Conceptual Framework for Business Intelligence TIPS
Five layers (conceptual, technology agnostic, and covers the major phases, features, and functionality required to effectively implement a BI solution):
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Data Source

Major Difficulties:
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Data Integration

Profiling, Extraction, Cleansing, Transformation, Loading, Staging

Data Storage

Dimensional Modeling, Partitions, Indexes

Data Analysis

OLAP, Data Mining

Data Presentation

Navigation, Format, Host
Cross functions

Meta data, Security, Performance & Operations

Dimensional modeling TIPS
SEE http://www.ralphkimball.com/html/designtips.html  for more details and examples

Terminology

Dimension table: It is a business entity of the source system.  There can be multiple normalized table represent one single business entity on the source system.  Example: Customer Dimension, Product Dimension
Fact table: A central table in a data warehouse schema that contains numerical measures and keys relating facts to dimension tables.

Grain: The level of the measures within a fact table represented by the lowest level of the dimensions. It is the level of detail the facts are stored in the fact table.  Example, Fact table may contain lower grain to daily transactions such as customer purchasing information and number books purchased.  OR fact table may contain higher grain to simply state the number of books sold without the details of who bought which book.

Measures: It is a numeric attribute that would typically be derived from transactions.  It is generally placed in fact table of dimensional structure.  Example: Number of books sold today

Hierarchies and levels: This is basically group of attributes that would logically relate each other in the form a tree structure.  Example: City, State, Country; Day, Month, Year.  Levels is the relation between the members of the hierarchy, such as in the above example, city is at lower level in the hierarchy and Country is at higher level.

Physical Schema Structures

There are basically two types structures that are popularly used while designing the physical dimensional modeling, they are Star Schema and Snow flake Schema

· Star Schema. The simplest relational schema for querying a data warehouse databases is the star schema.  The star schema has a center, represented by a fact table, and the points of the star, represented by the dimension tables.  From a technical perspective, the advantage of a star schema is that joins between the dimensions and the fact tables are simple, performance, ability to slicing and easy understanding of data. 
· Snowflake Schema.  A variation of a star schema is called a snowflake. In a snowflake, the dimension tables are normalized. From a reporting perspective, there is no logical difference because all the tables of a snowflake dimension can be logically joined into a single star dimension. From a performance perspective, the snowflake may result in slower queries because of the additional joins required.

Designing a Warehouse Schema

Following are the basic steps for designing a data warehouse based on facts and dimensions.

Identify Facts and Fact Table Grain

· Identity business processes for analysis such as sales trend over the period or cross sell 

· Determine the facts that are needed directly or indirectly for the identified business analysis

· The facts identification is the process of looking at source database and see if the source database can satisfy business needs such as source does not have any information on products name/brand sold but has only consolidated information on the kind of product that is sold

· Identify and list out source facts typically stored in transaction tables

· Determine the lowest level of granularity needed for the facts such as business analysis needs only weekly sales information

· Determine the entities for the source transactions.  It can be identified from the parameters for the source measures such as Product cost is based on products, date and store

Identify Dimension Keys and Attributes

A dimension logically consists of a primary (unique) key that maps to a foreign key in the fact table. The dimension also includes additional attributes about that key. For example, in a Customer dimension, the Customer ID may be the logical primary key. Some of the attributes provide the basis for grouping the facts. These are the groupable attributes. For example, Gender, City, State, and Country may be groupable attributes of a customer. Other attributes are descriptive. For example, Mobile Phone Number is an attribute of a customer, but a report is unlikely to group by phone numbers. Some of the groupable attributes can be organized into a hierarchy, allowing drill-down reporting. For example, City rolls up to State, which rolls up to Country. Not all attributes can be organized into a single hierarchy.

· As OLTP is normalized there can be more than one table present for each business entity such as Products, Products Manufacturer details

· Extract the required attributes of each business entity such as Products needs only Product Name, Manufacturer though there are other attributes of parameters but not needed for the analysis

· Denormalize the business entity (flattening normalized tables to make unique set of attributes of each business entity) 

· Prepare a logical data modal consisting structure on how business entities related each other and entities that depend on source measures

· Hierarchies for the dimensions are stored with in the dimensional table in star schema
· In Star schema every dimension will have surrogate key as a primary key and there is no child/parent table present for the dimensions

· Fact tables will have a composite key containing the dimension keys

Steps in designing Snow Flake Schema

· It is similar to Star schema but with a degree of normalization is being performed 

· One or more dimension tables, each with a generated primary key, which contain one or more descriptive fields used to determine some level attributes for each dimension. In addition, a dimension table may contain a join to one or more other child dimension tables that supply additional level attributes for each dimension Example: Manufacturer information is kept in a separate dimension and Product dimension has a reference of Manufacturer in its attributes.  In star schema the manufacturer information would have been as attributes to Product dimension (not a separate dimension) 

· In a snowflake schema, more than one table is required to completely define the set of attributes for the dimension. 

