V', and W' (Fig. 13-25¢c). The spheri
angles between L, V, W, and X are nol changed by rotat
them, but their new positions on the overlay indicate wh
the spherical projections of these elements would fal
projected orthographically onto a plane normal to the |
of sight (L). _

Step §: Draw lines from the center of the nettoe
rotated edge of the cube (lines OV', OW', and OX'onl

- 13-25d). These iines have the appropriate attitudes

relative lengths 1o be a perspective rendering of the tr
principal directions of the cube as viewed along of lint
sight oriented 30°,005° when you revolve the overlay

" that OV appears vertical (Fig. 13-250).

Step 6: Draw the cube by drawing line segm
parailcl to, and cqual in length, respectively, to OV',C
and OX' (Fig. 13-25¢).

Constructing Geologic Block Dlagrams
with an Orthographic Net

Next, we show how to portray geclogic [catures on the

“of the cube in such a way that angular relationships

corigetly portrayed. First, we consider how to pr
geology onto the top face of the cube, then we con
how to project geology onto the side faces of the cube.

Problem 13-11
The trace of a contact is shown on a map

"13-26a). Portray this geology on the top surface of a

whose principal directions are vertical, norh-scuth
east-west, The cube is to be viewed along a line orit

40°,0500.

Method 13-11
Step 1: Draw a square grid on the map. The

 lines should be parallel to the edges of the proposed

(Fig. 13-26a). A point along the map trace of

‘geologic contact has unique coordinates with the squan

referénce frame.
Step 2: Construct the block in the proper orien!
[ollowing Method 13-10. On the 1op surface of the

‘draw the map grid in the appropriaté orientation. I

cxample, the north-south grid lines must paralle
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FlQu_ro 13:25, Construction of a cube with an orthographic net, as
described in Problem 13-10. {a) The cuba viewed normal to cne face
appaars as a square; (b} the orthographic projections of a desirsd line of

~ sight (L) and of the principal directions of the: cube (V. W, and X); {(c)

canfiguration of projections after rotations; (d) orientations of rays OV,
OW', and OX', which give the crientations and relative lengths of the
cubae's principal directions viawed along the lina of sight L, if we align OV

vertically; (e) an isomaetric projection of the cube as viewed along tha line

oriantad 309,0050,

{c)

(e)

Part Il
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(b}

Figure 13-26. Projaction of a map onto
the top surface of a block diagram, as
described in Problem 13-11. (a) Square grid
drawn on a map, Points P and Q fall on a
geoclogic contact; (b) the corresponding grid
shown in perspeclive afler rotation on an
orthographic net, P* and Q' correspend to P
and Q, respeclively. The geologic contact is
shown in perspective on the top of the:block
diagram. :

north-south cdge of the block, and cast-west grid lines must
parallel the cast-west edge of the block. The distance
between adjacent cast-west grid lines is not the same as the
spacing of north-south grid lines; the spacing must be
proportional to the lengths of the cube edges. In other
words, if cach edge of the map is divided into four equal
segments by construction of the grid, then each segment of

the cube edge must be divided into [our equal s¢gments by

construction of the grid,

Step 3: To determine the trace of the contact on the
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top of the block, simply determine the coordinates of many
points on the contact with reference o the map grid.
Transfer these coordinates (o the grid on the surface of the
cube, and retrace the contact (Fig. 13-26b),

Problem 13-12

Draw an isometric block diagram of the geologic map
shown in Figure 13-27a. Show all the geologic features in
proper perspective on the sides of the block diagram. The
block is to be viewed along a line of sight plunging 30° in
the direction 315°, The strike and dip of bedding in the
southérn limb is N85°E,65°N; the strike and dip of
bedding in the northern limb is N37°E,35°S. The azimuth
and plunge of the fold axis is 23°,078°.

Method 13-12

Step 1: Prepare an overlay and place it over an
orthographic net. Plot the points representing the line of
sight and the edges of the cube. In this case the edges of
thie cube are vertical, east-wesi, and north-south,
respectively, The line of sight plots as point L. within the
primitive, and the edges of thé cube plot as points N and W

. on the primitive.

Step 2: Plot the points representing poles to
bedding in the two limbs of the fold and the fold axis. The
southemn limb of the the fold plots as Sl, the northern limb

" plots as Nl on the overlay, and the fold axis plots as F.

