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ABSTRACT

A simple cosmological model with only six parameters (matter density,

Ωmh
2, baryon density, Ωbh

2, Hubble Constant, H0, amplitude of fluctua-
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tions, σ8, optical depth, τ , and a slope for the scalar perturbation spec-

trum, ns) fits not only the three year WMAP temperature and polariza-

tion data, but also small scale CMB data, light element abundances, large-

scale structure observations, and the supernova luminosity/distance relation-

ship. Using WMAP data only, the best fit values for cosmological param-

eters for the power-law flat ΛCDM model are (Ωmh
2,Ωbh

2, h, ns, τ, σ8) =

(0.127+0.007
−0.013, 0.0223+0.0007

−0.0009, 0.73+0.03
−0.03, 0.951+0.015

−0.019, 0.09+0.03
−0.03, 0.74+0.05

−0.06) The three year

data dramatically shrinks the allowed volume in this six dimensional parameter

space.

Assuming that the primordial fluctuations are adiabatic with a power law

spectrum, the WMAP data alone require dark matter, and a spectral index that

is significantly less than the Harrison-Zel’dovich-Peebles scale-invariant spectrum

(ns = 1, r = 0). Adding additional data sets improves the constraints on these

components and the spectral slope. For power-law models, WMAP data alone

puts an improved upper limit on the tensor to scalar ratio, r0.002 < 0.55 (95% CL)

and the combination of WMAP and the lensing-normalized SDSS galaxy survey

implies r0.002 < 0.28 (95% CL).

Models that suppress large-scale power through a running spectral index or a

large-scale cut-off in the power spectrum are a better fit to the WMAP and small

scale CMB data than the power-law ΛCDM model; however, the improvement in

the fit to the WMAP data is only ∆χ2 = 3 for 1 extra degree of freedom. Models

with a running-spectral index are consistent with a higher amplitude of gravity

waves.

In a flat universe, the combination of WMAP and the Supernova Legacy

Survey (SNLS) data yields a significant constraint on the equation of state of

the dark energy, w = −0.97+0.07
−0.09 If we assume w = −1, then the deviations

from the critical density, ΩK , are small: the combination of WMAP and the

SNLS data imply Ωk = −0.015+0.020
−0.016 . The combination of WMAP three year

data plus the HST key project constraint on H0 implies ΩK = −0.010+0.016
−0.009 and

ΩΛ = 0.72 ± 0.04. Even if we do not include the prior that the universe is flat,

by combining WMAP, large-scale structure and supernova data, we can still put

a strong constraint on the dark energy equation of state, w = −1.06+0.13
−0.08.

For a flat universe, the combination of WMAP and other astronomical data

yield a constraint on the sum of the neutrino masses,
∑

mν < 0.68 eV(95% CL).

Consistent with the predictions of simple inflationary theories, we detect no signif-

icant deviations from Gaussianity in the CMB maps using Minkowski functionals,

the bispectrum, trispectrum, and a new statistic designed to detect large-scale

anisotropies in the fluctuations.
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Subject headings: cosmic microwave background, cosmology: observations

1. Introduction

The power-law ΛCDM model fits not only the Wilkinson Microwave Anisotropy Probe

(WMAP) first year data, but also a wide range of astronomical data (Bennett et al. 2003;

Spergel et al. 2003). In this model, the universe is spatially flat, homogeneous and isotropic

on large scales. It is composed of ordinary matter, radiation, and dark matter and has a

cosmological constant. The primordial fluctuations in this model are adiabatic, nearly scale-

invariant Gaussian random fluctuations (Komatsu et al. 2003). Six cosmological parameters

(the density of matter, the density of atoms, the expansion rate of the universe, the amplitude

of the primordial fluctuations, their scale dependence and the optical depth of the universe)

are enough to predict not only the statistical properties of the microwave sky, measured by

WMAP at several hundred thousand points on the sky, but also the large-scale distribution

of matter and galaxies, mapped by the Sloan Digital Sky Survey (SDSS) and the 2dF Galaxy

Redshift Survey (2dFGRS).

With three years of integration, improved beam models, better understanding of sys-

tematic errors (Jarosik et al. 2006), temperature data (Hinshaw et al. 2006), and polarization

data (Page et al. 2006), the WMAP data has significantly improved. There have also been

significant improvements in other astronomical data sets: analysis of galaxy clustering in the

SDSS (Tegmark et al. 2004a; Eisenstein et al. 2005) and the completion of the 2dFGRS (Cole

et al. 2005); improvements in small-scale CMB measurements (Kuo et al. 2004; Readhead

et al. 2004a,b; Grainge et al. 2003; Leitch et al. 2005; Piacentini et al. 2005; Montroy et al.

2005; O’Dwyer et al. 2005), much larger samples of high redshift supernova (Riess et al. 2004;

Astier et al. 2005; Nobili et al. 2005; Clocchiatti et al. 2005; Krisciunas et al. 2005); and

significant improvements in the lensing data (Refregier 2003; Heymans et al. 2005; Semboloni

et al. 2005; Hoekstra et al. 2005).

In §2, we describe the basic analysis methodology used, with an emphasis on changes

since the first year. In §3, we fit the ΛCDM model to the WMAP temperature and polariza-

tion data. With its basic parameters fixed at z ∼ 1100, this model predicts the properties

of the low redshift universe: the galaxy power spectrum, the gravitational lensing power

spectrum, the Hubble constant, and the luminosity-distance relationship. In §4, we compare

the predictions of this model to a host of astronomical observations. We then discuss the

results of combined analysis of WMAP data, other astronomical data, and other CMB data
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sets. In §5, we use the WMAP data to constrain the shape of the power spectrum. In §6,

we consider the implications of the WMAP data for our understanding of inflation. In §7,

we use these data sets to constrain the composition of the universe: the equation of state of

the dark energy, the neutrino masses and the effective number of neutrino species. In §8, we

search for non-Gaussian features in the microwave background data. The conclusions of our

analysis are described in §9.

2. Methodology

The basic approach of this paper is similar to that of the first-year WMAP analysis:

our goal is to find the simplest model that fits the CMB and large-scale structure data.

Unless explicitly noted in §2.1, we use the methodology described in Verde et al. (2003) and

applied in Spergel et al. (2003). We use Bayesian statistical techniques to explore the shape

of the likelihood function, we use Monte Carlo Markov chain methods to explore the likeli-

hood surface and we quote both our maximum likelihood parameters and the marginalized

expectation value for each parameter in a given model:

< αi >=

∫

dNα L(d|α)p(α)αi =
1

M

M
∑

j=1

αji (1)

where αji is the value of the i−th parameter in the chain and j indexes the chain element.

The number of elements (M) in the typical merged Markov Chain is at least 50,000 and is

always long enough to satisfy the Gelman & Rubin (1992) convergence test with R < 1.1.

Most merged chains have over 100,000 elements. We use a uniform prior on cosmological

parameters, p(α) unless otherwise specified. We refer to < αi > as the best fit value for the

parameter and the peak of the likelihood function as the best fit model.

The Markov chain outputs and the marginalized values of the cosmological parameters

listed in Table 1 for all of the models discussed in the paper are available at http://lambda.gsfc.nasa.gov.

2.1. Changes in analysis techniques

We now use not only the measurements of the temperature power spectrum (TT) and the

temperature polarization power spectrum (TE), but also measurements of the polarization

power spectra (EE) and (BB).

At the lowest multipoles, a number of the approximations used in the first year analysis

were suboptimal. Efstathiou (2004) notes that a maximum likelihood analysis is significantly
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better than a quadratic estimator analysis at ℓ = 2. Slosar et al. (2004) note that the shape

of the likelihood function at ℓ = 2 is not well approximated by the fitting function used in

the first year analysis (Verde et al. 2003). More accurate treatments of the low ℓ likelihoods

decrease the significance of the evidence for a running spectral index (Efstathiou 2004; Slosar

et al. 2004; O’Dwyer et al. 2004). Hinshaw et al. (2006) and Page et al. (2006) describe our

approach to addressing this concern: for low multipoles, we explicitly compute the likelihood

function for the WMAP temperature and polarization maps . This pixel-based method is

used for CTT
ℓ for 2 ≤ ℓ ≤ 12 and polarization for 2 ≤ ℓ ≤ 23.

There are several improvements in our analysis of high ℓ temperature data (Hinshaw

et al. 2006): better beam models, improved foreground models, and the use of maps with

smaller pixels (Nside = 1024). The improved foreground model is significant at ℓ < 200.

The Nside = 1024 maps significantly reduce the effects of sub-pixel CMB fluctuations and

other pixelization effects. We found that Nside = 512 maps had higher χ2 than Nside = 1024

maps, particularly for ℓ = 600−700, where there is significant signal-to-noise and pixelization

effects are significant. Finally, an improved knowledge of the beam window functions reduces

the excess variance near the first acoustic peak.

We now marginalize over the amplitude of Sunyaev-Zel’dovich (SZ) fluctuations. The

expected level of SZ fluctuations (Refregier et al. 2000; Komatsu & Seljak 2001; Bond et al.

2005) is ℓ(ℓ + 1)Cℓ/(2π) = 19 ± 3(µK)2 at ℓ = 450 − 800 for Ωm = 0.26, Ωb = 0.044,

h = 0.72, ns = 0.97 and σ8 = 0.80. The amplitude of SZ fluctuations is very sensitive

to σ8 (Komatsu & Kitayama 1999; Komatsu & Seljak 2001). For example at 60 GHz,

ℓ(ℓ+ 1)Cℓ/(2π) = 65 ± 15(µK)2 at ℓ = 450 − 800 for σ8 = 0.91, which is comparable to the

WMAP statistical errors at the same multipole range. Since the WMAP spectral coverage is

not sufficient to be able to distinguish CMB fluctuations from SZ fluctuations (see discussion

in Hinshaw et al. (2006)), we marginalize over its amplitude using the Komatsu & Seljak

(2002) analytical model for the shape of the SZ fluctuations. We impose the prior that the

SZ signal is between 0 and 2 times the Komatsu & Seljak (2002) value. Consistent with the

analysis of Huffenberger et al. (2004), we find that the SZ contribution is not a significant

contaminant to the CMB signal on the scales probed by the WMAP experiment. We report

the amplitude of the SZ signal normalized to the Komatsu & Seljak (2002) predictions for

the cosmological parameters listed above with σ8 = 0.80. For the best fit ΛCDM model,

σ8 = σ8 = 0.744+0.050
−0.060 and ASZ = 0.99+0.92

−0.99 . ASZ = 1 implies that the SZ contribution is

8.4, 18.7 and 25.2 (µK)2 at ℓ = 220, 600 and 1000 respectively. We discuss the effects of this

marginalization in Appendix A.

We now use the CAMB code (Lewis et al. 2000) for our analysis of the WMAP power

spectrum. The CAMB code is derived from CMBFAST (Zaldarriaga & Seljak 2000), but has
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the advantage of running a factor of 2 faster on the Silicon Graphics, Inc. (SGI) machines

used for the analysis in this paper.

2.2. Parameter choices

We consider constraints on the hot Big Bang Cosmological scenario with Gaussian, adi-

abatic primordial fluctuations as would arise from single field, slow-roll inflation. We do not

consider the influence of isocurvature modes nor the subsequent production of fluctuations

from topological defects or unstable particle decay.

We parameterize our cosmological model in terms of 15 parameters:

p = {ωb, ωc, τ,ΩΛ, w,Ωk, fν , Nν ,∆
2
R, ns, r, dns/d lnk, ASZ , bSDSS, zs} (2)

where these parameters are defined in Table 1. For the basic power-law ΛCDM model,

we use ωb, ωc, exp(−2τ), Θs, ns, and CTT
ℓ=220, as the cosmological parameters in the chain,

ASZ as a nuisance parameter, and assume a flat prior on these parameters. Other standard

cosmological parameters (also defined in Table 1), such as σ8 and h, are functions of these

six parameters. Appendix A discusses the dependence of results on the choice of priors.

While the CMB data alone can constrain the six parameter power-law ΛCDM model,

more general models, most notably those with non-flat cosmologies and with richer dark

energy or matter content, have strong parameter degeneracies (see Verde et al. (2003) for

further discussion). These degeneracies slow convergence as the Markov chains need to

explore degenerate valleys in the likelihood surface. For each set of model and data analyzed,

we use covariance matrices to calculate the steps in the Markov chain. After excising an

initial burn-in phase, we take the first 4,000 elements of a preliminary chain to generate a

covariance matrix from which the subsequent steps are determined.

3. ΛCDM Model: Does it still fit the data?

