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12.

DYNAMIC ANALYSIS

Force Equilibrium is Fundamental in
the Dynamic Analysis of Structures

INTRODUCTION

All real physical structures behave dynamically when subjected 1o loads or
displacements. The additional inertia forces, from Newton's second law, ate
equal fo the mass times the acceleration. If the loads or displacements are
applied very slowly, the inertia forces can be neglected and a static load analysis
can be justified. Hence, dynamic analysis 1s a simple extension of static analysis.

In addition, all real structures pofentislly have an infinite number of
displacements. Therefore, the most eritical phase of 4 structural analysis is fo
create & cmputer model with a finite number of massless members and a finite
number of node (joint) displacements that will simulate the behavior of the real
structure. The mass of a structural system, which can be accuratcly estimated, is
lumped at the nodes. Also, for linear elastic structures. the stiffness properties of
the members can be approximated with a high degree of confidence with the aid
of experimental data. However. the dynamic loading, encrgy dissipation
properties and boundary (foundation) conditions for many structures are difficult
10 estimate. This is abways true for the cases of seismic input or wind loads.

To reduce the errors that may be caused by the approximations summarized in
the previous paragraph, it is necessary (o conduct many different dynamic
analyses using different computer models, londing and boundary conditions. It is
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not unrealistic 10 conduct 20 or more cmputer runs 1o design a new structure or
to investigate retrofit options for an existing structure.

Because of the large number of computer uns required for a typical dynamic
analysis, it is very important that accurate and numerically efficient methods be
used within computer programs. Some of those methods have been developed by
the author and are relatively ew. Therefore, ane of the purposes of this book s
to summarize those numerical algorithms, their advantages and limitations.

DYNAMIC EQUILIBRIUM

The force equilibrium of a multi-degree-of-freedom lumped mass system as &
function of time can be expressed by the following relationship:

Fith +F(t) + ity =F(t) azn

in which the force vectors at lime ! are:

Rt} isavector of inertia forces acting on the node masses
Et)y  isaveetor of viscous damping, or energy dissipation, forces
Bt isa vector of internal forces carried by the structure

F(i) i 1 veetor of externally applied loads

Equation (12.1) is based on physical laws and is valid for both linear and
nonlinear systems if equilibrium Is formulated with respect to the deformed
geametry of the structure.

For many structural systerms, the approxiration of linear structural behavior is
made to convert the physical equilibrivm statement, Equation (12.1), 10 the
fallowing set of second-order, linear, differential equations:

Mii2), +Ciifh), +Ku(t), =F(t) (12.2)

in which M is the mass matrix (lumped or consistent), € is a viscous damping
matrix (which is normally selected 1o approximate energy dissipation in the real
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strweture) and K is the static stiffness matrix for the system of structural
elements. The time-dependent vectors u(f), , (t), and ii(#), are the absolute
node displacements, velocities and accelerations, respectively.

Many books on structural dynamics present several different methods of applied
mathematics to obtain the exact solution of Equation (12.2). Within the past
several years, however, with the general avaitability of inexpensive, high-speed
personal computers (see Appendix H), the exact solotion of Equatian (12.2) can
be obtaizied without the vse of complex mathematical techniques. Therefore, the
modem structural engineer who has @ physical understanding of dynamic
equilibrium and energy dissipation can perform dynamic analysis of complex
structoral systems. A strong engincering mathematical background is desirable;
however, in my apinion, it is no longer mandatory.

For seismic loading, the extemal loading F(f) is equal to zero. The basic seismic
motions are the three components of free-field ground displacements u(t), that
are known al some point below the fonndation level of the structuce, Therefore,
we can write Equation (12.2) in terms of the displacements u(t), velocities afé)
and accelerations (2} that are relative to the three components of free-field
ground displacements.

Therefore, the absolute displacemients, velogities and accelerations can be
eliminated from Equation (12.2) by writing the following simple equati

w(t), =)+ 1) + LD+t

aft),

(1) + Rty + TRy +T ), a3

W), =)+ 1) + Ty, +LC,

where 1; is a vector with ones in the “7" directional degrecs-of-freedom and zero

in all other positions. The substimtion of Equation (12.3) into Equation (12.2)
allows the node point equilibriur equations to be rewrilten as:

Mii(E) + Cal L)+ Kulh)=- M), - Myii(t), - Midi(tly, (124

where M, =MI,
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‘The simplified form of Equation (12.4) is possible since the rigid body velocities
and displacements associated with the base motions cause no additional damping
or structural forces ta be developed.

It is imponant for engineers to realize that the displacements, which are
normally printed by a computer program, are relative displacements and that the
fundamental loading on the structure is foundation displacements and not
extemally applied loads at the joints of the structure. For example, the static
pushover analysis of a structure 1s a poor approimation of the dynamic behavior
of & three-dimensional strcture subjected ta complex time-depéndent base
moions. Also, one must caleulate absolute displacements to properly evaluate
base isolation systems.

Thero are several different classical methods that can be used for the solution of
Equation (12.4). Each method has advaniages and disadvantages that depend on
the type of structure and loading. To provide a general background for the
varlous topics presented in this book, the different numerical solution methods
are summarized below.

STEP-BY-STEP SOLUTION METHOD

The most general solution method for dynamic analysis is an incremental
method in which the equilibrium equations are solved at times At, 24134, etc.
There are a large number of different incremental solution methods. In general,
they involve a solution of the camplete set of equilibrium equations at each time
increment. In the case of nonlinear analysis, it may be necessary (o reform the
stiffness matrix for the complete structural system for each Gme step. Also,
iteration may bs required within each time inerement (o satisfy equilibrium. As a
resalt of the large computational requirements, it can take & significant amount
of time to solve structural systems with Just a few hundred degreas-of-freedom.

In addition, artificial or numerical damping must be added to most incremental
solution methads o obain stable solutions. For this reason, engineers must be
very cateful in the interpretation of the. results. For some nonlinear structurcs
subjected to seismic motions, increments] solution methods are necessary.
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For very large structural systems, a combination of mode superposition and
incremental methods has been found to be efficient for systems with a small
umber of nonlinear members. This method has been incorporated into the new
versions of SAP and ETABS and will be presented n detail later in this book.

MODE SUPERPOSITION METHOD

The most common and effective approach for seismic anelysis of linear
structural systems is the mode superposition method. After a set of orthogonal
vectors have been evaluated, this method reduces the large set of global
cquilibrium equations 10  relatively small mumber of uncoupled second order
differential cquations. The mumerical solution of those equations involves
greatly reduced computational time.

It has been shown that seismic motions excite only the lower frequencies of the
structure, Typically, earthquake ground accelerations are recorded al increments
of 200 points per second. Therefore, the basic loading data does not contain
information over 50 cycles per second. Hence, neglecting the higher frequencies
and mode shapes of the system normaily does not introduce errors.

RESPONSE SPECTRA ANALYSIS

The busic mode superposition method, which is resiricted to lincarly clastic
analysis, produces the complete time history response of joint displacements and
member forces because of a specific ground motion loading 1, 2], There are ton
major disadvantages of using this approach. First. the method produces a large
amount of output information that can Tequire an enormous amount of
computational effort to conduct all possible design checks as a function of time.
Second, the analysis must be repeated for several different earthquake motions
(o ensure that all the significant modes are excited, because a response spectrum
for one earthquake, in & specified direction, is not a smooth function.

There are significant computational advamtages in using the response spectra
‘method of seismic analysis for prediction of displacements and member forces
in structural systems. The methad myolves the calculation of only the maximum
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values of the displacements and member forces in each mode using smooth
design spectra that are the average of several earthquake motions. In this book.
we will recommend the CQC method to combine these maximum modal
response values to obisin the most probable peak value of displacement or foree.
T addition, it will be shown tht the SRSS and CQC3 methods of combining
results from orthogonal earthquake motions will allow one dynamic analysis to
produce design forces for all metnbers in the structare.

SOLUTION IN THE FREQUENCY DOMAIN

The basic spproach used to solve the dynamic equilibrium equations in the
frequency domain s to expand the external loads F(t) in terms of Fourier series
or Fourier integrals. The solution s in terms of complex numbers that cover the
time span from -es Lo co. Therefore, it is very effective for periodic types of
loads such as mechanical vibrations, acoustics. sea-waves and wind [l
However, the use of the frequency domain solution method for solving structures
subjected ta earthquake molions has the following disadvantages

‘The mathematics for most structural engineers. including myself, is difficult
to understand. Also, the solutions are difficult to verify

Earthquake: loading is not periodic; therefore, it is necessary to select  long
time period 5o that the solution from a finite length earthquake is completely
damped out before application of the same earthquake at the start of the next
period of loading.

For scismic type loading, the method is not numerically efficient, The
transformation of the result from the frequency domain to the time domain,
even with the use of Fast Fourier Transformation methods, requires a
significant amount of computational effort.

The method is resiricted to the solution of linear structural systems.

‘The method has been used, without sufficient thearetical justification, for the
approximate nonlinear solution of site response problems and soil/structure.
interaction problems. Typically, it is used in an lterative manner to creato
linear equations. The linear damping terms are changed wfier exch iteration [0
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approximate the energy dissipation in the soil, Hence, dynamic equilibrium
the soil is not satisfied.

SOLUTION OF LINEAR EQUATIONS

The step-by-step solution of the dynamic equilibrium equations. the solution in
the frequency domain, and the evaluation of eigenvectors and Ritz vectors all
require the solution of linear equations of the following form:

AX=B azs)

Where A is an 'N by N' symmetric matrix that contains a large number of zero
terms. The ‘N by M' X displacement and B load mairices indicate that more than
ane load condition can be solved at the same time.

The methad used in many computer programs, including SAP2000 (5] and
ETABS [6], is based on the profile or active coluton methiod of compact storage.
Because the matrin is symretric, it 1s anly necessary to form and store the first
nan-zero term in each column down to the diagonal term in that column.
Therefore, the sparse square matrix can be stored as a one-dimensional array
along with a N by I integer array that indicates the location of each diagonal
term. I the stiffness matrix exceeds the high-speed memory capacity of the
computer, a block storage form of the algorithm exists. Therefore, the capacity
of the solution method is governed by the low speed disk capacity of the
computer. This solution method is presented in detail in Appendix C of this
book,

UNDAMPED HARMONIC RESPONSE

‘The most common and very simple type of dyn:
steady-state harmonic loads of the following form:

loading is the application of

Ft)=Esin(@) (12.6)

The node point distribution of all static load patiems, £, which are not a
function of time, and the frequency of the applied loading, 7 , are user
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specified. Therefore, for the case of zero damping. the cxact node point
equilibrinm equations For the structural system are:

Miit) + Ku(t) = sin(&1) (27

The exzct steady-state. salution of this equation requires tht the pode p
displacements and eccelerations are given by:

w=vsn@), i0=-vFsin(@) (12.8)

Therefore, the harmonic node point responst: amplitude is given by the solution
of the following set of linear equations:

[K-Z*Mlv=f or Kv=f (129)

It s of interest to note that the normal solution for static loads is nothing more
than a salution of this equation for zero frequency for all loads. Tt Is apparent
that the computational effort required for the calculation of undamped steady-
state response is almost identical to that required by a static load analysis. Note
that it is not necessary 1o evaluate mode shapes o frequencies 10 solve for this
very common type of loading. The resulting node point displacements and
member forces vary as sin(@t), However, other types of loads that do not vary
with time; such as dead loads, must be evaluated in a separate computer run.

UNDAMPED FREE VIBRATIONS

Most structures are in a contimious state of dynamic motion because of random
loading suc as wind, vibrating equipment, or human loads. These small ambient
vibrations ace normally near the natwral frequencies of the structure and are
terminated by energy dissipation in the real stucture. However, special
instruments attached to the structure can easlly measure the motion. Ambient
vibration field tests are often used to calibrate computer madels of structures and
their foundations.
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After all external loads have been remaoved from the strocture, the equilibrium
equation, which governs the undamped free vibration of a typical displaced
shupe v, is:

Mi+Kv=0 210y

At any titne, the displaced shape v may be a natural mode shape of the system,
or any comhination of the natural mode shapes. However, it is apparent the total
energy within an undamped free vibrating system is & constant with respect
time, The sum of the kinetic energy and strain energy al all points in time is a
constant that is defined as the mechanical energy of the dynamic system and
calculated from:

TS
Ey =5 ¢M+2vTKY (2.1
SUMMARY

Dynamic analysts of three-dimensional structural systems Is a direct extension of
static analysis. The elastic stiffness matrices are the same for both dynamic and
static amalysis. It i only necessary ta lump the mass of the structure at the joints.
‘The addition of inertia forces and energy dissipation forces wil satisfy dynamic
cquilibrium, The dynamic solufion for steady state harmenic loading, without
damping, involves the same numerical effort as  static solution. Classically,
there are many different mathematical methods to Solve the dynamic equilibrium
equations. However, it will later be shown in this book that the majority of both
linear and nonlinear systems can be solved with one numerical method,

Energy is fundamental in dynamic analysis. Al amy point in time, the external
work supplied to the system must be equal to the sum of the kinetic and strain
energy plus the encrgy dissipated in the system.

Itis my opinion, with respect to earthquake resistant design, that we should try
to minimize the mechanical energy in the structure. I s apparent that a rigid
structure will have only kinetic energy and zero strain energy. On the other hand,
acompletely base isolated structure wil have zero kinetic enerey and zero strain
energy. A structure cannot fail if it hus zero strain energy.
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DYNAMIC ANALYSIS
USING MODE SUPERPOSITION

The Mode Shapes used to Uncouple the
Dynamic Equilibrium Equations Need Not
Be the Exact Free-Vibration Mode Shapes

EQUATIONS TO BE SOLVED

“The dynamic force equilibrium Equation (12.4) can be rewritten in the following
form as a set of N, second order differential equations:

st a1y

&

Mii(f) +Caft) + Ku(t) =Kt

All possible types of time-dependent loading, including wind, wave and seistaic,
can be represented by  sum of *J" space vectors £;, which are not a function of
time, and J time functions g(t); .

The number of dynamic degrees of freedom s equal to the number of lumped
masses in the system. Many publications advocate the elimination of all
masslessdisplacements by static condensation before solution of Equation
(13.1). The static condensation method reduces the number of dynamic
equilibrium equations to solve; however, it can significantly increase the density
and the bandwidth of the condensed stiffness matrix. In building type structures,
in which each diaphragm has only three lumped masses, this approach is
effective and is automatically used in building analysis programs.
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For the dynamic solution of acbitrary structural systems, however, the
elimination of the massless displacement is, in general, not numerically efficient.
Therefore, the modem versions of the SAP program do not use static
condensation o retain the sparseniess of the stffness matrix.

TRANSFORMATION TO MODAL EQUATIONS

The fundamental mathematical method that is used o solve Equation (13.1) is
the sepuration of variables. This appraach assumes the solution can be expressed
in the fallowing form:

uft)=dY(t) (13.20)

Where @ is an “N, by N" mairix conaining N spatal veetors that are not 2 function
of time, and Y() is a vector conaining N functions of time.

From Equation (13.20). it ollows that:

WH=oY(H) and i0)=0¥0 (13.26) and (13.2¢)

Before solution, we require that the space functions satisfy the following mass and
stiffness onthogonality conditions:

@'MP=1 and @TK® @133

where I i$ 1 disgonal unit marrix and @ s a diagonal matrix in which the diagonal
terms are @] . The term @, has the units of radians per second and may or may not
be 4 free vibration frequencies. It should be noted that the fundamentals of
mathematics place no Testrictions on thase vectars, other than the arthogonality
properties. In this book each space function vector, ¢, . s always normalized so that

the Generalized Mess is cqual o one, org, "M@, =1.0.

