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! The workings of a mechanical clock. Complicated timepieces have been built for cen-
turies in an effort to measure time accurately. Time is one of the basic quantities that we use
in studying the motion of objects. (elektraVision/Index Stock Imagery)



Like all other sciences, physics is based on experimental observations and quantitative
measurements. The main objective of physics is to find the limited number of funda-
mental laws that govern natural phenomena and to use them to develop theories that
can predict the results of future experiments. The fundamental laws used in develop-
ing theories are expressed in the language of mathematics, the tool that provides a
bridge between theory and experiment.

When a discrepancy between theory and experiment arises, new theories must be
formulated to remove the discrepancy. Many times a theory is satisfactory only under
limited conditions; a more general theory might be satisfactory without such limita-
tions. For example, the laws of motion discovered by Isaac Newton (1642–1727) in the
17th century accurately describe the motion of objects moving at normal speeds but do
not apply to objects moving at speeds comparable with the speed of light. In contrast,
the special theory of relativity developed by Albert Einstein (1879–1955) in the early
1900s gives the same results as Newton’s laws at low speeds but also correctly describes
motion at speeds approaching the speed of light. Hence, Einstein’s special theory of
relativity is a more general theory of motion.

Classical physics includes the theories, concepts, laws, and experiments in classical
mechanics, thermodynamics, optics, and electromagnetism developed before 1900. Im-
portant contributions to classical physics were provided by Newton, who developed
classical mechanics as a systematic theory and was one of the originators of calculus as
a mathematical tool. Major developments in mechanics continued in the 18th century,
but the fields of thermodynamics and electricity and magnetism were not developed
until the latter part of the 19th century, principally because before that time the appa-
ratus for controlled experiments was either too crude or unavailable.

A major revolution in physics, usually referred to as modern physics, began near the
end of the 19th century. Modern physics developed mainly because of the discovery that
many physical phenomena could not be explained by classical physics. The two most im-
portant developments in this modern era were the theories of relativity and quantum
mechanics. Einstein’s theory of relativity not only correctly described the motion of ob-
jects moving at speeds comparable to the speed of light but also completely revolution-
ized the traditional concepts of space, time, and energy. The theory of relativity also
shows that the speed of light is the upper limit of the speed of an object and that mass
and energy are related. Quantum mechanics was formulated by a number of distin-
guished scientists to provide descriptions of physical phenomena at the atomic level.

Scientists continually work at improving our understanding of fundamental laws,
and new discoveries are made every day. In many research areas there is a great deal of
overlap among physics, chemistry, and biology. Evidence for this overlap is seen in the
names of some subspecialties in science—biophysics, biochemistry, chemical physics,
biotechnology, and so on. Numerous technological advances in recent times are the re-
sult of the efforts of many scientists, engineers, and technicians. Some of the most no-
table developments in the latter half of the 20th century were (1) unmanned planetary
explorations and manned moon landings, (2) microcircuitry and high-speed comput-
ers, (3) sophisticated imaging techniques used in scientific research and medicine, and
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(4) several remarkable results in genetic engineering. The impacts of such develop-
ments and discoveries on our society have indeed been great, and it is very likely that
future discoveries and developments will be exciting, challenging, and of great benefit
to humanity.

1.1 Standards of Length, Mass, and Time

The laws of physics are expressed as mathematical relationships among physical quanti-
ties that we will introduce and discuss throughout the book. Most of these quantities
are derived quantities, in that they can be expressed as combinations of a small number
of basic quantities. In mechanics, the three basic quantities are length, mass, and time.
All other quantities in mechanics can be expressed in terms of these three.

If we are to report the results of a measurement to someone who wishes to repro-
duce this measurement, a standard must be defined. It would be meaningless if a visitor
from another planet were to talk to us about a length of 8 “glitches” if we do not know
the meaning of the unit glitch. On the other hand, if someone familiar with our system
of measurement reports that a wall is 2 meters high and our unit of length is defined
to be 1 meter, we know that the height of the wall is twice our basic length unit. Like-
wise, if we are told that a person has a mass of 75 kilograms and our unit of mass is de-
fined to be 1 kilogram, then that person is 75 times as massive as our basic unit.1 What-
ever is chosen as a standard must be readily accessible and possess some property that
can be measured reliably. Measurements taken by different people in different places
must yield the same result.

In 1960, an international committee established a set of standards for the fundamen-
tal quantities of science. It is called the SI (Système International), and its units of length,
mass, and time are the meter, kilogram, and second, respectively. Other SI standards es-
tablished by the committee are those for temperature (the kelvin), electric current (the
ampere), luminous intensity (the candela), and the amount of substance (the mole). 

Length

In A.D. 1120 the king of England decreed that the standard of length in his country
would be named the yard and would be precisely equal to the distance from the tip of
his nose to the end of his outstretched arm. Similarly, the original standard for the foot
adopted by the French was the length of the royal foot of King Louis XIV. This stan-
dard prevailed until 1799, when the legal standard of length in France became the me-
ter, defined as one ten-millionth the distance from the equator to the North Pole along
one particular longitudinal line that passes through Paris.

Many other systems for measuring length have been developed over the years,
but the advantages of the French system have caused it to prevail in almost all coun-
tries and in scientific circles everywhere. As recently as 1960, the length of the meter
was defined as the distance between two lines on a specific platinum–iridium bar
stored under controlled conditions in France. This standard was abandoned for sev-
eral reasons, a principal one being that the limited accuracy with which the separa-
tion between the lines on the bar can be determined does not meet the current
requirements of science and technology. In the 1960s and 1970s, the meter was de-
fined as 1 650 763.73 wavelengths of orange-red light emitted from a krypton-86
lamp. However, in October 1983, the meter (m) was redefined as the distance
traveled by light in vacuum during a time of 1/299 792 458 second. In effect, this
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1 The need for assigning numerical values to various measured physical quantities was expressed by
Lord Kelvin (William Thomson) as follows: “I often say that when you can measure what you are
speaking about, and express it in numbers, you should know something about it, but when you cannot
express it in numbers, your knowledge is of a meager and unsatisfactory kind. It may be the beginning
of knowledge but you have scarcely in your thoughts advanced to the state of science.”



latest definition establishes that the speed of light in vacuum is precisely 299 792 458
meters per second.

Table 1.1 lists approximate values of some measured lengths. You should study this
table as well as the next two tables and begin to generate an intuition for what is meant
by a length of 20 centimeters, for example, or a mass of 100 kilograms or a time inter-
val of 3.2 ! 107 seconds.

Mass

The SI unit of mass, the kilogram (kg), is defined as the mass of a specific
platinum–iridium alloy cylinder kept at the International Bureau of Weights
and Measures at Sèvres, France. This mass standard was established in 1887 and has
not been changed since that time because platinum–iridium is an unusually stable al-
loy. A duplicate of the Sèvres cylinder is kept at the National Institute of Standards and
Technology (NIST) in Gaithersburg, Maryland (Fig. 1.1a).

Table 1.2 lists approximate values of the masses of various objects.

Time

Before 1960, the standard of time was defined in terms of the mean solar day for the
year 1900. (A solar day is the time interval between successive appearances of the Sun
at the highest point it reaches in the sky each day.) The second was defined as

of a mean solar day. The rotation of the Earth is now known to vary 
slightly with time, however, and therefore this motion is not a good one to use for
defining a time standard.

In 1967, the second was redefined to take advantage of the high precision attainable
in a device known as an atomic clock (Fig. 1.1b), which uses the characteristic frequency
of the cesium-133 atom as the “reference clock.” The second (s) is now defined as
9 192 631 770 times the period of vibration of radiation from the cesium atom.2

! 1
60"! 1

60"! 1
24"
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2 Period is defined as the time interval needed for one complete vibration.

