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ABSTRACT

Correation of anayticd and experimental moda modes for dynamic gpplications as well as the correction of
andytica moddsto better reflect the actua structura dynamic system has become increasingly important in
many engineering analyses for awide variety of gpplications. Much work has been expended in the area of
model reduction and mode expansion to further this cause. Also, corrdation tools have been developed to
assg inthe process. However, clear identification of where discrepancies exist is not always possible with
exiding tools.

The thrugt of thiswork isto further define correation tools that help better identify where discrepancies exist
between the andytical and experimental data bases. In addition, some work is also presented to provide
additiona toolsthat assst in the evauation of test measurement locations that may be critica to the success of
the correlation process.
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CHAPTER 3

GENERAL MODEL REDUCTION
TECHNIQUES

PREFACING REMARKS

This chapter presents some of the basic approaches to the reduction of finite eement models
from a generd standpoint. Modd reduction istypicaly performed to obtained a reduced model
for efficiency purposes for other structural dynamic gpplications such as forced response
andysis and component model synthesis techniques. However, as used for thiswork, mode
reduction is specificaly used to form a mapping between the very large st of finite dement
degrees of freedom and the relatively small set of tested degrees of freedom.

GENERAL REDUCTION TECHNIQUES

Modd reduction is generdly performed to reduce the Sze of alarge andytical mode to develop
amore efficient model for further andytica studies such as substructuring or forced response
dudies. Most reduction or condensation techniques affect the dynamic character of the
resulting reduced model in the reduction process. Modd reduction is performed for a number
of reasons but here we are primarily interested in reduction as a mapping technique. A
schematic of the reduction processis shown in Figure 1

e

Figure 3-1 - Schematic of Reduction Process

In generd we can write arelationship between the full set of andyticd or finite dement dof and
the reduced set of active or condensed dof as

(xn —1§ag THxd o {a} =[Teelf ) 31)

The 'n' subscript denotes the full set of andytical dofs, the ‘a subscript denotes the active set of
dof (sometimes referred to as master dof and for correlation studies referred to as test dof) and
the subscript 'd’ denotes the deleted dof (sometimes referred to as embedded or omitted dof);

MODAL MODEL CORRELATION TECHNIQUES 1 Rev 031198
Chapter 3 - Model Reduction Techniques Peter Avitabile



the [T] transformation relates the transformation between these two sets of dofs. (Note: that the
subscript 1 and 2 are aso sometimes ued to denote 'state 1' and 'state 2')

Since the energy of the system needs to be perserved then we can write a balance between the
energy a state 1 and date 2 as

U =200} Kl =22} T 32)

Substituting the transformation equation yields
U= %{[lel{ xol} ' TKal{ [Tz {x2}) = %{ X2} ' [Kal{x2} (33

and rearranging some terms gives

U =2} ] K[ Telf e} = 5 el Kol @4
Therefore, we can see that the reduced gtiffnessis rdated to the origind giffnessas

[Ka] =[To2] [kl Toa]  or  [Ka] =[T]"[K][T] (35)
Likewisefor the system mass matrix we can write

[Ma] =[T] [Ma[[T] (36)

The [T] transformetion can be a variety of different matrices depending on the transformation
technique utilized.

Once these new mass and gtiffness matrices are available in 'a space then the equation of
motion becomes

[Mal{%a} +[Kal{ xa} ={ Fa()} (3-7)
with a corresponding eigensolution given as

[[Ka]- 1IMa]l{xa} ={0) (38)
Depending on the reduction scheme utilized, the eigenvaues of the reduced system will generaly
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be greater than or at most equd to the eigenvalues of the full system.

Guyan Condensation

For a gatic system, the equation of motion can be written in partitioned form as

éKaa] [Kad]qxauz}FaU
dKaa [Kdd]%xd% ing

again the 'a subscript denotes the master or active set of dof and the 'd' subscript denotes the
embedded or deleted dof.

(3-9)

Assuming that the forces on the deleted dof are zero, then the second equation can be
expanded as

[Keal{ %a} +[Kaa]{xd} ={0} (3-10)
which can be solved for the displacement at the deleted dof as

{xd} =-[Kad] 1[Kda]{xa} (3-11)
The firgt equation of the partitioned set can be expanded as

[Kaa]{Xa} +[Kaa{ xa} ={Fa} (3-12)
Upon substitution of the displacement at the deleted dof

[Kaal{xa} +[Kan][Kaa] [Kaal{xa} ={F} (3-13)

Therefore, ardaionship is avallable rdating the the active dof to the full set of dof as

;D> D~

e mg _
R TR tog CAR LAIEN (314

Using this transformation matrix, we can write the reduced system giffness matrix as

KS|=[T " [K [T (3-15)

Thistransformation is exact in the satic sense.

MODAL MODEL CORRELATION TECHNIQUES 3 Rev 031198
Chapter 3 - Model Reduction Techniques Peter Avitabile



Both Guyan and Irons proposed that the same system transformation matrix used to modify the
diffness matrix be used to modify the system mass matrix

=[1]"[Ma] T (3-16)

This transformation attempts to convert the system mass to the set of active dofs. However,
gnce this technique is based soley on the static stiffness of the system, there is no guarantee that
the reduced matrix will be accurate for dynamic applications.

The solution of the reduced problem will contain eigenvaues and eigenvectors that are Smilar to
the eigenvaues and eigenvectors of the full sysem modd. The degree of slilarity is heavily
dependent on the sdlection of the set of adof - both the total number of dof aswell asthe
digribution of the dof. In generd the relative difference increases as the mode number increases
with the lower order modes generaly having less discrepancy than the higher order modes.

I mproved Reduced System

As an extension of the Guyan reduction process, the Improved Reduced System (IRS) attempts
to account for some of the effects of the deleted dofs that cause digtortion in the Guyan
reduction process. The development is based off of the fact that the tatic structural model
containing distributed forces can be condensed producing a reduced system and solution. The
displacements of the reduced system are then expanded and adjusted for the deleted forces
producing an exact Satica solution of the complete system. A first order gpproximation of the
elgensystem is formed using a Guyarvlrons reduced modd gpproach which is based on the
dtatic condensation process with no adjustment for the deleted distributed inertiaforces. The
modal vectors of the approximated solution can be adjusted in asmilar fashion asin the Satic
solution producing an improved set of eigenvectors. Finadly an estimate of the transformation
matrix from full space to reduced space can be formed for the IRS system. The resulting
equations are summarized below but are not detailed herein

)= & el @1
where

=Kl Kl [n]—gﬁ] [Kdd]ﬂw [rImd (<] @18

The IRS technique generally produces better approximations of the reduced eigensystem when
compared to the Guyarvlrons approach since an estimate of the inertia associated with the
deleted dof is developed as part of the reduction process. While IRS is useful as amodel
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reduction technique, expansion and correlaion studies usudly do not employ this method due to
other much more accurate techniques.

Dynamic Condensation

A dynamic implementation of the Guyan reduction process is the Dynamic Condensation
process which is often used in correlaion studies, in particular for expanson of mode shapes.