After substitution of Equations (13.2) into Equation (13.1) and the pre-multiplication
by ", the following matrix of N equations is produced:
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19 +dVH+ QY=Y pis(t); 3.4
e

whete ;=07 f; and are defined as the modal participation factors for load
function j. The term p,, is associated with the n* mode. Note that there is one set of
“N" modal participation factors for each spatial load condition £; .

For all real structures, the “N by N" matrx d is not diagonal; however, to uncouple
the modal equations, it is necessary to assume classical damping where there is no
coupling between modes. Therefore, the diagonal terms of the modal damping are
defined by:

duw=2{ 00 (13.5)

where £, is defined as the ratio of the damping in mode # o the critical damping of
the mode [1].

A typical uncoupled modal equation for linear structural systems is of the following
form:

§0,+28 030, + @yt = D p,8(t); 13.6)

7

For three~dimensional seismic motion, this equation can be written as:

0, + 20, 00§08, +GRY(0, =P lE)g, + Py i)y +P 00 (3T

where the three-directional modal participation factors, or in this case
earthquake excitation factors, are defined by p,=-¢," M; in which j is equal
tox, y or z and n is the mode mumber. Note that all mode shapes in this book are
normalized so that ¢,” Mg, =1

RESPONSE DUE TO INITIAL CONDITIONS ONLY

Before presenting the solution of Equation (13.6) for various types of loading, it
is convenient 1o define additional constants and fonctions that are summarized in
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Table 13.1. This will allow many of the equations prsented in other pants of this
bouk to be written in a compset form. Also, the notation reduces the tedium
involved in the algebraic derivation and verification of various equations. In
addition, it will allow the equations to be in a form that can be easily
programmed and verified.

17 the “n> subscript s dropped, Equation (13.6) can be wrinen for a typical
mode

)+ 2Eaptt) + o'yt) = 0 (13.8)

in which the initial modal displacement g, and velocity §, are specified as'a
resiilt of previous laading acting on the structure. Note that the functions §{t)
and C(1) given 1n Table 13.1 are solutions to Equaton {13.8),

Table 13,1 Summary of Notatlon used In Dynamic Response Equations

CONSTANTS

of1-¢

44=%0
FUNCTIONS

@

Sty =7 sin(@pt)

S$(ty=—@S(t)+ o Clt) ) =—BC() - mp81)
Sity=-mS()-m,Cl) G = Cy+a50)
AWO=Cty+EsH Atn=st0)

B

The solution of Equation {12.8) can now be written in the following compsct form:
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#H = Ay, + A (13.9)

This solution can be easily verified because it satisfics Equation (13.8) and the
initial conditions.

GENERAL SOLUTION DUE TO ARBITRARY LOADING

‘There are many different methods available to solve the typical modal equations.
However, the use of the exact solution for a load, approximated by a polynomial
within a small time increment, has been found to be the most economical and
accurate method to numerically solve this equation within computer programs. It
does ot have problems with stability. and it does not inwoduce nunerical
damping. Because most seismic ground accelerations are defined as linear within
0,005 second intervals, the method is exact for this type of loading for all
frequencies. Also, if displacements arc used as the basic input, the load function
derived from linear accelerations are cubic functions within each time interval,
as shown in Appendix J.

To simplify the notation, all loads are added together to form a typical modal
equation of the following form:

e+ 2w+ @y =R a310)

where he modal loading R({) is a piece-wise polynomial function as shown in
Figure 13.1. Note that the higher derivatives required by the cubic load function

can be calculated wsing the numerical method summarized in Appendix J.
Therefore, the differential equation to be solved, within the interval i1 to i is
of the following form for both linear and cubic load functions:

T+ 2L 0it)+ o it azin
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BO=R iR R +'gk in intervat i1 to i
For linear loading within interval
R=0

; R=0

)

For cubl loading within interval
where £, and ,are specified

2
Rt (R 2R,
R =Ryt (R t2R)

Timo = LL
e &
Figure 13.1 Modal Load Functions

From the basic theory of linear differential equations, the general solution of
Equation (13.11) is the sum of 2 homogeneous solution and a particular solution

andiis of the following form:

YEY = byS() 4 By CUE + by +Byf + bt bt (13.12a)

The velocity and aceeleration associated with this solution are:

HOY=bS(1) +b,C0)+b, +2byt + 3t 3126

30 =651+ 5, (1) + 2, +6br (13.12¢)
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‘These equations are summarized in the fallowing matrix aquation:

sy cy 0ot £
Sy € o 10 2 [ °|=Bb 13.13)
n ¢y o 0 20 8

Ve

1t is now possible fo solve for the constanis b;. The initial conditions at
=0 arc j(0)=9,., andy(0)=y,,. Therefore, from Equations (13.12a and

13.12)

= wgh ~@by +b,
by,

(13.132)

The substitation of Equaticns (13.128, 13,12 and 13.12¢) into Equation (13.11)
and setting the cosfficients of each polynomial term 10 be equal produce the
following four equitions:

1. R, =0 tagb, +2bs
1 Ry =0+ 225b, +6bg
21 Ry =20, +6a5b,
£ R, =6w,

(13.13b)

These six equations, given by Equations (13.13a and 13.13b), can be writien as
e following malrix equation:

B

or, K,

5 5 =C'b 115.14)
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Therefore,

b=CR, 13.15)

The inversion of the upper-triangular matrix € cen be formed analytically; or it
can easily be mumerically inverted within the computer program. Hence, the.
exact solution at time point i of a modal equation because of a cubic load within
the time step is the following:

¥, =B(AfICR,, = AR, , 13.16)

Equation (13.16) is a very simple and powerful recursive relationship. The
complete algorithm for lincar or cubic loading is summarized in Table 13.2.
Note that the 3 by 6 A matrix is computed only once for each mode. Therefore,
for each time increment, approximately 20 multiplications and 16 additions are
required. Modem, inexpensive personal computers can complete one.
‘multiplication and one addition in approximately 10° seconds. Hence, the
computer time required to solve 200 steps per second for a S0 second duration
carthquake is approximately 0.0 seconds. Or 100 modal equations can be
solved in one second of computer time. Therefore, there is no need to consider
other numerical methods, such as the approximate Fast Fourier Transformation
Method or the numerical evaluation of the Duhamel integeal, to solve these
equations. Because of the speed of this exact piece-wise polynomial technique, it
can also be used to develop aceurate earthquake response spectra using a very
small amount of computer time.
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Table 132 Higher-Order Recursive Algorithm for Solution of Modal Equation

1. EQUATION TO BE SOLVE

>
JO+ 2+ 0 YD = Ry + iR +%RH +

11 INITIAL CALCULATIONS

@, =0

a=2%0 =0}

5 Sin(wp At} C(At) =5 cos(wp At)
BS(AL) + 0pC(AY) C(8) =—BC(AN -, S(AL)

Siat) = - S(an-mClar) E(at) =-0,C(a1) +a,S(an

S(Af Cran 10 Ar A af
BAN=|4an Can 0 10 2ar 3a8
San Can 0 0 20 6At

o -@ 0 10 ¢ 07"
100 0 0
o' a 20 0

0
0
o and A=BANC
0
0

. RECURSIVE SOLUTION i=1,2

& RSB Ra)r 2R +2R)

1 and retum o llLa
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SOLUTION FOR PERIODIC LOADING

The recurence solution algorithm summarized by Equation 13.16 is a very
efficient computational method for arbitrary, transient, dynamic loads with
initial conditions. It is possible to use this same simple solution method for
arbitrary periodic loading as shown in Figure 13.2. Note that the total duration of
the loading is from —e to +=>and the loading function has the same amplitude
and shape for each typical period T, Wind, sea wave and acoustic forces can
produce this type of periodic loading. Also, dynamic live loads on bridges may
be of periodic form.

Fi

NANANA N s
VvV VvV

T % A 7,

i T

Figare 13.2 Example of Periodic Looding

For a typical durationT, of loading,  numerical solution for each mode can be
evaluated by applying Equation (13.11) without initial conditions. This solution is
incorrect because it does not have the correct initial conditions. Therefore, it is
necessary for this solution (f) to be commected 5o that the exact solution 2(f) has the
same displacement and velocity at the beginning and end of each loading period. To
satisfy the basic dynamic equilibrium equation, the comrective solution x(t) must
have the following form:

X0 =04 () + 50 Ay () a3
where the functions are defined in Table 13.1

‘The total exact solution for displacement and velocity for each mode can now be
writien as:

2(6) = y{t) + x(t) (13.180)
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A=+ 13.186)

So that the exact solution is periodic, the foliowing conditions nust be satisfied:

«T,)=2(0) (13.19a)
HT,)=40) (13.196)

The numerical evalustion of Equation (13.14) produces the following matrix
equation, which mst be solved for the unknown initial condifions:

1-AL) - A(T,) Xn:|=|:’y“-\,):|

—AlT) 1-AdT) | | T -HT) daam

The exact periodic solution for modal displacements and velocities can ow be
calcalated from Bqutions (13.18a and. 13.18b). Hence, it in ot necessary to use a
frequency domain solution approach for periodic loading as suggested in most (ext
‘books on structural dynasics.

PARTICIPATING MASS RATIOS

‘Several Building Codes require that at least 90 percent of the parricipasing mass is
inctuded in the calculation of response for each principal direetion. This requirement
is basad on & it base acceleration in a particular direction and calcutating the base
shear due to that load. The steady state solution for this case invoives no demping or
elastic forces; therefore, the modal response equations for a urit base acceleration in
the x-direction can be written as:

¥, (13.21)

The node point inertia forces in the x-direction for that mode are by definition:

o =Mt

M43, =p,.M9, (1322

‘The resisting base shear in the x-direction for mode 1 is the sum of all node point x
forces. O:
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PulIMO,=pL, «13.23)

Vi

“The total base shear in the x-direction, inchuding N modes, will be:
V=2 324
=

For a unit buse acceleration in any dirccion, the exact base shear must be equal 1o the
sum of all mass components in that direction, Therefore, the participating mass ratio
i defined as the participating mass divided by the total mass in that direction. Or:

Xowse= (13.252)
s
»
2P
Y= 2L (13.25b)
my
&,
pIA
Zss= 2L (13.:25¢)

T

1l modes are used, these ratios will all be equal to 1.0, s clear that the 90 percent
participation rule is intended to estimate the accuracy of & solution for base motion
only. It cannot be used as an error estimalor for ofher types of loading, such as
‘point loads or base displacements acting on the structure.

Most computer programs produce the contribution of each mode (© those ratios. In
addition, an examination of those factors gives the engineer an indication of the
direction of the base shear associated with each mode, For exampl, the angle with
sespect to the x-axis of the base shear associated with the first mode is given by:

8= mn"[’l] (13.26)
Py
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13.7 STATIC LOAD PARTICIPATION RATIOS

For arbitrary loading, it is useful to determine if the number of vectors used is
adequate to approximate the true response of the stractural system. One method,
which the author has proposed. is to evalugte the static displacements using a
truncated set of vectars to solve for the response resuiting from static load paterms.
‘As indicated by Equation (13.1), the Joads can be written as:

30

.
680 32
£

First, one solves the statics problem for the exact displacement u; associated with
the load patter ;. Then, the total external work associated with load condition j is:

(13.28)

From Equation (13.6), the modal response, neglecting inertia and damping forces, is

(13.29)

From the fundamental definition of the mode superposition method, a truncated set
of vectors defines the approximate displacement v; as:

5 5
v,=3 54, = Z%w,ﬂ,m (13.30)

= =h

The total external work associated with the truncated mode shape solution

1331y
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A stati load participation rafio r; can now be defined for load condition j as the
ratio of the sum of the work done by the truncated set of modes to the extemal total
work done by the load pattern. Or:

1332

I this ratio is close to 1.0, the errors introduced by vector truncation will be very
small. However, if this ratio is less than 90 percent, additional vectors should be used
in the analysis to capture the stasic load response.

1t has been the experience of the author that the use of exact eigenvectors is miot
an accurate vector basis for the dynamic analysis of structures subjected to
loads. Wherezs, load-dependent vectors, which are defined in the following
chapter, always produce a static load participation ratio of 1.0.

DYNAMIC LOAD PARTICIPATION RATIOS

In addition to participating mass ratios and static load participation ratios, it is
possible to calculate a dynamic load paricipation ratio for each load pattern.
Al three of these ratios are automatically produced by the SAP2000 program.

‘The dynamic load participation ratio is based on the physical assumption that only
inerta forces resist the load pattern, Considering only mass degrees of freedom, the
exael aceeleration il because of the load pattem £, is:

i =M (1333)

“The velocity of the mass points at ime =1 is:

M

Mg (1339

Hence, the total kinetic energy associated with load patiem j is:
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Lem

3 (13.35)

From Equation 13.6, the modal acceleration and velocity, neglecting the massless
degrees of freedom, is given by:

T, andy, =to]f; =91f; at=1 (13.36)

From the fundamentl definition of the mode superposition method, a truncated set
of vectors defines the approximate velocity v, as:

v, Zy..ou van va erw (1337)

=

The total kinetic energy associated with the truncated mode shape solution is:

"
M3e, ps= 1207 (1339

=1

'Adynamic load participation ratio r, can now be defined for load condition j as the
atio of the Sum of the kinetic enetgy associated with the truncated set of modes o
the fotal kinetic energy associated with the load pattern. Or:

(1339)

‘The dynamic load participation ratio includes only Toads that are associated with
mass degrees of freedom. However, the static load participation factor inchudes
the effects of the loads acting af the massless degrees of freedom.

A 100 percent dynamic load participation indicates that the high frequoncy
response of the structure is captured. In addition, for the cases of mass
proportional loading in the three global directions, the dynamic load
‘participation ratios are identical to the mass participation factors.
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SUMMARY

‘The mode superposition method is a very powerful method vsed to reduce the
nurnber of unknowns in a dynamic response analysis. All types of loading can be
accurately approximated by piecc-wise linear or cubic fanctions within a small
time increment. Exact solutions exist for these types of loading and can be
computed with a trivial amount of computer time for equal time increments.
Therefore, there is no need to present other methods for the numerical evaluation
of modal equations,

To solve for the linear dynamic response of structures subjected to periodic
Toading, it is only necessary to add a corrective solution to the transient solution
for a typical time period of loading. The corrective solution forces the initial
conditions of a typical time period t0 be cqual to the final conditions at the end
of the time period. Hence, the same time-domain solution methiod can be used to
solve wind or wave dynamic response problems in structural engineering.

Participating mass factors can be used to estimate the number of vectars required
in an clastic seismic analysis where base accelerations are used as the
fundamental loading. The use of mass participation factors to estimate the
accuracy of a nonlinear seismic analysis can introduce significant errors. Intenal
nonlinear concentrated forces that are in equal and opposite directions do not
produce a base shear. In addition, for the case of specified base displacements,
the participating mass ratios do not have a physical meaning,

Static and dynamic parlicipation ratios are defined and can be bsed to estimate
the number of vectors required. It will later be shown that the use of Ritz
vectors, rather than theexact eigenvectors, will produce vestors that have stafic
and dynamic participation ratios at or near 100 percent.
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14.

CALCULATION OF STIFFNESS AND
MASS ORTHOGONAL VECTORS

LDR Vectors are Always More Accurate than Using the
Exact Eigenvectors in a Mode Superposition Analysis

INTRODUCTION

The major reason to calculate mode shapes (o eigenvectors and eigenvalues) is
that they are used. to uncouple the dynamic equilibrium cquations for mode

superpos
response analysis of a structure is fo accarately estimate displacements and

ion and/or response specira analyses. The main purpose of a dynamic

member forces in the real structure. In general, there is no direct relationship
between the accuracy of the cigenvalues and eigenvectors and the accuracy of
node point displacements and member forces.

