The state of the s

RADIACION SOLAR

Energía solar proviene de fusión atómica: $4H \rightarrow He + energía (radiación + partículas)$. Espectro de radiación solar (~cuerpo negro a 6000 °K). Movimiento de la tierra en torno al sol: eclíptica. Leyes de Kepler Plano del ecuador a 23,5 ° de la eclíptica. Equinoccios y solsticios. Perihelio y afelio (\pm 3.5 %). Ciclos de parámetros orbitales (Milankovitch). ¿Manchas solares?. Constante solar: Densidad de flujo radiante solar en una superficie perpendicular a rayos solares a la distancia media sol-tierra (1 UA) antes de penetrar en la atmósfera terrestre: CS = 1370 \pm 10 Wm⁻². El promedio de la densidad de flujo incidente sobre un m² de la superficie terrestre = $CS \pi a^2/4\pi a^2$.

- Efecto general de la atmósfera sobre la radiación solar.

	Región Espectral		
	U.V.	Visible	I. R. cercano
Banda [μm]	0.3 - 0.4	0.4 - 0.7	0.7 - 3.0
Efecto principal	absorción	dispersión Rayleigh	absorción
Elementos Responsables	Ozono	Moléculas de aire	H ₂ O y CO ₂
% de energía en superficie terrestre	3	50	47

- Radiación solar global G: Es la densidad de flujo radiante solar que incide sobre un plano horizontal: G = DIRECTA (disco solar) + DIFUSA (hemisferio excluyendo disco solar). La proporción DIFUSA/DIRECTA depende de: elevación solar, altitud, nubosidad, dispersión y absorción en gases y aerosoles. Valor típico entre 0.10 y 0.25 para días despejados.
- Angulo cenital del sol χ en función del lugar (latitud ϕ), fecha (declinación solar δ) y hora del día (ángulo horario h):

$$\cos \chi = \sin \varphi \sin \delta + \cos \varphi \cos \delta \cos h$$
.

en que h = 0 al mediodía solar verdadero (paso del sol por meridiano del lugar)

Angulo horario a la salida (puesta) del sol h_s (h_p) se obtiene para $\chi = \pi/2$ y será negativo (positivo). cos h_s , $h_p = -tg\phi$ $tg\delta$. Duración del día: $N = 2h_p 24/2\pi$ [horas]

- Albedo superficial (a^*). Es la reflectividad de una superficie horizontal a la radiación solar Valores típicos: nieve fresca (0.75-0.95), arena seca (0.35-0.45), concreto (0.17-0.27), asfalto (0.05-0.10), desierto (0.25-0.30), selva (0.05-0.20), cultivos (0.15-0.25), mar (0.02-0.10). Albedo planetario (a^{**}): tierra (0.30), luna (0.10), venus (0.80), marte (0.16).