3.1. WMAP only

The ΛCDM model is still an excellent fit to the WMAP data. With longer integration

times and smaller pixels, the errors in the temperature Cℓ on the high ℓ multipoles have

shrunk by more than a factor of three. As the data has improved, the likelihood function

remains peaked around the maximum likelihood peak of the first year WMAP value. With

longer integration, the most discrepant high ℓ points from the year-one data are now much
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Parameter Description Definition

H0 Hubble expansion factor H0 = 100h Mpc−1km s−1

ωb Baryon density ωb = Ωbh
2 = ρb/1.88 × 10−26 kg m−3

ωc Cold dark matter density ωc = Ωch
2 = ρc/18.8 yoctograms/ m−3

fν Massive neutrino fraction fν = Ων/Ωc
∑

mν Total neutrino mass (eV)
∑

mν = 93.104Ωνh
2

Nν Effective number of relativistic neutrino species

Ωk Spatial curvature

ΩDE Dark energy density For w = −1, ΩΛ = ΩDE

Ωm Matter energy density Ωm = Ωb + Ωc + Ων

w Dark energy equation of state w = pDE/ρDE

∆2
R

Amplitude of curvature perturbations R ∆2
R

(k = 0.002/Mpc) ≈ 29.5 × 10−10A

A Amplitude of density fluctuations (k = 0.002/Mpc) See Spergel et al. (2003)

ns Scalar spectral index at 0.002/Mpc

α Running in scalar spectral index α = dns/dlnk (assume constant)

r Ratio of the amplitude of tensor fluctuations

to scalar potential fluctuations at k=0.002/Mpc

nt Tensor spectra index Assume nt = −r/8

τ Reionization optical depth

σ8 Linear theory amplitude of matter

fluctuations on 8h−1 Mpc

Θs Acoustic peak scale (degrees) see Kosowsky et al. (2002)

ASZ SZ marginalization factor see appendix A

bsdss Galaxy bias factor for SDSS sample b = [Psdss(k, z = 0)/P (k)]1/2 (constant)

C TT
220 Amplitude of the TT temperature power spectrum at ℓ = 220

zs Weak lensing source redshift

Table 1: Cosmological parameters used in the analysis. http://lambda.gsfc.nasa.gov lists the marginalized

values for these parameters for all of the models discussed in this paper.
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Fig. 1.— The improvement in parameter constraints for the power-law ΛCDM

model (Model M5 in Table 3). The contours show the 68% and 95% joint 2-d

marginalized contours for the (Ωmh
2, σ8) plane (left) and the (ns, τ) plane (right).

The black contours are for the first year WMAP data (with no prior on τ). The

red contours are for the first WMAP data combined with CBI and ACBAR

(WMAPext in Spergel et al. (2003)). The blue contours are for the three year

WMAP data only with the SZ contribution set to 0 to maintain consistency

with the first year analysis. The WMAP measurements of EE power spectrum

provide a strong constraint on the value of τ . The models with no reionization

(τ = 0) or a scale-invariant spectrum (ns = 1) are both disfavored at ∆χ2
eff = 8 for

5 parameters (see Table 3). Improvements in the measurement of the amplitude

of the third peak yield better constraints on Ωmh
2.
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closer to the best fit model (see Figure 2). For the first year WMAP TT and TE data

(Spergel et al. 2003), the reduced χ2
eff was 1.09 for 893 degrees of freedom (D.O.F.) for the

TT data and was 1.066 for the combined TT and TE data (893+449=1342 D.O.F.). For

the three year data, which has much smaller error bars for ℓ > 350, the reduced χ2
eff for

982 D.O.F. (ℓ = 13 − 1000- 7 parameters) is now 1.068 for the TT data and 1.041 for the

combined TT and TE data ( 1410 D.O.F., including TE ℓ = 24 − 450), where the TE data

contribution is evaluated from ℓ = 24 − 500.

Fig. 2.— Comparison of the predictions of the different best fit models to the

data. The black line is the angular power spectrum predicted for the best fit

three-year WMAP only ΛCDM model. The red line is the best fit to the 1-year

WMAP data. The orange line is the best fit to the combination of the 1-year

WMAP data, CBI and ACBAR (WMAPext in Spergel et al. (2003)). The solid

data points are for the 3 year data and the light gray data points are for the first

year data.

For the T, Q, and U maps using the pixel based likelihood we obtain a reduced χ2
eff =

0.981 for 1838 pixels (corresponding to CTT
ℓ for ℓ = 2 − 12 and CTE

ℓ for ℓ = 2 − 23). The

combined reduced χ2
eff = 1.037 for 3162 degrees of freedom for the combined fit to the TT

and TE power spectrum at high ℓ and the T,Q and U maps at low ℓ.

While many of the maximum likelihood parameter values (Table 2, columns 3 and 7
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and Figure 1) have not changed significantly, there has been a noticeable reduction in the

marginalized value for the optical depth, τ , and a shift in the best fit value of Ωmh
2. (Each

shift is slightly larger than 1σ). The addition of the EE data now eliminates a large region

of parameter space with large τ and ns that was consistent with the first year data. With

only the first year data set, the likelihood surface was very flat. It covered only a ridge in

τ − ns over a region that extended from τ ≃ 0.07 to nearly τ = 0.3. If the optical depth of

the universe were as large as τ = 0.3 (a value consistent with the first year data), then the

measured EE signal would have been 10 times larger than the value reported in Page et al.

(2006). On the other hand, an optical depth of τ = 0.05 would produce one quarter of the

detected EE signal.

There has also been a significant reduction in the uncertainties in the matter density,

Ωmh
2. With the first year of WMAP data, the third peak was poorly constrained (see the

light gray data points in Figure 2). With three years of integration, the WMAP data better

constrain the height of the third peak: WMAP is now cosmic variance limited up to ℓ = 400

and the signal-to-noise ratio exceeds unity up to ℓ = 850. The new best fit WMAP-only

model is close to the WMAP (first year)+CBI+ACBAR model in the third peak region. As

a result, the preferred value of Ωmh
2 now shifts closer to the “WMAPext” value reported

in Spergel et al. (2003). Figure 1 shows the Ωmh
2 − σ8 likelihood surfaces for the first year

WMAP data, the first year WMAPext data and the three year WMAP data. The accurately

determined peak position constrains Ω0.275
m h (Page et al. 2003a), fixes the cosmological age,

and determines the direction of the degeneracy surface. With 1 year data, the best fit value

is Ω0.275
m h = 0.498. With three years of data, the best fit shifts to 0.492+0.008

−0.017. The lower

third peak implies a smaller value of Ωmh
2 and because of the peak constraint, a lower value

of Ωm. This implies less structure growth at late times, so that the marginalized likelihood

value for σ8 in Table 2 is now noticeably smaller for the three year data, σ8 = 0.77 ± 0.05,

than for the first-year data, 0.92 ± 0.10.

In the first year data, we assumed that the SZ contribution to the WMAP data was

negligible. Appendix A discusses the change in priors and the change in the SZ treatment

and their effects on parameters: marginalizing over SZ most significantly shifts ns and σ8

by 1% and 3% respectively. In Table 2 and Figure 1, we assume ASZ = 0 to make a con-

sistent comparison between the first-year and three-year results. The first column of Table

5 list the parameters fit to the WMAP three-year data with ASZ allowed to vary between

0 and 2. In the tables, the “mean” value is calculated according to equation (1) and the

“Maximum Likelihood (ML)” value is the value at the peak of the likelihood function. In

subsequent tables and figures, we will allow the SZ contribution to vary and quote the ap-

propriate marginalized values. Allowing for an SZ contribution lowers the best fit primordial

contribution at high ℓ, thus, the best fit models with an SZ contribution have lower ns and
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σ8 values. In all of the Tables, we quote the 68% confidence intervals on parameters and the

95% confidence limits on bounded parameters.

Table 2: Power Law ΛCDM Model Parameters and 68% Confidence Intervals. The Three

Year fits in this Table assume no SZ contribution, ASZ = 0, to allow direct comparision

with the First Year results. Fits that include SZ marginalization are given in Table 5 (first

column) and represent our best estimate of these parameters.

Parameter First Year WMAPext Three Year First Year WMAPext Three Year

Mean Mean Mean ML ML ML

100Ωbh
2 2.38+0.13

−0.12 2.32+0.12
−0.11 2.23 ± 0.08 2.30 2.21 2.23

Ωmh
2 0.144+0.016

−0.016 0.134+0.006
−0.006 0.126 ± 0.009 0.145 0.138 0.128

H0 72+5
−5 73+3

−3 74+3
−3 68 71 73

τ 0.17+0.08
−0.07 0.15+0.07

−0.07 0.093 ± 0.029 0.10 0.10 0.092

ns 0.99+0.04
−0.04 0.98+0.03

−0.03 0.961 ± 0.017 0.97 0.96 0.958

Ωm 0.29+0.07
−0.07 0.25+0.03

−0.03 0.234 ± 0.035 0.32 0.27 0.24

σ8 0.92+0.1
−0.1 0.84+0.06

−0.06 0.76 ± 0.05 0.88 0.82 0.77

3.2. Reionization History

Since the Kogut et al. (2003) detection of τ , the physics of reionization has been a subject

of extensive theoretical study (Cen 2003; Ciardi et al. 2003; Haiman & Holder 2003; Madau

et al. 2004; Oh & Haiman 2003; Ricotti & Ostriker 2004; Sokasian et al. 2004; Somerville &

Livio 2003; Wyithe & Loeb 2003; Iliev et al. 2005). The EE data favors τ ≃ 0.1, consistent

with the predictions of a number of simulations of ΛCDM models. For example, Ciardi et al.

(2003) ΛCDM simulations predict τ = 0.104 for parameters consistent with the WMAP

primordial power spectrum. Chiu, Fan & Ostriker (2003) found that their joint analysis of

the WMAP and SDSS quasar data favored a model with τes = 0.11, σ8 = 0.83 and n = 0.96,

very close to our new best fit values. Wyithe & Cen (2006) predict that if the product of star

formation efficiency and escape fraction for Pop-III stars is comparable to that for Pop-II

stars, τ = 0.09 − 0.12 with reionization histories characterized by an extended ionization

plateau from z = 7 − 12. They argue that this result holds regardless of the redshift where

the intergalactic medium (IGM) becomes enriched with metals.

Measurements of the EE and TE power spectrum are a powerful probe of early star

formation and an important complement to other astronomical measurements. Observations
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Fig. 3.— WMAP constraints on the reionization history. (Left) The 68% and

95% joint 2-d marginalized confidence level contours for x0
e − zreion for a power

law Λ Cold Dark Matter (ΛCDM) model with the reionization history described

by equation 3 and fit to the WMAP three year data. In equation 3 we assume

that the universe was partially reionized at zreion to an ionization fraction of x0
e,

and then became fully ionized at z = 7. (Right) The 68% and 95% joint 2-d

marginalized confidence level contours for x0
e − ns where τ has been fixed to be

between 0.09 and 0.11. This figure shows that x0
e and ns are nearly independent

for a given value of τ , indicating that WMAP determinations of cosmological

parameters are not affected by details of the reionization history. Note that we

assume a uniform prior on zreion in this calculation, which favors models with

lower x0
e values in the right panel.
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of galaxies (Malhotra & Rhoads 2004), quasars (Fan et al. 2005) and gamma ray bursts

(Totani et al. 2005) imply that the universe was mostly ionized by z = 6. The detection

of large-scale TE and EE signal (Page et al. 2006) implies that the universe was mostly

reionized at even higher redshift. CMB observations have the potential to constrain some

of the details of reionization, as the shape of the CMB EE power spectrum is sensitive

to reionization history (Kaplinghat et al. 2003; Hu & Holder 2003). Here, we explore the

ability of the current EE data to constrain reionization by postulating a two stage process

as a toy model. During the first stage, the universe is partially reionized at redshift zreion
and complete reionization occurs at z = 7:

xe = 0 z > zreion

= x0
e zreion > z > 7

= 1 z < 7 (3)

We have modified CAMB to include this reionization history.

Figure 3 shows the likelihood surface for x0
e and zreion. The plot shows that the data

does not yet constrain x0
e and that the characteristic redshift of reionization is sensitive to

our assumptions about reionization. If we assume that the universe is fully reionized, x0
e = 1,

then the maximum likelihood peak is zreion = zr = 10.9+2.7
−2.3. The maximum likelihood peak

value of the cosmic age at the reionization epoch is treion = 365Myr.

Reionization alters the TT power spectrum by suppressing fluctuations on scales smaller

than the horizon size at the epoch of reionization. Without strong constraints from polar-

ization data on τ , there is a strong degeneracy between spectral index and τ in likelihood

fits (Spergel et al. 2003). The polarization measurements now strongly constrain τ ; however,

there is still significant uncertainty in xe and the details of the reionization history. For-

tunately, the temperature power spectrum mostly depends on the amplitude of the optical

depth signal, τ , so that the other fit parameters (e.g., ns) are insensitive to the details of

the reionization history (see Figure 3). Because of this weak correlation, we will assume a

simple reionization history (x0
e = 1) in all of the other analysis in this paper. Allowing for a

more complex history is not likely to alter any of the conclusions of the other sections.