In the early days of carthquake engineering, the Rayleigh-Ritz method of
dynamic analysis was used extensively to caleulate approximate solutions, With
envectors replaced

the development of high-speed computers, the use of exact
the use of Ritz vectors as the basis for seismic analysis. [t will be fllustrated in
this book that Load-Dependent Ritz, LDR, vectors can be used for the dynamic
analysis of both
produces more
exact eigenvectors,

ear and nonlinear structures. The new modified Ritz method

carate results, with less computational effort, than the use of
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‘There are several different numerical methods available for the evaluation of the

eigenvalue problem. However, for large structural systems, only a few methods
have proven to be both accurate and robust.

DETERMINATE SEARCH METHOD

The equilibrium cquation, which governs the undamped free vibration of a
typical mode, s given by:

[K-o'Mlv; =0 or K,

Qa1

Equation 14.1 can be solved directly for the nanural frequencies of the structure
by assuming values for @, and factoring the following equation:

K = LDL" (14.2)

From Appendix C the determinant of the factored matrix is defined by:
Det{uy)=Dy Doz~~~ D (143)

Itis possible, by repeated factorization, to develop a plot of the determinant vs.
A ., as shown in Figure 14.1. This classical method for evaluating the natural
frequencies of a structure is called the determinant search method [1]. It should
be noted that for matrices with small bandwidths the numerical effort ta factor
the matrices is very small. For this class of problem the determinant search
method, along with inverse iteration, is an effective method of evaluating the
undamped frequencies and mode shapes for small structural systems. However,
because of the increase in computer speeds, small problems can be solved by any
method in a few seconds. Therefore, the determinant search method is no longer
used in modern dynamic analysis programs.
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Figure 141 Determinant vs, Frequency for Typical System

STURM SEQUENCE CHECK

Figure 14.1 illustrates a very important property of the sequence of diagonal
terms of the factored matrix. One notes that for a specified value of e , one can
‘count the number of negative terms in the diagonal matrix and it is always equal
10 the number of frequencies below that value. Therefore, it can be used to check
a method of solution that fails to calculate all frequencies below a specified
value, Also, another important application of the Sturm Sequence Technique is
(o evaluate the number of frequencies within a frequency range. I is only
necessary to factor the matrix at both the maximum and minimum frequency
points, and the difference in the number of negative diagonal terms is equal to
the number of frequencies in the range. This numerical technique is useful in
‘machine vibration problerms.

INVERSE ITERATION

Equation (14.1) can be written in an iterat

JUMYED or LDLTT (14.4)
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The computational steps required for the solution of one eigenvalue and eigenvector
‘can be summarized as follows:

1. Factor stiffness matrix into triangularized LDL" form during static
load salution phase.

2. For the first iteration, assume R™ to be a vector of random numbers

and solve for nitial vector V"

3. lterate withi=1,2...

4. Normalize vector so that VIOMV{
b. Estimate eigenvalue A% = VIOR®
©. Check Af for convergence - if converged, terminate

d. i=i+1 andcalculate R¥=A4MV*!

e. Solve for new vector LDLTY!"

f. Repeat Step3

1t can easily be shown that this method will converge to the smallest unique
eigenvalue.

GRAM-SCHMIDT ORTHOGONALIZATION

‘Additional eigenvectors can be caleulated using the inverse iteration method if,
after each iteration cycle, the iteration vector is made orthogonal to all
previously calculated vectors. To illustrate the method, let us assume that we
have an approximate vector V that needs to be made orthogonal to the
previously calculated vector V. Or, the new vector can be calculated from:

V=V-av, (14.5)

Multiplying Equation (14.3) by VIM, we obtain:
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VIMV=VIMV-aVIMV, =0 14.6)
Therefore, the orthogonality requirement is satisfied if:

VIMY

MV 147,
Vimv, e

If the orthogonalization step is inserted after Step 3.¢ in the inverse iteration
‘method, additional eigenvalues and vectors can be calculated.

BLOCK SUBSPACE ITERATION

Inverse iteration with one vector may not converge if eigenvalues are identical
and the eigenvectors are not unique. This case exists for many real three-
dimensional structures, such as buildings with equal stiffess and mass in the
‘principle dircetions. This problem can be avoided by iterating with a block of
orthogonal vectors [2]. The block subspace iteration algorithm is summarized in
Table 141 and is the method used in the modern vei

ns of the SAP program.

Experience has indicated that the subspace block size “b” should be set equal to
the square root of the average bandwidth of the stiffness matrix, but, not less
than six. The block subspace iteration algorithm is relatively slow: however,
very accurate and robust, In general, after a vector is added toa block, it requires
five to ten forward reductions and back-substitutions before the iteration vector
converges to the exact sigenvector.
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Table 14.1 Subspace Algorithm for the Generation of Eigenvectors

L INITIAL CALCULATIONS

A. Triangularize Stifiness Matrix,

B, Use random numbers to form a block of 'b" vestors V.

Il GENERATE L EIGENVECTORS BY ITERATION

12
A. Solve for block of vactors, X in, K X!"=Mvi

B. Make block of vectors, X, stiffness and mass orthogonal, 7. Order

eigenvalues and comesponding vectars in ascending order.

©. Use Gram-Sohmidt method to make ¥ orthogonal to all previously
calculated vectors and normalized so that V@M V@=1 .

D. Perform the following checks and operations:

1. Itfirst vector in block is not converged, go to Step Awith I =141
2. Save Vctor ¢, on Disk.

3. If n equals L, terminate lteration.

4. Compaot block of vectors.

5. Add random number vector to last column of block.

Return to Step D.1 withn=n+1

14.7 SOLUTION OF SINGULAR SYSTEMS

For a few types of structures, such as aerospace vehicles, it is not possible to use
inverse or subspace iteration directly to solve for mode shupes and frequencies.
This is because there is a minimum of six rigid-body modes with zero
frequencies and the stiffness matrix is singular and cannot be triangularized. To
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solve this problem, it is only necessary o introduce the following cigenvalue
shift, or change of variable:

X, (14.8)
Hence, the iterative eigenvalue problem can be written as:
LMV or LDLTVY =R (149
The shifted stiffness matrix is now non-singular and is defined by:
K=K+pM (14.10)

The eigenvectors are not modified by the arbitrary shift p. The correct
cigenvalues are calculated from Equation (14.8).

GENERATION OF LOAD-DEPENDENT RITZ VECTORS

The numerical effort required to calculate the exact eigen solution can be
enormous for a structural system if a large number of modes are required.
However, many engineers believe that this computational effort is justifiable if
accurate results are 1o be obtained. One of the purposes of this section is to
clearly fllustrate that this assumption is not true for the dynamic response
analyses of all structural systeros.

It is possible to use the exact frec-vibration mode shapes to reduce the size of
both linear and ronlinear problems. However, this is not the best approach for
the following reasons:

1. For large structural systems, the solution of the eigenvalue problem for the
free-vibration mode shapes and frequencies can require a significant amount
of computational effort.

2. Tn the calculation of the free-vibration mode shapes, the spatial distribution
of the loading is completely distegarded. Therefore, many of the mode
shapes that are calculated are orthogonal to the loading and do not
participate in the dynamic fesponse.
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3. 1f dynamic loads are applied at massless degrees-of-freedom, the use of all
the exact mode shapes in a mode superposition analysis will not converge to
the exact solution. Tn addition, displacements and stresses near the
application of the loads can be in significant error. Therefore, there is no
need to apply the “static correction method” as would be required if exact
eigenvectors are used for such problerns.

4. Ttis possible to calculate a set of stiffness and mass orthogonal Ritz vectors,
with & minimum of computational effort, which will converge to the exact
solution for any spatial distribution of loading (21

1t can be demonsirated that a dynamic analysis based on & unique set of Load
Dependent Vectors yields a more accurate result than the use of the same
number of exact mode shapes. The efficiency of this technique has been
illustrated by solving many problems in structural response and in wave
propagation types of problems [4]. Several different algorithms for the
generation of Load Dependent Ritz Veetors have been published since the
method was first introduced in 1982 [3]. Therefore, it is necessary to present in
Table 14.2 the latest version of the method for multiple load conditions.

‘Table 14.2 Algorithm for Generation of Load Dependent Ritz Vectors

1INITIAL CALCULATIONS
A. Triangularize Stifiness Matrix K=17DL.

B. Solve for block of "0" static displacement vectors u, resulting from
‘spatial load patiems F; or, Ku,=F.

C. Make block of vectors w,, stifiness and mass orthogonal, V.

Il. GENERATE BLOCKS OF RITZ VECTORS =

N
A. Solve for block of vectors, X, KXi=MVi,.

B. Make block of vectors, X; .stiffness and mass orthogonal, ¥, .
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Table 14.2 Algorithm for Generation of Load Dependent Ritz Vectors

C. Use Modifled Gram-Schmidt mathod (two times) to make Vi,

arthogonal to all previously calculated vectors and normalized so that
VIMV=I.

Ill. MAKE VECTORS STIFFNESS ORTHOGONAL

A. Solve Nb by Nb eigenvalue problem [K-Q*1IZ =

K=v'KvV.

where

B. Calculate sifiness orthogonal Ritz vectors, ®=VZ

14.9 A PHYSICAL EXPLANATION OF THE LDR ALGORITHM

The physical foundation for the method is the recognition that the dynamic
response of a structure will be a function of the spatial load distribution. The:
undamped, dynamic equilibrium equations of an elastic structure can be wrilten
in the following form:

Mii(t)+ Ku(t) =R(t) (a1

In the case of earthquake or wind, the time-dependent loading acting on the
structure, R(t), Equation (13.1), can be written as:

R =Y f,e0), =FG() 14.12)

A

Note tht the independent load patterns Fre not a function of time. For constant
earthquake ground motions at the base of the structure three independent load
patterns are possible. These laad patterns are a function of the directional mass
disteibution of the structure, In case of wind loading, the downwind mean wind
pressure is one of those vectors. The (ime functions G(f) can always be
expanded into a Fourier serics of sine and cosine functions. Hence, neglecting
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dumping, a typical dynamic equilibrium equation to be solved is of the following
form:

Mii(t) + Ku(t) = Fsin®+ 14.13)

Therefore, the exuct dynamic response for a typical loading frequency @ is of
the following form:

Ku=F+BMu (14,14

‘This equation cannot be solved directly because of the unknown frequency of the
loading, However, a series of stffness and mass orthoganal vectors can be
calculated that will satisfy this equation using a perturbation algorithm, The first
block of vectors is calculated by neglecting the mass and solving for the static
response of the structure. Or:

Kuy=F (14.15)

From Equation (14.14) it is apparent that the distribution of the errar in the
solution, due to neglecting the inertia forces, can be approximated by:

F, ~Mu, 14.16)

‘Therefore, an additional block of displacement error, or correction, vectors can
be calculated from:

Ku, =F 14.17)

In calculating u; the additional inertia forces are neglected. Hence, in
continuing this thought process, it is apparent the following recurrence equation
exists:

Kut, =Mu,, 14.18)

A large number of blocks of vectors can be generated by Equation (14.18).
However, to avoid numerical problems, the vectors must be stiffness and mass
orthogonal after cach step. In addition, care should be taken to make sure that all
vectors are linearly independent. The complete numerical algorithm is
summarized in Table 14.2. After careful examination of the LDR vectors, one
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can conclude that dynamic analysis s a simple extension of static analysis
because the first block of vectors is the static response from all load patterns
acting on the structure. For the case where loads are applied at only the mass
dogrees-of-freedom, the LDR vectors are always a linear combination of the
exact eigenvectors.

It is of interest to note that the recursive equation, used to generate the LDR
vectors, is similar to the Lanczos algorithm for calculating exact eigenvalues and
Vectors, except that the starting vectors are the static displacements caused by
the spatial load distributions. Also, there is no iteration involved in the
generation of Load Dependent Ritz vectors.

COMPARISON OF SOLUTIONS USING EIGEN AND RITZ
VECTORS

The fixed-cod beam shown in Figure 14.1 is subjected to a point load at the
center of the beam. The load varies in time as & constant unit step function.

lma

g}»..‘.....fg
S = 10@ 12=240 — .‘
Modulus of Elasticity = 30,000,000
Moment of Inertia = 100
Mass per Unit Length = 0.1
Damping Ratio = 0.01

Al units in Pounds and Inches

Figure 14.1 Dimensions, Stiffuness and Mass for Beam Structure

The damping ratio for each mode was set at one percent and the maximum
displacement and moment occur 4t 0.046 second, as shown in Table 143

The results clearly indicate the advantages of using load-dependent vectors. One
notes that the free-vibration modes 2, 4, 6 and 8 are not excited by the loading
because they are nonsymmetrical, However, the load dependent algorithm
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generates only the symmetcical modes. In fact, the algorithm will fail for this
case, if more than five vectors are requested.

‘Table 14.3 Results from Dynamic Analyses of Beam Structure

Number of | Free-Vibration Mode Shapes | Load-Dependent Ritz Vectors
Vectors lacement | Moment isplagement | Moment
1 0.004572 4178 0004726 5807
(241) (228 (+0.88) ©o2)
y 0004572 4178 0004591 5563
(241) (228) {-2.00) 28
3 0.004664 4946 0.004689 5603
(048) 85) (+0.08) (+35)
§ 0.004664 4946 0.004688 5507
(046) (85) (+0.06) 1.8
g 0.004681 5188 0.004685 5411
008) (-4.) (0.00) ©0)
= 0.004683 5304
004 20)
o 0.004685 5411
(0.00) (0.0)

Note: Numbers is parentheses are percantage errors.

Both methods give good results for the maximum displacement. The results for
maximum moment, however, indicate that the load-dependent vectars give
significantly better results and converge from above the exact solution. Itis clear
that free-vibration mode shapes ate not necessarily the best vectors to be used in
mode-superposition dynamic response: analysis. Not only s the calculation of the
exact free-vibration mode shapes computationally expensive, it requires more
vectors, which increases the number of modsl equations 1o be integrated and
stored within the computer.
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14:11 CORRECTION FOR HIGHER MODE TRUNCATION

In the analysis of many (ypes of structures, the response of higher modes can be
m. In the use of exact eigenvectors for mode superpasition or response
spectra analyses, ‘approximate methods of analysis have been developed 1o
improve the results. The purpose of those approximate methods is “to account
for missing mass” of “to add static response” associated with “higher made
truncation.” Those methods are used to reduce the number of exact eigenvectors
to be calculated, which reduces computation time and computer storage

requirements.

The use of Load Dependent Ritz, LDR, vectors, on the other hand, doss ot
require the use of those approximate methods because the “static response” is
included in the initial set of vectors. This is illustrated by the time history
analysis of a simple cantilever structure subjected to carthquake motions shown
in Figure 14.2. This is a model of a light-weight superstructure built on a
e foundation supported on stff piles that are modeled using a spring.

m

Computer Moder
Figure 14.2 Cantilever Structure on Massive Stff Foundation

Only eight eigen or Ritz vectors can be used because the model has only cight
masses. The computed periods, using the exact eigen or Ritz method, are
summarized in Table 14.4, It is apparent that the eighth mode is associated with
the vibration of the foundation mass and the period is very short: 0.00517
seconds.
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Table 14.4 Periods and Mass Participation Factors

PERIOD MASS PARTICIPATION
MODE NUMBER (Seconds) (Percentage)
1 1.27821 11708
2 0.43128 01.660
3 0.24205 00613
4 0.16018 00.310
5 0.11899 00.208
6 0.09506 00.100
7 0.07951 00.046
8 0.00517 85.375

The maximum foundation force using different numbers of eigen and LDR

vectors

summarized in Table 14.5. In addition, the total mass participation

associated with each analysis is shown. The integration time step is the same as
the carthquake motion input; therefore, no errors are introduced other than those
resulting from mode truncation. Five percent damping is used in all cases.

