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SUMMARY

Structural models of large space structures have a substantial number of degrees of freedom (DOF) and
possess semi-positive-definite stiffness matrices. The paper presents an efficient co-ordinate reduction
procedure for structural dynamic analysis of large space structures. The method is based on the
superposition of load-dependent Ritz vectors, which are computed in block form using a shifted stiffness
matrix. Comparative transient dynamic analyses are performed on a 2803 DOF model of the space station
Freedom using the load-dependent method (LDM) and the mode-displacement method (MDM) based on
the superposition of eigenvectors. It is shown that the LDM is able to provide convergence of
displacements with a small number of vectors. The acceleration response is found to be more sensitive
to vector truncation than the displacement response. Error norms based on the representation of the
dynamic load by the vector basis are developed to provide an indication of the effect of vector truncation
on the structural response.

INTRODUCTION

Finite-element dynamic analysis of complex structural systems such as the space shuttle and
the planned space station Freedom requires detailed structural models with a large number of
degrees of freedom (DOF). The standard procedure for performing a transient dynamic
analysis of these models utilizes the mode-displacement method (MDM) based on the
superposition of eigenvectors. For structural models with large numbers of DOF, the
eigenvector basis is generally truncated because of the enormous computational effort and time
required to calculate all eigenvectors and eigenvalues of the finite-element model. The
constraint of having to use a truncated modal basis, and the fact that the computational effort
to calculate vibration characteristics based on an ‘exact’ eigensolution is costly compared to
Ritz-based methods gives motivation and justification for considering other procedures for
generating an orthogonal vector basis suitable for dynamic response computations.

A new method of dynamic analysis for structural systems subjected to fixed spatial
distribution of the dynamic load was introduced by Wilson et a/.%* as an economic alternative
to classical mode-superposition techniques. The ‘load-dependent’ method (LDM) is based on
a transformation to a reduced system of generalized Ritz co-ordinates using load-dependent
transformation vectors generated from the specified spatial distribution of the dynamic loads.
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These vectors can be generated at a fraction of the cost of eigenvectors, and directly include
in the basis the static correction effects for the truncation of higher modes. Many
computational variants and extensions of the LDM have been reported in the literature.*°
Arnold ef al.'® were the first to report the use of the LDM as proposed by Wilson ef al.? for
the dynamic analysis of ‘large’ structures. Numerical applications for the dynamic analysis of
a 1000 DOF structural model of an optical laser tracking system indicated that the LDM
‘medal’ extraction time was approximately one tenth of the eigenvalue extraction procedure
while maintaining the convergence of the displacement response. Similar conclusions were
reached by Léger in the dynamic analysis of a 1944 DOF dam-foundation finite-element
model.?

The rate of convergence of the LDM has been studied on smaller systems where reference
solutions can be computed from complete eigenvectors bases. >’ Comparisons of forces and
displacement responses were made between the LDM and the MDM, as well as with the MDM
supplemented by a static correction to account for the truncation of higher modes in the form
of what is known as the mode acceleration method (MAM).!! It was shown that the LDM
possesses convergence characteristics that are similar to those of the MAM in terms of the
number of vectors to be included in the superposition to obtain accurate results., However,
since the load-dependent (LD) vectors are much faster to generate than the ‘exact’
eigenvectors, the LDM is more efficient than the MAM, especially for the analysis of large
structures.

The purpose of this paper is to present a comparative study of transient dynamic analysis
of a 2803 DOF model of the space station Freedom using the LDM and the MDM. A shifted
bloeck form of the LDM is developed to deal effectively with semi-positive-definite stiffness
matrices, closely spaced modes and loading histories with arbitrary spatial variations in time.
Parametric analyses using a different number of vectors in a block, a different number
of vectors in the summation, and different magnitude of the shift constant are used to study
the sensitivity of the free-vibration response and the displacement response, as well as the
acceleration response, to various modelling assumptions. It should be noted that the
characteristics of the acceleration response based on the LDM have not been studied in
the past. The performance of error norms based on the representation of the dynamic load by
the vector bases are studied to provide an indication of the effect of vector truncation on the
structural response.