· In a snow flake schema, a dimension table may have have a relationship to foreign keys in more than one dimension table. For example, a Geography table can join to the GeographyKey of Customer, Reseller, and Manufacturer

· Whether a dimension is designed as a single table (star) or multiple tables (snowflake) has no effect on the fact table. 

· In a fully-normalized snowflake dimension, you can clearly see the hierarchical relationship between attributes. In a star dimension, you may not see the hierarchical relationships. 

Guidelines for choosing Star vs. Snowflake

· Consider a snowflake schema to reduce storage requirements for a large dimension tables. For example, Storing the information about the manufacturer in a product dimension table would make a product dimension unnecessarily large because one manufacturer may provide multiple products 

· Consider snowflaking a dimension if one entity is referenced by multiple dimensions. For example, Customers, Resellers, and Manufacturers may all have a Geography component. Extracting geography information into a normalized table allows for consistency between geographical definitions for the different dimensions. A snowflaked dimension accessed from multiple dimensions is called a reference dimension.
· Another reason for using a snowflake schema is to supply information, not about the level attributes of a dimension, but the secondary attributes of a level. 

Dimensions Explained

Dimension Types

Changing Dimension:  Changing dimension is the dimension which has at least one attribute whose value would change over the time.

Slowly Changing Dimensions: Attributes of a dimension that would undergo changes over time.  It depends on the business requirement whether particular attribute history of changes should be preserved in the warehouse.  Example: Employee work location attribute may undergo changes over time not frequently. This is called a Slowly Changing Attribute and a dimension containing such an attribute is called a Slowly Changing Dimension.

Rapidly Changing Dimensions: A dimension attribute that changes frequently is a Rapidly Changing Attribute. For example, a CurrentLocation attribute for an Employee may change very frequently. If you don’t need to track the changes, the Rapidly Changing Attribute is no problem, but if you do need to track the changes, using a standard Slowly Changing Dimension technique can result in a huge inflation of the size of the dimension. One solution is to move the attribute to its own dimension, with a separate foreign key in the fact table. This new dimension is called a Rapidly Changing Dimension. Deciding if an attribute should be moved into a Rapidly Changing Dimension or kept in a Slowly Changing Dimension is up to the data architect. The decision depends on factors such as disk space, performance, expected data volume, history preservation etc,

Junk Dimensions: A junk dimension is a single table with a combination of different and unrelated attributes to avoid having a large number of foreign keys in the fact table. Junk dimensions are often created to manage the foreign keys created by Rapidly Changing Dimensions.  If you have bit-mapped indexes available, you may not need to create separate Junk dimensions, because the multiple, small-cardinality foreign keys can be managed efficiently.
Inferred Dimensions: While loading fact records, a dimension record may not yet be ready. One solution is to generate an surrogate key with Null for all the other attributes. This should technically be called an inferred member, but is often called an inferred dimension. 

Conformed Dimensions: A Dimension that is used in multiple locations is called a conformed dimension. A conformed dimension may be used with multiple fact tables in a single database, or across multiple data marts or data warehouses.
Degenerate Dimensions: A degenerate dimension is when the dimension attribute is stored as part of fact table, and not in a separate dimension table. Common examples include  Order Line Number or Transaction Number.  These are essentially dimension keys for which there are no other attributes. In a data warehouse, these are often used as the result of a drill through query to analyze the source of an aggregated number in a report. You can use these values to trace back to transactions in the OLTP system. 
Role Playing Dimensions: A role-playing dimension is one where the same dimension key—along with its associated attributes—can be joined to more than one foreign key in the fact table. For example, a fact table may include foreign keys for both Ship Date and Delivery Date. But the same date dimension attributes apply to each foreign key, so you can join the same dimension table to both foreign keys. Here the date dimension is taking multiple roles to map ship date as well as delivery date, and hence the name of Role Playing dimension.
Shrunken Dimensions: A shrunken dimension is a subset of another dimension. For example, the Orders fact table may include a foreign key for Product, but the Target fact table may include a foreign key only for ProductCategory, which is in the Product table, but much less granular. Creating a smaller dimension table, with ProductCategory as its primary key, is one way of dealing with this situation of heterogeneous grain. If the Product dimension is snowflaked, there is probably already a separate table for ProductCategory, which can serve as the Shrunken Dimension. 
Outtriggers: Sometimes a dimension attribute can have multiple values for a single dimension key member. For example, a customer may have multiple accounts. One solution is to create a separate table with Customer Account as its logical primary key. An outrigger dimension is the logical inverse of a shrunken dimension. 