Table 14.5 Foundation Forces and Total Mass Participation

NUMBER |  FOUNDATION FORCE MASS PARTICIPATION
OF (Kips) (Total Percentage)

VECTORS | EiGEN AIZ EIGEN RITZ

8 1,635 1635 1000 1000

7 260 1,636 146 833

5 269 1,671 145 162

3 258 1756 14.0 145

2 257 3,188 13.4 13.9

‘The solution for eight eigen or LDR vectors produces the exact solution for the
foundation force and 100 percent of the participating mass. For seven
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eigenvectors, the solution for the foundation force is anly 16 percent of the exact
value—a significant error; whereas, the LDR solution is almost identical to the
exact foundation force. It is of interest to note that the LDR method
overestimates the force s the number of vectors is reduced—a conservative
engincering result

Also, it is apparent that the mass participation factors associated with the LDR
solutions are not an accurate estimate the error in the foundation force. In thi
case, 90 percent mass participation is not a requirement if LDR vectors are used.
If only five LDR vectors are used, the total mass participation factor is only 16.2
percent; However, the foundation force is over-estimated by 2.2 percent.

VERTICAL DIRECTION SEISMIC RESPONSE

Structural engineers are required for certain types of structures, to calculate the
vertical dynamic response. During the past several years, many engineers have
told me that it was necessary to calculate several hundred mode shapes for a
latge structure to obtain the 90 percent mass participation in the venical
direction. In all cases, the "exact” free vibration frequencies and mode shapes
‘were used in the analysis.

To illustrate this problem and to propose a solution, a vertical dynamic analysis
is conducted of the two dimensional frame shown in Figure 14.3. The mass is
Jurmped at the 35 locations shown; therefore, the system has 70 possible mode
shapes.

Using the exact eigenvalue solution for frequencies and mode shapes, the mass
participation percentages are summarized in Table 14.6.

One notes that the lateral and vertical modes are uncoupled for this very simple
structure. Only two of the fiest ten modes are in the vertical direction, Hence, the
total vertical mass participation is only 63.3 percent.
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Figure 14.3 Frame Structure Subjected to Vertical Earthquake Motions

Table 14.6 Mass Participation Percantage Factors for Exact Eigenvalues

LATERAL MASS VERTICAL MASS
MODE (;:c“rﬁ; PARTICIPATION PARTICIPATION
EACHMODE | TOTAL | EACHMODE | TOTAL
1 1273 79.957 79.957 [ [
2 0.421 11336 91205 ) [)
3 0242 4172 95.467 ) [}
4 0.162 1436 96.903 o o
5 0.158 0650 97.554 ) [
6 0.148 ) 97554 60551 60551
z 0,141 0031 97584 ) 60551
8 0.137 0015 97.664 o 60.551
9 0.129 0087 97.639 o 60551
10 0.127 ) 97.639 2775 63.326
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The first 10 Load Dependent Ritz vectors are calculated and the mass
participation percentages are summarized in Table 14.7. The two starting LDR
vectors were generaled using static loading proportional to the lateral and
vertical mass distributions.

Table 14.7 Mass Participation Percentage Factors Using LDR Vectors.

LATERAL MASS VERTICAL MASS

MODE ‘;i";"od‘z) PARTIGIPATION PARTIGIPATION
EACH MODE TOTAL | EACHMODE | TOTAL

1 1273 79.957 79.957 0 0

2 0.421 11.336 91.295 0 0

3 0.242 4176 95.471 o 0

4 0.158 2.388 97.859 0 0
5 0.148 0 97.859 60.567 60.567
6 0.123 0 97.859 4.971 65.538
& 0.104 2102 93.961 0 65.538
8 0.103 a 99.961 13.243 78.781
9 0.064 o 99.961 9.696 88.477
10 0.041 0 99.961 8463 96.940

The ten vectors produced by the LDR method more than satisfy the 90 percent
code requirement. [t would require the calculation of 34 eigenvectors for the
exact eigenvalue approach to oblain the same mass participation percentage.
This is just one additional example of why use of the LDR method s superior to
he use of the exact eigenvestors for seismic loading.

The reason for the impressive aceuracy of the LDR method compared to the
exact cigenvector method is that only the mode shapes that are excited by the
seismic loading are caleulated.
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14.13 SUMMARY

There are three different mathematical methods for the numerical solution of the.
cigenvalue problem. They all have advintages for certain types of problems.

First, the determinant search method, which is related to finding the roots of a
polynomial, is a fundamental traditional method. 1t is not efficient for large
structural problems. The Storm sequence property of the diagonal clements of
the factored matrix can be used to determine the number of frequencies of
vibration within a specified range.

Second, the inverse. and subspace iteration methods are subsets of a large mumber of
power methods. The Stodola method is & power method. However, the use of &
Sweeping matrix to obtain higher modes is not practical because it eliminates the
sparseness of (he marices. Gram-Schmidt orthogonalization is the most effective
methed to force iteration vectors to converge to higher modes.

“Third, transformation methods asc: vry cffective for the calculation of all eigenvalues
and eigenvectors of smll dense matricss. Jacobi, Givens, Houscholder, Wilkinson
and Rutishavser are all well-known transformation methods. The author prefers to
use 2 modem version of the Jacobi method in the ETABS and SAP programs. It is
not the fastest; however, we have. found it to be accurate and robust. Because it is
‘only used for problems equal to the size of the subspace, the computational time for
this phase of the solution is very small compared to the time required to form the
subspace eigenvalue problem, The derivation of the Jecobi method is given in
Appendix D.

The use of Load Dependent Rits vectors is the most efficient approach to solve for
aceurate node displacements and member forces within structures subjested 10
dynamic loads. The lower frequencies obtained from a Ritz vestor analysis are
always very close to the exet free vibration frequencies. If frequencies and mode
shapes are missed, it is because the dynarmic loading does not excite them; therefore,
they are of no practical value. Another major advantage of using LDR vectors s that
its not necessary to be concemed about errors introduced by higher mode truncation
of a set of exact eigenvectors,
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All LDR mode shapes are linear combinations of the exact eigenvectors;
therefore, the method always converges to the exact solution. Also, the
computationsl time required to calculate the LDR vectors is significantly less
than the time required to solve for eigenvectors.
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DYNAMIC ANALYSIS USING RESPONSE
SPECTRUM SEISMIC LOADING

Before the Existence of Inexpensive Personal Computers,
the Response Spectrum Method was the Standard Approach
for Linear Seismic Analysis

15.1 INTRODUCTION

The basic mode superposition method, which is restricted to linearly elastic
analysis, produces the complete time history response of joint displacements and
member forces. In the past, there have been two major disadvantages in the use
of this approach. First, the method produces a large amownt of output
information that can require a significant amount of computational effort to
conduct all possible design checks as a function of time. Second, the analysis
must be repeated for several different earthquake motions to ensure that all
frequencics are excited because a response speetrum for one earthquake in a
specified direction is ot smooth function.

There arc computational advantages in using the response spectrum method of
seismic analysis for prediction of displacements and member forces in structural
systems. The method involves the calculation of only the maximum values of the
displacements and member forces in each mode using smooth design specira that
are the average of several earthquake motions.
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15.2

'STATIC AND DYNAMIC ANALYSIS

The purpose of this chapter is to summarize the fundamental equations used in
the response spectrum method and o point out the many approximations and
limitations of the method. For example, the response speetrum method cannot be
used to approximate the nonlinear response of a complex three-dimensional
structural system.

‘The recent increase in the speed of computers has made it practical to run many
time history analyses in a short per tis now possible (o
1un design checks as a function of time, which produces superior results, because
each member is nol designed for maximum peak values a required by the
response spectrum method.

DEFINITION OF A RESPONSE SPECTRUM

For three-dimensional seismic motion, the typical modal Equation (13.6) is
rewritten as:
as.1y

GO+ 28,0900, + G Y, = Py, + By i)y + Pt

oM, in
which i is equal to x, y or z. Two major problers must be solved to obtain an
‘approximate response spectrum solution to this equation. First, for each direction
of ground motion, maximum peak forces and displacements must be estimated.
Second, after the response for the three orthogonal directions has been solved, it
is necessary to estimate the maximum response from the three components of
carthquake motion acting at the same time. This section addresses the modal
combination problem from one component of motion only. The scparate

where the three Mode Participation Factors are defined by p,,=

problem of combining the results from motion in three orthogenal directions will
be discussed later in this chapter.

For i

iput in one direction only. Equation (15.1) is written as:

FlH+ 28,0, 9080, + @ y(8), =pyit), (15.2)

Given 4 specified ground motion i(t),, damping value and assuming
Pu

—1.0, it is possible to solve Equation (15.2) ut various values of @ and
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plot a curve of the maximum peak response y(®)yy - For this acceleration
input, the curve is by definition the displacement response spectrum for the
carthquake motion. A different curve will exist for each different value of
damping.

A plot of @y{®)yx is defined as the pseudo-velocity spectrum and a plot of
@ Y(@)yux is defined as the pseudo-acceleration spectrant.

The thrce curves—displacement response spectrum, pseudo-velocity spectrum,
and pseudo-acceleration spectrum—are normally plotted as one curve on special
log paper. However, the pseudo-values have minimum physical significance and
are ot an essential part of a response spectrum analysis. The true values for
maximum velocity and acceleration must be calculated from the solution of
Equation (152).

There is a mathematical relationship, however, between the pseudo-acceleration
spectrum and the total acceleration spectrum. The total acceleration of the unit
mass, single degree-of-freedom system, governed by Equation (15.2), is given
by

)y =) +iilt), 153y
Equation (15.2) can be solved for j(f) and substituted into Equation (15.3) to
yield:

ii(e)y = ~a’y(H)- Koyt (154)

‘Therefore, for the special case of zero damping, the total acceleration of the
system is equal to @’y(t). For this reason, the displacement response spectrum
curve is normally not plotted as modal displacement y{@),iyx versus ©. It is
standard 1o present the curve in terms of S(®) versus a period T in seconds,
where:

S(aa), = ' Y(@)yax  and (15.5a and 15.5b)
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The pseudo-acceleration spectrum curve, (@), has the units of acceleration
versus period that has some physical significance for zero damping only. It is
apparent that all response spectrum curves represent the properties of the
earthquake at a specific site and are not a function of the properties of the
structural system. After an estimation is made of the linear viscous damping
properties of the structure, a specific response spectrum curve is selected.

CALCULATION OF MODAL RESPONSE

The maximum modal displacement for a structural model can now be caleulated
for a typical mode 7 with period T, and coresponding spectrum response value
S$(@,). The maximum modal response associated with period T, is given by:

T 15.6)

‘The maximum modal displacement response of the structural model is calculated.
from:

= YT, Daax b as7

The corresponding intemal modal forces, f, , are calculated from stendard
matrix structural analysis using the same equations 2s required in static analysis.

TYPICAL RESPONSE SPECTRUM CURVES

A ten-second segment of the Loma Prieta earthquake motions recorded on a soft
site in the San Francisco Bay Area is shown in Figure 15.1. The record has been
comected using an iterative algorithm for zero displacement, velocity and
acceleration at the beginning and end of the ten-second record. For the
earthquake motions given in Figure 15.1a, the response spectrum curves for
displacement and pseudo-acceleration are summarized in Figure 15.22 and 15.2b

The velocity curves have been intentionally omilted because they are not an
essential part of the response spectrum method. Furthermore, it would require
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considerable space to clearly define terms such as peak ground velocity, pseudo
velocity speotrum, relative velocity spectrum and absolute velocity spectrum.

Figure 15.16 Typical Earthquake Ground Displacements - Inches
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Figure 15.2a Relative Displacement Spectrum y(®)yx - Inches
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The maximum ground acceleration for the earthquake defined by Figure 15.1a is
20,01 percent of gravity at 2.92 seconds. It is important to note that the pseudo-
aceeleration spectrum shown in Figure 15.2b has the same value for a very short
period system. This is because of the physical fact that & very rigid structure
‘moves s a rigid body and the relative displacements within the structure are
equal to zero, as indicated by Figure 15.2a. Also, the behavior of a rigid structure
is not a function of the viscous damping value.

The maximum ground displacement shown in Figure 15.1b is -11.62 inches at
1.97 seconds. For long period systems, the mass of the one-degree-of-freedom
structure does not move significantly and has approximately zero absolute
placement. Therefore, the relative displacement spectrum curves shown in
Figure 15.2a will converge to 11.62 inches for long periods and all values of
damping. This type of real physical behavior is fondamental o the design of
base isolated structures.

The relative displacement spectrum, Figure 15,23, and the absolute acceleration
spectrum, Figure 15.2b, have physical significance. However, the maximum
relative displacement is directly proportional to the maximum forces developed
in the structure, For that earthquake, the maximum relative displacement is 18.9
inches at a period of 1.6 seconds for | percent damping and 16.0 inches at a
period of 4 seconds for 5 percent damping. It is important to note the significant
difference between 1 and 5 percent damping for this typical soft site record.

Figure 15.2b, the absolute acceleration spectrurm, indicates maximum values at a
period of 0.64 seconds for both values of damping. Also, the multiplication by
* tends to completely eliminate the information contained in the long period
range. Because most structural failures during recent earthquakes have been
associated with soft sites, perhaps we should consider using the relative
displacement spectrum as the fundamental form for selecting a design
carthquake. The high-frequency, short-period part of the curve should alyways be
defined by:
ey

Bgmax 417

a5.8)

YOhax =Hgpaan /&* of  Y(Dax

where il is the peak ground acceleration.
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THE CQC METHOD OF MODAL COMBINATION

The most conservative method that is used to estimate a peak value of

displacement or force within a structure is (o use the sum of the absolute of the
‘modal response values. This approach assumes that the maximum modal values
for all modes oceur at the same point in time.

Another very common approach is 1o use the Square Root of the Sum of the
Squares, SRSS, on the maximum modal values to estimate the values of
displacement or forces. The SRSS method assumes that all of the maximum
‘modal values are statistically independent. For three-dimensional structures in
which 4 large number of frequencies are almost identical, this assumption is not
justified.

The relatively new method of modal combination is the Complete Quadratic
Combination, CQC, method [1] that was first published in 1981, It is based on
random vibration theories and has found wide aceeptance by most engincers and
has been incorporated as an option in most modern computer programs for
seismic analysis. Because many engineers and building codes are not requiring
the use of the CQC method, one purpose of this chapler is to explain by example
the advantages of using the CQC method and illustrate the potential problems in
the use of the SRSS method of modal combination.

The peak value of a typical force can now be estimated from the maximum
modal values using the CQC method with the application of the following
double summation equation:

F ;;fnonm/n, (159)

where f, is the modal force associated with mode . The double summation is
conducted over all modes. Similar equations can be applied to node
displacements, relative displacements and base s

ears and overturning moments

The cros;

-modal coefficients, p,,,., for the CQC method with constant damping
are:
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where =@, / ®,, and must be equal to or less than 1.0. It is important to note
that the cross-modal cocfficient array is symmetric and all terms are positive.

15.6 NUMERICAL EXAMPLE OF MODAL COMBINATION

The problems associated with using the absolute sum and the SRSS of modal
combination can be illustrated by their application o the four-story building
shown in Figure 15.3. The building is symmetrical; however, the center of mass
of all floors is located 25 fnches from the geometric center of the huilding.