Step 3: Rotate all structural elements and principal
cube directions by an appropriate amount around a
horizontal axis such that L. becomes vertical. To do this,
revolve the overlay so that L lies on the east-west diameter
of the orthonet. Move L by 60° along the diameter to the
center of the net.  All other points move 60° along
appropgriate small-circle traces, Remember that if a point
reaches the primitive during a rotation, it reappears on the
diametrically opposite side of the orthonet. Si moves to
SI', NI moves to NI', F moves to F', etc. (Fig. 13-27b).

Step 4: Draw the properly oriented cube. Transfer

- *ihe geologic contacts from the map to the top of the cube,

using the technique described in Method 13-11.

" Step 5: We use a method described by Lisle (1980)
td draw lines on the sides of the cube indicating the dipping
bedding surfaces. Consider an overlay (Fig. 13-27c) that
shows only the points representing the edges of the
properly oriented cube (W, X', V'), the now-vertical line of
stght (O), and the rotated points representing the structural
elements (SI', NI', F). Trace the three great circles that
represent the three principal planes of the cube. Each of
these great circles is determined by aligning two of the

“principal axe$ of theé cube along a great circle on the
" ‘orthonet.  Next, draw the great circles that represent
"~ bedding in fold limbs as viewed along the desired line of
* sight, Each great circle is normal 1o the rotated position of



RSP A S

PR RN

Special Topics

(b)

(@) B @

oo : Lt s en ’
., Figure 13-27. Construction of a block diagram of a fold, as
| described in Problem.13-12. (a) Genaralized map .of the wast end of the

Cove syncline, Pennéylvanila;Appalachians. {Aftar Dyson, 1967.) The

dip and dip direction of beds on the northern limb is 35°,1279, The dip
_and dip direction of beds on the southern limb is' 659,355%, We take the

line of intersection of the beds, 23°,078°, to be the fold axis; (b)

‘arthographic projection of efements from the map. V, W, and X are

principal directions of the block diagram, F is the fold axis, NI is the pole
1o badding of the northern limb, Sl is the pole to bedding of the southern

limb, and L is the line of sight (302, 315°). All the primed letters have

been rotated through 802 around the axis that brings L to the canter of
tha nat; (¢} rays OV', OW', and OX' are the edges of the block diagram.
Great circles denoting top, _'f_f_ont. and side face arg shown. GC! is the
great circle normal to St', GCl intersects the great circle, reprasanting the

“front of the block at A and that reprasenting the top of the block at B. F*

is the rotated fold axis; . (d);completed block diagram. When OV' is
aligned parallel to the vertica| edges of the block diagram, ca parallels
OA, ob parallels OB, and f parallels OF'.

Part ||
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a pole to bedding in a fold limb. For example, GC1 is the

great circle normal 1o the rotated pole to bedding (S')-in .

the southern limb. Great circle GCl intersects the gréat
circle representing the front of the block diagram at A and
the great circle representing the top of the block diagram at
B (Fig. 13-27c). Rays from the center of the orthographic

net to each intersection (OA and OB on Fig. 13-27¢) give

the orientations, on the block diagram, of the lides
representing the intersection of the two planes, Repeat this
procedure for bedding in the northern limb.

Step 6: Now that we know the orientations of the .- .-

beds in the vertical walls of the block, it is easy to
complete the block diagram. For example, locate the
intersection of the Mp/Dc contact on the southern limb of
the fold with the east edge of the block (we know this

location [rom step 4). The trace of this contact in the east -

wall of the block in Figure 13-27d is a line that is parallel

to line OA in Figure 13-27¢. The orientations of other .
contacts are drawn in the same manner. The fold axis in -
Figure 13-27d, which appears to pass through the block, is

drawn parallel 10 line OF' in Figure 13-27c.

The block diagrams shown in the preceding examples
do not show topography on the top surface. Topography,
and other embellishments that make a block diagram more

realistic, can be added following techniques described by .

Lobeck (1958) and Goguel (1962).