Static Dimensions: Static dimensions are not extracted from the original data source, but are created within the context of the data warehouse. A static dimension can be loaded manually—for example with Status codes—or it can be generated by a procedure, such as a Date or Time dimension.

Identifying dimensions

· Dimensions provide the 'who, what, where, when and why' that is applied to the 'how much' fact. 

· Lookup tables and master tables which generally act as a primary key tables in OLTP would end up as dimensions in warehouse

· For normalization reasons, there can be more than one table for a single entity in OLTP such as customer table and customer address table, both of them can make it up to one dimension in warehouse as a part of the denormalization process

· Dimensions are typically highly denormalized and descriptive. They are typically text fields, and serve as context for the facts 

· Dimensions can be left as degenerate dimensions whenever they make sense by themselves, provided that they do not have additional attributes. One reason for creating a separate dimension table is if you want to report on “missing” values from the fact table: the dimension table can include all possible values, not just the ones for which there are fact transactions. By creating an outer join, you can find members that do not have fact transactions. 

· Dimensions are some times referred to as causal: they contain the causal factors responsible for the collected measures (for example, dimension Promotion)

· If the attributes are connected in one or more hierarchies then these are usually captured in the dimension table 

· Dimension attributes are business descriptors users believe are of significance to understanding the measures in the fact table

· Dimension attributes are usually discrete (not continuous) and are often used as the source of constraints. Some dimension attributes may be continuous—for example the list price for products. Continuous values are not useful for grouping. You can often convert a continuous value into discrete buckets. For example, converting prices into High, Medium, Low.

· Dimension attributes usually have a limited cardinality at least when compared to facts, which come from OLTP transactions

· User input and evaluation of existing business reports help define the dimensions to include in the data warehouse. The words “by”, “for”, “of”, and “in” often flag a dimension.

· A user who wants to see data by sales region and by product has just identified two dimensions (geography and product). 

· Business reports that group sales by salesperson or sales by customer identify two more dimensions (salesforce and customer). 

· The question, "What were the sales of food items in the northwest region for the third quarter of 1999?" represents the use of three dimensions (product, geography, time) to specify the information to be summarized

Dimension Guidelines

Denormalization

This is the process of flattening the dimensions to form one single unit of all the related entities.  Normalization is generally performed on OLTP systems to reduce redundancy and reduce the risk of update anomalies while managing many transactions.  On the contrary, denormalization introduces redundancy and reduces joins, allowing for faster retrieval and more user-friendly structures

Unlike a transaction system, where new transactions can be launched from many process, in Data warehouse only the ETL process will add or update records, and the update frequency is much less than that of a typical OLTP.  

Benefits of selectively violating normalization rules and introducing redundancy:

· Redundancy can reduce data retrieval time

· Redundancy can create a more user-friendly model

Potential disadvantages with denormalizing the database:

· It may cause update, delete and insert performance to suffer

· It will take up more space

In a typical data warehouse, the advantages of denormalization far outweigh the disadvantages.

Avoid encoding record information in Surrogate key

A surrogate key should be a simple running sequence number and should not have any encoded information.  If the surrogate key is an integer, the query manager can perform faster joins between the fact table and the dimension table. The surrogate key should be able to change freely when you and it should be able to apply a new surrogate key to any new records added. Encoding record information in surrogate key would have adverse affect when the record information is changed.

For example, a surrogate key that includes the combination of Employee ID and Location ID would need to change if the employee location changes. This defeats the decoupling purpose of the surrogate key. 

Denormalize snowflake dimensions for end users

If you decide to store a dimension as a snowflake—in multiple tables—use a view to denormalize it into a star before representing it to end users. A simple dimension structure that consists of simply a dimension key and a list of attributes is easier for users to understand than a complex relationship of tables with joins. 

For example, an Employee dimension may be stored as an Employee table and a Department table. If the Department ID is a foreign key in the Employee table, it is logically part of the Employee dimension. Rather than show the end user two separate entities, show the dimension as if it were a single table. 