Frame #1—

o 200"+ 180% 200"

Frame #3 -
Frame #2 X H
5 i
X .c6. 3 °
| e
H | 9
g | -
. | & Lo
Lo o |
L 850" ———|
Plan Elevation

Figare 15.3 A Simple Three-Dimensional Building Example

The direction of the applied earthguake motion, a table of natural frequencies and the
‘principal dircction of the mode shape are summarized in Figure 15.4.
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' Mode  Frequencies
b by sy (Radiansisec.)

13.869
13931
43.995
44.189
54418
77,688
78.029
10832
108.80
10 172613
" 304.80
12 425.00

caNoaaeNns

¥ -

Figure 15.4 Frequencies and Approximate Directions of Mode Shapes

One notes the closeness of the frequencies that is typical of most three-
dimensional building structures that are designed 1o resist carthquakes from both
directions equally. Because of the small mass eccentricity, which is normal in
real structures, the fundamental mode shape has x, y, as well as forsion
components. Therefore, the model represents a very common three-dimensional
building system. Also, note that there is nof @ mode shape in a particular given
direction, as is implied in many building codes and some teat books on
elementary dynamics.

The building was subjected (o one component of the Taft 1952 earthquake. An
exact time history analysis using all 12 modes and a response spectrum analysis
were conducted. The maximum modal base shears in the four frames for the first
five modes are shown in Figure 15.5.

Figure 15.6 summerizés the maximum base shears in each of the four frames.
using different methods. The time history base shears, Figure 15,64, are exact
‘The SRSS method, Figure 15.6b, produces base shears that under-estimate the
exzet values in the direction of the loads by approximately 30 percent and over-
estimate the base shears normal to the loads by 4 factor of 10, The sum of the
absolute values, Figure 15.6c, grossly over-estimates all results. The CQC
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‘methiod, Figure 15.6d, produces very realistic values that are close to the exact
time history solution.

E 2
ox oo
i ¢

485k
788K
714K

[

54k
6ok

T2rk

{e)5um of Absolute Valuss

Figure 15.6 Comparison of Modal Combination Methods
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The modal cross-correlation coefficients for this building are summarized in
Table 15.1. It is of importance ta note the existence of the relatively large off-
diagonal terms that indicate which modes are covpled.

Table 15.1 Modal Crass-Carrelation Coefficlents - =005

Mode 1 2 3 4 5 Uad‘;l“)
1 1000 | o0ses | aoos | ooos | oooe | 13s7
2 098 | 1000 | ooos | ooos | ooos | 13s
3 0006 | ooos | 1000 | oses | o1e0 | 4989
4 0006 | o006 | 0998 | 1000 | 0186 | 4mto
5 000s | 0004 | o010 | otes | towo | sasz

If one notes the signs of the modal base shears shown in Figure 15.3, it is
apparent how the application of the CQC method allows the surn of the base
shears in the dircetion of the external motion to be added directly. In addition,
the sum of the base shears, normal to the external motion. tend to cancel. The,
ability of the CQC method to recognize the relative sign of the torms in the
wiodal response is the key to the elimination of errors in the SRSS method.

DESIGN SPECTRA

Design spectra are not uneven curves as shown in Figure 15.2 because they are
intended to be the average of many carthuakes, At the present time, many
building codes specify design spectra in the form shown in Figure 15.7.
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15.8

Normalized Pseudo Acceleration

PERIOD - Seconds

Figure 15.7 Typical Design Spectram

‘The Uniform Building Code has defined specific equations for cach range of the
spectrum curve for four different soil types. For major structures, it is now
common practice to develop a site-dependent design spectrum that includes the
effect of local soil conditions and distance to the nearest faults.

‘ORTHOGONAL EFFECTS IN SPECTRAL ANALYSIS

A well-designed structure should be capable of equally resisting carthquake
mations from all possible directions. One option in existing design codes for
buildings and bridges requires that members be designed for "100 percent of the
prescribed seismic forces in one direction plus 30 petcent of the prescribed
forces in the perpendicular direction.” Other codes and organizations requie the
use of 40 percent rather than 30 percent, However, they give no indication on
how the direetions are to be determined for complex structures. For structures
that are rectangular and have clearly defined principal directions, these
"percentage” rules yield approximately the same results as the SRSS method.

For complex three-dimensional structures, such as non-rectangular buildings,
‘curved bridges, arch dams or piping systems, the direction of the earthquake that
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produces the maximum stresses in a particular member or at a specified point is
not apparent, For time history input, it is possible to perform a large number of
dynamic. analyses at various angles of input to check all points for the critical
carthquake directions. Such an elaborate study could conceivably produce a
different critical input direction for each stress evaluated, However, the cost of
such a study would be prohibitive.

Itis reasonable to assume that motions thet take place during an earthquake have
one principal direction [2). Or, during a finite period of time when maximum
ground acceleration occurs, a principal direction exists. For most structures, this
direction is mot known and for most geographical locations cannot be estimated.
Therefore, the only rational earthquake design criterion s that the structure must
resist an earthquake of a given magnitude from any possible direction. In
addition to the motion in the principal direction, a probability exists that metions
normal to that direction will occur simultaneously. Tn addition, because of the
complex nature of three-dimensional wave propagation, it is valid to assume that
these normal motions are statistically independent,

Based on those assumptions, & statement of the design eriterion is "a structure
must resist a major earthquake motion of magnitude S, for all possible angles 6
and at the same point in time resist carthquake motions of magnitude S at 90" to
the angle 8" These motions are shown schematically in Figure 15,1,

15.8.1 Basic Equatlons for Calculation of Spactral Forces

The stated design criterion implies that a large number of different analyses must
be conducted to determine the maximum design forces and stresses. It will be
shown in this section that maximum values for all members can be exactly
evaluated from ane computer run in which two global dynamic motions are
applied. Furthermore, the maximum member forces calculated are invariant with
respect to the selcetion system.
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Figure 15.8 Definition of Earthquake Spectra Input

Figure 15.8 indicates that the basic input spectra S, and S, are applied at an
arbitrary angle 8. At some typical point within the structure, a force, stress or

displacement F is produced by this inpat. To simplify the analysis, it will be
assumed that the minor input spectrum is some fraction of the major input

spectrum, Or:

S=as as.in
where @ is anumber between 0 and 1.0.

Recently, Menun and Der Kiureghian (3] presented the CQC3 method for the
combination of the effects of orthoganal spectrum.

‘The fundamental CQC3 equation for the estimation of a peak value is:

F=[E} +a*F} ~(1- 0>} — F)sin? @

i (1512)
+2(1-2*)F, 5, sinBeos+ F2]2

where,
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14 :;;fmpm&,“ (15.13)
By ’;;/mpmfsw 1514
Fom =;;/.,"an.,fm s.15)
B =;memm/m (15.16)

in which f,, and fug, are the modal values produced by 100 percent of the
lateral spectrum applied at O and 90 degrees respectively, and f,, is the modal
response from the vertical spectrum that can be different from the lateral
spectrum,

Itis important to note that for equal spectra a= 1, the value F is not a function
of 8 and the selection of the analysis reference system is arbitrary. Or:

2 4 BL +EP as.1n

‘This indicates that it s possible to conduct only one analysis with any reference
system, and the resulting structure will have all members that are designed to
equally resist earthquake motions fram all possible directions. This method is
acceptable by most building codes.

Fuax.

15.8.2 The General CQC3 Method

For a=1, the CQC3 method reduces to the SRSS method. However, this can be
over conservative because real ground motions of equal value in all directions
have not been recorded. Normally, the value of @ in Equation (15.12) is not
known; therefore, it is necessary to calculate the critical angle that produces the.
maximum response. Differentiation of Equation (15.12) and setting the results to
2er0 yields:

(15.18)
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Two roots exist for Equation (15.17) that must be checked in order that the
following equation is maximurm:

Fuax =IF + By = (1-a"XE] —Fy)sin® &,
1 15.19)
~21-a")Fo.p sind,, cose,,+ F I*

At the present time, no specific guidelines have been suggested for the value of
4. Reference [3] presented an example with values 4 between 0.50 and 0.85.

15.8.3 Examples of Three-Dimensional Spectra Analyses

The previously presented theory clearly indicates that the CQC3 combination
rule, with @ equal to 1.0, is identical to the SRSS method and produces results
for all structural systems that are not a function of the reference system used by
the engineer. One example will be presented to show the advantages of the
method. Figure 15.9 illustrates a very simple one-story structure that was
selected to compare the results of the 100/30 and 100/40 percentage rules with
the SRSS rule.

Y
i typcat Coaran:
| 00f
1y = 2006
E=30kift*

L=10t

Magp =0.25k -sec’ /ft
Total Mass:
M=100k-scc
Centor of Mass:
x=10606 y=4419

1

Figure 15.9 Three-Dimensional Structure
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Note that the masses are not at the geometric center of the structure. The structure has
twao translations and one rotational degrees-of-freedom located at the center of mass.
“The colurnns, which are subjected to bending about the local 2 and 3 axes, are pinned
atthe top where they are connected to an in-plane rigid diaphragm.

The periods and normalized base shear forces associated with the mode shapes
are summarized in Table 15.2. Because the structure has a plane of symmetry at
225 degrees, the second mode has no torsion and has 2 normalized base shear at
22.5 degrees with the x-axis. Because of this symmelry, it is apparent that
columns 1 and 3 (or columns 2 and 4) should be designed for the same forces.

Table 15.2 Perlods and Normalized Base Shear

Direction of-
Mode Period X-Force Y-Force Base Shear-
(Seconds) (Degrees)
1 1.047 0383 0.924 675
0777, 0.382 0924 1125
0.769 0.924 0.383 225

‘The definition of the mean displacement response spectrum used in the spectra
analysis is given in Table 15.3.

Table 15.3 Participating Masses and Response Spectrum Used

‘Spectral Valus.

Period
Mode | (seconds) Kehtass s ot
1 1.047 12.02 70.05 1.00
0.777 262 15.31 1.00
0.769 85.36 14.64 1.00

‘The moments about the local 2 and 3 axes at the base of each of the four
columns for the spectrum applied separately at 0.0 and 90 degrees are
summarized in Tables 15.4 and 15.5 and are compared to the 100/30 rule.
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Table 15.4 Moments About 2-Axes — SRSS vs. 100/30 Rule
Mysss=
Member | Mo M g | Mees | Eroa
1 0.742 1.750 1.901 1973 3.8
2 1.113 2.463 2703 2797 3.5
3 0.940 1.652 1.901 1.934 1.8
4 1131 | 2455 2708 2794 a4
Table 15.5 Moments About 3-Axes — SRSS vs. 100/30 Rule
Membe M Mg M M Er
ember 3 . aso | Emore
R 2 )
1 2702 0.137 2.705 2743 1.4
= 2702 0.137 2705 2743 14
3 1.904 1.922 2705 2493 7.8
4 1.904 1.922 2705 2493 -7.8

For this example, the maximum forces do not vary significantly between the two
methods. However, it does illustrate that the 100/30 combination method
produces moments that are not symmetric, whereas the SRSS combination

method produces logical and symmetric moments. For example,

member 4

would be over-designed by 3.4 percent about the local 2-axis and under-designed

by 7.8 percent about the local 3-axis using the 100/30 combination rule.

‘The SRSS and 100/40 design moments about the focal 2 and 3 axes at the base

of each of the four columns are summarized in Tables 15.6 and 15.7
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Table 15.6 Moments About 2-Axes ~SRSS vs. 100/40 Rule

Msgs
M M M M Error(%)
tember o o e oo (%)
1 0742 | 1750 1.901 2047 T
2 1113 | 2468 2708 2908 76
3 oga | 1652 1.901 2028 12
4 1431 | 2458 2703 2907 75
Table 15.7 Moments About 3-Axes — SRSS v. 100/40 Rule
Msgss
Member Mo Mwo N v Miowso | Error(%)
1 2702 | 0437 2.705 2.757 19
2 2702 | o137 2705 2757 19
3 1904 | 1922 2.705 2,684 08
4 1904 | 1922 2705 2684 08

The results presented in Tables 15.6 and 157 also illustrate that the 10040
combination method produces results that are not reasonable. Because of
symmetry, members | and 3 and members 2 and 4 should be designed for the

same moments. Both the 10030 and 100/40 rules fail this simple test.

If a structural engineer wants (0 be conservative, the resuls of the SRSS
directional combination rule or the input spectra can be multiplied by an
additional factor greater than one. One should not try to justify the use of the
100140 percentage rule because it is conservative in “most cases." For complex
three-dimensional structures, the use of the 10040 or 100/30 percentage rule
will produce member designs that are not equally resistant to earthquake motions

from all possible directions.
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15.9

15.8.4 Recommendatlons on Orthogonal Effects

For three-dimensional response spectra analyses, it has been shown that the
“design of elements for 100 percent of the prescribed seismic forces in one
direction plus 30 or 40 percent of the prescribed forces applied in the
perpendicular direction” is dependent on the user's selection of the reference
system, These commonly used "percentage combination rules” are empirical and
can underestimate the design forces in certain members and produce a member
design that is relatively weak in one direction. It has been shown that the
alternate building code approved method, in which an SRSS combination of two
100 percent spectra analyses with respect to any user-defined orthogonal axes,
will produce design forces that are not a function of the reference system.
Therefore, the resulting structural design has equal resistance to seismic motions
from all directions.

The €QC3 method should be used if a value of @ less than 1.0 can be justified.
It will produce realistic results that are not a function of the user-sclected
reference system.

LIMITATIONS OF THE RESPONSE SPECTRUM METHOD

Itis apparent that use of the response spectrum method has limitations, some of
which can be removed by additional development. However, it will never be
accurate for nonlinear analysis of multi degree of freedom structures. The author
believes that in the future more time history dynamic response analyses will be
conducted and the many approximations associated with the use of the response
spectrum method will be avoided. Some of these additional limitations will be
discussed in this section.

15.9.1 Story Drlft Calculations

All displacements produced by the tesponse spectrum method are positive
numbers. Therefore, a plot of a dynamic displaced shape has very little meaning
because each displacement is an estimation of the maximum value. Inter-story
displacements are used to estimate damage to nonstructural elements and cannot
be calculated directly from the probable peak values of displacement. A simple
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method to obtain a probable peak value of shear strain s to place a very thin
panel element, with a shear modulus of unity, in the area where the deformation
is to be calculated. The peak value of shear stress will be a good estimation of
the damage index. The coment code suggests 2 maximum value of 0.005
horizontal drift ratio, which is the same as panel shear strain if the vertical
displacements are neglected.

15.9.2 Estimation of Spectra Stresses in Beams

‘The fundamental equation for the calculation of the stresses within the cross
section of a beam is:

P Mx My
oLy
AT T

(15.20)

This equation can be evaluated for 2 specified x and y point in the cross section
and for the calculated maximum spectral axial force and moments that are all
positive values. It is apparent that the resulting stress may be conservative
because all forces will probably not cbtain their peak values at the same time.

For response spectrum analysis, the comect and accurate approach for the
evaluation of equation (15.20) is to evaluate the equation for each mode of
vibration. This will take into consideration the relative signs of axial forces and
moments in ¢ach mode. An accurate value of the maximum stress can then be
caleulated from the modal stcesses using the CQC double sum method. It has
been the author’s experience with large three-dimensional structures that stresses
caleulated from modal stresses can be less than 50 percent of the value
calculated using maximum peak vahues of moments and axial force.

15.9.3 Design Checks for Steel and Concrete Beams

Unfortunately, most design check equations for steel structures are writien in
terms of "design strength ratios" that are a nonlinear function of the axial force
in the member; therefore, the ratios cannot be calculated in cach mode. The
author proposes a new approximate method to replace the state-of-the-art
approach of calculating strength ratios based on maximum peak valucs of

member forces. This would involve first calculating the maximum axial force.
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The design ratios would then be evaluated mode by mode, assuming the
‘maximum axial force reduction factor remains constant for all modes. The
design ratio for the member would then be estimated using a double-sum modal
combination method, such as the CQC3 method. This approach would improve
accuracy and still be conservative.