Let'sintroduce a shift value, f, into the set of equation describing the dynamic system as
[[Ka] - (- OM][{xa} ={0} (3-19)

and rearrange terms to group the constant term f times the mass matrix with the stiffness matrix
toyidd

[[[Ka]+£[Ma]]- 1 [M ]| %0} ={0} (3-20)
and now let
[Dn] =[Kn] +f[My] (3-21)

Using the same gpproach as done with Guyan condensation, these equations can be written in
partitioned form as

éDaa] [Dad]qxauz}FaU
dDga [Ddd]%xd% ing

Assuming that the forces on the deleted dof are zero, then the second equetion of the partitioned
set can be expanded as

(3-22)

[Daal{ %a} +[Deal{xa} ={0} (3-23)
which can be solved as

{xa} =-[Daa] [Deal{xs} (3-24)
The first equation of the partitioned set can be expanded as

[Daal{Xa} +[Deal{ ¥} ={Fa} (3-25)
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Upon subdtitution

[Daa]{Xa} *[Daa][Da] [Deial{a} ={ Fi} (3-26)

Therefore, the relationship between the active dofs and the full set of andytica dofs can be
written as

B U ]
b =8 (5, 3 Dol LT (327

So we can write the reduced mass and stiffness matrices as

|'[Ka][Ti] (3-28)

I'[Ma][T] (3-29)

Due to the formulation of the dydnamic condensation process, the eigensolution of the reduced
matrices will result in on eigenvalue which will correspond to the shift vaue used for the
reduction process. If the shift value happensto correspond exactly to one of the eigenvaues of
the system, then this eigenvaue will be preserved accurately in the reduced mode and will also
produce and expanded eigenvector which will be exactly the same as the corresponding
elgenvector from the full finite dement mode relating to the shifted eigenvalue. None of the
other eéigenvaues will correspond to any of the eigenvaues of the full system.

Sysem Equivaent Reduction Expanson Process (SEREP)

As done with the other reduction schemes, there is a reationship between the tested or active 'a
dof and the deleted 'd' dof which can be written in generd form as

| Xal U
= T (3-30)
b =1y =M%
The moda transformation can be rewritten using this notation as

1 XqU_ éUyu
bk =1,0y=g,dP (3-31)

Notice that the modal matrix is aso partitioned into the 'a active and 'd' deleted set of degrees
of freedom. Looking at just the relationship for the 'a set of degrees of freedom, we can write
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{xa} =[Ua]{p} (3-32)

Theinverse specification of this equation involves a generdized inverse snce the number of
unkownsis not equa to the number of equations need to be solved. There are two possible
solutions to this Stuation
when the number of equations 'a are greeter than or equa to the number of solution
variables'm’  (an overspecification or equivaence of the system)
when the number of equations'a are less than the number of solution variables'm’  (an
underspecification of the system)

Least Squares Solution- a3 m

{xa} =[Ua]{n}
[Ua] " {xa} =[Va]'[Ua]{P)

(CANCA| NEANEAE (CAN A AN A

R AN V8] WIAREAEIITACES

Average Solution - adm
(0} =[UalT{[UaTUal) {xeb =[Ua]%(

For mogt structura dynamic gpplications in dynamic testing, the least sgaures solution is used
since the number of master dof (or tested dof) isfar greater than the number of modesin the
system, then the generdized inverseis

{p} :([Ua]T[Ua])-l[Ua]T{Xa} =[Ua]*{xa} (3-33)

This equation for the moda displacement can be substituted into the modal transformation
egaution to give

{Xn} =[Un][Ua]g{ Xa} :[Tu]{ Xa} (3-34)
where
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[Tu] =[Un][Va)° (3-35)

Thisisthe SEREP transformation matrix thet is used for ether the reduction of the finite ement
mass and gtiffness matrices or for the expansion of the measured experimenta modal vectors.

The Sysem Equivaent Reduction Expanson Process (SEREP) rdies on afinite dement modd
or andyticad modd from which an eigensolution is performed to develop the mapping between
the full set of finite dement dof and the reduced set of 'a degress of freedom. The egensolution
of thefull st of system matrices yields a set of modal vectors which can be partitioned into
those degrees of freedom that correspond to the active set of 'a dof and the inactive set of ‘d'

dof.

Un = iy Ua= I
:ﬁﬁ; TEEEE
:&:l % & % &
XX)(XlE f f
Figure 3-2 - Schematic of Ua Partion of Un
Reduction of System Maitrices

Using this SEREP transformation matrix, the reduced mass and stiffness matrices can then be
written as

M| =[Tu] M, ][T

=) [l -
K3 =[Tu] [Kn][Tu]
The equation of motion for the 'a set of degrees of freedom can be written as

M3|{xa} +[K3|{xa} ={Fa(®)} (3-37)

Subgtituting in the SEREP transformation matrix in equetion (3-35) into the reduced mass
meatrix in equation (17) gives
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M) =[Ua)° [Ua] MU U] (3-39)

From mass orthogonality in equation (2-10), equation (3-38) can be written for the reduced
mass as

M3 :[ua]gT[Ua]g (3-39)

Note that the original systern mass matrix is not needed in order to compute the reduced mass
meatrix.

Smilarly for the reduced stiffness matrix, the SEREP transformation matrix can be substituted
into the reduced gtiffness matrix in equation (3-16) to give

kS =[Ual U] TR un[Ua? (3-40)

From stiffness orthogondlity in equation (2-11), equation (3-40) can be written for the reduced
diffness matrix as

[Ka] =[Ua]*' [ WP

CAK (3-41)

Note that the origind system gtiffness matrix is not needed in order to compute the reduced
diffness matrix.

While the size the these reduced mass and stiffness matricesis aby a, the rank of the reduced
matricesisonly m. Therefore, use of these matrices must be done so with caution. Dueto this
rank deficiency, an aternate form of the SEREP reduction process which invokes an exact
solution can be obtained by using a=m for the reduction. This techniqueisreferred to as
SEREPa

In order to better understand this rank deficiency problem, the following section reviews the
reduced eigenproblem using the SEREP reduced matrices. Singular valued decomposition is
used to illustrate some key features of the SEREP reduced matrices. (SVD isaprocedure
which dlowsfor the inverson of coefficient meatrices))

Any matrix [A] can be decomposed into its orthogona matrices and singular vaues as

[A]=[L]IS[R)"
where
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[S]_ﬂsr] [o]u

“&lo] [da

Reduced Moda Matrices

Using SVD, the active set of dof in the moda matrix can be decomposed into

[Ua] =[LS[RT"

where

CR

&0 o
Then the generdized inverse can be formed as
[Ua]* =[RS

where

[9° =[] * 1]

Reduced Mass and Stiffness Matrices

The reduced mass matrix is

[Ma] =[S L)

where

aT[9 — Spe [0]3
Sl

The reduced stiffness matrix is
[Ka] =[L]([9° R [w?][RI[S°)L]"
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and thetermsin[ ] are reduced using SVD to
([ [R)wW][RYIS]®) =[ L[S L]
égm] [O]u

&ld [d]g

where

Reduced Mass and Stiffness Matrices

The SEREP condition occurs when a=m. It isfor thisthat the sysem istruely equivalent and
the rank of the system is equal to the order of the reduced matrices.

When a<m, the reduced system meatrices are shown to be of proper rank but this condition is
not normaly useful Snceit involves an average of the solution varigbles.

When a>m, the reduced system matrices are rank deficient but produce the proper
elgensolution for the'm'’ variables retained in the reduced modd.

Reduced Eigen Sysem

The reduced eigen sysem s

[[Ka]' l[Ma]]{Xa} =[0]

which can be expressed as

o R R[g]- [sid]) 1 b
e 9 IR

whichis

o W) O ey

o (o o &

and firdly

MODAL MODEL CORRELATION TECHNIQUES 11 Rev 031198
Chapter 3 - Model Reduction Techniques Peter Avitabile



AR RI0) CAREARIC:
([we]- [}t ={)

or

Hybrid Reduction

Another method for reduction of the system matrices utilizes the exactness of the SEREP
process and overcomes the rank deficiency by incorporating the effects of Guyan condensation
into the process and is referred to as the Hybrid Reduction [9] technique and is formulated as

[Tl =[Ts]+{[To] - [S]]

[Ua][Ua] [Tu] M n][TU]] (3-42)

While this reduction technique overcomes some of the rank problems associated with SEREP
when using the reduced modd for forced response and other studies, there is no inherent
advantage in using this technique as amodel reduction scheme for correlation studies.