Do not show surrogate keys to the end user because they do not have any business meaning. 

Consider adding zero key for Dimension tables

Adding a dummy record in each dimension as a first record whose surrogate key value is zero, so called as zero key.  The business key and other attributes are defaulted to NULL or default value such as Not Available.  

The fact table typically contains the transactions that are recorded at source system.  Due to the nature of extraction process implemented, there is a possibility that business key is not available at the time of fact table loading. In such a case, a default key is assumed from dimension (as dimension is not yet populated with the required key)  having zero value.  Once the dimension record comes back in the loading, the corresponding zero key in the fact is updated with corresponding surrogate key of the business key.  Zero keys also added date and time dimensions.  If the date/time information is not available at the time fact table population zero keys of the corresponding dimensions are assumed.

Do not combine attributes from different business entities into a single dimension

One Dimension represents one entity and its details.  Combining two entities into one dimension in order to reduce number of dimensions does not adequately model the relationship. 

For example, suppose that a single Employee can participate in multiple Projects, and a single Project can include multiple Employees. This means that Employees and Projects are different entities. The relationship between Employees and Projects must be from an association table or a fact table. If you try to include Project information in the Employee dimension, you would need a separate Employee member for each Employee Project.

Create a surrogate key as the primary key of each dimension

Surrogate keys will act as a primary key for the dimension.  It is required because of following advantages:

· Consolidating from Multiple sources:  When data is consolidated from multiple sources, there is a possibility that business key repeated across sources.  To have it uniquely identified, surrogate key is created.  This is a single column incremented for each added record and its value is not based on the business key 

· Slowly changing members:  Dimension members can change over time.

· Inferred dim support:  When the dimension record is a late arrival after its fact records then a new dummy record (having business key and all other columns as NULL) is inserted in dimension table with a business key.  Surrogate key here supports the scenario to get referenced in fact table, be aware that dummy dimensional record will get updated once the dimension has received the late arrived dimensional record.

· Natural Key may change: The natural key (source key) may be modified in source system, having it referenced in fact table would lead to chaos as it needs to update entire fact table wherever the natural key is referenced.  Having surrogate key independent of natural key would not have to change anything even if the natural key is modified in the source system

· Performance:  Having an integer surrogate key in the dimension can improve the performance of data access queries because of its integer data type and also single attribute to represent the dimension record.  Consider the natural key at source is not a single column but a group of columns acting as a composite key.  Having this in dimension with surrogate key support would force the facts having these two keys referenced, this would not only increase the disk usage but joins on both the columns to get dimensional record

Use a simple integer for Surrogate keys

· Integer key joins are faster that joins with other data types, The SQL query engine is optimized for integer comparison.

· If possible, use an Identity constraint to generate the surrogate key. This is much more efficient than creating the key by using ETL code 

· Each time a member has a new value for a attributes, you add a new record, which generate another surrogate key. This allows older fact table rows to have the old attribute value, while new fact table rows have the new value.

· Surrogate keys can be defined as unique across source systems, so that a John Reynolds from system XYZ and a John Reese from system ABC might both be identified in their respective systems as JR.   However, once they are loaded into the data warehouse, they are each assigned a unique, non-overlapping value. 

Identify type and relationship between the dimensions and the facts

Consider following guidelines when defining the relationship between dimensions and facts

· If an attribute in a dimension is a numeric value that can be meaningfully aggregated in user reports, consider adding the numeric value to a fact table

· A dimension can have numeric values that don’t need to be aggregated in reports. These numeric values can remain in the dimension. 

· A fact table may contain only foreign keys, but no measures. This is called a factless fact table and exists when the business measures consist of only counts. This is a valid fact table design, but you may need to use distinct counts to aggregate the counts, rather than simple fact row counts. 

· The purpose for a dimension table is the ability to have multiple attributes for the dimension key. If a dimension key does not have any additional attributes, you can implement the dimension as a degenerate dimension in the fact table. 

Creating separate snow flake dimension tables for variable number of attributes of entities 

For heterogeneous dimension items such as products, some products have 100 attributes to track and some products just 10.  Having all these product details in the same dimension table would make the dimension table very wide, with no values for most attributes in any one row (sparse). One solution is to create one main dimension table containing the shared attributes and create individual dimension tables that join to the main dimension table to track the extended attributes

Conformed (Shared) dimensions 

A conformed (or shared) dimension is one that is used with multiple fact tables, or in multiple data marts or in multiple data warehouses. Shared does not mean only one copy is present, it does mean that only one copy is loaded with formal loading process and other copies will get replicated from the loaded copy.  A dimension is said to be conformed if it has been used across different schemas such as data marts, data warehouses and thus maintaining the logically same set of dimension attributes.  Using conformed dimensions is critical to successful data warehouse design.

