THE POTENTIAL WELL

We next consider the potential (Fig. 5-2)

Vix) =0 x< —-a
= -V, —a<x<a (5-20)
=0 a<x

In addition to the solutions for E > 0 discussed in the section on the potential well
there are, remarkably, also solutions for E < 0 provided the potential is negative,
that is, V,, > 0 in (5-20). They will turn out to be discrete. Let us write

e 557)

The solutions outside the well that are bounded at infinity are

ulx) = C, e~ x < -a
(5-58)
u(x) = C,e™ a<x
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Since we are dealing with real functions, it is more convenient to write the solution

inside the well in the form

u(x) = A cos gx + B sin gx —-a<x<a

Note that

2
7 u»lw:\on IE) >0

Matching solutions and derivatives at the edges x = *a yields

Cie™ = Acos ga — B singa
kC, €7 = g(A sin ga + B cos ga)
nN Nl%ﬁ

|KnN e "

A cos ga + B sin gqa

—g(A sin ga — B cos qa)
These may be combined to yield

Asinga — B cos ga
&>n0m&a+mmm5§

A sin ga + B cos ga

a\»nOm&alwmm:an

(5-59)

(5-60)

(5-61)

(5-62)

Together these imply that AB = 0, that is, the solutions are either even in
x (B = 0) or odd in x (A = 0). The wave functions are roughly of the shape shown
in Fig. 5-10. The ground state, with no nodes, is even. This is a general property
of simple systems. The conditions that determine the energy are from (5-62)

Kk = q tan gqa even solutions

I

k= —qcotga  odd solutions

Let us examine these separately.
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Figure 5-10. Solutions for discrete spectrum in attractive potential well.

(5-63)
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(@) The even solutions:

With the notation

_2mVoa?®
==

Yy =qa

(5-64)

the first of the relations (5-63) reads

ViT Y

= tan (5-65)
y Y

If we plot tan y and VA — ¥?/y as functions of y (Fig. 5-11), the points of inter-
section determine the eigenvalues. These form a discrete set. The larger A is, the
further the curves for VA — y?/y go, that is, when the potential is deeper andjor
broader, there are more bound states. The figure also shows that no matter how small
A is, there will always be at least one bound state. This is charadteristic of one-
dimensional attractive potentials, and is not true for three-dimensional potentials,
which behave much more like the odd-solution problem that we will discuss later.
As A becomes large, the eigenvalues tend to become equally spaced in , with the
intersection points given approximately by

y=m+dw n=2012... (5-66)
This is just the eigenvalue condition for the even solutions of the infinite box
centered at the origin (eigenfunctions given in (4-48)). This is as might be expected,

J
2 , arge
smatl
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0 n/2 T 3872 2n Sr/2 3% n/2
Figure 5-11. Location of discrete eigenvalues for even solutions in square
well. The rising curves represent tan y; the falling curves are VA — y?/y for
different values of A.
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large
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Flgure 5-12. Location of discrete eigenvalues for odd solutions in square
well. The rising curves represent —cot y; the falling curves are VA — y?/y
for different values of A. Note that there is no eigenvalue for A < (m/2)%.

since for the deep-lying states in the potential, the fact that it is not really infinitely
deep does not matter very much.

(b) The odd solutions:

Here the eigenvalue condition reads

—— = —cot 5-67
" y . 6

Since —cot y = tan (/2 + y), the plot in Fig. 5-12 is the same as in Fig. 5-11 with
the tangent curves shifted by /2. The large A behavior is more or less the same,
with (5-66) replaced by

y=nmw n=1,23,... (5-68)

Vix)

Figure 5-13. Equivalent potential for odd
solutions of square well bound state
problem.
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Figure 5-14. (a) Mismaich with E; too large. (b)
Mismaich with Ej teo small.

In_contrast to the even solutions, there will only be an intersection if

VA — 7/4 > 0, that is, if

2mVoa® 7

The odd solutions all vanish at x = 0, and hence the bound-state problem for
the odd solutions will be the same as for the potential well shown in Fig. 5-13,
since in the latter, the condition u(0}) = 0 would be imposed. We shall see that
such conditions are imposed on wave functions in the three-dimensional world.

The detailed calculations that we have carried out support the qualitative un-
derstanding of the reason for discrete eigenvalues. These arise because we require
the wave functions to vanish at infinity. We see this graphically in Fig. 5-14. The
even-parity ground-state wave function inside the potential, of the form cos gx,
must tie on continuously to a falling exponential e with a® = 2mE;/#* Large
binding means a rapidly falling exponential. Since 4*> = 2mV,/#* — o%), a large
binding energy means that 47 is small, that is, the wave function is quite flat: thus
matching is impossible. As we reduce the trial Ej, the exponential falls less steeply
and the wave function inside curves more, so that at some point the matching
(continuous slope) becomes possible. I the value of & is lowered beyond this point,
the outside curve is too flat to match the more curved inside wave function. For
the first excited state, with odd parity, the wave function vanishes at the origin,
so that it can only tie onto a falling exponential if it has a chance to turn over
inside the potential. The condition that it turns over just enough to tie to a straight
line (o = 0) is that sin ga = 1, so thatga = 7/2, which corresponds to the condition
expressed in (5-69). )

DELTA FUNCTION POTENTIALS

We consider a potential V(x) whose spatial behavior is given by &(x). Since &x)
has the dimensions of a reciprocal length, it is convenient to write for the attractive
potential

2
Vix) = _AA 8(x) (5-70)
2ma
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