CONCLUDING REMARKS

Severa of the more popular and commonly used reduction schemes were presented. Any of
the transformations described above may be used for the development of the reduced mass and
diffness for processing such as needed for corrdation sudies. However, there will be
inaccuracies introduced in the reduced matrices depending on the technique employed and the
st of degrees of freedom chosen for the master set of degrees of freedom.
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CHAPTER 4

MODE SHAPE EXPANSION

PREFACING REMARKS

This chapter presents some of the basic gpproaches for the expansion of measured experimental
modal vectors. Expansion of experimenta vectorsis often needed for correation studies and
aso used in the model updating procedures typicaly implemented utilizing current technology.

MODE SPAPE EXPANSION

Experimental mode shapes only exist at the DOF associated with the test points (ADOF).

Since the mass and gtiffness matrices are described & the full set of finite dement DOFs
(NDOF), the system mass and stiffness matrices need to be reduced to the set of experimental
DOF for corrdation studies. However, thereis a need to also expand the measured
experimental mode shape over the full set of finite eement DOF for further correlaion studies as
well asfor modd updating and locdization sudies. Therefore, expansion techniques are
necessary for further sudies. A schematic of the expansion processis shown in Figure 4-1.

Figure 4-1 - Schematic of the Expansion Process

Early expansion techniques evolved around using spline fits and polynomia expansion based on
geometry and measured data. While in concept they are useful, in practice, usng these
approaches for genera sructurd sysemsisnot feasible. Most expansion techniques utilized
today involve the use of the finite dement modd as a mechanism to complete the unmeasured
DOF from the experimental moda modd. In essence, the finite dement modd is used asa high
order polynomid curvefitter to estimate the experimenta mode shapes at the deleted DOF. The
magority of the expansion techniques use the modd reduction transformation matrix as an
expangon mechanism.

Recdl that the basic reationship relating the ADOF to the NDOF is

1 Xa U
{xn} =1 %y =[T]{xa} 4-1)
| deV)
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Using this expansion concept along with measured experimental modal data, we can write

éE u
E.l=z2-=[T][E 4-2
[ n] & U [][ a] (4-2)

So we see that the measured experimental modal vectors at ADOF are expanded over dl the
finite dement NDOF using the transformation matrix [T]. This transformation matrix will take
on various forms depending on which technique is utilized.

Guyan Expansion

The Guyan Expansion technique [4] uses the static condensation transformation matrix to
expand the measured DOF over dl thefinite dement DOF. The transformation is given by

éiju_¢ 1] y
T = A 1= A _ ‘) 4'3
™ dtslt &Kl MK gl 9
and the expanded mode shapes are
éE,u é [l y
E.=a_"a=|TJIE.] = & _ 1E. 4-4
[ ] gEdH [ ][ ] g’[Kdd] 1[Kda]§ ] ( )
Notice that the ADOF remain unchanged as seen by the upper partition of this equation
[Ea] = [1][Ed] (4-5)

and that the deleted DOF are estimated by
[Ed] = [' [Kel [Kda]][Ea] (4-6)

Of course, the Guyan condensation process will not produce acceptable results unless there are
aufficient DOF to describe the mass inertia of the system (as previoudy discussed in the
reduction section). If sufficient DOF are available, then the Guyan process will produce
reasonably good results but will never produce exact results since the inherent formulation of the
reduction matrix is goproximate. The Guyan reduction processis gill widdy used for model
reduction gpplications due to it's long historical background but is not widdly used for expansion
of mode shapes due to other more accurate techniques that have been devel oped.

IRS Expansion
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The IRS Expanson technique [6] uses the dtatic condensation transformation matrix dong with
adjustment terms to compensate for the inertia associated with the deleted DOF to expand the
measured DOF over dl the finite dement DOF. The transformation is given by

m=g M 4 ]ﬁM]FHM][K] @

& Kyl MK &0 [K

and the expanded mode shapes are

B = &= THE

g 1o g Hmlhuml[K]&El -
& Kol 'Kl g0 | K [Kalg
Notice that the ADOF remain unchanged as seen by the upper partition of this equation
[Ea] = [1][Ed) (4-9)

and that the deleted DOF are estimated by
=[[- e ikl + M ] ] (410)

Of course, the IRS technique will improve on the Guyan expansion process but will not produce
acceptable results unless there are sufficient DOF to describe the mass inertia of the system (as
previoudy discussed in the reduction section). If sufficient DOF are available, then the IRS
process will produce reasonably good results (which are improved over the Guyan results) but
will never produce exact results since the inherent formulation of the reduction matricesis
gpproximate. While the use of IRSis popular for reduction of matrices for reduced mode
processing such as for structurd response studies, the technique is not widely used for
expansion of mode shapes due to other techniques more appropriate for this type of process.

Dynamic Expandon

The Dynamic Expangon technique [7,22] is very Smilar in technique to the Satic expangon
process except that the stiffness matrix is modified to include the effects of the mass of the
system at a particular frequency; thisis accomplished by adding an adjustment term of the
reference frequency times the system mass to the stiffness matrix as shown in the development
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of the modd reduction equations. 1n essence, this matrix is exact for this one particular
frequency and the transformation matrix will be exact in regards to expanding a mode shape at
that particular frequency; of course, the shift frequency must correspond to one of the
eigenvaues of the sygem. The transformation is given by

]_e['] _¢ o

4-11
gtfu & [Daal *[Daaltl 1
and the expanded mode shapes are
éE, U é [l y
El=xz 2:=[Tl[E.]=Z 1E 4-12
E]= ge g (T =g 1o, 10, 2

Notice that the ADOF remain unchanged as seen by the upper partition of this equation
[E=[1[Ed] (4-13)
and that the deleted DOF are estimated by
[Ed] =[-[Du] * D[ EL] (4-14)

The Dynamic Expansion process will produce exact results for one frequency and only one
frequency. Providing that the shift frequency corresponds exactly to one of the eigenvaues of
the system, then the expansion will produce an exact mode shape for this one eigenvaue. If
additiona eigenvectors need to be expanded, then separate shift values need to be processed.
While many matrices need to be processed for each elgenvector that needs to be expanded, the
exactness of the process warrants the additional processing.

SEREP Expandgon

The SEREP Expangon technique [8] uses the SEREP transformation matrix to expand the
measured DOF over dl the finite dement DOF. The transformation is given by
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,_dugluTud) Tl

[Tu] = [Un][Ua] e . T 1 T NV (4-15)
quigluTu.)) Tud"@
and the expanded mode shapes are
_€EaU_ _ ore 1-9Yalt | 10

Enl=e_2a=ITullEal =[Un||Ual°| Eal = 1U,|°(E, 4-16

[]gEdg[][][][][]gUd]Q][] (4-16)
Notice that the ADOF may be changed as seen by the upper partition of this equation

[E)*=[ud[ o] (4-17)
and that the deleted DOF are estimated by

[Eq] =[Ua][Ua][ Ed] (4-18)

When the ADOF are expanded, there is the possibility that the initid measured DOF may be
modified by the expansion process; thisis referred to as smoothing of the measured DOF. This
occurs since the SEREP processis based on a generalized inverse using aleast squares error
minimization. Therefore, the measured data is smoothed as part of the process. While much
controversy exists over where or not to smooth the actual measured data, this is the most
proper way to process the data, from a mathematical standpoint.

The SEREP expanson technique is extremely accurate in regards to the expanded mode shapes
- actudly it isexact dueto it'sinherent formulation. However, if the experimenta mode shapes
are not correlated well with regards to the analytica mode shapes, then the results can produce
very poor expanded mode shapes. The SEREP processis very unforgiving of smdl errors that
exist in the measured experimental data base. While the SEREP process is often looked at as
being too harsh in the evauation of moda vectors, thisis exactly what is needed in order to
more clearly identify where errors exist in the measured and/or analytical modd!.