Business Entities (also called as dimensions here) can be reused for other facts such as Products entity can be reused for Sales as well as Product costs

Conformed dimension ensures the dimension data is sourced from only one process and any other derived dimensions for data mart purposes would have consistent information.

When there are multiple fact tables or data marts in the system then all these fact tables and data marts should access one logical dimension per one business entity.  Example: There should be only one customer dimension the system that is being used by all data marts or fact tables or outrigger tables or other snow flake dimensions.

This dimension can be replicated or horizontally partitioned to suit the requirements of other data marts. Horizontal partitioning of a dimension means that some of the rows are in one copy and some are in another copy. For example, one dimension might have all the East region customers, while another has all the West region customers.

ETL process is to populate only one customer dimension in the system, not once for each data mart or separately for other horizontally/vertically separated dimensions

Changing Dimension

A data warehouse must deal with attributes that change values over time. This is not an issue for most transaction systems, because they deal only with the present. But a data warehouse will often present data historically for anywhere from two to ten years. Organization changes, customer attribute changes, and other changes must be managed. 

Procedure for identifying changes in a dimension

· Identifying the attributes that would change overtime needs knowledge about the OLTP system. In principle, any attribute except the key can change over time. You need to plan for what to do in case an attribute changes. 

· Identifying the attributes whose change history to be maintained in warehouse is a business analysis decision

· Changes are to be well modeled in the data model modal and data mapping sheet

· Granularity and normalization to be properly represented in data modal

· Assess the data type of surrogate keys that would sufficiently allow you to support changing dimensions

· Dimension Size considerations

· Data must be split based on attribute changes and usage

· Data that is used together is kept together to reduce joins

· Splitting a fat dimension into several smaller dimensions can improve performance

· Snowflake schema with its separated dimensions performance slightly better than the star schema with its wide flattened dimensions

· If the rapidly changing attributes are not textual and discrete, but are numeric and continuous, then consider placing them in facts

The validity of the data warehouse is thus dependent on how well changes in the its dimensions are tracked

Modeling Date and Time dimensions

There should be only one Date dimension and one Time dimension across all facts and dimension tables.  Not all date and time fields needed to be mapped to date and time dimensions. Map a date-time field to a Date or Time dimension only when you need the extra attributes from the dimension.

Typically the lowest granularity of the Date dimension is Day, and the lowest granularity of the Time dimension is Second. Many warehouses do not need a Time dimension, but a Date dimension is used in virtually every data warehouse system.

In general, create separate dimensions for Date and Time

If it is necessary to extract contiguous chunks of time that cross day boundaries (for example 11/24/2000 10 p.m. to 11/25/2000 6 a.m.), then it is easier if the hour and day are in the same dimension. Otherwise, separate dimensions for Date and Time are easier to manage and to query.

It is easier to analyze cyclical and recurring daily events if Date and Time are separate dimensions. 

Example:

Number of meetings active at 9AM this week.  This is an easy query if Date and Time are separate; it is much more complex if Date and Time are combined into a single dimension.

Following are issues of having date and time dimensions together in one DateTime dimension

Issue#1: 

Combining Date and Time into a single dimension creates an extremely large dimension, particularly if you use Seconds as the grain. The problem is not as great if you use Hour as the grain of the combined table 

· Cardinality of Date and Time Dimensions (separated) for 10 years of data

Date Dimension:  10 * 365 = 3650

Time Dimension (granularity: seconds): 24 * 60 * 60 = 86400

· Cardinality of Date and Time Dimensions (combined) for 10 years of data

DateTime Dimensions (granularity Hourly): 10 * 365 * 24 = 87600

DateTime Dimensions (granularity Seconds): 10 * 365 * 24 * 60 * 60 = 315,360,000

The more records in the DateTime dimension, the slower query performance will be. 

Issue #2

Having both date and time dimension in the same dimension can cause interpretation problems for fact tables that have granularity of a Day. It would be easy to inadvertently enter two records into the fact table for the same day, because of the extra granularity in the dimension table.  

When do you need Time information in the Fact Table?