Length (m)

Distance from the Earth to the most remote known quasar 1.4 ! 1026

Distance from the Earth to the most remote normal galaxies 9 ! 1025

Distance from the Earth to the nearest large galaxy 2 ! 1022

(M 31, the Andromeda galaxy)
Distance from the Sun to the nearest star (Proxima Centauri) 4 ! 1016

One lightyear 9.46 ! 1015

Mean orbit radius of the Earth about the Sun 1.50 ! 1011

Mean distance from the Earth to the Moon 3.84 ! 108

Distance from the equator to the North Pole 1.00 ! 107

Mean radius of the Earth 6.37 ! 106

Typical altitude (above the surface) of a 2 ! 105

satellite orbiting the Earth
Length of a football field 9.1 ! 101

Length of a housefly 5 ! 10"3

Size of smallest dust particles # 10"4

Size of cells of most living organisms # 10"5

Diameter of a hydrogen atom # 10"10

Diameter of an atomic nucleus # 10"14

Diameter of a proton # 10"15

Approximate Values of Some Measured Lengths

Table 1.1

! PITFALL PREVENTION
1.2 Reasonable Values
Generating intuition about typi-
cal values of quantities is impor-
tant because when solving prob-
lems you must think about your
end result and determine if it
seems reasonable. If you are cal-
culating the mass of a housefly
and arrive at a value of 100 kg,
this is unreasonable—there is an
error somewhere.

! PITFALL PREVENTION
1.1 No Commas in

Numbers with Many
Digits

We will use the standard scientific
notation for numbers with more
than three digits, in which
groups of three digits are sepa-
rated by spaces rather than
commas. Thus, 10 000 is the
same as the common American
notation of 10,000. Similarly, 
# $ 3.14159265 is written as
3.141 592 65.

Mass (kg)

Observable # 1052

Universe
Milky Way # 1042

galaxy
Sun 1.99 ! 1030

Earth 5.98 ! 1024

Moon 7.36 ! 1022

Shark # 103

Human # 102

Frog # 10"1

Mosquito # 10"5

Bacterium # 1 ! 10"15

Hydrogen 1.67 ! 10"27

atom
Electron 9.11 ! 10"31

Table 1.2
Masses of Various Objects 
(Approximate Values)



To keep these atomic clocks—and therefore all common clocks and watches that are
set to them—synchronized, it has sometimes been necessary to add leap seconds to our
clocks.

Since Einstein’s discovery of the linkage between space and time, precise measure-
ment of time intervals requires that we know both the state of motion of the clock used
to measure the interval and, in some cases, the location of the clock as well. Otherwise,
for example, global positioning system satellites might be unable to pinpoint your loca-
tion with sufficient accuracy, should you need to be rescued.

Approximate values of time intervals are presented in Table 1.3.
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(a) (b)
Figure 1.1 (a) The National Standard Kilogram No. 20, an accurate copy of the
International Standard Kilogram kept at Sèvres, France, is housed under a double bell jar in
a vault at the National Institute of Standards and Technology. (b) The nation’s primary time
standard is a cesium fountain atomic clock developed at the National Institute of Standards
and Technology laboratories in Boulder, Colorado. The clock will neither gain nor lose a
second in 20 million years.

(C
ou

rte
sy

 o
f N

at
io

na
l I

ns
tit

ut
e 

of
 S

ta
nd

ar
ds

 a
nd

 Te
ch

no
lo

gy
, U

.S
. D

ep
ar

tm
en

t o
f C

om
m

er
ce

)

Time
Interval (s)

Age of the Universe 5 ! 1017

Age of the Earth 1.3 ! 1017

Average age of a college student 6.3 ! 108

One year 3.2 ! 107

One day (time interval for one revolution of the Earth about its axis) 8.6 ! 104

One class period 3.0 ! 103

Time interval between normal heartbeats 8 ! 10"1

Period of audible sound waves # 10"3

Period of typical radio waves # 10"6

Period of vibration of an atom in a solid # 10"13

Period of visible light waves # 10"15

Duration of a nuclear collision # 10"22

Time interval for light to cross a proton # 10"24

Approximate Values of Some Time Intervals

Table 1.3



In addition to SI, another system of units, the U.S. customary system, is still used in the
United States despite acceptance of SI by the rest of the world. In this system, the units of
length, mass, and time are the foot (ft), slug, and second, respectively. In this text we shall
use SI units because they are almost universally accepted in science and industry. We shall
make some limited use of U.S. customary units in the study of classical mechanics.

In addition to the basic SI units of meter, kilogram, and second, we can also use
other units, such as millimeters and nanoseconds, where the prefixes milli- and nano-
denote multipliers of the basic units based on various powers of ten. Prefixes for the
various powers of ten and their abbreviations are listed in Table 1.4. For example,
10" 3 m is equivalent to 1 millimeter (mm), and 103 m corresponds to 1 kilometer
(km). Likewise, 1 kilogram (kg) is 103 grams (g), and 1 megavolt (MV) is 106 volts (V).

1.2 Matter and Model Building

If physicists cannot interact with some phenomenon directly, they often imagine a
model for a physical system that is related to the phenomenon. In this context, a
model is a system of physical components, such as electrons and protons in an atom.
Once we have identified the physical components, we make predictions about the
behavior of the system, based on the interactions among the components of the sys-
tem and/or the interaction between the system and the environment outside the
system.

As an example, consider the behavior of matter. A 1-kg cube of solid gold, such as
that at the left of Figure 1.2, has a length of 3.73 cm on a side. Is this cube nothing but
wall-to-wall gold, with no empty space? If the cube is cut in half, the two pieces still re-
tain their chemical identity as solid gold. But what if the pieces are cut again and
again, indefinitely? Will the smaller and smaller pieces always be gold? Questions such
as these can be traced back to early Greek philosophers. Two of them—Leucippus and
his student Democritus—could not accept the idea that such cuttings could go on for-
ever. They speculated that the process ultimately must end when it produces a particle
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Power Prefix Abbreviation

10"24 yocto y
10"21 zepto z
10"18 atto a
10"15 femto f
10"12 pico p
10"9 nano n
10"6 micro %

10"3 milli m
10"2 centi c
10"1 deci d
103 kilo k
106 mega M
109 giga G
1012 tera T
1015 peta P
1018 exa E
1021 zetta Z
1024 yotta Y

Prefixes for Powers of Ten

Table 1.4



that can no longer be cut. In Greek, atomos means “not sliceable.” From this comes our
English word atom.

Let us review briefly a number of historical models of the structure of matter.
The Greek model of the structure of matter was that all ordinary matter consists of
atoms, as suggested to the lower right of the cube in Figure 1.2. Beyond that, no ad-
ditional structure was specified in the model— atoms acted as small particles that in-
teracted with each other, but internal structure of the atom was not a part of the
model. 

In 1897, J. J. Thomson identified the electron as a charged particle and as a con-
stituent of the atom. This led to the first model of the atom that contained internal
structure. We shall discuss this model in Chapter 42.

Following the discovery of the nucleus in 1911, a model was developed in which
each atom is made up of electrons surrounding a central nucleus. A nucleus is shown
in Figure 1.2. This model leads, however, to a new question—does the nucleus have
structure? That is, is the nucleus a single particle or a collection of particles? The exact
composition of the nucleus is not known completely even today, but by the early 1930s
a model evolved that helped us understand how the nucleus behaves. Specifically, sci-
entists determined that occupying the nucleus are two basic entities, protons and neu-
trons. The proton carries a positive electric charge, and a specific chemical element is
identified by the number of protons in its nucleus. This number is called the atomic
number of the element. For instance, the nucleus of a hydrogen atom contains one
proton (and so the atomic number of hydrogen is 1), the nucleus of a helium atom
contains two protons (atomic number 2), and the nucleus of a uranium atom contains
92 protons (atomic number 92). In addition to atomic number, there is a second num-
ber characterizing atoms—mass number, defined as the number of protons plus neu-
trons in a nucleus. The atomic number of an element never varies (i.e., the number of
protons does not vary) but the mass number can vary (i.e., the number of neutrons
varies). 