SEREPa Expanson

The SEREPa Expansion technique [23] extends the SEREP expanson technique such that the
generdized inverseis formulated as a andard inverse. Thisis accomplished by assuring that
a=m; that is, the number of measurement DOF is equa to the number of modesin the system.
The transformation is given by
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7] =[unJud] g" U @119

This assures that the measured DOF remain unchanged in the expansion process since

[Eo] =[Ua][Ua] TEd] (4-20)

However, due to the large number of modes that are possibly needed, this technique is not
widely used for most expansion gpplications.

Moda Expansion

Since the SEREP process generdly smoothes the data on the measured DOF in the expansion
process, another technique sometimes used isthe Moda Expansion technique [24]. Actudly,
this technique is the same as the SEREP process except that the upper partition of the
transformation matrix is forced to be identity which then forces the measured DOF to remain
unchanged in the expangon process. The transformation is written as

1] o

Tul =8 { 4-21
[M] "Ud][Ua]gH ( )

NE eEau_[TM][Ea] :éud][[lt ]ggEa] (4-22)

The measured DOF remain unchanged in the expansion process and the deleted DOF are
expanded in the same manner asin the typicad SEREP expansion process. While this gpproach
attempts to retain the measured DOF as seen from test, there is a mathematica mismatch
between the ADOF and the deleted DOF which can cause some errors in any further
processing using the expanded mode shapes.

Hybrid Expanson

The Hybrid Expangion technique [9] uses the Hybrid condensation transformation meatrix to
expand the measured DOF over dl thefinite dement DOF. The transformation is given by
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[Tl =[Ts]+{[To] - [S]]

[Ua][Ua] [Tu] M n][TU]] (4-23)

This transformation was devel oped to address some of the rank deficienciesinherent in the
SEREP reduction process when the number of DOF is greater than the number of modesin the
system. While Hybrid isavery useful technique for mode reduction applications, the extra
computation necessary does not warrant it use as an expansion Process.

CONCLUDING REMARKS

Severd of the more popular and commonly used expansion schemes were presented. Any of
the transformations described above may be used for the development of the expansion matrix
for processing such as needed for correlation studies. However, there will be inaccuracies
introduced in the expansion process depending on the technique employed and the set of
degrees of freedom chosen for the master set of degrees of freedom.
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CHAPTER 6

CORRELATION TECHNIQUES

PREFACING REMARKS

Many different correlation techniques exist for the comparison of andytica and experimenta
modal vectors. The correlation techniques can be broken down into techniques relating to the
modal corrdation in avector sense and those relaing to the correlaion in a DOF sense; both of
these categories can be further broken down into those techniques which do not use any mass
scaing and those techniques that do use mass scding.

In generd, the techniques which do not employ any mass scding are easier to implement and
use form a practicd standpoint but usudly are not as discerning since they lack any scding of
the system mass properties. Techniques that do employ mass scaing are more difficult to use
snce the mass matrix needs to be condensed but usudly offer more robust evauation of the
data eval uated.

Vector based correlation techniques are the MAC, POC and RVAC whereas DOF based
techniques are the COMAC, ECOMAC, CORTHOG and FRAC. All of these techniques are

described in the following sections with the exception of CORTHOG which isdiscussed in
Chapter 7.

CORRELATION TECHNIQUES

Moda Assurance Criteria (MAC)

The Modd Assurance Criteria(MAC) [1] isan extremdy useful technique which gives afirg
indication asto the level of corrdation that exists between the andytica and experimental moda
vectors and is given by

(6-1)

Ui}T{ej}r
}] gej}T{ej}E

In this formulation, the values of MAC range between 0 and 1, where zero indicates that thereis
little or no correlation between the vectors and one indicates that there is a high degree of
amilarity between the modd vectors. MAC isided for identify which analytica modes
correspond to which experimenta modes and is very useful when identifying mode switching.

MAC; = [{
{

” [{Ui}T

Ui
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MAC isvery sengtive to the DOF thet are largest in value and is very insengtive to very small
DOF in the mode shape vector. Massweighting is not used in this formulation which has an
advantage in that mass reduction is not needed but the scaling effects of the mass matrix are
useful in weighting various dofs for a corrdation sudy.

FINITE ELEMENT

MAC

MODAL
ASSURANCE
CRITERIA
MATRIX

MODE
SWITCHING VECTOR CORRELATION

|

Fems
Fema
Femz
s

EXPERIMENTAL

FEM 5

FEM 4

FEM 3

FEM 2

FEM 1
EXP1 EXP 2

EXP 3
EXP 4 EXP 5

Figure6-1 - Moda Assurance Criteria Matrix

Orthogondity Checks

Two orthogondlity checks are often made in evaluating vector corrdation. The Cross
Orthogondity Check or the Pseudo Orthogondity Check. The obvious hurdle to overcomeis
whether to reduce the finite e ement mass and stiffness matrices to the set of tested DOF or to
expand the measured experimenta modad vectors to the full space of the finite e ement mode;
dternately, there could aso be some combination of both reduction and expansion in order to
compute the orthogondlity.

The Cross Orthogonaity Check is an orthogonality check where the modal vector matrices are
obtained from the experimentally measured modal data.

cross=[E]" [M][E]=[1] (6-2)

The Pseudo Orthogondlity Check [10] is essentidly an orthogondity check where one of the
modal vector matrices is replaced with the experimentally measured moda data.

Poc=[]" [w][u]=[1] ©3)
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As mentioned above, in order to accomplish thistriple product, the Sze of the matrices must be
consstent. Therefore, either the system mass matrix must be reduced to the set of tested DOF
(and corresponding ADOF from the moda matrix) or the experimentally measured modal
vectors must be expanded to the full space of the finite eement modd. Of course, the results of
ether of these checks will be dependent on the type of reduction or expansion utilized with the
exception of the SEREP process which preserves the dynamics of the system in the reduced
modd.

In reviewing the results of the Cross Orthogondity Check and the Pseudo Orthogonality Check,
there are amilarities that exist snce one check basicaly uses the experimentaly measured
vectors twice in the computation of orthogonality and therefore, the resulting terms are larger.
However, there is no benefit of using these vectors twice in the Cross Orthogondity Check; no
additiond ingght isgained in this process. Thus, there is no benefit in using the Cross
Orthogonality Check rather than the Pseudo Orthogonality Check for generd orthogondlity
using the usua model reduction and expansion processes such as Guyan and IRS. However,
when using the SEREP process, there are other sgnificant computationa benefitsthat are
obtained when using the Pseudo Orthogonality Check that are described next.

Pseudo Orthogondity Checks using the SEREP Process

Indl of the reduction/expansion techniques, there is Some numerical processing necessary to
ether reduce the mass matrix or expand the experimenta modd vectors. Due to the inherent
formulation of the SEREP Process, there are some very important itemsto note. The POC a
the set of tested ADOF is exactly equa to the POC at the full set of NDOF and that the POC
can be performed without the use of any system matrices [25]. The theoretical development to
support thisis presented next.

The Pseudo Orthogondity Check (POC) relating the corrdation between the analytica and
experimental modal vectors can be performed at the full space or reduced space by ether a
pre or post multiplication of the experimenta moda vector with the andytica mass'mode shape
using one of the following forms

Pre-multiplying by the experimenta moda vectors
POC=[E,]'[M][U,] (6-43)

POC=[E,]| " [M,][Uy] (6-4b)
Post-multiplying by the experimental moda vectors
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POC=[U,]'[M,]E,] (6-40)
POC=[U,]'[M][Ey] (6-4d)

Now let's consider one of the forms above and shown that whether the POC is performed at
the reduced mode size or at the full model size produces exactly the same results.