· Business analysis needs time granularity for roll up or for measures/aggregations based on transaction date time

· When the business analysis has requirement such as number of transactions happened between 3 PM and 4 PM on 1/1/2006

· If no date time can be extracted related to a transaction date time, alternately Synch Date Time is used in presentation.  Example: There is a change of employee location in one of the employee master tables at source but source didn’t capture the date/time of the change.  To have Type II affect on employee dimension, synch date/time is used as a representation of location change occurred date/time, it is opted only in case of date/time information is needed for ware house dimension and the same is not present in source tables.

· When source transaction has date and time information and fact is loaded with no aggregations

· In case of date time information is not present, synch date time is used as a record changing/event occurred time

Fact tables

Fact tables contain data that describes specific events within a business, such as bank transactions or product sales

Types of Fact tables

There are basically two ways transaction-based fact table records are sourced, plus another way for non-transaction counts. 

· Transaction table: This is the transactions as it happens on the source.  Each transaction and its measure such as price is extracted, transformed and loaded to facts at regular intervals of time.  Ideally, if there are 100 transactions happened on a given day on the source and if fact is designed at the same level of granularity, in transaction fact table you would see 100 records added once ETL process finishes loading.
· Snapshot table: This is not exactly a transaction on the source.  It is generally to get the snapshot of the system.  Example: Getting all customer account balance as of end of the day.  Even when there is no transaction on any particular account, the snapshot fact table would gather all the current account balance information and keep it in the fact table to exactly know what the account balance of a given account is on a given date.
· Factless Fact: This fact generally is not sourced from an OLTP transaction.  Occasionally you need only to capture whether an event happened.  Example: You might want to capture employee attendance, you only need to know which employees came to work and which employees were absent.  Absent employees will not come from attendance sheet. This is prepared separately with the help of employee table and attended employees to load into factless fact.  Factless facts, as the name says, will not have any measures. Factless facts are often used with counts, and particularly distinct counts. For example, how many distinct employees worked during a given week.

Ideal fact measures are additive in nature but it is not a requirement that a fact table have numeric measures. For example, consider list of computers added and deleted from an environment. The fact table may capture the computers that are added and deleted.  There is no measure here but count of computers becomes the measure.  There is no measure stored in the fact table for this kind of transaction..

Identifying Facts and Measures

· Attributes of fact table are in general containing surrogate keys of the respective dimension tables

· The OLTP transactions or OLTP snapshot, are the source of fact records and would decide what business keys would make up to OLTP transaction.  During the load process, these business keys are mapped to the business key of the respective dimensions to extract the corresponding surrogate keys.

· Numeric values that resulted from an OLTP transaction typically end up as measures in the fact table.  One fact table can have more than one measure, including custom calculated measures based on measures derived from the OLTP system.. 

· Calculated measures that include only values from a single row may be pre computed during the load process and stored in the fact table, or they may be computed on the fly as they are used. Determination of which measures should be pre computed is a design consideration. There are other considerations in addition to the usual tradeoff between storage space and computational time. 

· All the facts have a specific granularity

· A set of foreign keys constitutes a logical concatenated key

· The fact table typically contains the largest volume of data

· The needs of the analyst must be supported by the facts in the fact table, there must be measures which have relevance to the business goals which the organization seeks to fulfill

· FACTS are measurable

· Facts are by nature dynamic and variable over time

· Fact tables have an unlimited number of rows—as opposed to dimension tables, which have a finite cardinality, even if very large. 

· Fact data represents the measurable results of a business event, or a business state and Dimensional data provides the context for that event or state. 

· Fact events vary depending on the business

· It is important to understand the basic business process and identify the business events and states when developing a dimensional data warehouse. 

· Fact tables should not contain descriptive information or any data other than the numerical measurement fields and the foreign key pointers to the corresponding entries in the dimension tables. 
· Identifying Measures. The most useful measures to include in a fact table are numbers that are additive. 
· Additive measures. allow summary information to be obtained by adding various quantities of the measure, such as the sales of a specific item at a group of stores for a particular time period. 

· Semi-additive measure: Is additive across all dimensions except time. The classic example of a semi-additive fact is a daily account balance. It's perfectly legitimate to add the balances of every account on a specific day—the fact is additive across the Account dimension—but the end-of-month balance of my savings account is not the sum of the balances for the past month—the fact is non-additive across time. When aggregating across time you need a special function such as the last non-empty value, or the first non-empty value, or the average. if you include semi-additive facts in a dimensional database, you should ideally use a front end tool that manage the appropriate semi-additive aggregation. At the very least, the front end tool should warn users if they attempt to summarize across a semi-additive dimension. 