ALGORITHM FOR GENERATION OF LOAD-DEPENDENT VECTORS

Shifted block form of the LDM

The algorithm for generating an orthogonal LD vector basis is based on using the static
amplitudes of the dynamic loads at selected times. The vector basis generated aligns itself with
the spatial distribution of the loads. Consequently the vector basis has the potential of a high
participation with respect to the response to the dynamic loading. A summary of the algorithm
is given in Appendix I. The LD vectors are generated in blocks, each block having several
vectors, to deal with closely spaced vibration frequencies, and a spatial variation of the loading
distribution in time that can often exist in space structures.®’~® The algorithm requires the
factorization of the stiffness matrix K. Since space structures have rigid body modes, K is
singular and a procedure to solve the semi-positive-definite system must be implemented.
Displacement constraints, equilibrium constraints, and self-equilibrating force methods have
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been proposed to deal with the eigenvalue problem of a rank deficient matrix system.!2™1
However, these are cumbersome to implement and often destroy the sparseness of the matrix
system. Usually, a mass-shifted stiffness matrix, (K + oM), that preserves the eigenvectors and
shifts the eigenvalues by a constant, is employed to solve this class of problem. Yiu'* noted
that if a large value of o is used, the vector basis will not span the rigid body modes unless
a large number of vectors is computed since spurious low-frequency, non-zero strain energy,
modes appear in the basis. The shift ¢ should therefore be small enough to permit an accurate
recovery of the rigid body modes and large enough to avoid ill-conditioning of the shifted
stiffness matrix. Thus, the algorithm begins with the mass-shifting of the stiffness matrix K,
followed by the calculation of the set of displacements Ug, reflecting the response to the block
loading F(s). Any structural vibration frequencies near the shift point are well represented in
the shifted LD vector basis. ">~ '® Next, the a priori knowledge of the rigid body modes is used
to remove rigid body displacement components from the static response Uo. This step is
performed in order to avoid having any arbitrarily large rigid body components contained in
the shifted stiffness matrix which would dominate the elastic deformation components
calculated using finite precision computation. It also permits the calculation of error norms
related to the elastic deformation response under the specified loading. As the algorithm
proceeds, the vectors X are orthonormalized with respect to the mass matrix M, and contain
a static residual to reduce the effects of truncation of higher frequencies. A final step of
orthogonalizing the vectors X with respect to K is necessary to produce the vector basis °X
having the frequencies & to uncouple the equations of motion.

The influence of the frequency content of the loads on the response can be assessed by
considering the relative contribution of the elastic and the inertia forces that are resisting the
applied dynamic loads. For vectors with structural frequencies about three times higher than
the frequency of the applied loading, the resistance is essentially elastic since the inertia and
damping forces can be neglected. The contribution of higher vectors to the response can thus
be computed from a static analysis, as described in step 2 of Appendix I. To improve the
performance of the LDM for systems with dynamic load history containing predominant high-
frequency components, a combination of low-frequency LD vectors computed with a small
shift point, and high-frequency LD vectors computed with a shift point close to the
predominant frequency of the loading, can be used to produce a vector basis as described by
Hong Xia and Humar,'” This approach is easily implemented from the algorithm presented
in Appendix 1.

Error norms

During the generation of vectors X;, the norm e,; is computed to indicate the participation
of the starting static displacement vector to the solution.® This norm is computed using the
displacement U; at each cycle and the initial displacement set Uy, where at cycle /

| MU i
ui = o M

MUe ||
The behaviour of £,; was studied to determine whether it could be used as a criterion to judge
when to terminate the generation of vectors. A second norm, & (¢), also intended to represent
the degree of participation of the spatial load distribution, '*~'® was calculated to determine
whether it is reliable to judge the quality of the vector basis X in terms of its ability to represent
the applied transient load. This norm is computed by the following formula, where for &



_1P@®) e |
P()'P()

in which P(¢) is the applied load vector at time ¢, and £.(¢) the error in the representation of
the load in LD cc-ordinates, with
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Computer implementation

A computer program'® was developed to generate X, @, &. and & (¢). The algorithm was
coded on a CRAY X-MP/EA 464 Supercomputer using the Fortran computer language. The
program interfaces with the bulk Nastran data set and Nastran Qutput files % containing the
structural mass and stiffness matrices of the model. Either LD vectors or Nastran modal
eigenvectors can be used in the transient dynamic analysis.