POC=[E,] [M][U,] (6-5)
Substituting the reduced mass matrix in equation (3-36) into equation (6-5) gives

[Ea] Mal[Ua] =[] {[To] MA]Tuluc] (66
Substituting equation (3-35) into equation (6-6) gives

[T [M][Ua] = [E] GVl (U MUV U] (67
The expanded experimental modal vector in equation (4-16) can be transposed to give

[ =[E (U [ua]" 69

and it can be seen that the first three terms of equation (6-7) are equation (6-8). Now also
realize that the last two terms of equation (6-7) can be regrouped

[UaJ7Ud] = g[ud U] Tua"ud (69

S0 that equation (6-9) is actudly identity

1A
[Ual(ua] = F U Tual) 2l [ual) =10 (610
Subdtituting equation (6-8) and equation (6-10) into equation (6-7) it can easily be seen that

£ MU =[E.[MA]U,] 1

Thisimplies that the POC will produce exactly the same results a ether the full set of 'n' finite
element degrees of freedom or at the reduced set of 'a tested degrees of freedom. Obvioudy
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there are sgnificant computationa benefits to be obtained if the computations are performed at
the set of 'a tested degrees of freedom rather than at the set of 'n’ finite eement degrees of
freedom.

Now let's show that the POC can be written such that neither the full or reduced andyticd mass
matrix is needed. Recall the POC at the full set of finite dement degrees of freedom in equation
(6-4) and subgtitute the relationship for the expanded experimenta moda vectors in equation
(23)

[ MaUn] = ([Un][UalTE]) ML) (6-12)

Taking the trangpose of the relationship for the expanded experimental moda vectorsin
equation (4-16) gives

[En] M ][ U] = [Ea]TTUJ° [UA] M U] 613
Recognizing the mass orthogondity relationship in equation (2-10) we see that
[Ea MU =B [U)” 614

Since the POC was shown to be identicd at ether the full set of finite dement degrees of
freedom or at the reduced set of tested degrees of freedom in equation (6-11), we see that the
POC is no more than

[l TMal[Ua] =[E] M) U] =[Ua] ) (615
Trangposing this equation (to obtain an easier expression) we get
[Vl Ma] Ea] =[Un) TMA][E4] =([ U] Ed] (6-16)

Smilarly for the siffness POC

[ [Kal[Ua] = [Ea] TRu[Un] =([Ua[EL]) [w?] (6-17)
and (to obtain an easier expression) its transpose

(U] TR Ea] =[Un] [ Knl[En] =[] U] L)) (619
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Two important items can be noted from the development presented above. Firg, the Pseudo
Orthogondity Check will provide exactly the same results whether the check is done at the full
gpace of the finite dement model or at the reduced space of the tesmodd. Therefore, the
computation is most efficiently performed in the reduced space of the test model. Second,
tremendous computational and procedura benefits are obtained for the Pseudo Orthogondity
Check using the SEREP process since the mass matrix is not needed for this computation.
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Figure 6-2 - Schematic of Expangion for Orthogonaity Checks
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Figure 6-3 - Schematic of Reduction for Orthogonality Checks
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Coordinate Modal Assurance Criteria (CoMAC)

The Coordinate Modd Assurance Criteria[2] follows the same formulation as MAC in that a
correlation coefficient is developed to determine the degree of correspondence that exists for a
particular DOF over a st of correlated mode pairs. COMAC is useful in determining how
corrdlated each individual DOF may be over a st of modes and provides some insight into
where some discrepancies may exis.

ém o
o

ed [u? =g
€1 )

COMAC(K) = — — (6-19)

) Al

c1 c=1

However, without mass scaling to properly weight the dofs, a timesit is difficult to determine
the degree of correlation that exists. Another drawback of the COMAC isthat it can only be
used for correlated mode pairs which implies that only the diagond related terms of the MAC
correlation matrix can be assessed (once the vectors are arranged in propoer correlated order if
need be).

CoMAC
SO | R O
COORDINATE - I I | L ]}
MODAL 3
ASSURANCE

Xperimental [ Analytical

CRITERIA B xperinor Ay
- _ - — o -

DOF CORRELATION

3 T _ - - - -
FINITE ELEMENT EXPERIMENTAL

Figure 6-4 - Schematic of COMAC for Vector Correlation

Modulus Difference

The modulus difference is another tool that helps to identify the discrepancy that a given mode
par may have.
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Modulus Difference(k) = \u(k‘:)\ - \eﬂ (6-20)

Thisisasubset of COMAC since it evaluates the difference between DOF for agiven
correlated mode pair rather that over a set of correlated modes.

Enhanced Coordinate Moda Assurance Criteria (ECoMAC)

The enhanced COMAC [3] was devel oped to address some of the scaling issued that exist with
the origind formulation of COMAC

4
éa
ECoMAC(K) = &=L

u
uE(c) ) e(kc) ‘u
o]

o (6-21)

The ECOMAC is very good for identifying gross problems in the measured modal vectors such
as polarity of atransducer from atest. Again no system mass matrix is used to weight the dofs
in this evauation.

Frequency Response Assurance Criteria (FRAC)

The Frequency Response Assurance Criteria[15] evaluates each DOF based on the FRF
comparison of the andytica and experimentaly derived functions. The formulation is very
gmilar to the MAC function and has Smilar interpretation. The FRAC isgiven by

(e} {Premt®} )

A ({ Miest}{ Nitest} )({ Nrem(®)}{ hfem(b)}* )

(6-22)

The FRAC isauseful tool for evauating FRFs but the main drawback is that the anaytica
model may have Smilar shepe characterigtics but differ dightly in frequency which can cause
ggnificanly low FRAC vaues - 0 the function is congructed with a shifting function to dlow for
some frequency adjusment due to globd dtiffness differences. The FRAC ismainly used for
correlation that leads into frequency response based modd updating studies. The mgority of
gudiesin this research are directed towards moda vector based correlation; FRAC is included
here for completeness of the presentation of different correation tools.
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Figure 6-5 - Schematic of FRAC for Vector Correlaion

Response Function Assurance Criteria (RVAC)

Companion to the FRAC is the Response Function Assurance Criteria (RVAC) [15] which
compares a pecific spectrd line of the FRF ands evaduatesit over dl the FRFs of the andytica
and experimental data base. Essentidly RVAC isaMAC corrdation technique for the
andytica and experimenta vectors (approximated using a peak pick technique).

RVAC(W) = MAC({ Eqeq W)} .{ Utem(Wh)} ) (6-23)

Again this technique is more gpplicable to correlation for frequency response based model
updating and isincluded here for completeness.
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Figure 6-6 - Schematic of RVAC for Vector Corrdation
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CHAPTER 7

COORDINATE ORTHOGONALITY CHECK

PREFACING REMARKS

The correlation tools discussed thus far consisted of vector correlation techniques (both with
and without mass scaling) and degree of freedom correlation techniques (that use no mass
scding). The vector correlation techniques assess the vector in a global sense and the
correlation of the vector is stated in terms of a scalar quantity that provides a measure of the
leve of correation achieved. The Moda Assurance Crieriawas very easy to compute and
provides afirst level of correlation of the vector sets. However, mass scaing can hamper the
technique. Orthogondity Checks such as the Cross Orthogonality Check and Pseudo
Orthogonality Check provide a better indicator of the level of correlation achieved snce mass
scding isincluded but again, the correlation of the vector is Sated in terms of ascdar quantity
that provides ameasure of the level of corrdation achieved. The degree of freedom correlation
techniques such as CoMAC and ECOMAC provide a better assessment of the correlation on a
degree of freedom basis but aso are hampered by the fact that mass scaing is not included in
the formulation. A new technique referred to as the Coordinate Orthogonality Check [12,14]
has been developed to address the degree of freedom correlation of two modd vectors on a
mass scaled basis. The Coordinate Orthogondity Check was devel oped to more clearly
identify the discrepancy that exists between andytica and experimental moda vectors on a
degree of freedom basis and is formulated with the mass as aweighting function on the DOF-.