3.3. How Many Parameters Do We Need to Fit the WMAP Data?

In this subsection, we compare the power-law ΛCDM to other cosmological models. We

consider both simpler models with fewer parameters and models with additional physics,

characterized by additional parameters. We quantify the relative goodness of fit of the
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models,

∆χ2
eff ≡ −∆(2 lnL) = 2 lnL(ΛCDM) − 2 lnL(model) (4)

A positive value for ∆χ2
eff implies the model is disfavored. A negative value means that the

model is a better fit. We also characterize each model by the number of free parameters,

Npar. There are 3162 degrees of freedom in the combination of T, Q, and U maps and high

ℓ TT and TE power spectra used in the fits and 1448 independent Cl’s, so that the effective

number of data degrees of freedom is between 1448 and 3162.

Table 3 shows that the power-law ΛCDM is a significantly better fit than the simpler

models. If we reduce the number of parameters in the model, the cosmological fits signifi-

cantly worsen:

• Cold dark matter serves as a significant forcing term that amplifies the higher acoustic

oscillations. Alternative gravity models (e.g., MOND), and all baryons-only models,

lack this forcing term so they predict a much lower third peak than is observed by

WMAP and small scale CMB experiments (McGaugh 2004; Skordis et al. 2006). Mod-

els without dark matter (even if we allow for a cosmological constant) are very poor

fits to the data.

• Positively curved models without a cosmological constant are consistent with the

WMAP data alone: a model with the same six parameters and the prior that there is

no dark energy, ΩΛ = 0, fits as well as the standard model with the flat universe prior,

Ωm + ΩΛ = 1. However, if we imposed a prior that H0 > 40 km s−1 Mpc−1, then the

WMAP data would not be consistent with ΩΛ = 0. Moreover, the parameters fit to the

no-cosmological-constant model, (H0 = 30 km s−1 Mpc−1 and Ωm = 1.3) are terrible

fits to a host of astronomical data: large-scale structure observations, supernova data

and measurements of local dynamics. As discussed in §7.3, the combination of WMAP

data and other astronomical data solidifies the evidence against these models. The de-

tected cross-correlation between CMB fluctuations and large-scale structure provides

further evidence for the existence of dark energy (see §4.1.10).

• The simple scale invariant (ns = 1.0) model is no longer a good fit to the WMAP

data. As discussed in the previous subsection, combining the WMAP data with other

astronomical data sets further strengthens the case for ns < 1.

The conclusion that the WMAP data demands the existence of dark matter and dark energy

is based on the assumption that the primordial power spectrum is a power-law spectrum. By

adding additional features in the primordial perturbation spectrum, these alternative models

may be able to better mimic the ΛCDM model. This possibility requires further study.
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The bottom half of Table 3 lists the relative improvement of the generalized models

over the power-law ΛCDM. As the Table shows, the WMAP data alone does not require

the existence of tensor modes, quintessence, or modifications in neutrino properties. Adding

these parameters does not improve the fit. For the WMAP data, the region in likelihood

space where these additional parameters are 0 is within the 1σ contour. In the §7, we consider

the limits on these parameters based on WMAP data and other astronomical data sets.

If we allow for a non-flat universe, then models with small negative iΩk are a better

fit than the power-law ΛCDM model. These models have a lower ISW signal at low l and

are a better fit to the low ℓ multipoles. The best fit closed universe model has Ωm = 0.415,

ΩΛ = 0.630 and H0 = 55 kms−1Mpc−1 and is a better fit to the WMAP data alone than

the flat universe model(∆χ2
eff = 6) This best fit model has a much larger SZ amplitude,

ASZ = 1.4 than expected for its small value of σ8 = 0.72. If we had imposed the prior that

the SZ signal match the KS prediction, then the expected value of ASZ would be smaller

and the ∆χ2
eff would drop to 2. More significantly, as discussed in §7.3, the combination of

WMAP data with either SNe data, large-scale structure data or measurements of H0 favors

models with ΩK close to 0.

In section 5, we consider several different modifications to the shape of the power spec-

trum. As noted in Table 3 , none of the modifications lead to significant improvements in the

fit. Allowing the spectral index to vary as a function of scale improves the goodness-of-fit.

The low ℓ multipoles, particularly ℓ = 2, are lower than predicted in the ΛCDM model.

However, the relative improvement in fit is not large, ∆χ2
eff = 3, so the WMAP data alone

do not require a running spectral index.

Measurement of the goodness of fit is a simple approach to test the needed number of

parameters. These results should be confirmed by Bayesian model comparison techniques

(Beltrán et al. 2005; Trotta 2005; Mukherjee et al. 2006; Bridges et al. 2005).
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Table 3: Goodness of Fit, ∆χ2
eff ≡ −2 lnL, for WMAP data only relative to a Power-Law

ΛCDM model. ∆χ2
eff > 0 is a worse fit to the data.

Model −∆(2 lnL) Npar

M1 Scale Invariant Fluctuations (ns = 1) 8 5

M2 No Reionization (τ = 0) 8 5

M3 No Dark Matter (Ωc = 0,ΩΛ 6= 0) 248 6

M4 No Cosmological Constant (Ωc 6= 0,ΩΛ = 0) 0 6

M5 Power Law ΛCDM 0 6

M6 Quintessence (w 6= −1) 0 7

M7 Massive Neutrino (mν > 0) 0 7

M8 Tensor Modes (r > 0) 0 7

M9 Running Spectral Index (dns/d ln k 6= 0) −3 7

M10 Non-flat Universe (Ωk 6= 0) −6 7

M11 Running Spectral Index & Tensor Modes −3 8

M12 Sharp cutoff −1 7

M13 Binned ∆2
R(k) −22 20
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4. WMAP ΛCDM Model and Other Astronomical Data

In this paper, our approach is to show first that a wide range of astronomical data sets

are consistent with the predictions of the ΛCDM model with its parameters fitted to the

WMAP data (see section §4.1). We then use the external data sets to constrain extensions

of the standard model.

In our analyses, we consider several different types of data sets. We consider the SDSS

LRGs, the SDSS full sample and the 2dFGRS data separately, this allows a check of system-

atic effects. We divide the small scale CMB data sets into low frequency experiments (CBI,

VSA) and high frequency experiments (BOOMERanG, ACBAR). We divide the supernova

data sets into two groups as described below. The details of the data sets are also described

in §4.1.

When we consider models with more parameters, there are significant degeneracies, and

external data sets are essential for parameter constraints. We use this approach in §4.2 and

subsequent sections.

4.1. Predictions from the WMAP Best Fit ΛCDM Model

The WMAP data alone is now able to accurately constrain the basic six parameters

of the ΛCDM model. In this section, we focus on this model and begin by using only the

WMAP data to fix the cosmological parameters. We then use the Markov chains (and linear

theory) to predict the amplitude of fluctuations in the local universe and compare to other

astronomical observations. These comparisons test the basic physical assumptions of the

ΛCDM model.

4.1.1. Age of the Universe and H0

The CMB data do not directly measure H0; however, by measuring ΩmH
2
0 through the

height of the peaks and the conformal distance to the surface of last scatter through the

peak positions (Page et al. 2003b), the CMB data produces a determination of H0 if we

assume the simple flat ΛCDM model. Within the context of the basic model of adiabatic

fluctuations, the CMB data provides a relatively robust determination of the age as the

degeneracy in other cosmological parameters is nearly orthogonal to measurements of the

age of the universe (Knox et al. 2001; Hu et al. 2001).

The WMAP ΛCDM best fit value for the age: t0 = 13.73+0.13
−0.17 Gyr, agrees with estimates
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of ages based on globular clusters (Chaboyer & Krauss 2002) and white dwarfs (Hansen et al.

2004; Richer et al. 2004). Figure 4 compares the predicted evolution of H(z) to the HST

key project value (Freedman et al. 2001) and to values from analysis of differential ages as

a function of redshift (Jimenez et al. 2003; Simon et al. 2005).

The WMAP best fit value, H0 =73.4+2.8
−3.8 km/s/Mpc, is also consistent with HST mea-

surements (Freedman et al. 2001), H0 = 72±8 km/s/Mpc, where the error includes random

and systematic uncertainties and the estimate is based on several different methods (Type Ia

supernovae, Type II supernovae, surface brightness fluctuations and fundamental plane). It

also agrees with detailed studies of gravitationally lensed systems such as B1608+656 (Koop-

mans et al. 2003), which yields 75+7
−6 km/s/Mpc and recent measurements of the Cepheid

distances to nearby galaxies that host type Ia supernova (Riess et al. 2005), H0 = 73± 4± 5

km/s/Mpc.

4.1.2. Big Bang Nucleosynthesis

Measurements of the light element abundances are among the most important tests of

the standard big bang model. The WMAP estimate of the baryon abundance depends on our

understanding of acoustic oscillations 300,000 years after the big bang. The BBN abundance

predictions depend on our understanding of physics in the first minutes after the big bang.

Table 4 lists the primordial deuterium abundance, yFITD , the primordial 3He abundance,

y3, the primordial helium abundance, YP , and the primordial 7Li abundance, yLi, based on

analytical fits to the predicted BBN abundances (Steigman 2005) and the power-law ΛCDM

68% confidence range for the baryon/photon ratio, η10. The lithium abundance is often

expressed as a logarithmic abundance, [Li]P = 12 + log10(Li/H).

Table 4: Primordial abundances based on using Steigman (2005) fitting formula for the

ΛCDM 3-year WMAP only value for the baryon/photon ratio, η10 = 6.0965 ± 0.2055.

CMB-based BBN prediction Observed Value

105yFITD 2.58+0.14
−0.13 1.6 - 4.0

105y3 1.05 ± 0.03 ± 0.03 (syst.) < 1.1 ± 0.2

YP 0.24815 ± 0.00033 ± 0.0006(syst.) 0.232 - 0.258

[Li] 2.64 ± 0.03 2.2 - 2.4

The systematic uncertainties in the helium abundances are due to the uncertainties in

nuclear parameters, particularly neutron lifetime (Steigman 2005). Prior to the measure-
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Fig. 4.— The ΛCDM model fit to the WMAP data predicts the Hubble parameter

redshift relation. The blue band shows the 68% confidence interval for the

Hubble parameter, H. The dark blue rectangle shows the HST key project

estimate for H0 and its uncertainties (Freedman et al. 2001). The other points are

from measurements of the differential ages of galaxies, based on fits of synthetic

stellar population models to galaxy spectroscopy. The squares show values from

Jimenez et al. (2003) analyses of SDSS galaxies. The diamonds show values from

Simon et al. (2005) analysis of a high redshift sample of red galaxies.
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ments of the CMB power spectrum, uncertainties in the baryon abundance were the biggest

source of uncertainty in CMB predictions. Recent measurements of the neutron lifetime

(Serebrov et al. 2005) suggest that the currently accepted value, τn = 887.5 s, should be

reduced by 7.2 s, a shift of several times the reported errors. This shorter lifetime lowers the

predicted best fit helium abundance, YP = 0.24675 (Mathews et al. 2005; Steigman 2005).

The deuterium abundance measurements provide the strongest test of the predicted

baryon abundance. Kirkman et al. (2003) estimate a primordial deuterium abundance,

[D]/[H]= 2.78+0.44
−0.38 × 10−5, based on five QSO absorption systems. The six systems used in

the Kirkman et al. (2003) analysis show a significant range in abundances: 1.65−3.98×10−5

and have a scatter much larger than the quoted observational errors. Recently, Crighton et al.

(2004) report a deuterium abundance of 1.6+0.5
−0.4 × 10−5 for PKS 1937-1009. Because of the

large scatter, we quote the range in [D]/[H] abundances in Table 4; however, note that the

mean abundance is in good agreement with the CMB prediction.

It is difficult to directly measure the primordial 3He abundance. Bania et al. (2002)

argue for an upper limit on the primordial 3He abundance of y3 < 1.1 ± 0.2 × 10−5. This

limit is compatible with the BBN predictions.

Olive & Skillman (2004) have reanalyzed the estimates of primordial helium abundance

based on observations of metal-poor HII regions. They conclude that the errors in the

abundance are dominated by systematic errors and argue that a number of these systematic

effects have not been properly included in earlier analysis. In Table 4, we quote their estimate

of the allowed range of YP . Olive & Skillman (2004) find a representative value of 0.249±0.009

for a linear fit to [O]/[H] to the helium abundance, significantly above earlier estimates and

consistent with WMAP-normalized BBN.

While the measured abundances of the other light elements appear to be consistent

with BBN predictions, measurements of neutral lithium abundance in low metallicity stars

imply values that are a factor of 2 below the BBN predictions: most recent measurements

(Charbonnel & Primas 2005; Boesgaard et al. 2005) find an abundance of [Li]P ≃ 2.2−2.25.