SYSTEM ANALYSED

The space station Freedom was analysed for a simulated docking with the space shuttle. A view
of the station is given in Figure 1. In the analyses performed, the McDonald Douglas Nastran
MBI15YZ model of the Station with 2803 DOF was used along with docking load case 915L,
consisting of the set of three transient translational forces shown in Figure 2, and an additional
set of three rotational forces (not shown) applied to the end of the docking arm. !* The position
of the photovoltaic (PV) arrays in the analysis had an orientation in the Y—Z plane. Vector
bases with 30, 60 and 90 vectors were generated to compute the elastic displacements and total
accelerations of selected DOFs based on a constant damping ratio of 0-01. The vector bases
were generated using a block size of six vectors, with Up consisting of six displacement vectors
corresponding to the response of the six individual docking loads acting on the structure at
time = 1-93 s, which coincided with the peak magnitude of applied forces. The response at
the tip of an outboard PV array (node 8022 in Figure 1) is used to study the performance of

point of docking

z

Figure 1. Space station Freedom
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the proposed solution strategy. Neither a complete solution based on a numerical integration
of the coupled equations of motion, nor a complete modal vector basis was available to
compare with the LDM. For the purpose of this study, a comparison was made with a solution
obtained from the MDM using a truncated modal basis consisting of 210 eigenvectors. The
frequency of the modes ranged from 0 to 6-0 Hz. Figure 3 shows a comparison of the
frequency range of the modal vectors and selected LD vector bases. The 60 LD vector basis
with a static residual (identified as SR in the legend of Figure 3) has approximately the same
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Figure 2. Translational forces for docking load case
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Figure 3. Span of eigenvalue (frequency) range of modal (eigenvectors) and load-dependent (LD) vector bases (SR:
with static residual, NSR: without static residual, SHI: shift constant ¢ = 200
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frequency range as the modal basis. A larger LD vector basis has a greater span, and this span
is extended for those bases containing the static residual as opposed to those not having it
(identified as NSR in Figure 3’s legend). All LD vector bases used in this study were generated
with a shift constant of ¢ =10, except for the 60 vector basis with ¢ = 200-0 identified in
Figure 3 as SHI. The effect of using a larger value for ¢ produces a basis that has more
distantly spaced frequencies and a greater span.

DYNAMIC RESPONSE ANALYSIS

Transient displacements and accelerations

Time history plots of the translational displacements and accelerations in the X-direction are
shown in Figures 4 and 5 for the 90 vector solution using the LDM and the 210 eigenvector
solution using the MDM. The LD based displacements are shown to agree closely with the
results of the MDM, whereas there exists a greater discrepancy between the accelerations
computed by the two methods. The maximum discrepancy in the transient translational
displacements and accelerations along the X-, Y- and Z-axes based on the results from the
MDM with 210 eigenvectors, and LDM analyses with 90, 60, 30 vector bases are shown in
Figure 6. It is apparent that the discrepancy between the MDM and L.DM decreases as the
number of vectors in the LD basis is increased from 30 to 90 vectors, The LDM with a 60
vector basis is able to achieve the same result as the 210 MDM vector basis for displacements.
The LDM for accelerations shows greater discrepancies with the MDM, and requires a larger
number of vectors in the basis to achieve the same level of accuracy as that found in the
displacements with 60 LD vectors.

Error norm analysis

The norm &, is plotted against the number of blocks of LD vectors in Figure 7 to establish
whether it can give a good indication of when to terminate the generation of vectors. An
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Figure 4. Displacement response at node §022 (LDM: load-dependent method, MDM: mode displacement method)
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examination of the data reveals that for 30 LD vectors (five blocks of six vectors), the value
of g, is approximately 50 times greater than that for 60 LD vectors {ten blocks of six vectors),
at which the displacements were in very close agreement with the MDM results. The fact that
&, has become quite small at 60 LD vectors suggests that there is not much to be gained by
30 additional vectors to achieve a 90 vector basis. This was found to be true only for the
displacements. Thus, &. could be considered more reliable to indicate displacement
convergence than acceleration convergence.

The behaviour of ¢, in Figure 7 shows that a fluctuation in the error norm can exist where
a local maximum develops. This phenomenon is quite noticeable for the case of five blocks
with six vectors per block, This behaviour is associated with the structure responding more to
the forces related to the displacements U; as opposed to Up. Numerical experimentation
indicated that this occurs when a block of loads used to calculate Uy is not uniformly
displacing the mass, leading to displacement patterns U; in some of the later cycles which
‘accelerate’ more the mass. These fluctuations tend to occur in the initial cycles of vector
generation; as the number of vectors is increased the phenomenon appears to decay as shown
in Figure 7. This phenomenon is not as pronounced in the vector basis generated using fewer
vectors per block, as indicated by the results shown in Figure 7 for a block size of one vector.
Asymptotic convergence of &, to zero can thereby be expected as the number of vectors is
increased. A specific threshold value for &, to terminate the process of generation of vectors
cannot be assigned at this time, because sensitivity to models with a more uniformly distributed
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Figure 5. Acceleration response at node 8022 (LDM: load-dependent method, MDM: mode displacement-method)
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mass is not known, as well as the fact that the results presented are from only one loading
condition.

