
ESTRAUS

UN MODELO DE EQUILIBRIO SIMULTÁNEO
PARA ANALIZAR Y EVALUAR SISTEMAS
MULTIMODALES DE TRANSPORTE URBANO
CON MÚLTIPLES CLASES DE USUARIOS

CI63D

SIMULACIÓN ESTRATÉGICA DE SISTEMAS DE TRANSPORTE URBANO

Estructura de la Presentación 2. Modelo 3. Aplicación 1. Introducción Teórico de ESTRAUS CI63D SIMULACIÓN ESTRATÉGICA DE SISTEMAS DE TRANSPORTE URBANO

1. Introducción

- Ciudades de gran tamaño:
 - ⇒ Problemas de congestión y polución
- Autoridad: Mejoras en sistema de transporte
 - ⇒ Proyectos de infraestructura
- Países en desarrollo:
 - ⇒ Recursos escasos
 - ⇒ Importantes usos alternativos

1. Introducción

Gobierno de Chile:
 Decisiones Racionales ⇒ Herramientas de Planificación

ESTRAUS:

- Modelo computacional de simulación de sistemas de transporte urbano
- Diseñado para analizar y evaluar planes de transporte

1.1 Modelos de Equilibrio Oferta-Demanda

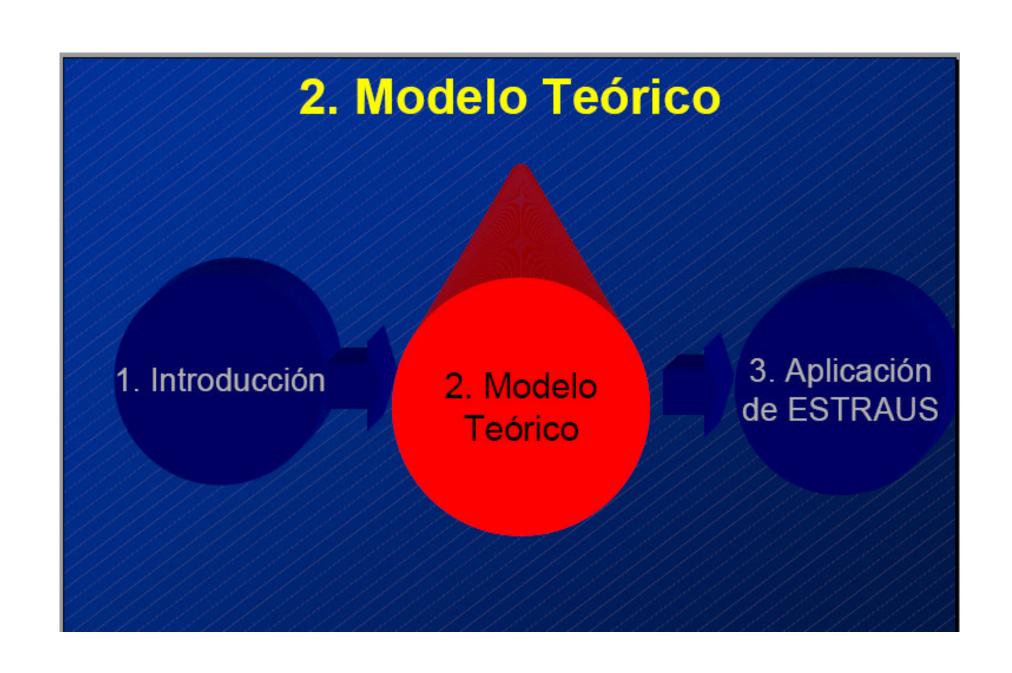
- 25 años en la literatura
- Desarrollos teóricos:
 - Múltiples formulaciones y algoritmos
- Implementaciones prácticas:
 - Pocas aplicaciones a problemas de gran tamaño han sido reportadas

1.1 Modelos de Equilibrio Oferta-Demanda

ESTRAUS:

- Modelo de equilibrio simultáneo
- Implementado computacionalmente
- Exitósamente usado en Chile (Santiago, Concepción, Valparaíso, etc.)