The existence of neutrons was verified conclusively in 1932. A neutron has no
charge and a mass that is about equal to that of a proton. One of its primary purposes
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Gold atoms

Nucleus

Quark composition of a proton
u

d

Gold cube

Gold
nucleus

Proton

Neutron

u

Figure 1.2 Levels of organization in matter. Ordinary matter consists of atoms, and at the
center of each atom is a compact nucleus consisting of protons and neutrons. Protons and
neutrons are composed of quarks. The quark composition of a proton is shown.



is to act as a “glue” that holds the nucleus together. If neutrons were not present in the
nucleus, the repulsive force between the positively charged particles would cause the
nucleus to come apart.

But is this where the process of breaking down stops? Protons, neutrons, and a host
of other exotic particles are now known to be composed of six different varieties of
particles called quarks, which have been given the names of up, down, strange, charmed,
bottom, and top. The up, charmed, and top quarks have electric charges of that of
the proton, whereas the down, strange, and bottom quarks have charges of that
of the proton. The proton consists of two up quarks and one down quark, as shown at
the top in Figure 1.2. You can easily show that this structure predicts the correct charge
for the proton. Likewise, the neutron consists of two down quarks and one up quark,
giving a net charge of zero.

This process of building models is one that you should develop as you study
physics. You will be challenged with many mathematical problems to solve in
this study. One of the most important techniques is to build a model for the prob-
lem—identify a system of physical components for the problem, and make predic-
tions of the behavior of the system based on the interactions among the compo-
nents of the system and/or the interaction between the system and its surrounding
environment.

1.3 Density and Atomic Mass

In Section 1.1, we explored three basic quantities in mechanics. Let us look now at an
example of a derived quantity—density. The density & (Greek letter rho) of any sub-
stance is defined as its mass per unit volume:

(1.1)

For example, aluminum has a density of 2.70 g/cm3, and lead has a density of
11.3 g/cm3. Therefore, a piece of aluminum of volume 10.0 cm3 has a mass of 27.0 g,
whereas an equivalent volume of lead has a mass of 113 g. A list of densities for various
substances is given in Table 1.5.

The numbers of protons and neutrons in the nucleus of an atom of an element are re-
lated to the atomic mass of the element, which is defined as the mass of a single atom of
the element measured in atomic mass units (u) where 1 u $ 1.660 538 7 ! 10"27 kg.

& $ 
m
V

" 1
3

' 2
3
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A table of the letters in the
Greek alphabet is provided on
the back endsheet of the
textbook.

Substance Density ! (103 kg/m3)

Platinum 21.45
Gold 19.3
Uranium 18.7
Lead 11.3
Copper 8.92
Iron 7.86
Aluminum 2.70
Magnesium 1.75
Water 1.00
Air at atmospheric pressure 0.0012

Densities of Various Substances

Table 1.5



The atomic mass of lead is 207 u and that of aluminum is 27.0 u. However, the ratio of
atomic masses, 207 u/27.0 u $ 7.67, does not correspond to the ratio of densities,
(11.3 ! 103 kg/m3)/(2.70 ! 103 kg/m3) $ 4.19. This discrepancy is due to the differ-
ence in atomic spacings and atomic arrangements in the crystal structures of the two
elements.

1.4 Dimensional Analysis

The word dimension has a special meaning in physics. It denotes the physical nature of
a quantity. Whether a distance is measured in units of feet or meters or fathoms, it is
still a distance. We say its dimension is length.

The symbols we use in this book to specify the dimensions of length, mass, and
time are L, M, and T, respectively.3 We shall often use brackets [ ] to denote the dimen-
sions of a physical quantity. For example, the symbol we use for speed in this book is v,
and in our notation the dimensions of speed are written [v] $ L/T. As another exam-
ple, the dimensions of area A are [A] $ L2. The dimensions and units of area, volume,
speed, and acceleration are listed in Table 1.6. The dimensions of other quantities,
such as force and energy, will be described as they are introduced in the text.

In many situations, you may have to derive or check a specific equation. A useful
and powerful procedure called dimensional analysis can be used to assist in the deriva-
tion or to check your final expression. Dimensional analysis makes use of the fact that
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Quick Quiz 1.1 In a machine shop, two cams are produced, one of alu-
minum and one of iron. Both cams have the same mass. Which cam is larger? (a) the
aluminum cam (b) the iron cam (c) Both cams have the same size.

Example 1.1 How Many Atoms in the Cube?

:
m sample

m 27.0 g
$

Nsample

N27.0 g

! PITFALL PREVENTION
1.3 Setting Up Ratios
When using ratios to solve a
problem, keep in mind that ratios
come from equations. If you start
from equations known to be cor-
rect and can divide one equation
by the other as in Example 1.1 to
obtain a useful ratio, you will
avoid reasoning errors. So write
the known equations first!

3 The dimensions of a quantity will be symbolized by a capitalized, non-italic letter, such as L. The
symbol for the quantity itself will be italicized, such as L for the length of an object, or t for time.

write this relationship twice, once for the actual sample of
aluminum in the problem and once for a 27.0-g sample, and
then we divide the first equation by the second: 

Notice that the unknown proportionality constant k cancels,
so we do not need to know its value. We now substitute the
values:

$ 1.20 ! 1022 atoms

Nsample $
(0.540 g)(6.02 ! 1023 atoms)

27.0 g

0.540 g
27.0 g

$
N sample

6.02 ! 1023 atoms

m 27.0 g  $ kN27.0 g

m sample $ kNsample

A solid cube of aluminum (density 2.70 g/cm3) has a vol-
ume of 0.200 cm3. It is known that 27.0 g of aluminum con-
tains 6.02 ! 1023 atoms. How many aluminum atoms are
contained in the cube?

Solution Because density equals mass per unit volume, the
mass of the cube is

To solve this problem, we will set up a ratio based on the fact
that the mass of a sample of material is proportional to the
number of atoms contained in the sample. This technique
of solving by ratios is very powerful and should be studied
and understood so that it can be applied in future problem
solving. Let us express our proportionality as m $ kN, where
m is the mass of the sample, N is the number of atoms in the
sample, and k is an unknown proportionality constant. We

m $ &V $ (2.70 g/cm3)(0.200 cm3) $ 0.540 g



dimensions can be treated as algebraic quantities. For example, quantities can be
added or subtracted only if they have the same dimensions. Furthermore, the terms on
both sides of an equation must have the same dimensions. By following these simple
rules, you can use dimensional analysis to help determine whether an expression has
the correct form. The relationship can be correct only if the dimensions on both sides
of the equation are the same. 

To illustrate this procedure, suppose you wish to derive an equation for the posi-
tion x of a car at a time t if the car starts from rest and moves with constant accelera-
tion a. In Chapter 2, we shall find that the correct expression is x $ at 2. Let us use
dimensional analysis to check the validity of this expression. The quantity x on the
left side has the dimension of length. For the equation to be dimensionally correct,
the quantity on the right side must also have the dimension of length. We can per-
form a dimensional check by substituting the dimensions for acceleration, L/T2

(Table 1.6), and time, T, into the equation. That is, the dimensional form of the
equation is

The dimensions of time cancel as shown, leaving the dimension of length on the right-
hand side. 

A more general procedure using dimensional analysis is to set up an expression of
the form

where n and m are exponents that must be determined and the symbol ( indicates a
proportionality. This relationship is correct only if the dimensions of both sides are the
same. Because the dimension of the left side is length, the dimension of the right side
must also be length. That is,

[antm] $ L $ L1T0

Because the dimensions of acceleration are L/T2 and the dimension of time is T, we have

(L/T2)n Tm $ L1T0

(Ln Tm "2n) $ L1T0

The exponents of L and T must be the same on both sides of the equation. From the
exponents of L, we see immediately that n $ 1. From the exponents of T, we see that
m " 2n $ 0, which, once we substitute for n, gives us m $ 2. Returning to our original
expression x ( antm, we conclude that x ( at 2. This result differs by a factor of from
the correct expression, which is .x $ 1

2 at 2

1
2

x ( antm

L $
L
T2  )  T2 $ L

x $ 1
2 at 2

1
2 
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Area Volume Speed Acceleration
System (L2) (L3) (L/T) (L/T2)

SI m2 m3 m/s m/s2

U.S. customary ft2 ft3 ft/s ft/s2

Units of Area, Volume, Velocity, Speed, and Acceleration

Table 1.6 ! PITFALL PREVENTION
1.4 Symbols for 

Quantities
Some quantities have a small
number of symbols that repre-
sent them. For example, the sym-
bol for time is almost always t.
Others quantities might have var-
ious symbols depending on the
usage. Length may be described
with symbols such as x, y, and z
(for position), r (for radius), a, b,
and c (for the legs of a right tri-
angle), ! (for the length of an
object), d (for a distance), h (for
a height), etc.