The smplest statement concerning the Coordniate Orthogonality Check is asfollows:

The Coordinate Orthogonality Check (CORTHOG) is simply the comparison of what
should have been obtained analytically for each degree of freedom in an orthogonality
check to what was actually obtained for each degree of freedomin a POC from test.

The CORTHOG is shown schematicdly in Figure 7-1. The formulation of the CORTHOG is
presented herein.

CORTHOG

COORDINATE
ORTHOGONALITY L
CRITERIA I Experimental [ Analytical

DOF CORRELATION

FINITE ELEMENT EXPERIMENTAL

Figure 7-1 - Schematic of the Coordinate Orthogonality Check
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Basis of the Coordinate Orthogondity Check

The basis of the Coordinate Orthogonality Check stems from the Pseudo Orthogonality Check.
The terms that make up the Pseudo Orthogondity Check are eva uated and compared to the
terms that would have been obtained from an orthogondity check for each individua degree of
freedom.

The stlandard mass orthogondlity can also be recdlled to be
(U] [M][u]° 1] (7-1)

Thisis the condition for which the anaytica vectors are orthogond with respect to the system
mass matrix.

The experimental vectors can be used as one of the set of vectorsin equation (7-1) to obtain an
indication as to how well the measured experimental moda vectors are related to (or are
orthogond to) the andytica mass matrix and the andyticad moda vectors. The Pseudo
Orthogonality Check relating the correlation between the analytica moda vectors, [U], and the
experimental moda vectors, [E], with an andyticd mass matrix, [M], can be performed using

5
- .

POC=[E]" [M][U] =[] (7-2)
and can be done at ether the set of 'd tested DOF or at the set of 'n' finite ement DOF-.
(Note that unit moda mass scding is assumed throughout this theoreticad development.) At the
reduced mode size, the mass matrix can be obtained through the SEREP reduction scheme. At
the full model size, the measured experimenta vectors can be expanded using the SEREP

€Xpans on process.

Each term of the POC matrix can be described as
[} [o]
POCjj=a a €k Mip Uy (7-3)
k p

To easly describe the concept of CORTHOG, let's consder asmple 3 DOF system with a
lumped mass matrix. The POC can be written as

; T > .
€11 € €iu emy ueu;; Upp Ugzu
_é a é ueé a
POC=z81 €xn ex; a M2 qelzr Uz Uz, (7-4)
1 1
€8 €3 e € Ma3f@Us1 Uz UssH
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Considering only the i'th experimenta '€ mode with the j'th analytica 'u’ mode,

émy; Ul ug; U

. NES al L
POCjj = ge1i € €3 M, ai Yzjy (7-5)

A II I

e M3zt Usj b

Equation (7-5) can be written in expanded form for the 3 DOF system as

? 11(fori=j)

POC.; =(e;im1U;; + €5 MosUs: + €2 Mazlai) = 7-6
ij (1| 1191 2i 1112242 3i'''33 3]) %O(forilj) ( )

Clearly, dl DOFs have a contribution to one particular diagond or off-diagona term of the
POC matrix. Itisvery important to note that for an off-diagona term to become zero, the
vectors need not be corrdated; aso that for off-diagona terms, each of the individua
multiplications are not zero themselves but rather the summation of al the multiplications should
produce avaue of zero. Theindividua multiplications that make up a POC term can be
ingpected, but there is no way to assess whether a given value istoo high or too low if just the
individud 'emu’ terms are eva uated.

If we recdl the statement of mass orthogondlity for this smple 3 DOF system then Equation (7-
1) can be written in expanded form as

j1(fori=})

ORTHOG;; = (U;i MyqUqi + UsiMosUs: + UgMaqUai)©
ij (ugimyy 1j 2i11122M2j 3133 31) %O(forilj)

(7-7)

By definition of orthogondlity, this must be true.

In terms of the individual DOFs for the 3 DOF system, the contribution to each POC and
orthogondity term, respectively is

'emu’ term 'umu' term
DOF 1 €49 My Uy Ui MyqUy;
DOF 2 €2i Moo Uy; Ugi Moo Up; (7-8)
DOF 3 €3 M33U3; Ug M33Ug;

4 Poc, & ORTHOG;

Figure 7-2 shows aplot of the comparison of the actud individud 'emu’ vaues from POC and
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expected individud 'umu' values from one orthogondity term for each degree of freedom for a
given 'ij' mode pair; thisisaplot of theindividua vaues shown in Equation (7-8). In Figure 7-
2, itisclear that both the POC and orthogondity terms al sum to zero, but that the difference

between them on a degree of freedom by degree of freedom basisis not the same. From this

plot, this discrepancy becomes gpparent and an assessment can be made as to the correlation
that exists on a degree of freedom basis.

The Coordinate Orthogondity Check (CORTHOG) is simply the comparison of what should
have been obtained anaytically for each degree of freedom in an orthogondity check using
Equation (7-7) to what was actually obtained experimentally for each degree of freedomin a
POC using Equation (7-8).

Now let's extend this to the generd case of afully populated mass matrix for the 3 DOF system.
Considering only the i'th experimenta '€ mode with the j'th anaytica 'u’ mode,

émy; My Myzul ;U

— -6 at,
POCij =gey € e5ligMar My Mazyi lpjy (7-9)

&Mz My m33€'|% Ug; 'p
This can be written in expanded form for the 3 DOF system as

POC;; = (& MyqUyj + €;Myp Uy + €15 My3Us;
+ €31Mp1Uyj + €My Uy + €5 My3Uz; (7-10)
+ €3 M3y Uyj + €3 MgaUy; + €3Mg3Us;)
As gated earlier, dl DOFs have a contribution to one particular diagond or off-diagona term of
the POC matrix. Intermsof the individua DOFs, the contribution to the POC for thefirgt,
second and third DOF, respectively, is

DOF1 _
POC;™ = e;my Uy, + e;mp,Uy; + ;M 5Us

(7-119)
=€y (Myyy; + MypUy; + Myglly;)

PC)CinDOF2 = €My Uy + €,MyyUy; + €5My3Ug; (7-11b)
= €5 (My Uy + Myyly; + MygUy;)

POC™™ =eymyuy + €5 MUy, + €5MygUy, (7-11¢)

=€y (MgyUy; + MyyUy + MysUy)

and the contribution to the orthogonality for the first, second and third DOF, respectively, is
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DOF1 _
ORTHOGIJ - U]J- mllulj + u]_i m12u2j + uli m13u3j

(7-129)
= Uy (MyUy; + My + MygUy)

ORTHOG ™ = Uy Moy Uy + Uy MUy + Uy Mgl (7-12b)
= Ug; (MayUyj + MUy + Myl

ORTHOG :?OF3 = Ug My Uy; + UgMgyUy; + Uy MUy (7-120)

= Uy (MgyUy; + Mgy + Mgzl )

Using this notation, the subscript on the POC and ORTHOG refer to the andytical and
experimental mode pair being eva uated whereas the superscript refers to the particular DOF
that is being evaluated. For purposes of genera notation used heregfter, equation (7-11) and
(7-12) can be written in generd terms as

POC| = a e MU ORTHOG = a u, MU
p p

for an individua DOF. The sum over dl DOF yidds the usud 'ij’ term of the POC or
orthogondlity.