· Non-additive measures: Non additive measures are those which cannot be summarized like additive/semi additive measures.  In general, you want to convert non-additive measure to additive measures. You can often do that by adding a weighting factor. For example, rather than store a rate, you can multiply the rate by a weight. After summing the weighted rate and also the weights, you can easily calculate a weighted average rate for any level of summarization. 

Each fact table also includes a multipart index that contains as foreign keys the primary keys of related dimension tables, which contain the attributes that describe the fact records. 

Granularity

Granularity is defined as the lowest level of detail of the data in the fact tables particularly the measures. The more granular the data, the more detailed your reports and analysis can be.  However, excess granularity consumes space and increases complexity.  It is a trade off because once you aggregate a fact table, you cannot decompose the aggregates.  

There are three types of grain: Transaction, Periodic Snapshots and Accumulating Snapshots. 

· Transactions - This is the basic detail record of the warehouse as it happened in the OLTP systems.  Example: Customer purchases a book or money transfer from savings to checking. The Time grain of a transaction is essentially continuous.

· Periodic Snapshots - This is a set of detail records that are repeated over time. It is to get number of customers existing, inventory of the system etc., at the end of the day.  The grain of a snapshot is the interval at which the snapshot is taken—whether hourly, daily, weekly, monthly, or yearly.
· Accumulating Snapshot - This is a snapshot that can change over time. The common example is the student enrollment example. The student's data doesn't change but the dates for enrollment, admission, etc.
Fact tables Guidelines

Consider the following guidelines when designing your Fact tables: 

Aggregating Data in Fact Tables

Data is generally aggregated to store the summarized information over a period of time of the fact measures such as the number of units of a product sold in a given month.  The source for these aggregations is the detailed granular fact which collects transactional information from source at regular intervals of time.  In some data warehouses, the aggregation is performed directly by the ETL process to move it into an aggregated fact table where the detailed transactional records do not have any value for the report users. For example, executives may not need to see the number of units sold at 6th hour of a day. Consider the following guidelines when designing your Fact tables that contain aggregate data:

· Aggregating data in the fact table should only be done after considering the consequences. Aggregation is the process of calculating summary data from detail records. It is often tempting to reduce the size of fact tables by aggregating data into summary records when the fact table is created. Detailed information is no longer directly available to the analyst. If detailed information is needed, the detail rows that were summarized will have to be identified and located, possibly in the source system that provided the data. Fact table data should be maintained at the finest granularity feasible.

· Avoid aggregation in warehouse tables if you will use an OLAP cube as the source for reports and analysis. In this case, the cube provides the aggregation functionality, but if you need to get to details it still available in the fact table.

· If the reports query the underlying relational structure then aggregation will make queries faster

· It would make sense to archive only aggregated information rather than all the warehouse records. 

· To enhance relational queries, you may want to store the summary records in separate tables

· Mixing aggregated and detailed data in the fact table can cause issues and complications when using the data warehouse. For example, a sales order often contains several line items and may contain a discount, tax, or shipping cost that is applied to the order total instead of individual line items, yet the quantities and item identification are recorded at the line item level. Summarization queries become more complex in this situation.

Determine if a source numeric field is to be measure or an attribute

Sometimes during the design process, it is unclear whether a numeric data field from a production data source is a measured fact or an attribute. Generally, if the numeric data field is a measurement that changes each time we sample it, it is a fact. If it is a discretely valued description of something that is more or less constant, it is a dimension attribute. One way of making the distinction is whether it is a value you would want to use as a grouping item for a report. If it is, then it is an attribute. Often, an aggregatable measure also appears as an attribute by bucketing the values. For example, order quantity is typically a measure, but Order Size (i.e., Order Quantity bucketed into 5 discrete buckets) is an attribute.

Storage is cheap and time is expensive:

This is true in most of the data warehouse processes.  This means that you should store measures needed for reports as part of the fact measures.  Ideally, all the measures would directly be coming from source transactions but any calculations on these measures can be computed and stored in another measure attribute of the fact. This reduces the report query time as there is no more computation involved.  If reports directly query relational tables, create aggregation tables with pre-computed totals to enable reports to query at different grains with no computation during the reporting query.

Retain all measures coming from source in your fact

Have the original details of the measurements which are used for calculating the additive/non additive fields, can be used for later aggregations. Example:

If you keep all the measurements that are available from source in the fact table, any possible custom measurements later on the fact table can be done without changing the design of the fact table.  This ensures if one calculation is feasible to extract from source system then the warehouse system provides the same feasibility.

