LEYES FUNDAMENTALES DE LOS GASES

- 1. Principio de la conservación de la cantidad de movimiento en choque elástico (Ley de Newton).
 - presión ejercida por las moléculas de un gas sobre las paredes del recipiente que lo contiene, según Teoría Cinética de los Gases:

$$p = \frac{1}{3} \rho \overline{v^2}$$
; en que ρ = densidad y $\overline{v^2}$ = velocidad cuadrática media.

- ecuación de estado de los gases perfectos: $p=\frac{\rho~R~T}{M}$; en que $~\mathcal{T}$ = temperatura absoluta,

$$M = \text{peso molecular } [g/\text{mol}];$$
 $R^* = \text{constante universal} = 8.31 \text{ Joule mol}^{-1} \circ K^{-1}$

$$R = R^*/M =$$
constante específica del gas.

- comparación entre las dos relaciones anteriores: $p=\frac{1}{3}(\frac{N\;\rho}{M})\;(m\;\overline{v^2})\;$ donde N= número de moléculas por mol y m= masa de una molécula; luego M=Nm
- 2. Principio de la conservación de la energía (1er. Principio de la Termodinámica).

$$\Delta H = m c_v \Delta T + p \Delta V$$
, en que $c_v =$ calor específico a volumen constante.

por unidad de masa:
$$\Delta h = c_v \Delta T + p \Delta \alpha$$
, en que $\alpha = \frac{1}{\rho}$ = volumen específico.

alternativamente: $\Delta h = c_p \Delta T - \alpha \Delta p$ en que $c_p = R + c_v =$ calor específico a presión constante.

3. Ecuación hidrostática: Equilibrio entre la aceleración de gravedad y la aceleración debida al gradiente vertical de presión:

$$-\Delta p = \rho \ q \Delta z$$
; $q =$ aceleración de gravedad, $\Delta z =$ incremento de altura.

4. Ley de Dalton: En una mezcla de gases a temperatura Tque ocupan volumen V cada gas ocupa todo el volumen y para cada uno de ellos rige la ecuación de estado. La suma de las presiones parciales de cada gas es igual a la presión total (p)