Coordinate Orthogonality Check - CORTHOG

Theindividud contribution of the 'emu’ and 'umu’ terms for each k DOF can be inspected,
compared, and evauated for each 'ij' mode pair. Severd different formulations are presented
below for avariety of different scaling and normalizing schemes that have currently been
conddered. Each case hasits own advantages and disadvantages. I1n cases where the values
are normaized, relaive differences can be assessed, but there is no way to know if agiven
DOF difference is either too high or too low. In cases where absolute values are used,
differences are easly compared, however, directiona information islogt.

The most commonly used forms of the CORTHOG are the Comparison and Simple Difference
techniques which tend to be used over the other techniques due their smplicity, ease of use and
incluson of specific, particular vaues relative to each degree of freedom; the other normaization
techniques are useful at times but the relative reation of the vaues between various mode pairs
islogt. Each techniqueis briefly described below.

Comparison

The smplest of techniquesis performed by plotting the individua ‘emu’ and 'umu’ values for
each DOF in bar chart form, Sde by Sde, as shown in Figure 7-2. This provides very quick
visud information as to the differences between the expected andytica vaues and the actud

MODAL MODEL CORRELATION TECHNIQUES 5 Rev 031198
Chapter 7 - Coordinate Orthogonality Check Peter Avitabile



experimentd vaues for each individua DOF. All other techniques described below provide
amilar information but are presented in some sort of scaled fashion which may accentuate
differences and dlow eader interpretation of the data.

Smple Difference

A smple gpproach isto determine the difference between the summation of the individua
multiplications for each DOF for a POC off-diagona term and its expected vaue based on the
andytica vectors given as

SD = CORTHOGIIT = é ekimkpupj - Ukimkpupj (7-13)
p

An advantage for this formulation is that the magnitude and direction of the error isretained. By
retaining the magnitude of the error, the vaue may be evaduated but there is no way to assess
whether a given discrepancy is either acceptable or unacceptable. This magnitude may be
congdered in the same way as off-diagond terms are evaduated; an arbitrary limit for a DOF,
such as 0.01, may be used as acriteriafor acceptance. By retaining directiona information,
differences relaive to other degrees of freedom can be assessed. The summation of the plus
vaues and minus vaues that make up the POC terms may be ingpected lending further insght
into the discrepancies.

Normalized SD Maximum

Another gpproach is to normdize the smple difference to a certain vaue such as the maximum
difference given as

o]
a € MypUpj - Uy MUy,

NSD) = CORTHOG{ = —2F - (7-14)
o

éa i MypUp - Ui mkpupj%
p

max

which has the advantage of setting the maximum difference equd to 1; dl other differences
would be a percentage of the maximum. However, sSince every mode pair evaluated may have
widdy varying levels of corrdation, it is difficult to determine which mode pairs of vectors are
the most and least corrdated. That isto say that thisisatool to be used in conjunction with one
of the other scaling methods.

Normalized D Total
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By normdizing to the summation of the differences given as

é € MypUpj = Ui MypUyp;
NSDy = CORTHOG; = —2- (7-15)

[ o
% A € MUy - Uy My Uy
p

each difference will be given as a percentage of the POC term. Thus, the maximum DOFs
contributing to the given off-diagond term can easily be evaluated. Note thet if the POC term is
exactly equd to zero then this normdizing scheme cannot be used.

Absolute D

By taking the absolute difference between the summation of individud multiplications for each
experimental DOF of a POC off-diagond term and its expected vaue based on the andytica
vectors, the absolute differenceis given as

ASD = CORTHOG = § |ex MU - Ui MU (7-16)
p

and can be easly compared. This again highlights which DOFs are most important to the given
off-diagona term. The advantage here is that the sum of al the terms will not arbitrarily become
zero due to the addition of many different plus and minus contributions. When used in this
fashion with an orthogondity check, thisis referred to as an Absolute POC.

Normalized ASD Maximum

The absolute difference when normdized to the maximum difference is given as

[}
a |eki MypUp; = Uk mkpUpj|

NASD,, = CORTHOG{ =—-F : (7-17)
x

5
[o] .
éa ek Migp U - Ui Migp Ui 2

p 9B nax

and sats the maximum DOF differenceto 1. All other differences are percentages of the
maximum difference. Thiswill provide a consstent scae but does not alow for direct
comparison with other mode pairs eva uated.

Normalized ASD Total
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Normdizing to the summation of absolute differencesis given as

é |eki MypUpi - Uy mkpupj|
NASD; = CORTHOG =—" (7-18)

[o] [o]
a a [BkiMgpUp - Uy mkp“pi|
k p

and will put the DOF discrepancy in terms of percent of the totd difference.

The formulations discussed above are plotted in Figures 7-3 through 7-7 for the 3 DOF
example presented in Figure 7-2. Note that the normalized absolute difference could not be
plotted due to divison by zero. Again, not dl of the normalization schemes are routindy used
but are included here for reference.

Coordinated Orthogonality Check without a Mass Matrix

The Coordinate Orthogonality Check can be performed with any reduced mass matrix
discussed in Chapter 3. However, if the SEREP technique is utilized then the CORTHOG can
be reformulated into a much more efficient form which does not require the use of system
matrices amilar to that shown in Chapter 6.

Badicdly, the equations can be written asfollows. If the SEREP technique is utilized, then the
standard mass orthogonality can be written as

PoC=[u,] [, (U] =[U.] [, [u] (U [ul] (7-19
The Pseudo Orthogonality Check can be written as
Poc=[u,]" [M,][E] =[U [MJ][E] =[U.][E] (7-20

Now expanding the last term of this matrix gives

41 g g g g €y €, - enu
eu u u -+ U7, UA {
~U11 12 13 a5 € u
€0 W U U 0Pz €2 - G
g _é“Y2z1 22 23 T 2alla .
[Ua] [Ea] =a. : S L3 € o U (7-21)
e : : : . ue . . u
é l;lé : : G
%19 g g ¢
g'lml um2 l'Im?; umag A
%al eaz eamH
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If we now look at aparticular 'ij'term then this can be written as

. e g u

¢ ve o0

Wooug g ugtie a
POC; =g~ e ey U (7-22)

é ue a

e Ue (

e Oa ¢

& t

Now if we multiply out this relaionship for an 'ij' term, we get
POC; =upjgy + Uie,; + Uty +-- + ULe, (7-23)

and if we multiply out the corresponding term from the orthogondity relationship, we get

ORT; = Uy + UlUy; + UjUg + -+ Uu,; =0 (7-24)

The CORTHOG manipulation is the comparison of each of the terms of the relaionshipsin
Equation 7-23 and 7-24 for corresponding degrees of freedom.

POC; =ule; +ule, + U'gy +--- + Uje,
L §  CORTHOG,

— 9 g g 9
ORT; =UjUy; + UiUy; + Uiy + -+ Uy (7-25)

dofl dof2 dof3

Then any one of the comparison techniques (scaling, normdization, etc.) described previoudy
can be computed. There are tremendous computation benefits to formulating the Coordinate
Orthogondity Check using the SEREP process.

MODAL MODEL CORRELATION TECHNIQUES 9 Rev 031198
Chapter 7 - Coordinate Orthogonality Check Peter Avitabile



‘'emu’
DOF 1

‘umu’

‘emu’
DOF 2

‘umu’

‘emu’
DOF 3

‘umu’

-8 -6 -4 -2 0 2 4 6 8

Figure 7-2 - Comparison of Andytica vs. Experimental Vectors

MODAL MODEL CORRELATION TECHNIQUES 10 Rev 031198
Chapter 7 - Coordinate Orthogonality Check Peter Avitabile



DOF1 S D
DOF2
DOF3

-1 -0.5 0 0.5 1

Figure 7-3 - Smple Difference Plot for 3 DOF Example
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Figure 7-4 - Normdized SD Maximum Plot for 3 DOF Example
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Figure 7-5 - Absolute Smple Difference Plot for 3 DOF Example
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Figure 7-6 - Normdized ASD Maximum Plot for 3 DOF Example
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Figure 7-7 - Normalized ASD Total Plot for 3 DOF Example
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CHAPTER 8

PRE-TEST EVALUATION TECHNIQUES

PREFACING REMARKS

Sdlection of DOF for measurement locations can be critica to the success of an experimental
moda survey. Itisvery important to assure that an adequate number of proper points are
identified for the collection of data. This chapter briefly reviews some of the exigting techniques
used for pre-test evauations and then offers some additiona tools based mainly on the
Coordinate Orthoganlity technique.