1.2 Características de ESTRAUS

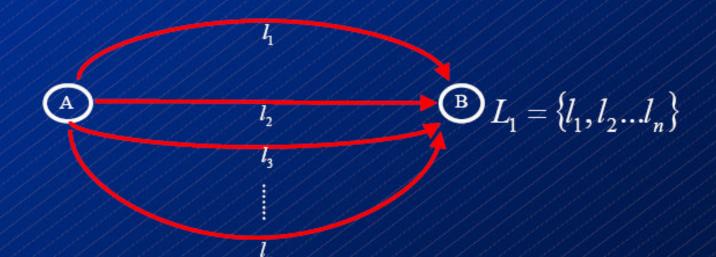

- Equilibrio Simultáneo:
 - Distribución Partición Modal Asignación
- Múltiples Clases de Usuarios:
 - ingreso, disponibilidad de automóvil, propósito de viaje
- Red Multimodal:
 - modos puros y combinados

1.2 Características de ESTRAUS

- Congestión en todas las Redes y Restricción de Capacidad en Transporte Público
- Estructura Jerárquica Flexible para los Modelos de Demanda
- Modelo de Distribución: Maximización de Entropía Doblemente Acotado
- Modelo de Partición Modal: LOGIT Jerárquico

1.2 Características de ESTRAUS

- Asignación de Equilibrio Determinístico en Redes de Transporte Público y Privado
- Algoritmo de Solución: Diagonalización
- Edición Interactiva de Redes y Análisis de Resultados con GIS



2.1 Red de Transporte Privado

- Interacciones simétricas entre flujos:
 - Todo vehículo produce el mismo impacto en la congestión
 - Jacobiano no diagonal, pero simétrico

2.2 Red de Transporte Público

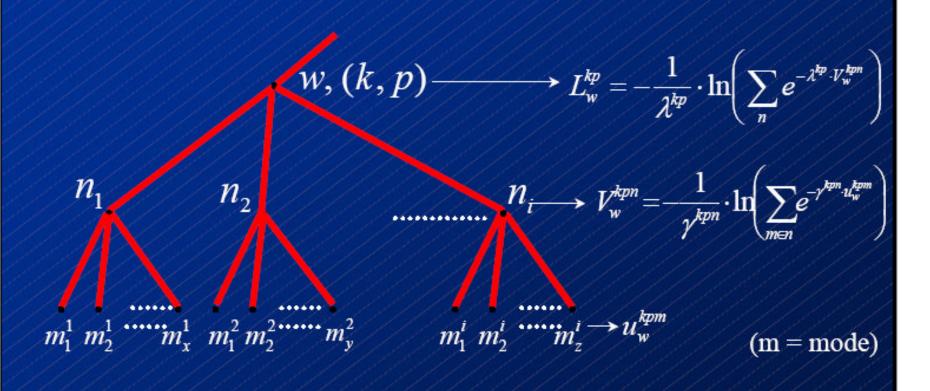
- Red de servicios entre A y B
 - L₁: conjunto de secciones de línea

2.2 Red de Transporte Público

- Red G (Nodos, Secciones de Ruta)
 - S_i:sección de ruta (conjunto de líneas atractivas que minimiza el tiempo generalizado de viaje)

$$S_1\{l_1,l_2,...,l_i\} = B_{S_1}$$
 Lineas atractivas o líneas rápidas

 $S_2\{l_{i+1}, l_{i+2}, ..., l_{i+k}\} = B_{S_2}$


Líneas lentas

Funciones costo no diagonales y asimétricas

2.3 Condiciones Equilibrio de Flujos

- Primer Principio de Wardrop para todo modo
- Individuos tratan de minimizar sus costos promedio de viaje cuando escogen sus rutas
- Rutas con flujo ⇒ igual costo (mínimo)
- Rutas sin flujo ⇒ costo mayor que el mínimo

2.4 Condiciones Equilibrio de Viajes

3. Aplicación de ESTRAUS

1. Introducción

Modelo Teórico 3. Aplicación de ESTRAUS

3.1 Aplicaciones de ESTRAUS

- Evaluación social del plan estratégico de transporte para Santiago (1995-2010)
- Evaluación privada y social de autopistas urbanas concesionadas
- Análisis del impacto de políticas de tarificación vial y de cobro por estacionamientos

3.1 Aplicaciones de ESTRAUS

- Análisis del plan de desarrollo del sistema de transporte público para Santiago:
 - nuevas líneas de Metro
 - corredores segregados de buses
 - servicios de ferrocarril suburbano
- Análisis del impacto de estructuras de servicios de transporte público alternativos y distintos sistemas tarifarios

ESTRAUS

UN MODELO DE EQUILIBRIO SIMULTÁNEO
PARA ANALIZAR Y EVALUAR SISTEMAS
MULTIMODALES DE TRANSPORTE URBANO
CON MÚLTIPLES CLASES DE USUARIOS

CI63D

SIMULACIÓN ESTRATÉGICA DE SISTEMAS DE TRANSPORTE URBANO