Quick Quiz 1.2 True or False: Dimensional analysis can give you the numeri-
cal value of constants of proportionality that may appear in an algebraic expression.



1.5 Conversion of Units

Sometimes it is necessary to convert units from one measurement system to another, or
to convert within a system, for example, from kilometers to meters. Equalities between
SI and U.S. customary units of length are as follows:

1 mile $ 1 609 m $ 1.609 km 1 ft $ 0.304 8 m $ 30.48 cm

1 m $ 39.37 in. $ 3.281 ft 1 in. $ 0.025 4 m $ 2.54 cm (exactly)

A more complete list of conversion factors can be found in Appendix A.
Units can be treated as algebraic quantities that can cancel each other. For exam-

ple, suppose we wish to convert 15.0 in. to centimeters. Because 1 in. is defined as ex-
actly 2.54 cm, we find that

where the ratio in parentheses is equal to 1. Notice that we choose to put the unit of an
inch in the denominator and it cancels with the unit in the original quantity. The re-
maining unit is the centimeter, which is our desired result.

15.0 in. $ (15.0 in.)! 2.54 cm
1 in.

" $ 38.1 cm
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Example 1.2 Analysis of an Equation

Show that the expression v $ at is dimensionally correct,
where v represents speed, a acceleration, and t an instant of
time.

Solution For the speed term, we have from Table 1.6

[v] $
L
T

The same table gives us L/T2 for the dimensions of accelera-
tion, and so the dimensions of at are 

Therefore, the expression is dimensionally correct. (If the
expression were given as v $ at 2 it would be dimensionally
incorrect. Try it and see!)

[at] $
L
T2  T $

L
T

Example 1.3 Analysis of a Power Law

Suppose we are told that the acceleration a of a particle
moving with uniform speed v in a circle of radius r is pro-
portional to some power of r, say r n, and some power of v,
say vm. Determine the values of n and m and write the sim-
plest form of an equation for the acceleration.

Solution Let us take a to be

a $ krnvm

where k is a dimensionless constant of proportionality.
Knowing the dimensions of a, r, and v, we see that the di-
mensional equation must be

L
T2 $ Ln ! L

T "m
$

Ln'm

Tm

Quick Quiz 1.3 The distance between two cities is 100 mi. The number of kilo-
meters between the two cities is (a) smaller than 100 (b) larger than 100 (c) equal to 100.

! PITFALL PREVENTION
1.5 Always Include Units
When performing calculations,
include the units for every quan-
tity and carry the units through
the entire calculation. Avoid the
temptation to drop the units
early and then attach the ex-
pected units once you have an
answer. By including the units in
every step, you can detect errors
if the units for the answer turn
out to be incorrect.

This dimensional equation is balanced under the conditions

n ' m $ and m $

Therefore n $ " 1, and we can write the acceleration ex-
pression as

When we discuss uniform circular motion later, we shall see
that k $ 1 if a consistent set of units is used. The constant k
would not equal 1 if, for example, v were in km/h and you
wanted a in m/s2.

k 
v2

r
a $ kr "1v 2 $
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1.6 Estimates and Order-of-Magnitude 
Calculations

It is often useful to compute an approximate answer to a given physical problem even
when little information is available. This answer can then be used to determine
whether or not a more precise calculation is necessary. Such an approximation is usu-
ally based on certain assumptions, which must be modified if greater precision is
needed. We will sometimes refer to an order of magnitude of a certain quantity as the
power of ten of the number that describes that quantity. Usually, when an order-of-
magnitude calculation is made, the results are reliable to within about a factor of 10. If
a quantity increases in value by three orders of magnitude, this means that its value in-
creases by a factor of about 103 $ 1 000. We use the symbol # for “is on the order of.”
Thus, 

0.008 6 # 10"2 0.002 1 # 10"3 720 # 103

The spirit of order-of-magnitude calculations, sometimes referred to as “guessti-
mates” or “ball-park figures,” is given in the following quotation: “Make an estimate
before every calculation, try a simple physical argument . . . before every derivation,
guess the answer to every puzzle.”4 Inaccuracies caused by guessing too low for one
number are often canceled out by other guesses that are too high. You will find that
with practice your guesstimates become better and better. Estimation problems can
be fun to work as you freely drop digits, venture reasonable approximations for
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Example 1.4 Is He Speeding?

On an interstate highway in a rural region of Wyoming, a
car is traveling at a speed of 38.0 m/s. Is this car exceeding
the speed limit of 75.0 mi/h?

Solution We first convert meters to miles:

Now we convert seconds to hours:

Thus, the car is exceeding the speed limit and should slow
down.

What If? What if the driver is from outside the U.S. and is
familiar with speeds measured in km/h? What is the speed
of the car in km/h?

Answer We can convert our final answer to the appropriate
units:

(85.0 mi/h) ! 1.609 km
1 mi " $ 137 km/h

(2.36 ! 10"2 mi/s) ! 60 s
1 min " ! 60 min

1 h " $ 85.0 mi/h

(38.0 m/s) ! 1 mi
1 609 m " $ 2.36 ! 10"2 mi/s

Figure 1.3 shows the speedometer of an automobile, with
speeds in both mi/h and km/h. Can you check the conver-
sion we just performed using this photograph?

Figure 1.3 The speedometer of a vehicle that
shows speeds in both miles per hour and kilome-
ters per hour.
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4 E. Taylor and J. A. Wheeler, Spacetime Physics: Introduction to Special Relativity, 2nd ed., San Francisco,
W. H. Freeman & Company, Publishers, 1992, p. 20.
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Example 1.5 Breaths in a Lifetime

Estimate the number of breaths taken during an average life
span.

Solution We start by guessing that the typical life span is
about 70 years. The only other estimate we must make in this
example is the average number of breaths that a person
takes in 1 min. This number varies, depending on whether
the person is exercising, sleeping, angry, serene, and so
forth. To the nearest order of magnitude, we shall choose 10
breaths per minute as our estimate of the average. (This is
certainly closer to the true value than 1 breath per minute or
100 breaths per minute.) The number of minutes in a year is
approximately

Notice how much simpler it is in the expression above to
multiply 400 ! 25 than it is to work with the more accurate
365 ! 24. These approximate values for the number of days

$ 6 ! 105 min1 yr ! 400 days
1 yr " ! 25 h

1 day " ! 60 min
1 h "

in a year and the number of hours in a day are close
enough for our purposes. Thus, in 70 years there will be
(70 yr)(6 ! 105 min/yr) $ 4 ! 107 min. At a rate of 10 

breaths/min, an individual would take 

in a lifetime, or on the order of 109 breaths.

What If? What if the average life span were estimated as
80 years instead of 70? Would this change our final estimate?

Answer We could claim that (80 yr)(6 ! 105 min/yr) $
5 ! 107 min, so that our final estimate should be 5 ! 108

breaths. This is still on the order of 109 breaths, so an order-
of-magnitude estimate would be unchanged. Furthermore,
80 years is 14% larger than 70 years, but we have overesti-
mated the total time interval by using 400 days in a year in-
stead of 365 and 25 hours in a day instead of 24. These two
numbers together result in an overestimate of 14%, which
cancels the effect of the increased life span!

4 ! 108 breaths

Example 1.6 It’s a Long Way to San Jose

Estimate the number of steps a person would take walking
from New York to Los Angeles.