A presentation of the norm ¢ (¢} associated with the Z-component of the translational
docking load at time ¢ = 1-93 s is given in Figure 8, The representation of the loading obtained
by the LD vector bases is better than that obtained from the 210 modal vector basis. This
representation is improved as a static residual is added, and further improved as the number
of LD vectors in the basis is increased. The fact that fewer LD vectors were found to be
required than modal vectors to achieve comparable results for £z (¢) gives an indication that
the LD vector bases align more with the loading than the modal vector basis, such that a
product of LD vectors with the load vector is larger than the product using modal and load
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Figure 6. Error between the mode displacement method (MDM) and the load-dependent method (LDM} analyses for
node 8022
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vector. The LDM is thus more effective to compute the dynamic response, as compared to the
possibility of having the vectors orthogonal to the loading, as is sometimes the case in the
MDM. A close examination of Figure 8 shows that most of the modal vectors’ contribution
to the load representation occurs in the mid-frequency range (the vector number in Figure 8
corresponds to the ordering of the frequencies). Also, the modal vectors which are orthogonal
to the loading are spread throughout the spectrum. This orthogonality is identified by the parts
of the curve joining the values of ¢, (r) where the slope is zero.

A comparison of the behaviour of &, with that of ¢ (¢) indicates that, although & may
become small, e;(¢} may not. Since convergence for accelerations was observed to require
more LD vectors, more emphasis should be placed on &:(¢) for analysis in which the
acceleration response is of prime interest when attempting to judge the quality of a vector basis
for the selected loading conditions. This could be extended to situations where the LD vectors
were generated based on a particular load case and there is the desire to use them for another
load condition.

CONCLUSIONS

Based on the results of the transient dynamic analysis of the space station Freedom using the
superposition of load-dependent (LD) vector algorithm presented herein, the following
conclusions are noted:

1. LD vectors provide accurate displacement solutions using fewer vectors than eigenvectors
computed from an ‘exact’ eigenanalysis. Moreover, past investigations have shown that
the computer execution time to generate an LD vector basis is approximately one tenth
of the execution time required to compute an “exact’ eigenbasis. The use of &, for criteria
to stop the generation of the vector process appears to be satisfactory to assess a prior:
the quality of the vector basis in computing the displacement response.

2. More LD vectors are required when computing accelerations than displacements. Criteria
for judging the quality of the vector basis using £ (f) needs to be more strict when the
acceleration response is of interest as opposed to displacements.

3. LD vectors have a broader frequency range than the equivalent number of eigenvectors,
and are able to better represent the loading function. These features of the LD vectors
are enhanced by including the static residual in the basis.

4, Further work is required to study the basic behaviour and calibration of £, and £1.(¢) for
different load cases and structures, respectively. The optimization of the algorithm to
take advantage of vectorization and concurrent multiprocessors procedures should be
considered for the solution of very large structural models.?! 22
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APPENDIX 1. BLOCK FORM OF LD VECTOR ALGORITHM FOR SEMI-POSITIVE-
DEFINITE SYSTEMS

1. Dynamic equilibrium equations:

MU(#) + CU () + KU (1) = F(s)a(?)

2. Initial calculations:
(a) Shift and factorize stiffness matrix:
K'=K+ oM
K*=LDLT
(b) Solve for static response to block loading, Up:

KU =F(s)

3. Caiculate rigid body modes:

(a8) Use geometric description and DOF relationship to describe rigid body motions X,
(b) Generate first block of orthonormalized Ritz vectors:

X;=X,8
B= (i-{Mil)_l/Z
{c) Remove rigid body modes from static block Ug (Gram—Schmidt orthogonalization):

U; = Up - X, (XTMUy)

4. Generate additional Ritz vectors X;, i=2,...,n—1:
(a) Solve for X;

K'X; =MU,_,
{b) M-orthogonalize X; against previous blocks (Gram—Schmidt):
i—-1
X?=i;—Eij;Mif, lemgi-2
J=m

(¢} M-orthogonalize vectors in block X; by modified Gram—Schmidt to obtain X;
(d} Remove new LD block X; from static block U;_; (Gram—Schmidt):

Ui=U,-; - X;(XTMU; _ )

5. Add static block residual U, as static correction terms X
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6.

B —

16.

17.

18.

15.

20.

21.

22.

Make LD vectors X stiffness orthogonal (optional-uncouples equations of motion):
(a) Form and solve the reduced n X n eigenvalue problem

K*" = X"'K*X

K*™ -4 1¥ =0
(b) Compute final LD vectors *X = X¥
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