While Meléndez & Ramı́rez (2004) find a higher value, [Li]P ≃ 2.37 ± 0.05, even this value

is still significantly below the cosmological value, 2.64 ± 0.03. This discrepancies could be

due to systematics in the inferred lithium abundance (Steigman 2005), uncertainties in the

temperature scale (Fields et al. 2005), destruction of lithium in an early generation of stars

or the signature of new early universe physics (Coc et al. 2004; Richard et al. 2005; Ellis et al.

2005; Larena et al. 2005). The recent detection (Asplund et al. 2005) of 6Li in several low

metallicity stars further constrains chemical evolution models and exacerbates the tensions

between the BBN predictions and observations.
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Fig. 5.— The prediction for the small-scale angular power spectrum seen by

ground-based and balloon CMB experiments from the ΛCDM model fit to the

WMAP data only. The colored lines show the best fit (red) and the 68% (dark

orange) and 95% confidence levels (light orange) based on fits of the ΛCDM

models to the WMAP data. The points in the figure show small scale CMB

measurements (Grainge et al. 2003; Ruhl et al. 2003; Abroe et al. 2004; Kuo

et al. 2004; Readhead et al. 2004a). The plot shows that the ΛCDM model (fit

to the WMAP data alone) can accurately predict the amplitude of fluctuations

on the small scales measured by ground and balloon-based experiments.
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4.1.3. Small Scale CMB Measurements

With the basic parameters of the model fixed by the measurements of the first three

acoustic peaks, the basic properties of the small scale CMB fluctuations are determined by

the assumption of a power law for the amplitude of potential fluctuations and by the physics

of Silk damping. We test these assumptions by comparing the WMAP best fit power law

ΛCDM model to data from several recent small scale CMB experiments (BOOMERanG,

MAXIMA, ACBAR, CBI, VSA). These experiments probe smaller angular scales than the

WMAP experiment and are more sensitive to the details of recombination and the physics

of acoustic oscillations. The good agreement seen in Figure (5) suggests that the standard

cosmological model is accurately characterizing the basic physics at z ≃ 1100.

In subsequent sections, we combine WMAP with small scale experiments. We include

four external CMB datasets which complement the WMAP observations at smaller scales:

the Cosmic Background Imager (CBI: Mason et al. (2003); Sievers et al. (2003); Pearson et al.

(2003); Readhead et al. (2004a)), the Very Small Array (VSA: Grainge et al. (2003); Slosar

et al. (2003); Dickinson et al. (2004)), the Arcminute Cosmology Bolometer Array Receiver

(ACBAR: Kuo et al. (2004)) and BOOMERanG (Ruhl et al. 2003; Montroy et al. 2005;

Piacentini et al. 2005) We do not include results from a number of experiments that overlap

in ℓ range coverage with WMAP as these experiments have non-trivial cross-correlations

with WMAP that would have to be included in the analysis. We compare the angular power

spectrum from based on fitting the ΛCDM model to the WMAP data alone to current

experiments in Figure 5.

We do not use the small-scale polarization results for parameter determination as they do

not yet noticeably improve constraints. These polarization measurements, however, already

provide important tests on the basic assumptions of the model (e.g., adiabatic fluctuations

and standard recombination history).

The measurements beyond the third peak improve constraints on the cosmological pa-

rameters. These observations constrict the {τ, ωb, As, ns} degeneracy and provide an im-

proved probe of a running tilt in the primordial power spectrum. In each case we only use

bandpowers that do not overlap with signal-dominated WMAP observations, so that they

can be treated as independent measurements.

In the subsequent sections, we perform likelihood analysis for two combinations of

WMAP data with other CMB data sets: WMAP + high frequency bolometer experi-

ments (ACBAR + BOOMERanG) and WMAP + low frequency radiometer experiments

(CBI+VSA). The CBI data set is described in Readhead et al. (2004a). We use 7 bandpow-

ers, with mean ℓ values of 948, 1066, 1211, 1355, 1482, 1692 and 1739, from the even binning
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of observations rescaled to a 32 GHz Jupiter temperature of 147.3 ± 1.8K. The rescaling

reduces the calibration uncertainty to 2.6% from 10% assumed in the first year analyses;

CBI beam uncertainties scale the entire power spectrum and, thus, act like a calibration

error. We use a log-normal form of the likelihood as in Pearson et al. (2003). The VSA

data (Dickinson et al. 2004) uses 5 bandpowers with mean ℓ-values of 894, 995, 1117, 1269

and 1407, which are calibrated to the WMAP 32 GHz Jupiter temperature measurement.

The calibration uncertainty is assumed to be 3% and again we use a log-normal form of the

likelihood. For ACBAR (Kuo et al. 2004), we use the same bandpowers with central ℓ values

842, 986, 1128, 1279, 1426, 1580, and 1716, and errors from the ACBAR web site1 as in

the first year analysis. We assume a calibration uncertainty of 20% in Cℓ, and the quoted

3% beam uncertainty in Full Width Half Maximum. We use the temperature data from the

2003 flight of BOOMERanG, based on the “NA pipeline” (Jones et al. 2005) considering the

7 datapoints and covariance matrix for bins with mean ℓ values, 924, 974, 1025, 1076, 1117,

1211 and 1370.

4.1.4. Large-Scale Structure

With the WMAP polarization measurements constraining the suppression of temper-

ature anisotropy by reionization, we now have an accurate measure of the amplitude of

fluctuations at the redshift of decoupling. If the power-law ΛCDM model is an accurate

description of the large-scale properties of the universe, then we can extrapolate forward

the roughly 1000-fold growth in the amplitude of fluctuations due to gravitational clustering

and compare the predicted amplitude of fluctuations to the large-scale structure observa-

tions. This is a powerful test of the theory as some alternative models fit the CMB data but

predict significantly different galaxy power spectra (e.g., Blanchard et al. (2003)).

Using only the WMAP data, together with linear theory, we can predict the amplitude

and shape of the matter power spectrum. The band in Figure 6 shows the 68% confidence

interval for the matter power spectrum. Most of the uncertainty in the figure is due to

the uncertainties in Ωmh. The points in the figure show the SDSS Galaxy power spectrum

(Tegmark et al. 2004b) with the amplitude of the fluctuations normalized by the galaxy

lensing measurements and the 2dFGRS data (Cole et al. 2005). The figure shows that the

ΛCDM model, when normalized to observations at z ∼ 1100, accurately predicts the large-

scale properties of the matter distribution in the nearby universe. It also shows that adding

the large-scale structure measurements will reduce uncertainties in cosmological parameters.

1See http://cosmology.berkeley.edu/group/swlh/acbar/data
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Fig. 6.— The prediction for the mass fluctuations measured by galaxy surveys

from the ΛCDM model fit to the WMAP data only. (Left) The predicted power

spectrum (based on the range of parameters consistent with the WMAP-only

parameters) is compared to the mass power spectrum inferred from the SDSS

galaxy power spectrum (Tegmark et al. 2004b) and normalized by weak lensing

measurements (Seljak et al. 2005b). (Right) The predicted power spectrum is

compared to the mass power spectrum inferred from the 2dFGRS galaxy power

spectrum(Cole et al. 2005) with the best fit value for b2dFGRS based on the fit to

the WMAP model. Note that the data points shown are correlated.

When we combine WMAP with large-scale structure observations in subsequent sections,

we consider the combination of WMAP with measurements of the power spectrum from the

two large-scale structure surveys. Since the galaxy power spectrum does not suffer the

optical depth-driven suppression in power seen in the CMB, large scale structure data gives

an independent measure of the normalization of the initial power spectrum (to within the

uncertainty of the galaxy biasing and redshift space distortions) and significantly truncates

the {τ, ωb, As, ns} degeneracy. In addition the galaxy power spectrum shape is determined

by Ωmh as opposed to the Ωmh
2 dependency of the CMB. Its inclusion therefore further

helps to break the {ωm,ΩΛ, w or Ωk} degeneracy.

The 2dFGRS survey probes the universe at redshift z ∼0.1 (we assume zeff = 0.17 for

the effective redshift for the survey) and probes the power spectrum on scales 0.022 hMpc−1 <

k < 0.19 hMpc−1. Using the data and covariance described in Cole et al. (2005) we use 32

of the 36 bandpowers in the range 0.022 hMpc−1 < k < 0.19 hMpc−1. We correct for non-

linearities and non-linear redshift space distortions using the prescription employed by the

2dF team,

P redsh
gal (k) =

1 +Qk2

1 + Ak
P theory
gal (k) (5)
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where P redshift
gal and P theory

gal are the redshift space and theoretical real space galaxy power

spectra. with Q = 4. Mpc2 and A = 1.4 Mpc. We analytically marginalize over the power

spectrum amplitude, effectively applying no prior on the linear bias and on linear redshift

space distortions, in contrast to our first year analyses.

The SDSS main galaxy survey measures the galaxy distribution at redshift of z ∼ 0.1;

however, as in the analysis of the SDSS team (Tegmark et al. 2004b) we assume zeff = 0.07

, and we use 14 power spectrum bandpowers between 0.016h Mpc−1 < k < 0.11h Mpc−1.

We follow the approach used in the SDSS analysis in Tegmark et al. (2004a): We use the

nonlinear evolution of clustering as described in Smith et al. (2003) and include a linear bias

factor, bsdss, and the linear redshift space distortion parameter, β.

P redsh
gal (k) = (1 +

2

3
β +

1

5
β2)P theory

gal (k) (6)

Following Lahav et al. (1991), we use βb = d ln δ/d ln a where β ≈ [Ω
4/7
m +(1+Ωm/2)(ΩΛ/70)]/b.

For the bias parameter, we use an estimate from weak lensing of the same SDSS galax-

ies used to derive the matter power spectrum to impose a Gaussian prior on the bias of

bSDSS = 1.03 ± 0.15. This value includes a 4% calibration uncertainty in quadrature with

the reported bias error. 2 and is a symmetrized form of the bias constraint in Table 2

of Seljak et al. (2005b). While the WMAP first year data was used in the Seljak et al.

(2005b) analysis, the covariance between the data sets are small. We restrict our analysis

to scales where the bias of a given galaxy population does not show significant scale de-

pendence (Zehavi et al. 2005). Analyses that use galaxy clustering data on smaller scales

require detailed modeling of non-linear dynamics and the relationship between galaxy halos

and galaxy properties (see, e.g., Abazajian et al. (2005)).

The SDSS luminous red galaxy (LRG) survey uses the brightest class of galaxies in the

SDSS survey (Eisenstein et al. 2005). While a much smaller galaxy sample than the main

SDSS galaxy sample, it has the advantage of covering 0.72 h−3 Gpc3 between 0.16 < z < 0.47.

Because of its large volume, this survey was able to detect the acoustic peak in the galaxy

correlation, one of the distinctive predictions of the standard adiabatic cosmological model

(Peebles & Yu 1970; Sunyaev & Zel’dovich 1970; Bond & Efstathiou 1984; Bond & Efstathiou

1987). We use the SDSS acoustic peak results to constrain the balance of the matter content,

using the well measured combination,

A(z = 0.35) ≡
√

ΩmE(zBAO)−1/3

[

1

zBAO

∫ zBAO

0

dz

E(z)

]2/3

(7)

2M. Tegmark private communication.
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where zBAO = 0.35 andE(z) = H(z)/H0. We impose a Gaussian prior of A = 0.469
(

ns

0.98

)−0.35
±

0.017 based on the analysis of Eisenstein et al. (2005) .

4.1.5. Lyman α Forest

Absorption features in high redshift quasars (QSO) at around the frequency of the

Lyman-α emission line are thought to be produced by regions of low-density gas at redshifts

2 < z < 4 (Croft et al. 1998; Gnedin & Hamilton 2002). These features allow the matter

distribution to be characterized on scales of 0.2 < k < 5 h Mpc−1 and as such extend the

lever arm provided by combining large-scale structure data and CMB. These observations

also probe a higher redshift range (z ∼ 2 − 3). Thus, these observations nicely complement

CMB measurements and large scale structure observations. While there has been significant

progress in understanding systematics in the past few years (McDonald et al. 2005; Meiksin

& White 2004), time constraints limit our ability to consider all relevant data sets.

Recent fits to the Lyman-α forest imply a higher amplitude of density fluctuations than

the peak WMAP likelihood value: Jena et al. (2005) find that σ8 = 0.9,Ωm = 0.27, h = 0.71

provides a good fit to the Lyman α data. Seljak et al. (2005a) combines first year WMAP

data, other CMB experiments, large-scale structure and Lyman α to find: ns = 0.98 ±

0.02, σ8 = 0.90 ± 0.03, h = 0.71 ± 0.021, and Ωm = 0.281+0.023
−0.021. Note that if they assume

τ = 0.09, the best fit value drops to σ8 = 0.84. While these models have somewhat higher

amplitudes than the new best fit WMAP values, a recent analysis by Desjacques & Nusser

(2005) find that the Lyman α data is consistent with σ8 between 0.7 − 0.9. This suggests

that the Lyman α data is consistent with the new WMAP best fit values; however, further

analysis is needed.