13- APPENDIX: USE OF A COMPUTER
FOR DOWN-PLUNGE PROJECTIONS

In order to use a computer to construct down-plunge
projections of geologic structures depicted on a map, we
must recast the construction process in an algebraic form
(Charlesworth and others, 1976; Kilby and Charlesworth,
1980; Langenberg, 1985; Langenberg and others, in press).
We first define Cartesian axes with the x-axis paralle! to a
horizontal north-south line on the map, the y-axis parallel

lo a horizonlal cast-west line on the map, and the z-axis~ - -

vertical (i.e., perpendicular to the map surface). Place the

origin of this coordinate {rame at onc corner of the
up-piunge end of the structure and orient the coordinate’

[rame to be right-handed. Any poiat on the topographic

surlace or in the subsurlace has unique coordinates (x,y,z)
relative to these axes. All coordinate valucs must be

measured in the same units (c.g., feet, meters, or miles). It

- is usually easiest to use the map scale to convert all

horizontal distance measurements to those used to measure
elevation.

To project a point onto a profile plane, we perform a
coordinaté transformation to hew Cartesian axes x', y', and
z'. x'is a horizonial line whosé bearing is perpendicular to

the bearing of the fold axis. y"has the same bearing and

plurige as the fold axis. z' parallels the true dip direction of
the profile plane. If the bearing of the fold axis is 8, and
the plunge of the fold axis is 1, the point with coordinates
(x; ¥, z) relative to the east-north-veriical coordinate frame

‘has coordinates (x', y', z') relative 1o the new coordinate
-axes. The values of X', y', and z' are given by

X' = x[cos Jt cos(8 - 90°)] - y[cos y sin(6 - 90°)] -z sin |t

(Eq. 13-Al)
y' = x[sin(8 - 90°)] + y[cos(8 - 90°)] (Eq. 13-A2)
z' ='x[sin [t cos(® -90°)] - y[sin p sin(® - 909)] + z cos
(Eq. 13-A3)

- of, In matrix form,

[cos |t cos(B - 90°)] [cos 1L sin(B - 909)] sin p|{x
[sin(® - 90%)} [cos(B - 909)] 0 y
{sin 1t cos(8 -909)] [sin W sin(B - 90°)] cos |z
(Eq. 13-A4).

Since the y'-coordinate axis is parallel to the fold axis,
the x'-z' plane is a profile plane. We can project points

* onlo.a profile planc by collapsing all points onto a single

plane that parallels the x'-2’' plane. To do this, we simply
ignore the y'-coordinate values and plot all points on 2
two-dimensional Cariesian coordinate frame with abscissa
x''and ordinate z' using only their x'- and z'-coordinate
values. The plot of points on the x'-z' frame is the profile
of the structure, :

. Computer construction of profiles involves simply (1)
digitizing points along the trace of a structure on a map

(e, determining their x,y,z coordinates), (2) calculating

theicoordinates in x', y', ' space, by using the preceding
equations, and (3} having the computer plot the transformed

~ x'¥ and z'-coordinates on an x'-z' profile plane. The

algorithms are relatively simple, so the procedure can be
accomplished with a desktop computer,

EXERCISES

1. Choose an appropriate line of section across the map in Figure 13-M1,

2. Point A is 150 m northwest of point B along a N4SOW-trending section line; the
clevation al B is 15 m higher than the clevation at A. The strike and dip of



298

Special Topics Panll

- m 4 Flgure 13-M1. Map of a
1000~ 2" .~ gp . i _ | portion of the Mifflintown

™ e \"b-c_\ _ 1 Quadrangle, Pennsylvania Appa-
~ ' “\7 ~SWH ™~~___-| lachians, USA. (From Conlin and

' . f }L Hoskins, 1962.) Or = Ordoviclan
nor “Sb N\ Readsville Formation; Ob =
m Ordovician Bald Eagle Formation;
ya SmiZ —Qm Oj = Ordovician Juniata Formation;

N St = Silurian Tuscarora Formation;

’ 5000 '§r = Silurian Rose Hill Formation,

Topographic contours in feet.

bedding is N4SPE,27°NW at A and N45°E, 52°SE at B. Use the Busk melhod 10
reconstruct the folded layers passing through points A and B~

1. Points A, B, and C fall along a N88°E-trending section line. The distance [rom A

10 B is 5SSO m, and the distance from B o C is 200 my; all three points have the

same elevation. The strike and dip of bedding is NO29W,22°F aL A, NO2°W 45°E

al B, and N2OW, 54°W at C, Use the Busk method 10 rcmneru(.t the folded layers
passing through A, B, and C.