Solution Without looking up the distance between these
two cities, you might remember from a geography class that
they are about 3 000 mi apart. The next approximation we
must make is the length of one step. Of course, this length
depends on the person doing the walking, but we can esti-
mate that each step covers about 2 ft. With our estimated
step size, we can determine the number of steps in 1 mi. Be-
cause this is a rough calculation, we round 5 280 ft/mi to
5 000 ft/mi. (What percentage error does this introduce?)
This conversion factor gives us

5  000 ft/mi
2 ft/step

$ 2  500 steps/mi

Now we switch to scientific notation so that we can do the
calculation mentally:

$

So if we intend to walk across the United States, it will take
us on the order of ten million steps. This estimate is almost
certainly too small because we have not accounted for curv-
ing roads and going up and down hills and mountains.
Nonetheless, it is probably within an order of magnitude of
the correct answer. 

7.5 ! 106 steps # 107 steps

(3 ! 103 mi)(2.5 ! 103 steps/mi)

Example 1.7 How Much Gas Do We Use?

Estimate the number of gallons of gasoline used each year
by all the cars in the United States.

Solution Because there are about 280 million people in
the United States, an estimate of the number of cars in the
country is 100 million (guessing that there are between two
and three people per car). We also estimate that the average

distance each car travels per year is 10 000 mi. If we assume
a gasoline consumption of 20 mi/gal or 0.05 gal/mi, then
each car uses about 500 gal/yr. Multiplying this by the total
number of cars in the United States gives an estimated total 

consumption of 5 ! 1010 gal # 1011 gal.

unknown numbers, make simplifying assumptions, and turn the question around
into something you can answer in your head or with minimal mathematical manipu-
lation on paper. Because of the simplicity of these types of calculations, they can be
performed on a small piece of paper, so these estimates are often called “back-of-the-
envelope calculations.”



1.7 Significant Figures

When certain quantities are measured, the measured values are known only to within
the limits of the experimental uncertainty. The value of this uncertainty can depend
on various factors, such as the quality of the apparatus, the skill of the experimenter,
and the number of measurements performed. The number of significant figures in a
measurement can be used to express something about the uncertainty. 

As an example of significant figures, suppose that we are asked in a laboratory ex-
periment to measure the area of a computer disk label using a meter stick as a measur-
ing instrument. Let us assume that the accuracy to which we can measure the length of
the label is * 0.1 cm. If the length is measured to be 5.5 cm, we can claim only that its
length lies somewhere between 5.4 cm and 5.6 cm. In this case, we say that the mea-
sured value has two significant figures. Note that the significant figures include the first
estimated digit. Likewise, if the label’s width is measured to be 6.4 cm, the actual
value lies between 6.3 cm and 6.5 cm. Thus we could write the measured values as
(5.5 * 0.1) cm and (6.4 * 0.1) cm.

Now suppose we want to find the area of the label by multiplying the two measured
values. If we were to claim the area is (5.5 cm)(6.4 cm) $ 35.2 cm2, our answer would
be unjustifiable because it contains three significant figures, which is greater than the
number of significant figures in either of the measured quantities. A good rule of
thumb to use in determining the number of significant figures that can be claimed in a
multiplication or a division is as follows: 
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When multiplying several quantities, the number of significant figures in the final
answer is the same as the number of significant figures in the quantity having the
lowest number of significant figures. The same rule applies to division.

Applying this rule to the previous multiplication example, we see that the answer
for the area can have only two significant figures because our measured quantities
have only two significant figures. Thus, all we can claim is that the area is 35 cm2,
realizing that the value can range between (5.4 cm)(6.3 cm) $ 34 cm2 and
(5.6 cm)(6.5 cm) $ 36 cm2.

Zeros may or may not be significant figures. Those used to position the decimal
point in such numbers as 0.03 and 0.007 5 are not significant. Thus, there are one
and two significant figures, respectively, in these two values. When the zeros come af-
ter other digits, however, there is the possibility of misinterpretation. For example,
suppose the mass of an object is given as 1 500 g. This value is ambiguous because we
do not know whether the last two zeros are being used to locate the decimal point or
whether they represent significant figures in the measurement. To remove this ambi-
guity, it is common to use scientific notation to indicate the number of significant fig-
ures. In this case, we would express the mass as 1.5 ! 103 g if there are two signifi-
cant figures in the measured value, 1.50 ! 103 g if there are three significant figures,
and 1.500 ! 103 g if there are four. The same rule holds for numbers less than 1, so
that 2.3 ! 10"4 has two significant figures (and so could be written 0.000 23) and
2.30 ! 10"4 has three significant figures (also written 0.000 230). In general, a sig-
nificant figure in a measurement is a reliably known digit (other than a zero
used to locate the decimal point) or the first estimated digit.

For addition and subtraction, you must consider the number of decimal places
when you are determining how many significant figures to report:

When numbers are added or subtracted, the number of decimal places in the result
should equal the smallest number of decimal places of any term in the sum.

! PITFALL PREVENTION
1.6 Read Carefully
Notice that the rule for addition
and subtraction is different from
that for multiplication and divi-
sion. For addition and subtrac-
tion, the important consideration
is the number of decimal places,
not the number of significant
figures.



For example, if we wish to compute 123 ' 5.35, the answer is 128 and not 128.35. If we
compute the sum 1.000 1 ' 0.000 3 $ 1.000 4, the result has five significant figures,
even though one of the terms in the sum, 0.000 3, has only one significant figure. Like-
wise, if we perform the subtraction 1.002 " 0.998 $ 0.004, the result has only one sig-
nificant figure even though one term has four significant figures and the other has
three. In this book, most of the numerical examples and end-of-chapter problems
will yield answers having three significant figures. When carrying out estimates we
shall typically work with a single significant figure.

If the number of significant figures in the result of an addition or subtraction
must be reduced, there is a general rule for rounding off numbers, which states that
the last digit retained is to be increased by 1 if the last digit dropped is greater than
5. If the last digit dropped is less than 5, the last digit retained remains as it is. If the
last digit dropped is equal to 5, the remaining digit should be rounded to the near-
est even number. (This helps avoid accumulation of errors in long arithmetic
processes.)

A technique for avoiding error accumulation is to delay rounding of numbers in a
long calculation until you have the final result. Wait until you are ready to copy the fi-
nal answer from your calculator before rounding to the correct number of significant
figures.
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Quick Quiz 1.4 Suppose you measure the position of a chair with a meter
stick and record that the center of the seat is 1.043 860 564 2 m from a wall. What
would a reader conclude from this recorded measurement?

Example 1.8 Installing a Carpet

A carpet is to be installed in a room whose length is mea-
sured to be 12.71 m and whose width is measured to be
3.46 m. Find the area of the room.

Solution If you multiply 12.71 m by 3.46 m on your calcula-
tor, you will see an answer of 43.976 6 m2. How many of these

numbers should you claim? Our rule of thumb for multiplica-
tion tells us that you can claim only the number of significant
figures in your answer as are present in the measured quan-
tity having the lowest number of significant figures. In this ex-
ample, the lowest number of significant figures is three in 

3.46 m, so we should express our final answer as 44.0 m2.

The three fundamental physical quantities of mechanics are length, mass, and time,
which in the SI system have the units meters (m), kilograms (kg), and seconds (s), re-
spectively. Prefixes indicating various powers of ten are used with these three basic
units. 

The density of a substance is defined as its mass per unit volume. Different sub-
stances have different densities mainly because of differences in their atomic masses
and atomic arrangements.

The method of dimensional analysis is very powerful in solving physics problems.
Dimensions can be treated as algebraic quantities. By making estimates and perform-
ing order-of-magnitude calculations, you should be able to approximate the answer to
a problem when there is not enough information available to completely specify an ex-
act solution.

When you compute a result from several measured numbers, each of which has a
certain accuracy, you should give the result with the correct number of significant fig-
ures. When multiplying several quantities, the number of significant figures in the

S U M M A RY

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.



Problems 17

final answer is the same as the number of significant figures in the quantity having the
lowest number of significant figures. The same rule applies to division. When numbers
are added or subtracted, the number of decimal places in the result should equal the
smallest number of decimal places of any term in the sum.