For conerete structures, additional development work is required to develop a
completely rational method for the use of maximur spectral forces in & design
check equation because of the nonlinear behavior of concrete members. A time
history analysis may be the only approach that will produce rational design
forces.

15.9.4 Calculation of Shear Foree In Bolts

With respect 10 the interesting problem of calculating the maximum shear force
in a bol, it is not correct 1o estimate the maximum shear force from a veetor
summation because the x and y shears do not obtain their peak values at the
same time. A correct method of estimating the maximum shear in a bolt is to
check the maximu bolt shear at several different angles about the bolt axis.
This would be a tedious approach using hand caleulations; however, if the
approach is built into a post processor computer program, the computational
time to calculate the maximurm bolt force s trivial.

The same problem exists if principal stresses are to be caloulated from a
response spectrum analysis. One must check at several angles to estimate the
‘maximum and minimum value of the stress at each point in the siructure.

SUMMARY

In this chapter it has been illustrated that the response spectrum method of
dynamic analysis must be used carefully. The CQC method should be used to
combine modal maxima to minimize the introduction of avoidable errors. The
increase in computational effort, as compared to the SRSS methed, is small
compared to the total computer time for a seismic analysis. The CQC method
hes a sound theoretical basis and has been accepted by most experts in
earthquake engineering. The use of the absolute sum or the SRSS method for

modal combination cannot be justified.
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Tn order for a structure to have equal resistance to earthquake motions from all
directions, the CQC3 method should be used to combine the effects of
earthquake spectra applied in three dimensions. The percentage rule methods
have no theoretical basis and are not invariant with respect to the reference
system.

Engineers, however, should clearly understand that the response spectrum
method is ‘an approximate method used to estimate maximum peak values of
displacements and forces and it has significant limitations. It is estricted to
linear elastic analysis in which the damping properties can only be estimated
with a low degree of confidence. The use of nonlinear spectra, which is
common, has very litle theoretical background, and this approach should not be
applied in the analysis of complex three-dimensional structures. For such
structures, true nonlinear time-history response should be used, as indicated in
Chapter 19.
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FAST NONLINEAR ANALYSIS

The Dynamic Analysis of a Structure with a Small Number of
Nonlinear Elements is Almost as Fast as a Linear Analysis

18.1 INTRODUCTION

The response of real structures when subjected to a large dynamic inpul often
involves significant nonlinear behavior. In general, nonlinear behavior includes
the effects of large displacements and/or nonlinear material properties.

The use of geometric stiffness and P-Delta analyses, as s

mmarized in Chapter
11, includes the effects of first order large displacements. If the axial forces
the members remain relatively constant during the application of lateral dynamic
displacements, many structures can be solved directly without iteration.

The more complicated problem associated with large displacements, which
cause large strains in all mermbers of the structure, requires a tremendous amount
of computational effort and computer time to obtain a solution. Fortunately,
large strains very seldom occur in typical civil engineering structures made from
steel and concrete materials. Therefore, the solution methods associated with the
large strain problem will not be discussed in detail in this chapter. However,
certain types of large strains, such as those in rubber base solators and gap
elements, can be treated as a lumped nonlinear element using the Fast Nonlinear
Analysis (FNA) method presented in this chapter.

The more common type of onlinear behavior is when the material stress-strain,
or force-deformation, relationship is nonlinear. This is because of the modern
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design philosophy that “a well-designed structure should have a limited number
of members which require ductility and that the failure mechanism be clearly
defined.” Such an approach minimizes the cost of repair afier a major
earthquake.

STRUCTURES WITH A LIMITED NUMBER OF NONLINEAR
ELEMENTS

A large number of very practical structures have a limited number of points o
members in which nonlinear behavior takes place when subjected to static or
dynamic loading. Local buckling of diagonals, uplifting at the foundation,
contact between different parts of the structures and yielding of a few elements
local nonlinear behavior. For dynamic loads, it is
becoming common practice to add concentrated damping, base isolation and
other erergy dissipation elements. Figure 18.1 illustrates typical nonlinear
problems. In many cases, those nonlinear elements are easily identified. For

are examples of structures

other structures, an initial elastic analysis is required to identify the nonlinear
areas.

In this chapter the FNA method is applied to both the static and dynamic
analysis of linear or nonlinear structural systems. A limited number of
predefined nonlinear elements are assumed to exist. Stiffess and mass
orthogonal Load Dependent Ritz Vectors of the elastic structural system are used
to reduce the size of the nonlinear system to be solved. The forces in the
nonlinear elements are calculated by iteration at the end of each time or load
step. The uncoupled modal equations are solved exactly for each time increment.

Several examples are presented that illustrate the efficiency and accuracy of the
‘method. The computational speed of the new FNA method is compared with the
traditional “brute force” method of nonlinear analysis in which the complete
equilibriom equations are formed and solved at each increment of load. For
many problems, the new method is several magnitudes faster.
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Figure 18.1 Examples of Nonlinear Elements

FUNDAMENTAL EQUILIBRIUM EQUATIONS

The FNA method is a simple approach in which the fundamental equations of
‘mechanic (equilibrium, force-deformation and compatibility) are satisfied. The
exact force equilibrium of the computer model of 4 structure at time 7 is
‘expressed by the following matrix equation:

Mii(t)+ Cir(t) + Ku(t)+ Rithy, =R(t) asn
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where M,C andK are the mass, proportional damping and stiffness matrices,
respectively. The size of these three square matrices is equal to the total number
of unknown node point displacements N, The elastic stiffness matrix K neglects
the stiffiess of the nonlinear elements. The time-dependent vectors
(1), (1) uft) and R(E) are the node point acceleration, velocity, displacement
and extemnal applied load, respectively. AndR(t)y, is the global node force
Vector from the sum of the forces in the nonlinear elements and is computed by
iteration at each point in time.

Tf the computer model is unstable without the nonlinear elements, one can add
“effective elastic elements” (at the location of the nonlinear elements) of
arbitrary stiffess. If these effective forces, K ,u(t), are added to both sides of
‘Equation (1), the exact equilibrium equations can be written as:

Mii(t)+ Ca(t)+ (K+ K Ju(t

=R()-R(t)y, +K,u(t) 182)

where K, is the effective stiffniess of arbitrary value. Therefore, the exact
dynamic equilibrium equations for the nonlinear computer model can be written
as:

Mii(t) + Ci(t) + Ku(h) = R(t) 183)

The elastic stiffness matrix K is equal to K +K, and is known. The effective
external load R(f) is equal o R(t)—R(tly, +K,u(t), which must be evaluated
ration. If a good estimate of the effective elastic stiffness can be made, the
rate of convergence may be uccelerated because the unknown load term
~ Rty +K u(t) will be small.

CALCULATION OF NONLINEAR FORCES

At any time the L nonlinear deformations d(t) within the nonlinear elements are
calculated from the following displacement transformation equation:

d(t)=buft) (0]

Also, the rate of change with respect (o time in the nonlinear deformations, d(t),

are given by:
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() =ba(t) s.5)

Note that for small displacements, the displacement transformation matrix b is
not a function of time and is exact. The displacement transformation matrix
bfor a truss element is given by Equation (2.11).

If the time-history deformations and velocities in all nonlinear elements are
known, the nonlinear forces () in the nonlinear elements can be calculated
exactly at any time from the nonlinar material properties of each nonlinear
element. It is apparent that this can only be accomplished by iteration at each
point in time.

TRANSFORMATION TO MODAL COORDINATES

The first step in the solution of Equation (18.3) is to calculate a set of N
orthogonal Load Dependent Ritz vectors, @, which satisfy the following
equations:

OTMO=1I ad @"K®=0Q* (18.62) and (18.6b)

where 1 is a unit matrix and Q is a diagonal matrix in which the diagonal
terms are defined 35 o,

The responsc of the system can now be expressed in terms of those vectors by
introducing the following matrix transformations:

wH=OY(H) ah=0¥1)  GH=0¥1) asmn

The substitution of those equations into Equation (18.1) and the multiplication of
both sides of the equation by ® yield a set of N uncoupled equations expressed
by the following matrix equation:

() + AY()+QY(1) = F(t) (18.8)
in which the linear and nonlinear modal forces are given by:

F(t)=a"R(t)= 0"R(t) - ®TR(Hy, +® K ult) (189)




[image: image75.jpg]186

STATIC AND DYNAMIG ANALYSIS
‘The assumption that the damping matrix can be diagonalized is consistent with
the classical normal mode superposition method in which damping values are
assigned, in terms of percent of critical damping, at the modal level. The
diagonal terms of the A matrix are 2§, @, in which &, is the damping ratio for
‘mode . It should be noted that the forces associated with concentrated dampers
at any location in the structure can be included as part of the nonlinear force
vectar.

Also, if the mumber of LDR vectors used is equal to the total number of degrecs
of freedom N, Equation 18.8 is exact at time r. Therefore, if very small time
steps are used and iteration s used within each time step, the method converges
0 the exact solution. The use of LDR vectors significantly reduces the number
of modes required.

Because u(t)=®¥(t), the deformations in the nonlinear elements can be
expressed directly in terms of the modal coordinate

A =BY(t) (18.10)

where the element deformation - modal coordinate transformation matrix is
defined by:

B=bo sy

Itis very important to note that the L by N' B matrix is not a function of time and
is relatively small in size; also, it needs to be calculated only once before

integration of the modal equations,

At any time, given the deformations and history of behavior in the nonlinear
elements, the forces in the nonlinear elements f(r) can be evaluated from the
basic nonlinear properties and deformation history of the element. From the
basic principle of virtual work, the nonlinear modal forces are then calculated
from:

Ft), =BTH() (8.12)

‘The effective elastic forces can also be rewritten as
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Ft), =0"K,u(t)=0"b "k bu() = B'k,d(f) 813

where Kk, is the effective linear stiffness matrix in the local nonlinear element

reference system.

SOLUTION OF NONLINEAR MODAL EQUATIONS

“The calculation of the Load Dependent Vectors, without the nonlinear elements,
is the first step before solving the modal equations. Also, the B deformation-
modeshape transformation matrix needs to be calculated only once before start
of the step-by-step solution phase. A typical modal equation is of the form:

it + 28, 0, 90, + o7yt = (1), {14

where i), is the modal load and for nonlinear elements is a function of all

other modal responses at the same paint in time, Therefore, the modal equations
must be integrated simultaneously and iteration is necessary to obtain the
solution of all modal equations al time 1. The exact solution of the modal
equations for & lincar or cubic variation of load within a time step is summarized
by Equation (13.13) and is in terms of exponential, square root, sine and cosine
functions. However, those computational intensive functions, given in Table
13.2, are pre-calculated for all modes and used as constants for the integra
within cach time step, In addition, the use of the exact piece-wise integra
method allows the use of larger time steps.

The complete nonlinear solution algorithm, written in iterative form, is
summarized in Table 18.1.
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‘Table 18.1 Summary of Nonlinear Solution Algorithm

I INITIAL CALCULATION - BEFORE STEP-BY-STEP SOLUTION ]

1. Calculats N Load Dependent Ritz vectors ®for the structure without the
nonlineer elements. These vestors have N, displacement DOF.

2. Caleulate the £ by N B matrix. Where L is the total number of DOF within
all nonlinear elements.

3. Caloulate integration constants A, ——~— for the piace-wise exact
integration of the modal equations for each mode.

Il NONLINEAR SOLUTION at times At, 241, 3L -
Use Tayior series to estimate solution at time ¢

Y1) =X(t-8¢) +AY(E- At +%i’«pm

V() = V(- A+ AFV(E- A)
2. Foriteration /, calculate L nonlinear deformations and velocities.
At =Bt and def=BYety
3. Based on the deformation and velocity histories in nonfinear elements,
calculate L nonlinear forces f(t .

4. Caloulate new modal fotcs vector Fft)'=F(t)- BT[f(t ) ~k,d(t)]
Use piece-wiss exact method to solve modal equations for next iteration.

R OR R
PR
PAHOADANOA]
m

Galoulate erornorm:~ Erp= 2Bl

T
D IFehl

=)

7. Check Convergance —where the tolerance, Tol , is specified.

o

If Err>Tol gotostep2 with i=i+1
It Err<Tol goto step 1 with t=i+Af
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18.7

STATIC NONLINEAR ANALYSIS OF FRAME STRUCTURE

The structure shown in Figure 18.2 is used (o illustrate the use of the FNA
algorithm for the solution of a structure subjected to both static and dynamic
foads. I is assumed that the external columns of the seven-story frame structure
cannot take axial tension or moment at the foundation level and the column can
uplift. The axial foundation stiffness is 1,000 kips per inch at the cxternal
columns and 2,000 kips per inch at the center column. The dead load is 80 kips
per stoty and is applied as concentrated vertical loads of 20 kips at the external
columns and 40 kips at the center column. The static lateral load s specified as
50 percent of the dead load.

MEMBER PROPERTIES
aeans. a0 e A0
CENTER COLUMN 1-1000101N" A<00INE
OUTER COLUMNS 1=50060 ¢ A=2001N:
MODULUS OF ELASTIGITY  E~4000KS!
FOUNDATION STIFFNESS k=1000KIN
WEGHT PERSTORY w0k,

]

Figure 18.2 Properties of Frame Structure

For the purpose of calculating the dynamic response, the mass of the structure is
calculated directly from the dead load. The fundamental period of the structure
with the external columns not allowed to uplift is 0.708 seconds. The
fundamental period of the structure allowing upliftis 1.691 seconds.

The static load patterns used to generate the series of LDR vectors are shown in
Figure 183. The first load pattern represents the mass-proportional lateral
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carthquake load. The second patter represents the vertical dead load. The last
two load patterns represent the possible contact forces that exist at the
foundation of the external columns. I is very important that equal and opposite
1oad patterns be applied at cach point where a nonlinear clement exists. These
vectors allow for the accurate evaluation of member forces at the contact poins.
For this example, the vectors will not be activated in the solution when there is
uplift at the base of the columns because the axial force must be zero. Also, the
total number of Ritz vectors used should be a multiple of the number of static
load patters so that the solution is complete for all possible loadings. In
addition, care should be taken to make sure that all vectors are lincarly
independent.

U I

Figure 18.3 Four Static Load Vectors Used in Analysis

For this example, the dead load is applied at time zero and reaches its maximum
value at one second, as shown in Figure 18.4. The time increment used is 0.10
second. The modal damping ratios are set to 0.999 for all modes; therefore, the
dynamic solution converges to the static solution in less than one second. The
lateral load is applied at two seconds and reaches a maximum value at three
seconds. At four seconds after 40 lod increments, a static equilibrium position
is obtained,

It should be noted that the converged solution is the exact static solution for this
problem because all possible combinations of the static vectors have been
included in the analysis. The magnitude of the mass, damping and the size of the
time step used will not affect the value of the converged static solution
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[Pigure 18.4 Application of Static Loads vs. Time

Ttis of interest to note that it is impossible for a real structure to fail under static
loads only, because at the point of collapse, inertia forces must be present.
Therefore, the application of static load increments with respect 1o time is &
physically realistic approach, The approximate static load respanse of the frame
is shown in Figure 18.5.

o T

o[- - —

Figure 18.5 Column Axial Forces from “Static” Loads
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18.8 DYNAMIC NONLINEAR ANALYSIS OF FRAME STRUCTURE

The same frame structure that is defined in Figore 18.2 is subjected to Loma
Prieta Earthquake ground motions recorded on the cast side of the San Francisco
Bay at & maximum acceleration of 20.1 percent of gravity and a maximum
ground displacement of 5.81 inches. The acceleration record used was comrected
to zero acceleration, velocity and displacement at the end of the record and is
shown in Figure 18.6.