4.1.6. Galaxy Motions and Properties

Observations of galaxy peculiar velocities probe the growth rate of structure and are

sensitive to the matter density and the amplitude of mass fluctuations. The Feldman et al.

(2003) analysis of peculiar velocities of nearby ellipticals and spirals finds Ωm = 0.30+0.17
−0.07

and σ8 = 1.13+0.22
−0.23, within 1σ of the WMAP best fit value for Ωm and 1.5σ higher than the

WMAP value for σ8. These estimates are based on dynamics and not sensitive to the shape

of the power spectrum.

Modeled galaxy properties can be compared to the clustering properties of galaxies

on smaller scales. The best fit parameters for WMAP only are consistent with the recent
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Abazajian et al. (2005) analysis of the pre-three year release CMB data combined with

the SDSS data. In their analysis, they fit a Halo Occupation Distribution model to the

galaxy distribution so as to use the galaxy clustering data at smaller scales. Their best fit

parameters (H0 = 70 ± 2.6 km/s/Mpc,Ωm = 0.271 ± 0.026) are consistent with the results

found here. Vale & Ostriker (2005) fit the observed galaxy luminosity functions with σ8 = 0.8

and Ωm = 0.25, again consistent with the WMAP fits.

4.1.7. Weak Lensing

Over the past few years, there has been dramatic progress in using weak lensing data

as a probe of mass fluctuations in the nearby universe (see Bartelmann & Schneider (2001);

Van Waerbeke & Mellier (prep) for recent reviews). Lensing surveys complement CMB

measurements (Contaldi et al. 2003; Tereno et al. 2005), and their dominant systematic

uncertainties differ from the large-scale structure surveys.

Measurements of weak gravitational lensing, the distortion of galaxy images by the

distribution of mass along the line of sight, directly probe the distribution of mass fluctu-

ations along the line of sight (see Refregier (2003) for a recent review). Figure 7 shows

that the WMAP data for the ΛCDM model predictions for σ8 and Ωm are lower than the

amplitude found in most recent lensing surveys: Hoekstra et al. (2002) calculate σ8 =

0.94+0.10
−0.14(Ωm/0.25)−0.52 (95% confidence) from the RCS survey and Van Waerbeke et al.

(2005) determine σ8 = 0.91 ± 0.08(Ωm/0.25)−0.49 from the VIRMOS-DESCART survey;

however, Jarvis et al. (2003) find σ8 = 0.79+0.13
−0.16(Ωm/0.25)−0.57 (95% confidence level) from

the 75 Degree CTIO survey.

In §4.2, we use the data set provided by the first weak gravitational lensing analysis of

the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) 3 as conducted by Hoekstra

et al. (2005) (Ho05) and Semboloni et al. (2005). Following Ho05, we use only the wide fields

W1 and W3, hence a total area of 22 deg2 observed in the i′ band limited to a magnitude of

i′ = 24.5. We follow the same methodology as Ho05 and Tereno et al. (2005). For each given

model and set of parameters, we compute the predicted shear variance at various smoothing

scales, 〈γ2〉, and then evaluate its likelihood (see Ho05 equation 13).

Since we assume that the lensing data are in a noise dominated regime, we neglect the

cosmological dependence of the covariance matrix. To account conservatively for a possible

residual systematic contamination, we use 〈γ2
B〉 as a monitor and add it in quadrature to

3http://www.cfht.hawaii.edu/Science/CFHTLS
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Fig. 7.— Prediction for the mass fluctuations measured by the CFTHLS weak-

lensing survey from the ΛCDM model fit to the WMAP data only. The blue,

red and green contours show the joint 2-d marginalized 68% and 95% confidence

limits in the (σ8, Ωm) plane for for WMAP only, CFHTLS only and WMAP

+ CFHTLS, respectively, for the power law ΛCDM models. All constraints

come from assuming the same priors on input parameters, with the additional

marginalization over zs in the weak lensing analysis, using a top hat prior of

0.613 < zs < 0.721 . While lensing data favors higher values of σ8 ≃ 0.8 − 1.0 (see

§4.1.7), X-ray cluster studies favor lower values of σ8 ≃ 0.7 − 0.8 (see §4.1.9).
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the diagonal of the noise covariance matrix, as performed also by Ho05. We furthermore

marginalize over the mean source redshift, zs (defined in equation (16) of Ho05) assuming a

uniform prior between 0.613 and 0.721. This marginalization is performed by including these

extra parameters in the Monte Carlo Markov Chain. Our analysis differs however from the

likelihood analysis of Ho05 in the choice of the transfer function. We use the Novosyadlyj

et al. (1999)(NDL) CDM transfer function (with the assumptions of Tegmark et al. (2001))

rather than the Bardeen et al. (1986) (BBKS) CDM transfer function. The NDL transfer

function includes more accurately baryon oscillations and neutrino effects. This modification

alters the shape of the likelihood surface in the 2-dimensional (σ8,Ωm) likelihood space.

4.1.8. Strong Lensing

Strong lensing provides another potentially powerful probe of cosmology. The number

of multiply-lensed arcs and quasars is very sensitive to the underlying cosmology. The

cross-section for lensing depends on the number of systems with surface densities above

the critical density, which in turn is sensitive to the angular diameter distance relation

(Turner 1990). The CLASS lensing survey (Chae et al. 2002) finds that the number of lenses

detected in the radio survey is consistent with a flat universe with a cosmological constant

and Ωm = 0.31+0.27
−0.14. The statistics of strong lenses in the SDSS is also consistent with the

standard ΛCDM cosmology (Oguri 2004). The number and the properties of lensed arcs are

also quite sensitive to cosmological parameters (but also to the details of the data analysis).

Wambsganss et al. (2004) conclude that arc statistics are consistent with the concordance

ΛCDM model.

Soucail et al. (2004) has used multiple lenses in Abell 2218 to provide another geomet-

rical tests of cosmological parameters. They find that 0 < Ωm < 0.33 and w < −0.85 for

a flat universe with dark energy. This method is another independent test of the standard

cosmology.

4.1.9. Clusters and the Growth of Structure

The numbers and properties of rich clusters are another tool for testing the emerging

standard model. Since clusters are rare, the number of clusters as a function of redshift is

a sensitive probe of cosmological parameters. Recent analyses of both optical and X-ray

cluster samples yield cosmological parameters consistent with the best fit WMAP ΛCDM

model (Borgani et al. 2001; Bahcall & Bode 2003; Allen et al. 2003; Vikhlinin et al. 2003;
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Henry 2004). The parameters are, however, sensitive to uncertainties in the conversion

between observed properties and cluster mass (Pierpaoli et al. 2003; Rasia et al. 2005).

Clusters can also be used to infer cosmological parameters through measurements of the

baryon/dark matter ratio as a function of redshift (Pen 1997; Ettori et al. 2003; Allen et al.

2004). Under the assumption that the baryon/dark matter ratio is constant with redshift,

the Universe is flat, and standard baryon densities, Allen et al. (2004) find Ωm = 0.24± 0.04

and w = −1.20+0.24
−0.28. Voevodkin & Vikhlinin (2004) determine σ8 = 0.72 ± 0.04 and Ωmh =

0.13±0.07 from measurements of the baryon fraction. These parameters are consistent with

the values found here and in §7.1.

4.1.10. Integrated Sachs-Wolfe (ISW) effect

Rather than testing the ΛCDM model by comparing the matter power spectrum at

different redshifts, recent analyses have tested the model by directly cross-correlating the

maps. The ΛCDM model predicts a statistical correlation between the CMB temperature

fluctuations and the large-scale distribution of matter (Crittenden & Turok 1996). Several

groups have detected correlations between the WMAP measurements and various tracers

of large-scale structure at levels consistent with the concordance ΛCDM model (Boughn &

Crittenden 2004; Nolta et al. 2004; Afshordi et al. 2004; Scranton et al. 2003; Fosalba &

Gaztañaga 2004; Padmanabhan et al. 2005; Corasaniti et al. 2005; Boughn & Crittenden

2005; Vielva et al. 2006). These detections are an important independent test of the effects

of dark energy on the growth of structure. However, for measurements of the ISW effect, the

first year WMAP data is already signal dominated on the scales probed by the ISW effect,

thus, improved large-scale structure surveys are needed to improve the statistical significance

of this effect (Afshordi 2004; Bean & Dore 2004; Pogosian et al. 2005).

4.1.11. Supernova

With the realization that their light curve shapes could be used to make SN Ia into

standard candles, supernovae have become an important cosmological probe (Phillips 1993;

Hamuy et al. 1996; Riess et al. 1996). They can be used to measure the luminosity distance

as a function of redshift. The dimness of z ≈ 0.5 supernova provide direct evidence for

the accelerating universe (Riess et al. 1998; Schmidt et al. 1998; Perlmutter et al. 1999;

Tonry et al. 2003; Knop et al. 2003; Nobili et al. 2005; Clocchiatti et al. 2005; Krisciunas

et al. 2005; Astier et al. 2005). Recent HST measurements (Riess et al. 2004) trace the
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Fig. 8.— Prediction for the luminosity distance-redshift relationship measured

by the supernova data from the ΛCDM model fit to the WMAP data only.

The plots show the deviations of the distance measure (DM) from the empty

universe model. The solid lines are the distance relationship predicted by the

ΛCDM model fit to the WMAP data only. (Left) The prediction is compared to

the SNLS DATA (Astier et al. 2005). (Right) The prediction is compared to the

“gold” supernova data (Riess et al. 2004).

luminosity distance/redshift relation out to higher redshift and provide additional evidence

for presence of dark energy. Assuming a flat Universe, the Riess et al. (2004) analysis of

the supernova data alone finds that Ωm = 0.29+0.05
−0.03 consistent with the fits to WMAP data

alone (see Table 2) and to various combinations of CMB and LSS data sets (see Tables 5

and 6). Astier et al. (2005) find that Ωm = 0.263+0.042
−0.042(stat.)

+0.032
−0.032(sys.) from the first year

supernova legacy survey.

Within the ΛCDM model, the supernovae data serve as a test of our cosmological

model. Figure 8 shows the consistency between the supernova and CMB data, confirming

the concordance seen in the analysis of the first-year WMAP data (Jassal et al. 2005).

Using just the WMAP data and the ΛCDM model, we can predict the distance/luminosity

relationship and test it with the supernova data.

In §4.2 and subsequent sections, we consider two recently published high-z supernovae

datasets in combination with the WMAP CMB data, 157 supernova in the “Gold Sample” as

described in Riess et al. (2004) with 0.015 < z < 1.6 based on a combination of ground-based

data and the GOODS ACS Treasury program using the Hubble Space Telescope (HST) and

the second sample, 115 supernova in the range 0.015 < z < 1 from the Supernova Legacy

Survey (SNLS) (Astier et al. 2005) .

Measurements of the apparent magnitude, m, and inferred absolute magnitude, M0, of
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each SN has been used to derive the distance modulus µobs = m−M0, from which a luminosity

distance is inferred, µobs = 5 log[dL(z)/Mpc] + 25. The luminosity distance predicted from

theory, µth, is compared to observations using a χ2 analysis summing over the SN sample.

χ2 =
∑

i

(µobs,i(zi) − µth(zi,M0))
2

σ2
obs,i

(8)

where the absolute magnitude, M0, is a “nuisance parameter”, analytically marginalized over

in the likelihood analysis (Lewis & Bridle 2002), and σobs contains systematic errors related

to the light curve stretch factor, K-correction, extinction and the intrinsic redshift dispersion

due to SNe peculiar velocities (assumed 400 and 300 km s−1 for HST/GOODS and SNLS

data sets respectively).