1. What types of natural phenomena could serve as time stan-
dards? 

2. Suppose that the three fundamental standards of the
metric system were length, density, and time rather than
length, mass, and time. The standard of density in this
system is to be defined as that of water. What considera-
tions about water would you need to address to make
sure that the standard of density is as accurate as
possible?

3. The height of a horse is sometimes given in units of
“hands.” Why is this a poor standard of length?

4. Express the following quantities using the prefixes given in
Table 1.4: (a) 3 ! 10"4 m (b) 5 ! 10"5 s (c) 72 ! 102 g.

5. Suppose that two quantities A and B have different dimen-
sions. Determine which of the following arithmetic opera-
tions could be physically meaningful: (a) A ' B (b) A/B
(c) B " A (d) AB. 

6. If an equation is dimensionally correct, does this mean
that the equation must be true? If an equation is not di-
mensionally correct, does this mean that the equation can-
not be true?

7. Do an order-of-magnitude calculation for an everyday situ-
ation you encounter. For example, how far do you walk or
drive each day?

8. Find the order of magnitude of your age in seconds.

9. What level of precision is implied in an order-of-magnitude
calculation?

10. Estimate the mass of this textbook in kilograms. If a scale is
available, check your estimate. 

11. In reply to a student’s question, a guard in a natural his-
tory museum says of the fossils near his station, “When I
started work here twenty-four years ago, they were eighty
million years old, so you can add it up.” What should the
student conclude about the age of the fossils?

Q U E S T I O N S

Figure P1.1

L

(b)

(a)

d

Section 1.2 Matter and Model Building

1. A crystalline solid consists of atoms stacked up in a repeat-
ing lattice structure. Consider a crystal as shown in
Figure P1.1a. The atoms reside at the corners of cubes of
side L $ 0.200 nm. One piece of evidence for the regular
arrangement of atoms comes from the flat surfaces along
which a crystal separates, or cleaves, when it is broken.
Suppose this crystal cleaves along a face diagonal, as
shown in Figure P1.1b. Calculate the spacing d between
two adjacent atomic planes that separate when the crystal
cleaves.

Note: Consult the endpapers, appendices, and tables in
the text whenever necessary in solving problems. For this
chapter, Appendix B.3 may be particularly useful. Answers
to odd-numbered problems appear in the back of the
book.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S
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Section 1.3 Density and Atomic Mass
2. Use information on the endpapers of this book to calcu-

late the average density of the Earth. Where does the
value fit among those listed in Tables 1.5 and 14.1? Look
up the density of a typical surface rock like granite in an-
other source and compare the density of the Earth to it.

3. The standard kilogram is a platinum–iridium cylinder 
39.0 mm in height and 39.0 mm in diameter. What is the
density of the material?

4. A major motor company displays a die-cast model of its
first automobile, made from 9.35 kg of iron. To celebrate
its hundredth year in business, a worker will recast the
model in gold from the original dies. What mass of gold is
needed to make the new model?

5. What mass of a material with density & is required to make
a hollow spherical shell having inner radius r 1 and outer
radius r 2?

6. Two spheres are cut from a certain uniform rock. One has
radius 4.50 cm. The mass of the other is five times greater.
Find its radius.

7. Calculate the mass of an atom of (a) helium,
(b) iron, and (c) lead. Give your answers in grams. The
atomic masses of these atoms are 4.00 u, 55.9 u, and 207 u,
respectively.

8. The paragraph preceding Example 1.1 in the text
mentions that the atomic mass of aluminum is 
27.0 u $ 27.0 ! 1.66 ! 10"27 kg. Example 1.1 says that
27.0 g of aluminum contains 6.02 ! 1023 atoms. (a) Prove
that each one of these two statements implies the other.
(b) What If ? What if it’s not aluminum? Let M represent
the numerical value of the mass of one atom of any chemi-
cal element in atomic mass units. Prove that M grams of the
substance contains a particular number of atoms, the same
number for all elements. Calculate this number precisely
from the value for u quoted in the text. The number of
atoms in M grams of an element is called Avogadro’s number
NA. The idea can be extended: Avogadro’s number of mol-
ecules of a chemical compound has a mass of M grams,
where M atomic mass units is the mass of one molecule.
Avogadro’s number of atoms or molecules is called one
mole, symbolized as 1 mol. A periodic table of the elements,
as in Appendix C, and the chemical formula for a com-
pound contain enough information to find the molar mass
of the compound. (c) Calculate the mass of one mole of
water, H2O. (d) Find the molar mass of CO2.

9. On your wedding day your lover gives you a gold ring of
mass 3.80 g. Fifty years later its mass is 3.35 g. On the aver-
age, how many atoms were abraded from the ring during
each second of your marriage? The atomic mass of gold is
197 u. 

10. A small cube of iron is observed under a microscope. The
edge of the cube is 5.00 ! 10"6 cm long. Find (a) the
mass of the cube and (b) the number of iron atoms in the
cube. The atomic mass of iron is 55.9 u, and its density is
7.86 g/cm3.

11. A structural I beam is made of steel. A view of its cross-
section and its dimensions are shown in Figure P1.11. The
density of the steel is 7.56 ! 103 kg/m3. (a) What is the

mass of a section 1.50 m long? (b) Assume that the atoms
are predominantly iron, with atomic mass 55.9 u. How
many atoms are in this section?

15.0 cm

1.00 cm

1.00 cm
36.0 cm

Figure P1.11

12. A child at the beach digs a hole in the sand and uses a pail
to fill it with water having a mass of 1.20 kg. The mass of
one molecule of water is 18.0 u. (a) Find the number of
water molecules in this pail of water. (b) Suppose the
quantity of water on Earth is constant at 1.32 ! 1021 kg.
How many of the water molecules in this pail of water are
likely to have been in an equal quantity of water that once
filled one particular claw print left by a Tyrannosaur hunt-
ing on a similar beach?

Section 1.4 Dimensional Analysis
The position of a particle moving under uniform accelera-
tion is some function of time and the acceleration. Suppose
we write this position s $ ka mt n, where k is a dimensionless
constant. Show by dimensional analysis that this expression
is satisfied if m $ 1 and n $ 2. Can this analysis give the
value of k?

14. Figure P1.14 shows a frustrum of a cone. Of the following
mensuration (geometrical) expressions, which describes
(a) the total circumference of the flat circular
faces (b) the volume (c) the area of the curved sur-
face? (i) #(r 1 ' r 2)[h2 ' (r 1 " r 2)2]1/2 (ii) 2#(r 1 ' r 2)
(iii) #h(r 1

2 ' r 1r 2 ' r 2
2).

13.



Problems 19

Which of the following equations are dimensionally
correct?
(a) vf $ vi ' ax 
(b) y $ (2 m)cos(kx), where k $ 2 m"1.

16. (a) A fundamental law of motion states that the acceleration
of an object is directly proportional to the resultant force ex-
erted on the object and inversely proportional to its mass. If
the proportionality constant is defined to have no dimen-
sions, determine the dimensions of force. (b) The newton is
the SI unit of force. According to the results for (a), how can
you express a force having units of newtons using the funda-
mental units of mass, length, and time?

17. Newton’s law of universal gravitation is represented by

Here F is the magnitude of the gravitational force exerted by
one small object on another, M and m are the masses of the
objects, and r is a distance. Force has the SI units kg ·m/s2.
What are the SI units of the proportionality constant G ?

Section 1.5 Conversion of Units
18. A worker is to paint the walls of a square room 8.00 ft high

and 12.0 ft along each side. What surface area in square
meters must she cover? 

19. Suppose your hair grows at the rate 1/32 in. per day. Find
the rate at which it grows in nanometers per second. Be-
cause the distance between atoms in a molecule is on the
order of 0.1 nm, your answer suggests how rapidly layers of
atoms are assembled in this protein synthesis.

20. The volume of a wallet is 8.50 in.3 Convert this value to m3,
using the definition 1 in. $ 2.54 cm. 

A rectangular building lot is 100 ft by 150 ft. Determine the
area of this lot in m2.