PRE-TEST EVALUATION TECHNIQUES
One of the firgt techniques utilized for the determination of measurement locations, was the
visudization of the finite dement mode shgpe. Locations of large amplitude in the shepe are

likely to be very good measurement locations. This produced a reasonably good method to
select measurement locations but was fairly tedious for larger more complicated models.

Drive Point Residues (DPR)

One approach was derived from the fact that the resdues are directly related to the mode
shapes of the system and therefore,

[A[9)], =Qc{ud {ud’ (8-1)

So that the drive point resdues (DPR) [16], that is where the input and output are measured at
the same location, can be evauated for each DOF over a set of modes from

A = Gy Uy Uy (8-2)

Thus as different modes, k, are evaduated, different DPRs are computed. Typicd summation
methods include an assessment on the minimum value, the maximum vaue, the average vaue
and aweighted average (which is the average times the minimum vaue) for each DOF over a
st of modes. The problems with the summing schemesis that often effects are smeared into
one value which does not adequately depict the proper selection of points for test DOFs.

Effective Independence
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One technique that is used is to assess the rank of the moda matrix for a set of DOF that is
chosen as candidate measurement locations. The rank of the equation can be determined
through the sngular vaue decompasition of

(v Iy 6-3)

The Effective Independence [17] can be used to determine the contribution of each retained
DOF usng

el = dig,([UJlY [ Y] [u.]) =deg FululTu]] Tu? @9

This process is continued until an acceptable set of DOF are identified as candidate modal
vectors. Dueto it's inherent formulation, the DOF that are sdlected are very good for identifying
the independent vectors for possible measurement locations. Unfortunately, this method will
routinely specify DOF which are close to or actudly at nodes of the system. These DOF are
highly suspect in terms of accuracy and are not considered good measurement locations for an
experimenta moda test.

MAC Contribution

One fairly smple technique is to use the MAC and evauate the effect of different DOF to the
vaues of the off-diagond terms of the MAC matrix from

I Ck0)
"ty o] [fu) {u)]

(85)

Referred to asthe MAC Contribution (MACCO) [18], the MAC cdculation can be extended
to include the effect of an additiond DOF as

|

u-}T{uj} +u; upj]

{ .
(o) () +uu,

[{Ui}T{Uj} +ua.upj]
[{u} |

This requires only aminor caculationd effort. The addition of extra DOF tend to make the off
diagona terms of the MAC more acceptable thereby indicating a better set of points has been
sdlected. An iterative procedure can be developed to determine the effects of adding additiona
candidate DOFs for measurement and to rank them based on the effect on the reduction of the

U} + U
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off-diagond terms of the MAC matrix. This can provide some useful information, however, as
in the case of MAC used for corrdation, there is no mass matrix available for gppropriate
weighting of important DOFs.

Other Andytical Methods (Henshell Method, etc.)

Other analytica techniques[19] exist for automatic selection of active DOF for model reduction
purposes, but generdly these techniques aso use averaging by one means or another to obtain
some "best” location for the active DOFs. The combination of dl the DOFs for dl the modes of
the system generdly break down in applications where the structure contains directional modes
which is often the case.

M ode Shape Evauation Techniques

Since the CORTHOG was developed as a corrdation tool which inherently contains mass
scding, then it would be reasonable to assume that it might also be useful for pre-test
evauations for selection of DOF especidly when the resulting experimental modal data base will
be used for correlation studies. Severd new graphical tools have been developed, severd of
which are based off of the CORTHOG technique [20].

Mode Shape Summation Plot - MSSP

Due to the fact that information is averaged across many modes for the mgority of the
techniques, one possible dternative is to use a smple graphica gpproach to view the mode
shapes. Recdl that the moda matrix is nothing more than the mode shapes arranged in column
form with the DOFs arranged in rows of the moda matrix. One techniqueis smply the
graphica presentation of this data into the Mode Shape Summeation Plot (MSSP).

[ |
A u u o u ¥ [
guull 12 U3 im 3/ ==
= p [ ]
giar Uz Uz U2my, —
2 ! s —
gu3l Ugp Uz -+ Uz 3 —
=3 p o
R I S ——— 87)
&y u u NURRTIN ° [ |
~-51 52 53 5m - (o — |
e - u o
~ 7 -
aJal Uap  Uaz - uamH [ — ]

Basicdly, the MSSP is a bar graph of the set of modes over the set of DOFs. Each (DOF) bar
is created by stacking (summing) the corresponding mode shape components for dl of the
modes of interest. By creating the mode shape sum in this manner, the contribution of each
mode to each DOF is preserved and more clearly identifies how the energy is distributed on a
mode by mode basis for each DOF. Separate plots can be also be created for each mode. In
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addition, the plots can be scaed to reflect displacement, velocity or acceleration, as desired.

Generdly, the “high amplitude” bars in the M SSP represent good candidates for test response
or reference DOFs. However, typica, “high amplitude” DOFs for certain modes are a or near
node DOFsfor other modes. Therefore, it may be advantageous to use different sets of
measurement DOFs in the correlaion of each mode. The advantage of the MSSP over other
approaches previoudy utilized is that the contribution of each mode is presented and the user
can visualy evauate how well each mode will be represented by or excited at each DOF.

CORTHOG Pretest Plot - MSSP

A variation on the MSSP isthe CORTHOG Pretest Plot (CPP). Recal that the Coordinate
Orthogonality Check (CORTHOG) was developed as atool to aid in determining the
correation of anaytical and experimental moda data on amass scded DOF bass. Used asa
Pre-Test Tool, CORTHOG hédpsto dearly show how important each individua DOF will be
in an orthogonality check. Thisisamassweighted preview of the mode shape, therefore, it will
yield additiond information that will not be evident when using other Pre-Test tools such as
DPRsand MAC.

Like the MSSP, the CPPisa"“summed” bar-chart of the “mass-scaled” mode shapes (columns
of [Ug]9). Theimportance of each individua DOF is mass scaled in the same way it isin an
orthogonality check.

(U ME] =[] M E] =[u ] El (©-8)
=
o —
[
% .
e
s —
[ — |
°® I— |
euy U, U U l;'g ® =i
gz Up Uz UZmE ® '-:-:.
2131 Ugp Uy Usmg S—
[Ua]T[Ma]:[Ug]::M Ug U - Umg | (8-9)
guﬂ Us; Usg USmE
(:35 : Y
B Up Ug Uarn 8

The CPPisusgful in identifying and eva uating potentid response and reference DOFs on the
bass of modally active masses. The CPP plotted in conjunction with the MSSP heps to identify
smdl mode shape components that may be difficult to measure but important to an orthogondity
check.
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M ode Power Plot - MPP

The Mode Power Plot (MPP) isa Pre-Test tool used to evauate the effectiveness of the
selected reference DOFs. Since the response DOF measurements will al be collected relative
to a particular reference location(s), the M SSP can be scaled by the mode shape at the

reference location as
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These "drive point scaled" modal vectors can be plotted in bar chart form and used to evaluate
how well each mode will be represented in the set of measured frequency response functions

using the chosen reference DOF.

While these new tools are not expected to replace previoudy devel oped techniques, they can
provide additiona ingght into issues pertaining to correlation of anaytical and experimenta data.
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