4.2. Joint Constraints on ΛCDM Model Parameters

Table 5: ΛCDM Model: Joint Likelihoods
WMAP WMAP WMAP+ACBAR WMAP +

Only +CBI+VSA +BOOMERanG 2dFGRS

Parameter

100Ωbh
2 2.233+0.072

−0.091 2.212+0.066
−0.084 2.231+0.070

−0.088 2.223+0.066
−0.083

Ωmh
2 0.1268+0.0072

−0.0095 0.1233+0.0070
−0.0086 0.1259+0.0077

−0.0095 0.1262+0.0045
−0.0062

h 0.734+0.028
−0.038 0.743+0.027

−0.037 0.739+0.028
−0.038 0.732+0.018

−0.025

A 0.801+0.043
−0.054 0.796+0.042

−0.052 0.798+0.046
−0.054 0.799+0.042

−0.051

τ 0.088+0.028
−0.034 0.088+0.027

−0.033 0.088+0.030
−0.033 0.083+0.027

−0.031

ns 0.951+0.015
−0.019 0.947+0.014

−0.017 0.951+0.015
−0.020 0.948+0.014

−0.018

σ8 0.744+0.050
−0.060 0.722+0.043

−0.053 0.739+0.047
−0.059 0.737+0.033

−0.045

Ωm 0.238+0.030
−0.041 0.226+0.026

−0.036 0.233+0.029
−0.041 0.236+0.016

−0.024

In the previous section, we showed that extrapolations of the power-law ΛCDM fits to the

WMAP measurements to other astronomical data successfully passes a fairly stringent series

of cosmological tests. Motivated by this agreement, we combine the WMAP observations

with other CMB data sets and with other astronomical observations.

Table 5 and 6 show that adding external data sets has little effect on several parameters:

Ωbh
2, ns and τ . However, the various combinations do reduce the uncertainties on Ωm and

the amplitude of fluctuations. The data sets used in Table 5 favor smaller values of the

matter density, higher Hubble constant values, and lower values of σ8. The data sets used
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Table 6: ΛCDM Model
WMAP+ WMAP+ WMAP+ WMAP + WMAP+

SDSS LRG SNLS SN Gold CFHTLS

Parameter

100Ωbh
2 2.233+0.062

−0.086 2.242+0.062
−0.084 2.233+0.069

−0.088 2.227+0.065
−0.082 2.255+0.062

−0.083

Ωmh
2 0.1329+0.0056

−0.0075 0.1337+0.0044
−0.0061 0.1295+0.0056

−0.0072 0.1349+0.0056
−0.0071 0.1408+0.0034

−0.0050

h 0.709+0.024
−0.032 0.709+0.016

−0.023 0.723+0.021
−0.030 0.701+0.020

−0.026 0.687+0.016
−0.024

A 0.813+0.042
−0.052 0.816+0.042

−0.049 0.808+0.044
−0.051 0.827+0.045

−0.053 0.846+0.037
−0.047

τ 0.079+0.029
−0.032 0.082+0.028

−0.033 0.085+0.028
−0.032 0.079+0.028

−0.034 0.088+0.026
−0.032

ns 0.948+0.015
−0.018 0.951+0.014

−0.018 0.950+0.015
−0.019 0.946+0.015

−0.019 0.953+0.015
−0.019

σ8 0.772+0.036
−0.048 0.781+0.032

−0.045 0.758+0.038
−0.052 0.784+0.035

−0.049 0.826+0.022
−0.035

Ωm 0.266+0.026
−0.036 0.267+0.018

−0.025 0.249+0.024
−0.031 0.276+0.023

−0.031 0.299+0.019
−0.025

in Table 6 favor higher values of Ωm, lower Hubble constants and higher values of σ8. The

lensing data set is most discrepant and it most strongly pulls the combined results towards

higher amplitudes and higher Ωm (see Figure 7 and 9). The overall effect of combining the

data sets is shown in Figure 10.

The best fits for the data combinations shown Table 6 differ by about 1σ from the best

fits for the data combinations shown in Table 5 for their predictions for the total matter

density, Ωmh
2 (See Tables 5 and 6 and Figure 9). More accurate measurements of the third

peak will help resolve these discrepancies.

The differences between the two sets of data may be due to statistical fluctuations.

For example, the SDSS main galaxy sample power spectrum differs from the power spec-

trum measured from the 2dfGRS: this leads to a lower value for the Hubble constant

for WMAP+SDSS data combination, h = 0.709+0.024
−0.032 , than for WMAP+2dFGRS, h =

0.732+0.018
−0.025 . Note that while the SDSS LRG data parameters values are close to those from

the main SDSS catalog, they are independent determinations with mostly different system-

atics.

The lensing measurements are sensitive to amplitude of the local potential fluctuations,

which scale roughly as σ8Ω
0.6
m , so that lensing parameter constraints are nearly orthogonal

to the CMB degeneracies (Tereno et al. 2005). The CFHTLS lensing data best fit value for

σ8Ω
0.6
m is 1−2σ higher than the best fit three year WMAP value. As a result, the combination

of CFHT and WMAP data favors a higher value of σ8 and Ωm and a lower value of H0 than

WMAP data alone. Appendix A shows that the amplitude of this discrepancy is somewhat

sensitive to our choice of priors. Because of the small error bars in the CFHT data set
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Fig. 9.— One-dimensional marginalized distribution of Ωmh
2 for

WMAP, WMAP+CBI+VSA, WMAP+BOOM+ACBAR, WMAP+SDSS,

WMAP+SN(SNLS), WMAP+SN(HST/GOODS), WMAP+2dFGRS and

WMAP+CFHTLS for the power-law ΛCDM model.
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Fig. 10.— Joint two-dimensional marginalized contours (68%, and 95% con-

fidence levels) for various combination of parameters for WMAP only (solid

lines) and WMAP+2dFGRS+SDSS+ACBAR+BOOMERanG+CBI+VSA+

SN(HST/GOODS)+SN(SNLS) (filled red) for the power-law ΛCDM model.
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and the relatively small overlap region in parameter space, the CFHT data set has a strong

influence on cosmological parameters.

For a number of models, we also compute the limits based on combining WMAP with

the supernova data sets (Knop et al. 2003; Riess et al. 2004; Astier et al. 2005), the small scale

CMB experiments, and the 2dFGRS and SDSS power spectrum. When used in combination

with WMAP and other data sets, the lensing data tends to dominate. Because of this effect,

when we do not include the lensing data in the grand combination set (WMAP+all CMB +

SDSS + 2dFGRS +SN ≡ WMAP+ALL) and quote (WMAP+CFHT) as a separate column

in the combined data set studies. The combined data sets place the strongest limits on

cosmological parameters. Because they are based on the overlap between many likelihood

functions, limits based on the WMAP+ALL data set should be treated with some caution.

Figure 10 shows the 2-dimensional marginalized likelihood surface for both WMAP only and

for the combination of WMAP+ALL.

5. Constraining the Shape of the Primordial Power Spectrum

5.1. Running Spectral Index Models

While the simplest inflationary models predict that the spectral index varies slowly with

scale, inflationary models can produce strong scale dependent fluctuations (see e.g., Hall et al.

(2004)). The first year WMAP observations provided some motivation for considering these

models as the data, particularly when combined with the Lyman α forest measurements,

were better fit by models with running spectral index (Spergel et al. 2003). Small scale

CMB measurements (Readhead et al. 2004a) also favor running spectral index models over

power law models.

Here, we consider whether a more general function for the primordial power spectrum

could better fit the new WMAP data. We consider three forms for the power spectrum:

• ∆2
R(k) with a running spectral index: 1+d ln∆2

R(k)/d ln k = n(k0)+dns/d ln(k) ln(k/k0)

• ∆2
R(k) allowed to freely vary in 15 bins in k-space, with k1 = 0, k2 = 0.001/Mpc, k15 =

0.15/Mpc, ki+1 = 1.328ki for 3 ≤ i ≤ 14. ∆2
R(k) is given by linear interpolation within

the bins and ∆2
R(k) = ∆2

R(0.15/Mpc) for k > 0.15/Mpc.

• ∆2
R(k) with a sharp k cut off at k = kc,

∆2
R(k) = 0, k ≤ kc

∝
(

k
k0

)(ns−1)

, k > kc
(9)
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Fig. 11.— The reconstructed primordial curvature fluctuation spectrum, ∆2
R(k),

for a ΛCDM cosmology, in logarithmically spaced k bins, where k is in Mpc−1.

The errors show the 68% (red) and 95% (orange) constraints and the black

diamonds the peak likelihood value. The dashed line show the values for k = 0.

Consistent with the predictions of simple inflationary theories, there are no

significant features in the spectrum. The data are consistent with a nearly scale-

invariant spectrum.

Figure 11 shows how WMAP data alone can be used to reconstruct the primordial

power spectrum as a function of scale, parameterized by logarithmically spaced bins out to

k = 0.15 Mpc−1. Even for allowing these additional degrees of freedom, the data prefer

a nearly featureless power-law power spectrum. Mukherjee & Wang (2003), Bridle et al.

(2003) and Kogo et al. (2004) reach similar conclusions using different inversion methods

with the first year WMAP data.

The deviation of the primordial power spectrum from a simple power law can be most

simply characterized by a sharp cut-off in the primordial spectrum. Analysis of this model

finds that putting in a cut off of kc ∼ 3 × 10−4/Mpc improves the fit by ∆χ2 = 1.2, not

enough to justify a radical change in the primordial spectrum.

Table 3 demonstrates that, while models with reduced large scale power provide slightly

improved fits to the CMB data, the improvements in fit are not such that they signal these

additional parameters are required.
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5.2. External Data Sets and the Running Spectral Index

Our measurements of running is slightly improved by including the small scale experi-

ments. For models with only scalar fluctuations, the marginalized value for the derivative of

the spectral index is dns/d ln k = −0.055+0.029
−0.035 for WMAP only, dns/d ln k = −0.066+0.026

−0.032 for

the WMAP+CBI+VSA data and dns/d ln k = −0.058+0.027
−0.035 for WMAP+BOOM+ACBAR.

For models with tensors, dns/d ln k = −0.102+0.050
−0.043 for WMAP only, dns/d ln k = −0.095+0.041

−0.037

for WMAP+CBI+VSA, and dns/d ln k = −0.087+0.041
−0.037 for WMAP+BOOM+ACBAR. As

Figure 12 shows, models with negative running of the spectral indices allow large tensor am-

plitudes; thus, if we marginalize over r with a flat prior, these models favor a more negative

running.

Figure 13 shows that both the power law ΛCDM model and the running spectral index

model fit the CMB data. At present, the small scale data do not yet clearly distinguish the

two models.

A large absolute value of the running spectral index would be problematic for most

inflationary models, so that confirmation of this suggestive trend is important for our un-

derstanding of early universe physics. Additional WMAP data and upcoming small-scale

CMB experiments will test the significance of this deviation from scale invariance. Fig-

ure 12 shows that the data favor a large running spectral index; however, the evidence is

not yet compelling. By contrast, the large scale data sets do not strengthen the case for

a running spectral index, nor do they strongly constrain the index. The constraints for

the WMAP+lensing and WMAP+2dFGRS are similar to the WMAP+SDSS constraints

shown in Figure 12. The large-scale data sets probe similar physical scales to the WMAP

experiment.

5.3. Is the Power Spectrum Featureless?

Since inflation magnifies fluctuations that were once on sub-Planckian scales to scales

of the observable horizon, trans-Planckian physics could potentially leave its imprint on the

CMB sky. Over the past few years, there has been significant interest in the possibility of

detecting the signature of trans-Planckian physics in the angular power spectrum. Several

studies (Martin & Brandenberger 2001; Danielsson 2002; Easther et al. 2002; Bergström &

Danielsson 2002; Kaloper et al. 2002; Martin & Brandenberger 2003; Martin & Ringeval

2004; Burgess et al. 2003; Okamoto& Lim 2003) have discussed the possible form and the

expected amplitude of the trans-Planckian effects which might modify the spectrum coming

from slow roll inflation. The scalar and tensor power spectra resulting from power law (PL)
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slow roll inflation can be written in the terms of Hubble Flow parameters (Schwarz et al.

2001; Leach et al. 2002; Leach & Liddle 2003; Schwarz & Terrero-Escalante 2004):

∆2
R,PL(k) = As

(

1 − 2(C + 1)ǫ1 − Cǫ2 − (2ǫ1 + ǫ2) ln

(

k

k0

))

(10)

Here, ǫ1 and ǫ2 are slow roll parameters (Leach & Liddle 2003). After the release of the

WMAP data, Martin & Ringeval (2004) considered a primordial power spectrum of a slightly

modified form to account for additional trans-Planckian (TP) features,

∆2
R,TP (k) = ∆2

R,PL(k) [1 − 2|x|σ0 cos θ(k)] − As|x|σ0π(2ǫ1 + ǫ2) sin θ(k)

with, θ(k) = 1
|x|σ0

(

1 + ǫ1 + ǫ1 ln
(

k
k0

))

.
(11)

Here σ0 ≡ Hlc/2π is determined by the Hubble parameter during inflation, H , and the

characteristic length scale for the trans-Planckian manifestation lc, and |x|σ0 characterizes

the amplitude of the trans-Planckian corrections to the fiducial spectrum. Martin & Ringeval

(2004) report that the χ2 for such a model could give an improvement of 15 over the power

law inflationary models for an additional 2 degrees of freedom with the first year WMAP

data. With three years of data, many of the glitches and bites having disappeared, the best

fit trans-Planckian models of the form in equation (11) reduce the effective χ2 by only 4 in

comparison to power law inflation, a far less significant effect.