22. An auditorium measures 40.0 m ! 20.0 m ! 12.0 m. The
density of air is 1.20 kg/m3. What are (a) the volume of
the room in cubic feet and (b) the weight of air in the
room in pounds?

23. Assume that it takes 7.00 minutes to fill a 30.0-gal gasoline
tank. (a) Calculate the rate at which the tank is filled in
gallons per second. (b) Calculate the rate at which the
tank is filled in cubic meters per second. (c) Determine
the time interval, in hours, required to fill a 1-m3 volume
at the same rate. (1 U.S. gal $ 231 in.3)

24. Find the height or length of these natural wonders in kilo-
meters, meters and centimeters. (a) The longest cave system
in the world is the Mammoth Cave system in central Ken-
tucky. It has a mapped length of 348 mi. (b) In the United
States, the waterfall with the greatest single drop is Ribbon
Falls, which falls 1 612 ft. (c) Mount McKinley in Denali Na-
tional Park, Alaska, is America’s highest mountain at a
height of 20 320 ft. (d) The deepest canyon in the United
States is King’s Canyon in California with a depth of 8 200 ft.

A solid piece of lead has a mass of 23.94 g and a volume of
2.10 cm3. From these data, calculate the density of lead in
SI units (kg/m3).

25.

21.

F $
GMm

r 2

15. 26. A section of land has an area of 1 square mile and contains
640 acres. Determine the number of square meters in
1 acre.

27. An ore loader moves 1 200 tons/h from a mine to the sur-
face. Convert this rate to lb/s, using 1 ton $ 2 000 lb. 

28. (a) Find a conversion factor to convert from miles per
hour to kilometers per hour. (b) In the past, a federal law
mandated that highway speed limits would be 55 mi/h.
Use the conversion factor of part (a) to find this speed in
kilometers per hour. (c) The maximum highway speed is
now 65 mi/h in some places. In kilometers per hour, how
much increase is this over the 55 mi/h limit?

At the time of this book’s printing, the U.S. national debt
is about $6 trillion. (a) If payments were made at the rate
of $1 000 per second, how many years would it take to pay
off the debt, assuming no interest were charged? (b) A 
dollar bill is about 15.5 cm long. If six trillion dollar bills
were laid end to end around the Earth’s equator, how
many times would they encircle the planet? Take the ra-
dius of the Earth at the equator to be 6 378 km. (Note: Be-
fore doing any of these calculations, try to guess at the an-
swers. You may be very surprised.)

30. The mass of the Sun is 1.99 ! 1030 kg, and the mass of an
atom of hydrogen, of which the Sun is mostly composed, is
1.67 ! 10"27 kg. How many atoms are in the Sun?

One gallon of paint (volume $ 3.78 ! 10"3 m3) covers
an area of 25.0 m2. What is the thickness of the paint on 
the wall?

32. A pyramid has a height of 481 ft and its base covers an area
of 13.0 acres (Fig. P1.32). If the volume of a pyramid is
given by the expression V $ Bh, where B is the area of
the base and h is the height, find the volume of this pyra-
mid in cubic meters. (1 acre $ 43 560 ft2)

1
3

31.

29.

Figure P1.32 Problems 32 and 33.
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33. The pyramid described in Problem 32 contains approxi-
mately 2 million stone blocks that average 2.50 tons each.
Find the weight of this pyramid in pounds.

34. Assuming that 70% of the Earth’s surface is covered with
water at an average depth of 2.3 mi, estimate the mass of
the water on the Earth in kilograms.

35. A hydrogen atom has a diameter of approximately
1.06 ! 10"10 m, as defined by the diameter of the spheri-
cal electron cloud around the nucleus. The hydrogen nu-
cleus has a diameter of approximately 2.40 ! 10"15 m.
(a) For a scale model, represent the diameter of the hy-
drogen atom by the length of an American football field



(100 yd $ 300 ft), and determine the diameter of the
nucleus in millimeters. (b) The atom is how many times
larger in volume than its nucleus?

36. The nearest stars to the Sun are in the Alpha Centauri
multiple-star system, about 4.0 ! 1013 km away. If the Sun,
with a diameter of 1.4 ! 109 m, and Alpha Centauri A are
both represented by cherry pits 7.0 mm in diameter, how
far apart should the pits be placed to represent the Sun
and its neighbor to scale?

The diameter of our disk-shaped galaxy, the Milky Way, is
about 1.0 ! 105 lightyears (ly). The distance to Messier 31,
which is Andromeda, the spiral galaxy nearest to the Milky
Way, is about 2.0 million ly. If a scale model represents the
Milky Way and Andromeda galaxies as dinner plates 25 cm
in diameter, determine the distance between the two plates. 

38. The mean radius of the Earth is 6.37 ! 106 m, and that of
the Moon is 1.74 ! 108 cm. From these data calculate
(a) the ratio of the Earth’s surface area to that of the
Moon and (b) the ratio of the Earth’s volume to that of
the Moon. Recall that the surface area of a sphere is 4#r 2

and the volume of a sphere is 

One cubic meter (1.00 m3) of aluminum has a mass
of 2.70 ! 103 kg, and 1.00 m3 of iron has a mass of
7.86 ! 103 kg. Find the radius of a solid aluminum sphere
that will balance a solid iron sphere of radius 2.00 cm on
an equal-arm balance.

40. Let &Al represent the density of aluminum and &Fe that of
iron. Find the radius of a solid aluminum sphere that bal-
ances a solid iron sphere of radius r Fe on an equal-arm
balance.

Section 1.6 Estimates and Order-of-Magnitude
Calculations

Estimate the number of Ping-Pong balls that would fit
into a typical-size room (without being crushed). In your
solution state the quantities you measure or estimate and
the values you take for them. 

42. An automobile tire is rated to last for 50 000 miles. To an
order of magnitude, through how many revolutions will it
turn? In your solution state the quantities you measure or
estimate and the values you take for them.

43. Grass grows densely everywhere on a quarter-acre plot of
land. What is the order of magnitude of the number of
blades of grass on this plot? Explain your reasoning. Note
that 1 acre $ 43 560 ft2.

44. Approximately how many raindrops fall on a one-acre lot
during a one-inch rainfall? Explain your reasoning.

45. Compute the order of magnitude of the mass of a bathtub
half full of water. Compute the order of magnitude of the
mass of a bathtub half full of pennies. In your solution list
the quantities you take as data and the value you measure
or estimate for each.

46. Soft drinks are commonly sold in aluminum containers. To
an order of magnitude, how many such containers are
thrown away or recycled each year by U.S. consumers?

41.

39.

4
3   #r 3.

37.

How many tons of aluminum does this represent? In your
solution state the quantities you measure or estimate and
the values you take for them.

To an order of magnitude, how many piano tuners are in
New York City? The physicist Enrico Fermi was famous for
asking questions like this on oral Ph.D. qualifying exami-
nations. His own facility in making order-of-magnitude cal-
culations is exemplified in Problem 45.48.

Section 1.7 Significant Figures

48. A rectangular plate has a length of (21.3 * 0.2) cm and a
width of (9.8 * 0.1) cm. Calculate the area of the plate, in-
cluding its uncertainty.

49. The radius of a circle is measured to be (10.5 * 0.2) m.
Calculate the (a) area and (b) circumference of the circle
and give the uncertainty in each value.

50. How many significant figures are in the following num-
bers? (a) 78.9 * 0.2 (b) 3.788 ! 109 (c) 2.46 ! 10"6

(d) 0.005 3.

51. The radius of a solid sphere is measured to be
(6.50 * 0.20) cm, and its mass is measured to be
(1.85 * 0.02) kg. Determine the density of the sphere in
kilograms per cubic meter and the uncertainty in the 
density.

52. Carry out the following arithmetic operations: (a) the sum
of the measured values 756, 37.2, 0.83, and 2.5; (b) the
product 0.003 2 ! 356.3; (c) the product 5.620 ! #.

53. The tropical year, the time from vernal equinox to the next
vernal equinox, is the basis for our calendar. It contains
365.242 199 days. Find the number of seconds in a tropical
year.