25
20
15
10 At p

°

o 1 2 3 4 5§ 6 7 8 9 10
TIME - seconds

Figure 18.6 Segment of Loma Prieta Earthquake - Percent of Gravity

The dead load was applied as a ramp function in the time interval O to 1 second.
The lateral earthquake load is applied starting at 2 seconds, Sixteen Ritz vectors
and a modal damping value of 5 percent were used in the analysis. The column
axial forces as a function of time are shown in Figure 18.7.
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Figure 18.7 Column Axial Forces from Earthquake Loading

It s of considerable interest to compare the behavior of the building that is not
allowed o uplift with the behavior of the same building that is allowed to wplift.
These results are summarized in Table 18.2.

Table 18.2. Summary of Resuits for Building Uplifting Problem from the Loma

Prleta Earthquake & =0.05
Max. Max. Max. Max. | Max. | Gompu-
Displace- | Axal | Base | Base | Stain | tational
ment | Force | Shear | Moment | Energy | Time
plit | (nohes) | (kips) | (kps) | (kin) | (kin) | (seconds)
Without 388 542 247 | 212000 | 447 146
With 390 505 199 | 163000 | 428 15
Percent o || g || =cigase || <2z .
oreoe | 105% | -68% | 94% | 27e% | 2% | %

The lateral displacement at the top of the structure has not changed significantly
by allowing the external columns to uplift. However, allowing column uplifting
reduces significantly the base shear, overturing moment and strain energy
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stored in the structure. It is apparent for this structure, that uplifting is a
“natural” base isolation system. This reduction of forces in a structure from
uplifting has also been obscrved in shaking table tests. However, it has not been
used extensively for real structures because of the lack of precedent and the
inability of the design engineer to easily compute the dynamic behavior of an
uplifting structure.

For this small nonlinear example, there
time compared (o a linear dynamic analysis. However, for a structural system
with a large number of nonlinear elements, a large number of Ritz vectors may

a very small increase in computational

be required and the additional time to integrate the nonlinear modal equation can
be significant

Table 183 presents a summary of the results if the same structure is subjected to
twice the ground accelerations of the Loma Prieta earthguake. One notes that all
significant response parameters are reduced significantly.

Table 18.3 Summary of Results for Building Uplitting Problem from Two Times
the Loma Prieta Earthquake - £ = 0,05

Max, Max, Max, Max. Max.
Displace- | Column | Base | Base | Strain
ment | Force | Shear | Moment | Energy | Max. Uplift
Uplitt | (inches) | (kips) | (kips) | (kin) | (kin) | (inches)
Without 7.76 924 494 | 424,000 | 1,547
With 589 620 255 | 197,000 [ 480 116
Percent
Difernce | 4% | 3% | -40% | 6a% | -66%

The maximum uplit at the base of the external columns is more than ane inch;
therefore, these may be ideal locations for the placement of additional energy
dissipation devices such as viscous dampers.

18.9 SEISMIC ANALYSIS OF ELEVATED WATER TANK

A novlinear earthquake response analysis of an elevated water tank was
conducted using a well-known commercial computer program in which the
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stiffness matrix for the complete structure was recalculated for each time step
and equilibrium was obtained using iteration. The structural system and analysis
had the following properties:
92 nodes with 236 unknown displacements
103 elastic frame elements
56 nonlinear diagonal brace elements - tension only
600 time sieps at 0.02 seconds

The solution times on two different computers are listed below:

Intel 486 3days 4320 minutes
Cray XMP-1 3 hours 180 minutes

The same structure was solved using the FNA method presented in this chapter

on an Intel 486 in less than 3 minutes. Thus, a structural engineer has the ability

1o investigate a large number of retrofit strategies within a few hours.

SUMMARY

Itis common practice in engineering design to restrict the nonlinear behavior to
a small number of predefined locations within a structure. In this chapter an
efficient computational method has been presented to perform the static and
dynamic analysis of these types of structural systems. The FNA method, using
LDR vectors, is a completely different approach to structural dynamics. The
nonlinear forces are treated 0s external loads and a set of LDR vectors is
generated 1o accurately capture the effects of those forces. By iteration within
each time step, equilibrium, compatibility and all element force-deformation
equations within each nonlinear element are identically satisfied. The reduced
set of modal equations is solved exactly for a linear variation of forces during a
small time step. Numerical damping and integration errors from the use of large
time steps are not intraduced.,

The computer model must be structurally stable without the nonlinear elements
Al structures can be made stable if an element with an effective stiffnes:
placed parallel with the nonlinear element and its stiffness added to the basic
computer model. The forces in this effective stiffness clement are moved to the.
right side of the equilibrium cquations and removed during the nonlinear
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iterative solution phase. These dummy or effective. stiffness elements will
eliminate the introduction of long periods into the basic model and improve
accuracy and rate of convergence for many nonlinear structures.

1t has been demonstrated that structures subjected to static loads can also be
solved using the FNA method. It is only necessary to apply the loads slowly 102
constant value and add large modsl damping values. Therefore, the final
converged solution will be in static equilibrium and will not contain inertia
forces. It should be noted that it is necessary to use Load Dependent Vectors
associated with the nonlinezs degrees of freedom, and not the exact eigenvectors.
i static problems are to be solved using this appraach.

‘The FNA method has been added o the commercial program ETABS for the
analysis of building systems and the general purpose struetural analysis program
SAP2000. The ETABS program has special base isolation elements that are
commonly used by the structural engincering profession. Those computer
programs caleulate and plot the total input energy, strain energy, kinetic energy
and the dissipation of energy by modal damping and nonlinear elements as a
function of time. In addition, an energy error i calculated that allows the user to
evaluate the appropriate time step size. Therefare, the energy calculation option
atlows different structural designs o be compared, In many cases a good design
for a specified dynamic loading is one that has a minimum amount of strai
energy absorbed within the struetural system.

As in the case of nommal linear mode superposition amalysis, it is the
responsibility of the user to check, using multiple anslyses, that a sufficiently
small time step and the appropriate number of modes have been used. This
approach will ensure that the method will converge to the exact solution,

Using the mumerical methods presented in this chapler, the computational time
required for a nonlinear dynamic analysis of a large structure, with a smal number of
nonlinear elements, can be only a small percentage more than the computational time.
required for a lincar dynamic analysis of the same structure. This ellows large
nonlinear problems o be solved relatively quickly.
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LINEAR VISCOUS DAMPING

Linear Viscous Damping
Is a Property of the Computational Model
And is not a Property of a Real Structure

INTRODUCTION

In structural cngineering, viscous velocity-dependent damping is very difficult to
visualize for most real structural systems. Only a small number of structures.
have a finite number of damping elements where real viscous dynamic
properties can be measured. In most cases modal damping ratios are used in the
computer model to approximate unknown nonlinear energy dissipation within
the structure.

Another form of damping, referred to as Rayleigh damping, is often used in the
mathematical model for the simulation of the dynarmic response of a structure;
Rayleigh damping is proportional to the stiffness and mass of the structure. Both
modal and Rayleigh damping are used to avoid the need to form a damping
matrix based on the physical properties of the real structure.

In recent years, the addition of energy dissipation devices to the structure has
forced the structural engineer to treat the energy dissipation in a more exact
manner. However, the purpose of this chapter is to discuss the limitations of
‘modal and Rayleigh damping.
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19.2 ENERGY DISSIPATION IN REAL STRUCTURES

It s possible to estimate an “effective or approximate™ viscous damping ratio
directly from laboratory or field tests of structures. One method is (o apply a
staticdisplacement by attaching a cable to the siructure and then suddenly
removing the load by cutting the cable. If the structure can be approximated by a
single degree of freedom, the displacement response will be of the form shown
in Figure 19.1. For muli degree of freedom structural systems, the response will
contain more modes and the analysis method required 1o predict the damping
ratios will be more complex.

It should be noted that the decay of the typical displacement response only
indicates that energy dissipation is taking place. The cause of the energy
dissipation may be from many different effects such as material damping, joint
friction and radiation damping at the supports. However, if it is assumed that all
energy dissipation is the result of linear viscous damping, the free vibration
response is given by the following equatior

u(f) = u(0)e™ cos(wpt) 9.1y

where ; Qp=tnf1-&*

Figure 19.1 Free Vibration Test of Real Structures, Response vs. Time

Equation (19.1) can be evaluated at any two maximum points "m cycles" apart
and the following two equations are produced:
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u(2nn)=u, = u(0) (19.2)

YRR+ 1)) =, = ()R 00 193)

The ratio of these two equations is:

2ot
Y =3

1,

(194)

Taking the natural logarith of this decay ratio, 7,,, and rewriting produces the
following equation:

=In(r) e
R (3 (19.50)

This equation can be written in iterative form as:

& =Eoy1-Ein (19.56)

I the decay ratio equals 0:730 between two adjacent maximurms, three fterations
yield the following damping ratio to three significant figures:

£=0.0501 = 0.0500= 0.0500

The damping value obiained by this approach is often referred to as effective
damping. Linear modal damping is also referred to as classical damping.
However, it must be remembered tht it is an approximate value and is based on
‘many assumptions.

Another type of energy dissipation that exists in real structures is radiation
damping at the suppors of the structure, The vibration of the structure strains the
foundation material near the supports and causes stress waves to radiate into the
infinite foundation. This can be significant if the foundation material is soft
felative to the stiffness of the structure. The presence of  spring, damper and
mass at each support often approximates this type of damping.
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PHYSICAL INTERPRETATION OF VISCOUS DAMPING

‘The steain energy stored within a strueture is proportional o the displacement
squared. Hence, the amount of encrgy that s dissipated during each cycle of free
vibration can be calculated for various damping ratios, as summarized in Table
19.1. In addition, Table 19.1 shows the number of cycles required to reduce the
initial response by a factor of 10.

Table 19.1 Energy Loss Per Cycle for Different Damping Ratios.

g oo | DY | ST
Percentage | r=e 100(1-r) 1=1n(0.10)/In()
1 0.939 1.8 36.6
5 0.730 467 7.3
10 0.532 71.7 36
20 0.278 923 18

A5 percent damping ratio indicates that 46.7 percent of the stcain energy s
dissipated during each cycle. If the period associated with the mode is 0.05
seconds, the energy is reduced by a factor of 10 in 0.365 second. Therefore, 2 5
percent modal damping ratio produces a significant effect on the results of a
dynamic response analysis.

Field testing of real structures subjected to small displacements indicates typical
damping ratios are less than 2 percent. Also, for most structures, the damping is
not linear and is not proportional to velocity. Consequently, values of modal
damping over 5 percent are difficult to justify. However, it is often common
practice for structural engineers to use values over 10 percent.

MODAL DAMPING VIOLATES DYNAMIC EQUILIBRIUM

For multi degrec of freedom systems, the use of modal damping violates
dynamic equilibrium and the fundamental laws of physics. For example, it is
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possible to calculate the reactions as a function of time at the base of a structure
using the following two methods:

First, the inertia forces at each mass point can be caloulated in a specific
direction by multiplying the absolute acceleration in that direction times the
mass at the point. In the case of earthquake loading, the sum of all these forces
must be equal to the sum of the base reaction forces in that direction because no
other forces act on the structure.

‘Second, the member forces at the ends of all members attached to reaction points
can be caloulated as 4 function of time. The sum of the components of the
‘member forces in the direction of the load is the base reaction force experienced
by the structure.

In the case of zero modal damping, those reaction forces, as a function of time,
are identical. However, for nonzero modal damping, those reaction forces are
significantly different. These differences indicate that linear modal damping
introduces external loads that ae acting on the structure above the base and are
physically impossible. This is clearly an area where the standard “state-of-the-
art” assumption of modal damping needs o be re-examined and an altemative
approach developed.

Energy dissipation exists in real structures. However, it must be in the form of
equal and opposite forces between points within the structure, Therefore, a
viscous damper, or any other type of energy dissipating device, connected
between two points within the structure is physically possible and will not cause
an error in the reaction forces. There must be zero base shear for all internal
energy dissipation forces.

NUMERICAL EXAMPLE

To illustrate the errors involved in the use of modal damping, a simple seven-
story building was subjected to a typical earthguake motion, Table 19.2 indicates
the values of base shear calculated from the external inertia forces, which satisfy
dynamic equilibrium, and the base shear calculated from the exact summation of
the shears at the base of the three columns.
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Itis of interest to note that the maximum values of base shear calculated from
o different methods are significantly different for the same computer run. The
only logical explanation is that the external damping forces exist only in the
mathematical model of the structure. Because this is physically impossible, the
use of standard modl damping can produce a small error in the analysis.

Table 1.2 Comparison of Base Shear for Seven-Story Bullding

Damping | Dynamic Equiibrium Sum of Column Error
Percentage | Base Shear (kips) Shears (kips) Percentage
o 3707 @ 5355Sec. | 3707 @ 5.355 Sec. 00
2 3147 @ 46905ec | 3186 @ 4.6955ec +.2
5 2537 @ 46755ec | 2596 @ 4.690Sec +2.3
10 2149 ® 3.7455ec | 1954 @ 4.035 Sec o1
20 1823 @ 3.0555ec | 148.7 @ 3.365 Sec -18.4

Itis of interest to note that the use of only 5 percent damping reduces the base
shear from 371 kips to 254 kips for this example. Because the measurement of
damping in most real structures has been found to be less than 2 percent, the
selection of 5 percent reduces the results significantly.

STIFFNESS AND MASS PROPORTIONAL DAMPING

A very common type of damping used in the nonlinear incremental analysis of

structures s to assume that the damping matrix is proportional to the mass and
stffoess matrices. Or:

C=nM+3K (196)

‘This type of damping is normally referred to as Rayleigh damping. n mode
superposition analysis, the damping matrix must have the following properties in
order for the modal equations to be uncoupled:

20,8, =7Co, =n0; M9, +8¢ Ko,

19.7)
0=¢TC4, n=m =
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Because of the orthogonality propertics of the mass and stiffness matrices, this
equation can he rewritten as:

20,5, =n+B0! or (19.8)

It is apparent that modal damping can be specified exactly at only two
frequencies, i and j , to solve for 1 and & i the following equation:

-
=& @ +0; (19.9)
=008

For the typical case, the damping is set o be equal at the two frequencies;
therefore & =&; =§ and the proportionality factors are calculated from:

ad n=0 (19.10)

The assumption of mass proportional damping implies the existence of extemal
supported dampers that are physically impossible for a base supported structure.
The use of stiffness proportional damping has the effect of increasing the
damping in the higher modes of the structure for which there is no physical
justification. This form of damping can result in significant errors for impact-
type problems and carthquake displacement input at the base of a structure.
Therefore, the use of Rayleigh-type damping is difficult to justify for most
structures. However, it continues (o be used within many computer programs to
obtain numerical results using large time integration steps.

CALCULATION OF ORTHOGONAL DAMPING MATRICES

Tn Chapter 13, the classical damping matrix was assumed to satisfy the following
orthogonality relationship:
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@'CO=d where d,, =20, and d,,=0 fornent 9.1

In addition, the mode shapes are normalized 5o that &"M® =1, The following
matrix can be definet

D=am and 19.12)

Hence, if Equation 19.11 is pre-multiplied by @ and post-multiplied by ", the
following damping matrix is obained:

.
C=%d®" =), (19.13)

Therefore, a classical damping matrix can be calculated for each mode that has a
specified amount of damping in that mode and zero damping in all other modes:

C=%,0,Mp,00M a9.14)

It must be noted that this modal damping matrix is a mathematical definition and
that it is physically impossible for such damping properties to exist in a real
multi degree of freedom structure,

The total damping matrix for all modes can be written as:

C=icn f)za,nxwu M 19.15)
&

It is apparent that given the mode shapes, a full damping matrix can be
constructed from this mathematical equation. However, the resulting damping
matrix may require that external dampers and negative damping elements be
connccted between nodes of the compter model.