The effect of the trans-Planckian corrections can be highly model dependent (See East-

her et al. (2005a) and Easther et al. (2005b) for discussions). As an alternative, we consider

forms that are more general as a way of looking for oscillatory signals:

∆2
R,TP (k) = ∆2

R,PL(k)[1 + ǫTP cos θ(k)] (12)

where θ = υ k
k0

+ φ or θ = υ ln
(

k
k0

)

+ φ In these models, there are three new parameters:

the amplitude, ǫTP , the frequency, υ, and the phase, φ.

Assuming the ΛCDM model, we fit these three parameters to the data and find reduc-

tions of 5 and 9.5 in the overall and TT χ2
eff . As in the Martin and Ringeval model, the

improvements in the χ2
eff are driven by improvements in the fit around ℓ ∼ 30 − 100 and

the first peak.

6. WMAP + Inflation

The inflationary paradigm (Guth 1981; Sato 1981; Linde 1982; Albrecht & Steinhardt

1982; Linde 1983) explains the homogeneity, isotropy and flatness of the universe by positing
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an early epoch of accelerated expansion (see also Starobinsky (1980)). This accelerated

period of expansion also generated superhorizon fluctuations (Guth & Pi 1982; Starobinsky

1982; Mukhanov & Chibisov 1981; Hawking 1982; Bardeen et al. 1983). In the simplest

inflationary models, these fluctuations are Gaussian, random phase fluctuations with a nearly

scale invariant spectrum of fluctuations.

The detailed predictions of inflationary models depend on the properties of the inflaton

potential (see Linde (2005) and Lyth & Riotto (1999) for recent reviews). Simple inflationary

models predict that the slope of the primordial power spectrum, ns, differs from 1 and also

predict the existence of a nearly scale-invariant spectrum of gravitational waves. In this

section, we compare the simplest inflationary models to the WMAP three year data and to

other cosmological data sets. We characterize these models by seven basic parameters (the

six basic parameters of the ΛCDM model plus one additional parameter, r, the ratio of the

tensor to scalar power spectrum). Figure 14 shows the likelihood contours for the slope of

the scalar fluctuations and the amplitude of the gravitational wave signal.

Table 7: Best Fit Inflationary Parameters (WMAP data only)

Parameter ΛCDM + Tensor ΛCDM + Running +Tensors

Ωbh
2 0.02336+0.00085

−0.00133 0.0220+0.0011
−0.0016

Ωmh
2 0.1189+0.0084

−0.0136 0.1258+0.0070
−0.0162

h 0.792+0.036
−0.068 0.744+0.050

−0.073

ns 0.987+0.019
−0.037 1.21+0.13

−0.16

dns/d ln k set to 0 −0.102+0.050
−0.043

r 0.55 (95% CL) 1.5 (95% CL)

τ 0.091+0.031
−0.037 0.111+0.029

−0.037

σ8 0.700+0.063
−0.065 0.716+0.065

−0.068

∆2
R(k = 0.05/Mpc) (19.9+1.3

−1.8) × 10−10 (20.9+1.3
−1.9) × 10−10

The WMAP three year data place significant constraints on inflationary models. The

strength of these constraints is apparent when we consider monomial models for the inflaton

potential, V (φ) ∝ φα. These models (Lyth & Riotto 1999) predict

r = 16ǫ1 ≃
4α

N

1 − ns = 2ǫ1 + ǫ2 ≃
α+ 2

2N
(13)

where N is the number of e-folds of inflation between the epoch when the horizon scale

modes left the horizon and the end of inflation. Figure 14 compares the predictions of these
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monomial inflationary models to the data. For N = 60, λφ4 predicts r = 4/15, ns = 0.95,

just at the outer edge of the 3σ contour. For N = 50, λφ4 predicts r = 0.32, ns = 0.94, well

outside the 3σ contour. However, if we allow for non-minimal gravitational couplings, then

the gravity wave predictions of these models are significantly reduced (Hwang & Noh 1998;

Komatsu & Futamase 1999) and the models are consistent with the data. Alternatively, the

m2φ2 model is a good fit to the observations and its predicted level of gravitational waves,

r ≃ 0.16, is within range of upcoming experiments.

In Peiris et al. (2003), we used the inflationary flow equations (Hoffman & Turner 2001;

Kinney 2002) to explore the generic predictions of inflationary models. Here, we use the

slow-roll approximation to explore the implications of the data for inflationary models. The

results of the third year analysis are consistent with the conclusions from the first year data:

while the data rule out large regions of parameter space, there are also wide range of possible

inflationary models consistent with our current data. One of the most intriguing features

of Figure 14 is that the data now disfavors the exact Peebles-Harrison-Zel’dovich spectrum

(ns = 1, r = 0). For power law inflationary models, this suggests a detectable level of gravity

waves. There are, however, many inflationary models that predict a much smaller gravity

wave amplitude. Alternative models, such as the ekpyrotic scenario (Khoury et al. 2001,

2002) also predict an undetectable level of gravity waves.

There are several different ways of expressing the constraints that the CMB data impose

of inflationary models. These parameters can be directly related to observable quantities:

ns− 1 = −2ǫ1 − ǫ2 and r = 16ǫ1. For the power law models, the WMAP bound on r implies

that ǫ1 < 0.03 (95% C.L.). An alternative slow roll representation (see Liddle & Lyth (1992,

1993)) uses

ǫv ≡
M2

P l

2

(

V ′

V

)2

(14)

ηv ≡ M2
P l

(

V ′′

V

)

(15)

These parameters can be related directly to observables: r = 16ǫv and ns − 1 = −6ǫv + 2ηv.

Peiris et al. (2003) discusses various classes of models in slow roll parameter space.

Models with significant gravitational wave contributions, r ∼ 0.3, make a number of

different predictions for CMB and large-scale structure observations: (a) a modified temper-

ature spectrum with more power at low multipoles; and (b) a lower amplitude of density

fluctuations (for fixed CMB fluctuations). For power law models, the strongest CMB con-

straints come from the shape of the temperature spectrum and the amplitude of density

fluctuations. In order to fit the CMB data, models with higher r values require larger values

of ns and lower amplitude of scalar fluctuations to fit the data. Since these values con-
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flict with the large-scale structure measurements, the strongest overall constraints on the

tensor mode contribution comes from the combination of CMB and large-scale structure

measurements (see Table 6). These strong limits rely on our assumption of a power law

spectral index. If we allow for a running index, then models with large tensor components

are consistent with the data

Table 8: Constraints on r, Ratio of Amplitude of Tensor Fluctuations to Scalar Fluctuations

(at k = 0.002 Mpc−1)

Data Set r (no running) r (with running)

WMAP 0.55 (95% CL) 1.5 (95% CL)

WMAP+BOOM+ACBAR 0.63 (95% CL) 1.4 (95% CL)

WMAP+CBI+VSA 0.55 (95% CL) 1.1 (95% CL)

WMAP+2df 0.30 (95% CL) 1.0 (95% CL)

WMAP+SDSS 0.28 (95% CL) 0.67 (95% CL)



– 43 –

0.9 1.0 1.21.1 1.41.3
ns 0.002

1.5

1.0

0.5

0.0

r 0
.0

02

0.9 1.0 1.21.1 1.41.3
ns 0.002

1.5

1.0

0.5

0.0

r 0
.0

02

0.9 1.0 1.21.1 1.41.3
ns 0.002

1.5

1.0

0.5

0.0

r 0
.0

02

–0.20 –0.10–0.15 0.00–0.05 0.05

dns /d lnk

1.5

1.0

0.5

0.0

r 0
.0

02

–0.20 –0.10–0.15 0.00–0.05 0.05

dns /d lnk

1.5

1.0

0.5

0.0

r 0
.0

02

–0.20 –0.10–0.15 0.00–0.05 0.05

dns /d lnk

1.5

1.0

0.5

0.0

r 0
.0

02

WMAP WMAP

WMAP + SDSS WMAP + SDSS

WMAP + CBI + VSA WMAP + CBI + VSA

Fig. 12.— Joint two-dimensional marginalized contours (68% and 95%) for infla-

tionary parameters, (r, ns) (left panel) and (r, dns/d ln k) (right panel), for Model

M11 in Table 3, with parameters defined at k = 0.002 Mpc−1. (Upper) WMAP

only. (Middle) WMAP+SDSS. (Bottom) WMAP+CBI+VSA. Note that ns > 1

is favored because r and ns are defined at k = 0.002 Mpc−1. At k = 0.05 Mpc−1

ns < 1 is favored. The data do not require the running spectral index, dns/d ln k,

at more than the 95% confidence level.



– 44 –

Fig. 13.— The running spectral index model provides a slightly better fit to

the data than the power-law spectral index model. The solid line shows the

best fit power law ΛCDM model and the dashed line shows the best fit running

spectral index ΛCDM model (fit to WMAP+CBI+VSA). The insert compares

the models to the WMAP ℓ < 20 data and shows that the running spectral index

model better fits the decline at ℓ = 2; however, the improvement in χ2 is only 3,

not enough to strongly argue for the addition of a new parameter. We have also

done the same analysis for BOOMERanG and ACBAR data and found similar

results: the current high ℓ data are not yet able to distinguish between the

running spectral index and power law models.



– 45 –

1.0

0.8

0.6

0.4

0.2

0.0

r 0
.0

02

N=60N=50

N=60N=50

HZHZ

HZHZ

0.90 0.95 1.00 1.05

ns

1.0

0.8

0.6

0.4

0.2

0.0

r 0
.0

02

N=60N=50

0.90 0.95 1.00 1.05

ns

N=60N=50

WMAP WMAP + SDSS

WMAP + 2dF WMAP + CBI + VSA

Fig. 14.— Joint two-dimensional marginalized contours (68% and 95% confi-

dence levels) for inflationary parameters (r0.002, ns) predicted by monomial po-

tential models, V (φ) ∝ φn. We assume a power-law primordial power spectrum,

dns/d ln k = 0, as these models predict the negligible amount of running index,

dns/d ln k ≈ −10−3. (Upper left) WMAP only. (Upper right) WMAP+SDSS. (Lower

left) WMAP+2dFGRS. (Lower right) WMAP+CBI+VSA. The dashed and solid

lines show the range of values predicted for monomial inflaton models with 50

and 60 e-folds of inflation (equation (13), respectively. The open and filled

circles show the predictions of m2φ2 and λφ4 models for 50 and 60 e-folds of

inflation. The rectangle denotes the scale-invariant Harrison-Zel’dovich-Peebles

(HZ) spectrum (ns = 1, r = 0). Note that the current data prefers the m2φ2 model

over both the HZ spectrum and the λφ4 model by likelihood ratios greater than

50.
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7. Constraining the Composition of the Universe

7.1. Dark Energy Properties

Over the past two decades, there has been growing evidence for the existence of dark

energy (Peebles 1984; Turner et al. 1984; Ostriker & Steinhardt 1995; Dunlop et al. 1996;

Bahcall et al. 1999). By measuring both the acceleration (Riess et al. 1998; Perlmutter et al.

1999) and deceleration (Riess et al. 2004) of the universe, supernova observations provide

the most direct evidence for the existence of dark energy.

The nature of this dark energy is a mystery. From a field theoretic perspective the

most natural explanation for this would be the presence of a residual vacuum energy density

or cosmological constant, Λ, (Carroll et al. 1992; Peebles & Ratra 2003). However, there

are well-known fine-tuning and coincidence problems in trying to explain the 120 orders-

of-magnitude discrepancy between the expected “natural” Planck-scale energy density of

a cosmological constant and the observed dark energy density. These problems motivate

a wide range of alternative explanations for the observations including the presence of an

extra matter candidate: for example a dynamical, scalar “quintessence” field (Peebles &

Ratra 1988; Wetterich 1988; Zlatev et al. 1999), minimally coupled (Caldwell et al. 1998;

Ferreira & Joyce 1998) or non-minimally coupled to gravity (Amendola 1999) or other matter

(Bean & Magueijo 2001). In this final case, the measured acceleration is due to underlying

interactions in the matter bulk. Another alternative is that modifications to gravity (e.g.,

Deffayet et al. (2001)) are responsible for the observed anomalies.

The dark energy has two distinct cosmological effects: (1) through the Friedman equa-

tion, it alters the evolution of H(z) and (2) through the perturbation equations, it alters

the evolution of D(z), the growth rate of structure. The supernova data measures only the

luminosity distance, which depends on H(z). The large scale structure data are sensitive to

both H(z) and D(z).