54. A farmer measures the distance around a rectangular field.
The length of the long sides of the rectangle is found to
be 38.44 m, and the length of the short sides is found to
be 19.5 m. What is the total distance around the field?

55. A sidewalk is to be constructed around a swimming pool
that measures (10.0 * 0.1) m by (17.0 * 0.1) m. If the side-
walk is to measure (1.00 * 0.01) m wide by (9.0 * 0.1) cm
thick, what volume of concrete is needed, and what is the
approximate uncertainty of this volume?

Additional Problems
56. In a situation where data are known to three significant

digits, we write 6.379 m $ 6.38 m and 6.374 m $ 6.37 m.
When a number ends in 5, we arbitrarily choose to write
6.375 m $ 6.38 m. We could equally well write 6.375 m $
6.37 m, “rounding down” instead of “rounding up,” be-
cause we would change the number 6.375 by equal incre-
ments in both cases. Now consider an order-of-magnitude

Note: Appendix B.8 on propagation of uncertainty may be
useful in solving some problems in this section.

47.
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Figure P1.61

estimate, in which we consider factors rather than incre-
ments. We write 500 m # 103 m because 500 differs from
100 by a factor of 5 while it differs from 1 000 by only a fac-
tor of 2. We write 437 m # 103 m and 305 m # 102 m.
What distance differs from 100 m and from 1 000 m
by equal factors, so that we could equally well choose to
represent its order of magnitude either as # 102 m or as
# 103 m?

57. For many electronic applications, such as in computer
chips, it is desirable to make components as small as possi-
ble to keep the temperature of the components low and to
increase the speed of the device. Thin metallic coatings
(films) can be used instead of wires to make electrical con-
nections. Gold is especially useful because it does not oxi-
dize readily. Its atomic mass is 197 u. A gold film can be
no thinner than the size of a gold atom. Calculate the
minimum coating thickness, assuming that a gold atom oc-
cupies a cubical volume in the film that is equal to the vol-
ume it occupies in a large piece of metal. This geometric
model yields a result of the correct order of magnitude.

58. The basic function of the carburetor of an automobile is to
“atomize” the gasoline and mix it with air to promote
rapid combustion. As an example, assume that 30.0 cm3 of
gasoline is atomized into N spherical droplets, each with a
radius of 2.00 ! 10"5 m. What is the total surface area of
these N spherical droplets?

The consumption of natural gas by a company satis-
fies the empirical equation V $ 1.50t ' 0.008 00t 2, where
V is the volume in millions of cubic feet and t the time in
months. Express this equation in units of cubic feet and
seconds. Assign proper units to the coefficients. Assume a
month is equal to 30.0 days.

60. In physics it is important to use mathematical approxi-
mations. Demonstrate that for small angles (+ 20°)

tan , % sin , % , $ #,-/180°

where , is in radians and ,- is in degrees. Use a calculator
to find the largest angle for which tan , may be approxi-
mated by sin , if the error is to be less than 10.0%. 

A high fountain of water is located at the center of a circu-
lar pool as in Figure P1.61. Not wishing to get his feet wet,

61.

59.

a student walks around the pool and measures its circum-
ference to be 15.0 m. Next, the student stands at the edge
of the pool and uses a protractor to gauge the angle of ele-
vation of the top of the fountain to be 55.0°. How high is
the fountain?

62. Collectible coins are sometimes plated with gold to en-
hance their beauty and value. Consider a commemorative
quarter-dollar advertised for sale at $4.98. It has a diame-
ter of 24.1 mm, a thickness of 1.78 mm, and is completely
covered with a layer of pure gold 0.180 %m thick. The vol-
ume of the plating is equal to the thickness of the layer
times the area to which it is applied. The patterns on the
faces of the coin and the grooves on its edge have a negli-
gible effect on its area. Assume that the price of gold is
$10.0 per gram. Find the cost of the gold added to the
coin. Does the cost of the gold significantly enhance the
value of the coin?

There are nearly # ! 107 s in one year. Find the percent-
age error in this approximation, where “percentage error’’
is defined as

64. Assume that an object covers an area A and has a uniform
height h. If its cross-sectional area is uniform over its
height, then its volume is given by V $ Ah. (a) Show that
V $ Ah is dimensionally correct. (b) Show that the vol-
umes of a cylinder and of a rectangular box can be written
in the form V $ Ah, identifying A in each case. (Note that
A, sometimes called the “footprint” of the object, can have
any shape and the height can be replaced by average
thickness in general.)

65. A child loves to watch as you fill a transparent plastic bot-
tle with shampoo. Every horizontal cross-section is a cir-
cle, but the diameters of the circles have different values,
so that the bottle is much wider in some places than oth-
ers. You pour in bright green shampoo with constant vol-
ume flow rate 16.5 cm3/s. At what rate is its level in the
bottle rising (a) at a point where the diameter of the bot-
tle is 6.30 cm and (b) at a point where the diameter is
1.35 cm?

66. One cubic centimeter of water has a mass of 1.00 ! 10"3 kg.
(a) Determine the mass of 1.00 m3 of water. (b) Biological
substances are 98% water. Assume that they have the same
density as water to estimate the masses of a cell that has a di-
ameter of 1.0 %m, a human kidney, and a fly. Model the kid-
ney as a sphere with a radius of 4.0 cm and the fly as a cylin-
der 4.0 mm long and 2.0 mm in diameter.

Assume there are 100 million passenger cars in the United
States and that the average fuel consumption is 20 mi/gal of
gasoline. If the average distance traveled by each car is
10 000 mi/yr, how much gasoline would be saved per year if
average fuel consumption could be increased to 25 mi/gal?

68. A creature moves at a speed of 5.00 furlongs per fortnight
(not a very common unit of speed). Given that 
1 furlong $ 220 yards and 1 fortnight $ 14 days, deter-
mine the speed of the creature in m/s. What kind of crea-
ture do you think it might be?

67.

Percentage error $   
&assumed value " true value&

true value
! 100%

63.
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69. The distance from the Sun to the nearest star is about
4 ! 1016 m. The Milky Way galaxy is roughly a disk of di-
ameter # 1021 m and thickness # 1019 m. Find the order
of magnitude of the number of stars in the Milky Way.
Assume the distance between the Sun and our nearest
neighbor is typical.

70. The data in the following table represent measurements
of the masses and dimensions of solid cylinders of alu-
minum, copper, brass, tin, and iron. Use these data to
calculate the densities of these substances. Compare your
results for aluminum, copper, and iron with those given
in Table 1.5.

Mass Diameter Length
Substance (g) (cm) (cm)

Aluminum 51.5 2.52 3.75
Copper 56.3 1.23 5.06
Brass 94.4 1.54 5.69
Tin 69.1 1.75 3.74
Iron 216.1 1.89 9.77

71. (a) How many seconds are in a year? (b) If one microme-
teorite (a sphere with a diameter of 1.00 ! 10" 6 m)
strikes each square meter of the Moon each second, how
many years will it take to cover the Moon to a depth of
1.00 m? To solve this problem, you can consider a cubic

box on the Moon 1.00 m on each edge, and find how long
it will take to fill the box.

Answers to Quick Quizzes
1.1 (a). Because the density of aluminum is smaller than that

of iron, a larger volume of aluminum is required for a
given mass than iron.

1.2 False. Dimensional analysis gives the units of the propor-
tionality constant but provides no information about its
numerical value. To determine its numerical value re-
quires either experimental data or geometrical reason-
ing. For example, in the generation of the equation

, because the factor is dimensionless, there is
no way of determining it using dimensional analysis.

1.3 (b). Because kilometers are shorter than miles, a larger
number of kilometers is required for a given distance than
miles.

1.4 Reporting all these digits implies you have determined the
location of the center of the chair’s seat to the near-
est * 0.000 000 000 1 m. This roughly corresponds to be-
ing able to count the atoms in your meter stick because
each of them is about that size! It would be better to
record the measurement as 1.044 m: this indicates that
you know the position to the nearest millimeter, assuming
the meter stick has millimeter markings on its scale.

1
2x $ 1

2 at 2