The only reason to form such a damping matrix is to compare the results of a
step-by-step integration  solution with a mode superposition solution. A
‘numerical example is given in reference [1].
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STRUCTURES WITH NON-CLASSICAL DAMPING

Itis possible to model structural systems with linear viscous dampers at arbitrary
locations within a structural system. The exact solution involves the calculation
of complex eigenvalues and eigenvectors and a large amount of computational
effort. Bocause the basic nature of energy dissipation is not clearly defined in
real structures and viscous damping is often used to approximate nonlinear
behavior, this incresse in computational effort is not justified given that we are
not solving the real problem. A mare efficient method to solve this problem is to
move the damping force to the right-hand side of the dynamic equilibrium
equation and solve the problem as a nonlinear problem using the FNA method.
Also, nonlinear viscous damping can easily be considered by this new
computational method.

NONLINEAR ENERGY DISSIPATION

Most physical energy dissipation in teal structures is in phase with the
displacements and is a nonlinear function of the magnitude of the displacements.
Nevertheless, it is common practice to approximate the nonlinear behavior with
an “equivalent lincar damping” and not conduct a nonlinear analysis. The major
reason for this approximation is that all linear programs for mode superposition
o response spectrum analysis can consider linear viscous damping in an exact
mathematical manner. This approximation is no longer necessary if the
structural engineer can identify where and how the energy is dissipated within
the structural system. The FNA method provides an altenative to the use of
cquivalent linear viscous damping.

Base isolators are one of the most common types of predefined nonlincar
elements used in carthquake resistant designs. Mechanical dampers, friction
devices and plastic hinges are other types of common nonlinar elements. In
addition, gap clements are required to model contact between structural
companents and uplifting of structures. A special type of gap element, with the
ability to crush and dissipate energy, is useful to model concrete and soil types
of materials. Cables that can tzke tension only and dissipate energy in yielding
are necessary to capture the behavior of many bridge type structures. However,
when a nonlinear analysis is conducted where energy is dissipated within the
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nonlinear devices, one cannot justify adding an additional 5 percent of linear
modal damping

SUMMARY

The use of lincar modal damping as  percentage of critical damping has been
used to approximate the nonlinear behavior of structures. The energy dissipation
in real strctures is far more complicated and tends to be proportional to
displacements rather than proportianal to the velocity. The use of approximate
“equivalent viscous damping” has littl theoretical or experimental justificati
and produces & mathematical model that violates dynamic equilibrium.

One can mathematically create damping matrices to have different damping in
each mode. In addition, one can use stiffness and mass proportional damping
matrices. To justify these convenient mathematical assumptions, field
experimental work must be conducted

It s now possible to accurately simulate, using the FNA method, the behavior of
structures with a finite number of discrete energy dissipation devices installed.
The experimentally determined propertics of the devices can be directly
incorporated into the computer model.
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20.

DYNAMIC ANALYSIS USING
NUMERICAL INTEGRATION

Normally, Direct Numerical Integration for
Earthquake Loading is Very Siow

INTRODUCTION

The most general approach for solving the dynamic response of structural
systems is the direct numerical integration of the dynamic equilibrium equations.
This involves the attempt to satisfy dynamic equilibrium at discrete points in time
after the solution has been defined at time zero. Most methods use equal time
intervals at AL2AH3AL......NAH. Many different numerical techniques have
previonsly been presented; however, all approaches can fundamentally be
classified as either explicit or implicit inegration methods.

Explicit methods do not involve the solution of a set of lincar equations at cach
step. Basically, those methods use the differential equation at time “¢ " to predict
& solution at time *# + At ™. For most real structures, which contain stiff elements,
ime step is required to obtain a stable solution. Therefore, all
explicit methods arc conditionally stable with respect to the size of the time step.

a very small

Implicit methods attempt to satisfy the differential equation at time “¢ ™ after the
solution at time * ~ At has been found. Those methods require the solution of a
set of lincar equations at each time step; however, larger time steps may be used.
Implicit methods can be conditionatly or unconditionaily stable.
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A large number of accurate, higher-order, multi-step methods have been
developed for the numerical solution of differential equations. Those multi-step
methods assume that the solution is a smooth function in which the higher
derivatives are continuous. The exact solution of many nonlinear structures
requires that the accelerations, the second derivative of the displacements, are not
smooth functions. This discontinuity of the acceleration is caused by the
nonlinear hysteresis of most structural materials, contact between parts of the
structure, and buckling of elements. Therefore, only single-step methods will be
presented in this chapter. On the basis of a significant amount of experience, it is
the conclusion of the author that only single-step, implicit, unconditional stable
methods should be used for the step-by-step seismic analysis of practical
structures.

NEWMARK FAMILY OF METHODS

In 1959 Newmark [1] presented a family of single-step integration methods for
solving structural dynamic problems for both blast and seismic loading. During
the past 40 years, Newmark's method has been applied to the dynamic analysis
of many practical engineering structures. In addition, it has been modified and
improved by many other researchers. To illustrate the use of this family of
numerical integration methods, consider the solution of the linear dynamic
equilibrium equations written in the following form:

Mii, +Ca, +Kuy, =F, 20.1)

The direct use of Taylor's series provides a rigorous approach to obtain the
following two additional equations:

2
u, =y, +Ati, + A,
2 (20.22)
’ ac
iy + At +
= S (2026

Newmark truncated those equations and expressed them in the following form:

A
g+ AU+
2

u o H0A0%

(2026)
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If the acceleration is assumed to be linear within the lime step, the following
equation can be written:

[CHEL]

Av 20.3)

The substitution of Equation (20.3) into Equations (20.2c and 20.2d) produces
Newmark's equations in standard form:

u, = v, AWM, +[%—B)A(’|iw +pactii, 5

St + (L= YA, g+ YA, (204b)

o,

Newimark solved Bquations (20.4a, 20.4b and 20.1) by iteration for each time
step for each displacement DOF of the structural system. The term if, was
obtained from Equation (20.1) by dividing the equation by the mass associated
with the DOF.

In 1962 Wilson [2] formulated Newmark’s method in matrix notation, added
stiffriess and mass proportional damping, and eliminated the need for iteration by
introducing the direct solution of equations at each time step. This requires that
Equations (204 and 20.4b) be rewsitten in the following form:

=0y (0 = Uyge) + By Bl (20.50)

=y = g} Bl + Byl (20.50)

i,

where the constants by (0 b, are defined in Table 201, The substitution of
‘Bquations (20.5a and 20.5b) into Equation (20.1) allows the dynamic equilibrium
of the system at time “t”to be writlen in terms of the unknown node
displacements u, . Or:

(BM +5,C +Kpu, =F, + M(byn, 5 —by
+ by, gy = b5t oy — Byl )

var — baii )

(20.6)
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‘The Newmark direet integration algorithm is summarized in Table 20.1. Note
that the constants &, need to be calculated anly once. Also, for linear systems,
the effective dynamic stiffness matrix K is formed and triangula

ized only once.

Table 20.1 Summary of the Newmark Methad of Direct Integration

L INITIAL CALCULATION
A. Form static stifiness matrix K , mass matrix M and damping matrix C

8. Specily integration parameters 1 and ¥
C. Calculate integration constants

2 1.
[ 27 pat

b, =yab,
by=T+y8th, by =At(1+yb,—7)

. Form effective stfiness malfix ¢ K+ b,M +b,C

E. Triangularize effective stifness matrix

K=LDL"
. Specify initial conditions. 1, i,

1. FOR EACH TIME STEP t=At241,3At---
A Caloulate effective load vector
F =F +Mbu, y, —bytty gy =Bl ) + OO s b5l — bl )

B. Solve for node displacement vector at time t
LDL™y, =F,  forward and back-substitution only

€. Caloulate node velocities and accelerations at time t

(M =t )+ by + bl

(0 = Uiy )+ Dyt + Bl

D. GotoStep LA with t=t+At

20.3 STABILITY OF NEWMARK’S METHOD

For zero damping, Newmark's method is conditionally stable if:
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whete 0y, is the maximum frequency in the structura) system 1), Newmark's
method is unconditionally stable if:

1
28y
(20.8)

However, if v is greater than ¥, errors are introduced. Those errors are
associated with “numerical damping’ and “period elongation.”

For large multi degres of freedom structural systems, the time step limil given by
Equation (20.7) can be written in a more useable form as:

At

(20.9)

Computer models of large real structures normally contain a large number of
periods that are smaller than the integration time steps therefore, it is essential
that one select a numerical integration method that is unconditional for all time

steps.

THE AVERAGE ACCELERATION METHOD

The average acceleration method is identical to the trapezoidal rule that has been
used to numerically evaluste second order differential equations for
approximately 100 years. It can easily be derived from the following truncated
Taylor's series expansion:

(20.10)
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where ¢ is a variable point within the time step. The consistent velocity can be
obtained by differentiation of Equation (20.10). Or:

0.11)
If =4t
@0.120)
=+ i + 2
I (20.126)

These equations are identical o Newmark's Equations (20.4a and 20.4b) with
¥=1/2and p=1/4.

Tt can easily be shown that the average acceleration method conserves energy for
the free vibration problem, Mii+Ku=0, for all possible time steps [4].
‘Therefore, the sum of the kinetic and strain energy is constant. Or:

25 WM, +ul,Ku, 20.13)

TMu, +u K

WILSON’S 8 FACTOR

In 1973, the general Newmark method was made unconditionally stable by the
introduction of a 8 factor [3]. The introduction of the B factor is motivated by
the observation that an unstable solution tends to oscillate about the true solution.
Therefore, if the numerical solution is evaluated within the time increment, the
spurious oscillations are minimized. This can be accomplished by 2 simple
modification to the Newmark method using a time step defined by:

A

i @0.143)

and a load defined by:
Re=R.x+8(R, ~Rs) (20.14b)
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where ©>1.0. After the acceleration i, vector has been evaluated using
Newmark's method at the integration time step 6At, values of node
accelerations, velocities and displacements are calculated from the following.
fundamental equations:

(20.153)

0+ (1Y), + Y A1, (20.15b)
5

PRI +@m pA, (20.150)

The use of the 8 factor tends to umerically damp out the high modes of the
system. If 8 equals 1.0, Newmark’s method is not modified. However, for
problems where the higher mode response is important, the errors that are
introduced can be large. In addition, the dynamic equilibrium equations are ot
exactly satisfied at time 1 . Therefore, the author no longer recommends the use
of the 6 factor. At the time of the introduction of the method, it solved all
problems associated with stability of the Newmark family of methods. However,
during the past twenty years, new and more accurate numerical methods have
been developed.

THE USE OF STIFFNESS PROPORTIONAL DAMPING

Because of the unconditional stability of the average acceleration method, it is
the most robust method to be used for the step-by-step dynamic analysis of large
complex structural systems in which  large number of high frequencies—short
periods—are present. The only problem with the method is that the short periods,
which are smaller than the time step, oscillate indefinitely after they are excited.
The higher mode oscillation can be reduced by the addition of stiffuess
proportional damping. The additional damping that is added 10 the system is of
the form:

Cp=8K (20.16)

‘where the modal damping ratio, given by Equation (13.5), is defined by:
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One notes that the damping is large for short periods and small for the long
periods or low freque apparent that when periods are greater than the
time step. they cannot be integrated accurately by any direct integration method.
Therefore, it is logical to damp those short periods to prevent them from
oscillating during the solution procedure. For a time step equal to the period,
Equation (20.17) can be rewritien as:

§=¢/AT
g (20.13)

Hence, if the integration time step is 0.02 second and we wish to assign a
‘minimum of 1.0 to all periods shorter than the time step, a value of 8= 0.0064
should be used. The damping ratio in all modes s now predictable for this
example from Equation (20.17). Therefore, the damping ratio for a 1.0 second
period is 0.02 and for a 0. 10 second period, it is 0.2.

THE HILBER, HUGHES AND TAYLOR o« METHOD

The a method [4] uses the Newmark method to solve the following modified
equations of motion:

Mii, +(1+0) Ci, +(1+0) Ku, =(1+0)F,

(20.1
~aF, +aCil,, +aKu,_, e

‘When o equals zero, the method reduces to the constant acceleration method. It
produces numerical energy dissipation in the higher modes; however, it cannot be
predicted as a damping ratio as in the use of stiffness proportional damping.
Also, it does ot solve the fundamental equilibrium equation at time 1. However,
it is currently being used in many computer programs. The performance of the
method appears to be very similar (o the use of stiffness proportional damping
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SELECTION OF A DIRECT INTEGRATION METHOD

It is apparent that a large number of different direct numerical integration
methods are possible by specifying different integration parameters. A few of the
‘most commonly used methods are summarized in Table 20.2.

‘Table 20.2 Summary of Newmark Methods Modified by the & Factor

a
METHOD: Y| B |8 > ACCURACY
Gentral Difference | o | o | ostss |Excellentiorsman At

Unstable for large At

Very good for small At

1 05513
Linear Acceleration vz | v | o 5¢ Bt
Average Accoleration | 12 | 14 | o oo | Good forsmai At
No energy dissipation
Good for small At
Modified Average a7 "
Aovelorin | o Energy dissipation for

large At

209

For single degree of freedom systems, the central difference method is most
accurate, and the linear acceleration method is more accurate than the average
acceleration method. However, if only single degree of freedom systems are 10 be
integrated, the piece-wise exact method previously presented should be used
because there is no need to use an approximate method.

It appears that the modified average acceleration method, with a minimum
addition of stiffness proportional damping, is a general procedure that can be
used for the dynamic analysis of all structural systems. Using 8= AT/Z will
damp out periods shorter than the time step and introduces a minimum etror in
the long period response.

NONLINEAR ANALYSIS

‘The basic Newmark constant acceleration method can be extended to nonlinear
dynamic analysis. This requires that iteration be performed at each time step (o
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satisfy equilibrium, Also, the incremental stffness matrix must be formed and
riangularized before each iteration or at selective points in time. Many different
numerical tricks, including element by clement methods, have been developed to
minimize the computationsl requirements. Also, the triangularization of the
effective incremental stiffess matrix may be avoided by introducing iterative
solution methods.

SUMMARY

For carthquake analysis of linear structures, it should be noted that the direct
integration of the dynamic equilibrium equations is normally not mumerically
efficient as compared to the mode superposition method using LDR vectors. If
the triangularized stiffness and mass matrices and other vectors cannot be stored
in high-speed storage, the computer execution time can be long.

Afier using direct integration methods for approximately forty years, the author
can 10 longer recommend the Wilson method for the direct integration of the
dynamic equilibrium cquations. The Newmark constant acceleration method,
with the addition of very small smounts of stiffness proportional damping, is
tecommended for dynamic analysis nonlinear structural systems. For all methods
of direct integration, great care should be taken to make certain that the stiffniess
proportional damping does not eliminate important high-frequency response.
Mass proportional damping cannot be justified because it causes external forces
to be applied to the structure that reduce the base shear for seismic loading.

In the area of nonlinear dynamic analysis, one cannot prove that any one method
will always converge, One should always check the error in the conservation of
energy for every solution obtained. In future editions of this book it is hoped that
numerical examples will be presented so that the appropriate method can be
recommended for different classes of problems in structural analysis.
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