4. Use the Busk method 10 draw a4 cross section using the data given in Figure
13 M2

L))

Use the Busk method 10 d:aw a cross section [rom the map in Figure 13-M1,
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_ 6. Points A, B, and C fall along a NSO"W trending section lihe across a region of
i angular folds. The distance from A B is 220 m, and the distance from B to C is
> 370 m; all three points have the saimc clevation, A falls in a dip domain where the
strike and dip of bedding is N40°E, 27°N; B falls in a domain where the strike and
dip of bedding is N40Q°E, 76°S; and C falls in a domain where the strike and dip of
= bedding is N4OPE, 22°N, Use the kink melhod to reconstruct the folded layers
passing through A, B, and C, &

' [
1

7. Use the kink method to draw a ctoss section using the data in Figure 13-M2.
Hint: Draw line scgments indicating the domainal dips through each point where a
kink fold hinge intersects the ground surface (the "h's" on the proﬁlc) and bisect
that angle to orient the kink fold hinge. :

s

0 T 40001t

Figure 13-M2. . Dip readings along a line of section across folds in the
Millerstoiwn Quadrangle, Pennsylvania Appalachians, USA, (After Faill
and Wells,1974)) Dashed vertical lines separate outcrop belts of
different stratigraphic units. Each filled circle (h) marks the intersaction
batween a kink plane and the ground surface; use them when completing
exarcise 7. sl = sea level; Of = Ordovician Juniata Formation. St =
Silurian Tuscarora Formation; Srkm = Silurian Rose Hill, Kesfer; and
Mifflintown Formations; Sb = Siturian .Bloomsburg Formations; Sw =
Silurian Wills Cresk Formation; Sto = Silurian Toncloway Formation. The
Ordovician Juniata Formation is.about 1500 ft thick and is undetlain by
the 750-fi-thick Bald Eagle Formation and the 1500-ft-thick Reedsville
Formation. o

21 .
i { ERE T

8. Use the kink method to draw a cross séction of the region illustratéd in Figure
13-M3.

9. Usethe dip-isogaﬁ method to complete the fold profile begun in Problem 13-6,

10. Figure 13-M4 is a map of 1'1(‘3\'1'1piung'ingi cylindrical folds. Construct a profile of
thesce Tolds using the orthographic projection method outlined in Problem 13-7,

11. Use the grid methed 1o draw a profile of .lhe fold in Figure 13-MS5.
12. Assume that the folds shown in Figure 13-M6 are cylindrical and plunge 11°

toward 0159, Use the method outlined in Problem 13-9 to determine the structure
in this region. Lo

e tma T
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“'Figure 13-M3. ‘Map of a’portion’ of* the” Mifflintown Quadrangle,

- Pannsylvania Appatachians, USA. (From Conlin and Hoskins, 1962.) St

" » Silurian Tuscarora Formation; St = Silurian Rose Hill Formation; Sm =

' Mifflintown Formation; Sb = Bloomsburg’ Formatson Sw = Wills Creek
Formanon Sto Tonoloway Formation '

13. Use the orthographic net to draw, in proper bcrspeclivc, how a cube with a
horizontal top and northeast/northwest dirccled edges would look when viewed
along a line of sight 25°,315°,

t 4. Draw a block diagram vicwed along a line ol sight 340°,30° of the fold illustrated
in. anurc 13-M7.
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5 km

Flgure 13-M5. Simplified geoiogic map of the Cove syncline, New
Blcomfisid Quadrangle, Pennsylvania Appalachians, USA. (From Dyson,
1867.) Dc = Davonian Catskiil Formation; Mp = Mississippian Pocono
Formation; Mm = Mississippian Mauch Chunk Formation. Bearing and
plunge of fold axis ara 0859 and 150, -
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Flgure 13-MB. Geologic map
of a pertion of Blua Ridge, Loudoun
County, Virginia, USA. (Adapled
irom Nickelsen, 1956.) pCqg =
granitic gneiss;. pCss =
- Precambrian Swift Run Formation
. sandstone; pCsp = Precambrian
Swilt Run Formation phyllite; Cl =
Cambrian Loudoun Formation.
Tepographic centours in {eal,

e e i e T e B O M I G S

Figure 13-M7. Map of a hypo-
. thetical fold. Strike and dip of
. bedding is N779E,709NW in the

“northern limb and N53°E, 5098 in
the southarn limb. The fold axis
plunges 19° toward 0719,