If the granularity of two facts tables is the same, consider combining them 

As a general rule when you start your dimensional modeling each business function should have its own fact table.  As your dimensional model evolves try combining the fact tables where the granularity is the same between the fact tables. Combing the facts makes analysis easier and eliminates the need for unnecessary joins.
Use indexed views to improve the performance of relational queries

The performance of queries against the relational data warehouse can be significantly improved when you use indexed views. Indexed view is a pre-computed table comprising aggregated or joined data from fact and possibly dimension tables. A indexed view is one way of implementing particularly when the requested data set is summary values that were not pre computed or aggregated

Fact table Index Guidelines 

· Consider having a composite primary key for your Fact table. Consider composite key (typically composite of all related dimension surrogate keys) as the primary key for Fact tables. Conversely, you can add an Identity column as a primary key in the fact table. 

· Some dimensional modeling will have business keys also being part of facts for enabling report performance.  These business keys do not need to be part of the composite key of the fact as their corresponding dimension SKs are declared in composite key.  There can be non clustered index to cover these business keys for better reports performance.

· Business keys which are used by ad hoc queries should be part of non clustered index. Non-clustered indexes will the increase efficiency and responsiveness of ad-hoc queries.  In the absence non key attributes covered by an index, would result in a clustered index scan (provided clustered index is created & available) which is expensive

Ensure fact table measures have relevance to the business goals

Though it is possible to create multiple measurements from the source measures, the fact measures should represent business requirement.  Create only those measures that are required for the reports/analytic needs of the business users. 

Ex: If Percentage sold is not a requirement for business people, do not create this as a measurement just because it is possible to create from the available data

It is suggested to try creating additive measures and avoid having non additive measures in the fact tables.

Determine when and where calculated measures are pre-computed. 

Calculated measures are those measures which are not directly available from source but computed from the measures coming from source.

Example: Number Sold is the source measure.  Percentage of the items sold per city is the measure calculated based on number of items sold in the city to the total items old in the given day.

Calculated measures can be created in the facts while loading enabling the reports which query the relational data warehouse table directly.

Keys and Indexes

Types of Keys and Indexes

Consider the following types of keys: 

· Surrogate Key:  A key to represent uniqueness in dimensions and acts as a method of being referenced from fact tables.  It generally an integer data type and get incremented for each key, to act as Identity column of the dimension.

· Natural Key:  Also termed as Business key.  This is the primary key or the unique key on the source system to represent the identification of entity uniquely.  Typically this is also part of physical implementation of warehouse schema participating in dimension structure but will not be as a key.  Natural key is just another attribute of dimension structure.

Consider the following types of Indexes:

· Clustered: Need of having indexes on the fact tables and dimensions are very crucial in warehouse and should be optimized for data access queries.  Typically clustered index on dimensions is created on surrogate key and surrogate keys used in the fact will be a composite key for fact tables.  
· Non-Clustered: There is a requirement of creating non clustered indexes on measures and on other widely accessed columns of the fact table.

· Covering Index:  Covering index will contain all the columns of the table, in this context it is for fact table.  The idea behind of creating covering index is boosting performance for any queries need not be part of any other index at the cost of index size.

Key and Index Guidelines

Consider the following Key and Index guidelines for your dimensional model: 

· Avoid using GUIDs as keys. GUIDs may be used in data from distributed source systems, but they are difficult to use as table keys. GUIDs use a significant amount of storage (16 bytes each), cannot be efficiently sorted, and are difficult for humans to read. Indexes on GUID columns may be relatively slower than indexes on integer keys because GUIDs are four times larger. GUIDs are not generally accessed in the query and so there is no need of creating indexes on GUIDs 

· Have non clustered indexes created on the business keys if they are part of facts

· Have clustered index created on dimension surrogate keys in facts (or create clustered index on Identity column and use non-clustered for SK FK’s)

· There is no need to create separate indexes on measurements as they are accessed via the surrogate keys or business keys

· For each dimension table, add a clustered index on the surrogate keys (primary key)

· Make sure to use the index in the same order it is created. For example, if an index is created on columns F1, F2 in the order, try having your query filters out first on F1 and then F2 

· Analyze the query execution plan for specific report queries and sample ad hoc queries before optimizing the usage

· Keep index keys smaller, do not include all the columns of the fact in the covering indexUses Indexed views to improve query performance that access data through views

