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The Mine - /

Open pit aggregate mine
Contains sand, gravel, cobble and boulders
Consists of millions of tons of sand, gravel and granite

Prior ownership left the deposit partially mined.




The Operation - /

Three loaders excavate and transport aggregate to a
feeder.

The feeder releases the aggregate onto a conveyor belt.

The conveyor belt transports the aggregate to a
stockpile, and then subsequently to a plant.

The plant sorts the aggregate using gravity and agitation
Into piles based on granularity.
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Depiction of Operation

Loader Cycle Feeder

&

Mining Frontier x
%u
ol
Q
To Plant Stockpile
/




Japeo v




The Conveyor Belts




The Products - /

Sand, pea gravel, concrete stone, and rock are used to
produce concrete and asphalt.

Crusher fines and sand are used for structural fills and
beddings.

Cobble is used for erosion control in building
developments.

Boulders are used as landscaping materials.




The Plant
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Economic Analysis

e Before an aggregate mine becomes operational,
economic analysts use geographic sampling, expected
operational costs and market information to determine
whether the mine is likely to be profitable.

e Fixed costs: depreciation, exploration and development
permitting, insurance, salaried employees, equipment,
rail line on the property

e Variable costs: wages for hourly employees, supplies,
loader fuel, utilities, stripping
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Current Modus Operandi

Mine managers place the feeder in an “intuitive”
centralized location.

Loaders run from the excavation site to the feeder.

Mine managers add loader hours as the travel distance
between the feeder and the excavation site increases.

Eventually production requirements cannot be met.
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Moving the Feeder

e The mining operations must cease while the feeder is
moved.

e The feeder is moved from its current location with
conveyor belt extensions.

e Problem:
— There is no advance warning of feeder movements.
— The feeder must often be moved at inopportune times.

— This feeder policy overtaxes loaders and precludes
synchronizing moves with downtime at the plant.

— The sequence of feeder moves is suboptimal. \
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Literature Review

e Ultimate pit limit problem (assumes of a certain
production rate and cutoff grade): Underwood and
Tolwinski (1998), Hochbaum (2001)

e Open pit production scheduling: Caccetta and Hill (2003)

e Underground mine scheduling: Carlyle and Eaves
(2001), Kuchta et al. (2004)
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Initlal Model Conditions

Place the feeder initially using geometric considerations
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\ Model ldea - /

e We need to determine when to move the feeder, and to
what location, balancing the cost of a feeder movement
with the cost of excavation (long cycle times).

e Assumptions:

— The initial feeder position is known.
— The trajectory area is regular and of fixed width.

— The aggregate is homogeneous and of fixed depth.
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Shortest Path Model

i, 7 = y-coordinate of feeder along a trajectory

N = all allowable instances of ¢ (e.g., {0,20,40})

A = all allowable (i, j) pairs (e.g., {(0,20), (20,40)})

f = fixed cost of moving the feeder

v;; = variable cost of moving the feeder from 7 to j

Tij = 4

/

\

1 if we move the feeder from 2 to j

0 otherwise
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Objective

Shortest Path Model: Algebra
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\ Cost Data - /

e fixed cost
— production loss

— extra equipment

e Vvariable cost
— labor cost
— loader fuel

— loader maintenance

\_ /
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Computing the Variable Cost /

Approximate the number of feet a loader moves on
average between ; and 5 within a rectangle with length
7-¢ and a width 2a (or a).

Compute the cycle time based on distance.

Compute the number of loaders needed to meet
production requirements based on the cycle time and
loader capacity.

Compute the cost for the loaders to run.
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\ Deriving the Average Haul Distance for a Loader
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4 . N

(tA+A/2,jJA+A/2),9=0,....m—1and j=0,...n—1
gives the x— and y—coordinates, respectively, of the center
of any small square within the a x b rectangle.

The distance between the feeder and the center of an
arbitrary square is:

VA2(0.5 4 0)2 + A2(0.5 + 5)2
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4 .

The average distance across all such squares Is:

m—1n—1

1/(nm) Y Y \/A2(0.5 +i)2 + A2(0.5 + 5)?
i=0 j=0

m—1n—1

=1/(nm) > > /a*(0.5+i)2/m? + b2(0.5 + 5)?/n?

i=0 j=0

(because A = & = 1)

-
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4 .

Holding the second variable corresponding to the 5 index
fixed, and using c as a constant representing the
corresponding term, we note that:

% MlU Va2((0.5 +14)/m)? + c2
i=0

IS a Riemann’s sum with length 1/m and height

f(z) = /a*((0.5 + 1) /m)? + c2.

-
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4 .
0.5+1

Recall #; = A(0.5 + i) = 2(0.5 + i); so, if we let z; = 22
we scale by a.

So, as m — oo, we can approximate the sum with the
following integral:

1
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(Limits of integration follow from: z; = %2 and when i = 0,

~
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Letting y also vary, the expression for the average distance
across all such squares can be approximated:

1,1
\ \ Va2x? + b2y2dzdy
0o Jo

which can be integrated via u-substitution and a
transformation to polar coordinates to yield:
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Excel and the Jensen solver
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4 Results - /

The two Parkdale deposits are 1800" and 1000 in length,
and both are 1200” in width.

We compute the optimal trajectory moves and the
associated total cost of mining the deposit for widths of
100, 200/, 3007, 400, 600’, and 1200’.

For the 1800 length deposit, optimal feeder moves are
spaced either 440’ or 460’ apart, and occur along a
trajectory width of 1200'.

For the 1000’ length deposit, move the feeder once to
500" along a trajectory width of 1200'. \
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Cost Comparison

e Optimal moves are 13%-14% lower cost than that
obtained with the modus operandi.

e These percentages are actually lower bounds on the cost
savings because:

— (1) we assume that the mine would choose the optimal
trajectory width while determining feeder moves
without our model

— (i) we do not consider the detrimental effects of poor
loader maintenance schedules, lack of coordination
between feeder movements and scheduled downtime
at the plant, and low customer satisfaction. \
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Quote from General Manager (Tom Maul)

“Traditionally, mine managers... defer... the effort of [planning
pit feeder movements] until absolutely necessary... [because]
many aggregate mines exist on a scale that does not justify a
management team... a single person... does not have... time
to perform lengthy optimization analyses.

The underlying... assumptions that provide the basis for the
development of this optimization model are sound, and the
results are very credible. This model represents a practical
management tool for the aggregates industry, and it is our
Intent to apply the model.”

\_ /
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