While the presence of dark energy impacts the CMB primarily through the distance to

the surface of last scatter, the dark energy clustering properties also alter the CMB prop-

erties. The dark energy response to gravitational perturbations depends upon its isotropic

and anisotropic sound-speeds (Hu 1998; Bucher & Spergel 1999). This affects the CMB fluc-

tuations through the ISW effect. If the dark energy can cluster, then it produces a smaller

ISW effect and does not enhance the power spectrum at large angular scales. These effects

are most dramatic for models with w < −1, as dark energy effects in these models turn on

suddenly at late times and significantly enhance the quadrupole. This can be understood in

terms of the constraints imposed by the shape of the angular power spectrum: if we assume

that the dark energy properties can be described by a constant value of w, then fixed peak
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Table 9: Constraints on w in Flat Cosmologies With Different Assumption About Dark

Energy Clustering

Data Set with perturbations no perturbations

WMAP + SDSS −0.75+0.18
−0.16 −0.69+0.19

−0.18

WMAP + 2dFGRS −0.914+0.193
−0.099 −0.877+0.094

−0.110

WMAP + SNGold −0.944+0.076
−0.094 −0.940+0.071

−0.092

WMAP + SNLS −0.966+0.070
−0.090 −0.984+0.066

−0.085

CMB+ LSS+ SN −0.926+0.051
−0.075 −0.915+0.049

−0.075

position and fixed peak heights (which determine Ωmh
2) confine our models to a narrow

valley in the (Ωm, w) likelihood surface as shown in Figure 15 and 16. The figures show that

the 3 year data enable a more accurate determination of Ωmh
2 which narrows the width

of the degeneracy valley. The pair of figures show that CMB data can place strong limits

on models with w < −1 and non-clustering dark energy. On the other hand, if the dark

energy is a matter component that can cluster, even meagerly, as is the case for scalar field

theories where c2s=1, then this clustering counters the suppression of perturbation growth

during the accelerative epoch and the quadrupole’s magnitude is reduced. This lessens the

discriminating power of the quadrupole for measuring w: while CMB data rules out the

w << −1 region in Figure 15, it does not constrain models in the same region in Figure 16.

It’s interesting to note that if we relax the assumption of spatial flatness allowing for

ΩK 6= 0 a universe with a negative equation of state, close to w = −1 is still preferred by

the data, as shown in figure 17.

7.2. Neutrino Properties

7.2.1. Neutrino Mass

Both atmospheric neutrino experiments and solar neutrino experiments show that neu-

trinos are massive and that there is significant mixing between the various neutrino interac-

tion eigenstates (see Mohapatra et al. (2005) for a recent review). These experiments measure

the difference between square of the neutrino masses, m2
νi
− m2

νj
, rather than the mass of

individual neutrino mass eigenstates. Cosmological measurements nicely complement these

measurements by constraining
∑

imνi
. Since light massive neutrinos do not cluster as ef-

fectively as cold dark matter, the neutrino mass has a direct impact on the amplitude and
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shape of the matter power spectrum (Bond et al. 1980; Bond & Szalay 1983; Ma 1996; Hu

et al. 1998) The presence of a significant neutrino component lowers the amplitude of matter

fluctuations on small scales, σ by roughly a factor of (
∑

mν)/3, where
∑

mν is the total

mass summed over neutrino species, rather than the mass of individual neutrino species. The

current large-scale structure data restrict ∆ lnσ8 < 0.2, but they are not sensitive enough to

resolve the free-streaming scale of individual neutrino species (Takada et al. 2005).

Using a combination of the first year WMAP data, small-scale CMB and large-scale

structure data, Spergel et al. (2003) placed an upper limit on
∑

imνi
< 0.7 eV. While this

limit does not depend on the Lyman α data, it is sensitive to the bias measurements (which

normalizes the large-scale structure data) and to the addition of small scale CMB data (which

improves the measurements of cosmological parameters). Over the past year, several groups

obtained comparable (but slightly different) limits (Hannestad 2003; Pierpaoli 2003; Elgarøy

& Lahav 2003). The differences are due to including (or removing) external data sets and

priors or adding additional cosmological parameters.

The limits on neutrino masses from WMAP data alone is now very close to limits based

on combined CMB data sets. Ichikawa et al. (2005) used the CMB data alone to place a limit

on the neutrino mass of
∑

mν < 2.0 eV. Using WMAP data alone, we now find
∑

mν < 2.11

eV.

Since the presence of massive neutrinos slows the growth of small scale structure, the

combination of CMB and large-scale structure data constrain the neutrino mass. Figure

19 shows the likelihood function as a function of neutrino mass and amplitude of mass

fluctuations in the local universe, σ8. The 95% confidence limits on neutrino mass are

given in Table 10. The combination of WMAP with SDSS and WMAP with 2dFGRS data

constrain σ8 at roughly the same level, 20% at the 95% confidence level. This constraint

yields comparable limits on the neutrino mass:
∑

mν < 0.72 eV (95% C.L.) While the

WMAP data have improved, the error bars on σ8 have not significantly changed from the

limits obtained from WMAPext + 2dFGRS, thus, the limit on neutrino mass is quite close

to the first year limit. Note that in the first year analysis, we used the (Verde et al. 2002)

measurement of bias for the 2dFGRS preliminary data as there had not been an equivalent

analysis done for the full 2dFGRS data set. As discussed in §4.1.4, we now marginalize over

the 2dFGRS bias and use the bias measurements of (Seljak et al. 2005b) for SDSS.

If the constraints on amplitude are robust, then small scale matter power spectrum

structure data can significantly improve these neutrino constraints. Goobar et al. (2006)

have recently completed a CMB + Lyman α study and place a limit of
∑

mν < 0.30eV

(95% C.L.). Similarly, cluster-based measurements of σ8 and lensing-based measurements of

σ8 have the potential to tighten the constraint on mν .
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Table 10: Constraints on Neutrino Properties
Data Set

∑

mν (95% limit for Nν = 3.02) Nν

WMAP 2.0 eV(95% CL)

WMAP + SDSS 0.91 eV(95% CL) 5.92+0.25
−3.45

WMAP + 2dFGRS 0.87 eV(95% CL) 2.68+0.26
−1.67

CMB + LSS +SN 0.68 eV(95% CL) 3.29+0.45
−2.18

7.2.2. Number of Relativistic Species

If there are other light stable neutral particles (besides the three light neutrinos and the

photon), then these particles will affect the CMB angular power spectrum and the evolution

of large-scale structure. Because of the details of freeze-out at electron-positron annihilation

(Gnedin & Gnedin 1998), the effective number of neutrino species is slightly greater than

3. Any light particle that does not couple to electrons, ions and photons will act as an

additional relativistic species. For neutrinos, we can compute their effects accurately as

their temperature is (4/11)1/3 of the CMB temperature. For other relativistic species, the

limit on N eff
ν − 3.022 can be converted into a limit on their abundance by scaling by the

temperature.

The shape of the CMB angular power spectrum is sensitive to the epoch of mat-

ter/radiation equality. If we increase Nν , the effective number of neutrino species, then

we will need to also increase the cold dark matter density, Ωch
2, and slowly change other

parameters to remain consistent with the WMAP data (Bowen et al. 2002). In addition, the

presence of these additional neutrino species alters the damping tail and leaves a distinctive

signature on the high ℓ angular power spectrum (Bashinsky & Seljak 2004) and on the small

scale matter power spectrum.

The high matter density also alters the growth rate of structure, thus, the combination

of large-scale structure and CMB data constrains the existence of any new light relativistic

species. These limits constrain both the existence of new particles and the interaction prop-

erties of the neutrino (Bowen et al. 2002; Hall & Oliver 2004). Hannestad (2001) used the

pre-WMAP CMB and large-scale structure data to place an upper limit of Nν < 17. After

the release of the first year WMAP data, several authors (Hannestad 2003; Pierpaoli 2003;

Barger et al. 2003; Crotty et al. 2003; Elgarøy & Lahav 2003; Barger et al. 2004; Hannestad

2005) used the combination of WMAP, 2dFGRS and various external data to reduce this

limit by a factor of 2-3. Table 10 shows the maximum likelihood estimate of the number of

neutrino species for different data set combinations using the new WMAP data. The SDSS
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and 2dFGRS data differ in the shapes of the two measured power spectra: this difference

leads to the disagreement in their best fit values for N eff
ν .

7.3. Non-Flat Universe

The WMAP observations place significant constraints on the geometry of the universe

through the positions of the acoustic peaks. The sound horizon size, rs, serves as a very useful

ruler for measuring the distance to the surface of last scatter. For power law open universe

models, rs = 147.8+2.6
−2.7 Mpc. Figure 21 shows that this constraint confines the likelihood

function to a narrow degeneracy surface in (Ωm,ΩΛ). This degeneracy line is well fit by

ΩK = −0.3040 + 0.4067ΩΛ. However, the CMB data alone does not distinguish between

models along the valley: it is consistent with both flat models and models with ΩΛ = 0. If

we allow for a large SZ signal, then the WMAP data alone favors a model with ΩK = −0.04;

however, this model is not consistent with other astronomical data.

The combination of WMAP data and other astronomical data places strong constraints

on the geometry of the universe (see Table 11):

• The angular scale of the baryon acoustic oscillation (BAO) peak in the SDSS LRG

sample (Eisenstein et al. 2005) measures the distance to z = 0.35. The combination of

the BAO and CMB observations strongly constrain the geometry of the universe. The

position of the peak in the galaxy spectrum in the SDSS and 2dFGRS surveys provide

local measurements of the angular diameter distance.

• Figure 20 shows that the Hubble constant varies along this line, so that the HST key

project constraint on the Hubble constant leads to a strong bound on the curvature.

• SNe observations measure the luminosity distance to z ∼ 1. The combination of SNe

data and CMB data also favors a nearly flat universe.

The strong limits quoted in Table 11 rely on our assumption that the dark energy has

the equation of state, w = −1. In section 7.1, we discussed relaxing this assumption and

assuming that w is a constant. Figure 15 shows that by using the combination of CMB,

large-scale structure and supernova data, we can simultaneously constrain both Ωk and w.

This figure confirms that our minimal model, Ωk = 0 and w = −1 is consistent with the

current data.
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Table 11: Joint Data Set Constraints on Geometry and Vacuum Energy
Data Set ΩK ΩΛ

WMAP + h = 0.72 ± 0.08 −0.003+0.013
−0.017 0.758+0.035

−0.058

WMAP + SDSS −0.037+0.021
−0.015 0.650+0.055

−0.048

WMAP + 2dFGRS −0.0057+0.0061
−0.0088 0.739+0.026

−0.029

WMAP + SDSS LRG −0.010+0.011
−0.015 0.728+0.020

−0.028

WMAP + SNLS −0.015+0.020
−0.016 0.719+0.021

−0.029

WMAP + SNGold −0.017+0.022
−0.017 0.703+0.030

−0.038
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Fig. 15.— Constraints on w, the equation of state of dark energy, in a flat universe

model based on the combination of WMAP data and other astronomical data.

We assume that w is independent of time, and ignore density or pressure fluc-

tuations in dark energy. In all of the figures, WMAP data only constraints are

shown in blue and WMAP + astronomical data set in red. The contours show

the joint 2-d marginalized contours (68% and 95% confidence levels) for Ωm and

w. (Upper left) WMAP only and WMAP + SDSS. (Upper right) WMAP only and

WMAP + 2dFGRS. (Lower left) WMAP only and WMAP+SN(HST/GOODS).

(Lower right) WMAP only and WMAP+SN(SNLS). In the absence of dark en-

ergy fluctuations, the excessive amount of ISW effect at ℓ < 10 places significant

constraints on the models with w < −1.
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Fig. 16.— Constraints on w, the equation of state of dark energy, in a flat universe,

Model M6 in Table 3, based on the combination of WMAP data and other

astronomical data. We assume that w is independent of time, but include density

and pressure fluctuations in dark energy with the speed of sound in the comoving

frame equal to the speed of light, c2s = 1. In all of the figures, WMAP data only

constraints are shown in black solid lines and WMAP + astronomical data set

in red. The contours show the joint 2-d marginalized contours (68% and 95%

confidence levels) for Ωm and w. (Upper left) WMAP only and WMAP + SDSS.

(Upper right) WMAP only and WMAP + 2dFGRS. (Lower left) WMAP only and

WMAP+SNgold. (Lower right) WMAP only and WMAP+SNLS. In the presence

of dark energy fluctuations, the ISW effect at ℓ < 10 is nearly canceled by dark

energy fluctuations and thus the WMAP data alone do not place significant

constraints on w.



– 54 –

–0.08 –0.06 –0.04 –0.02 0.00 0.02 0.04

–1.4

–1.2

–1.0

–0.8

w

Fig. 17.— Constraints on a non-flat universe with quintessence-like dark energy

with constant w (Model M10 in Table 3). The contours show the 2-d marginalized

contours for w and Ωk based on the the CMB+2dFGRS+SDSS+supernova data

sets. This figure shows that with the full combination of data sets, there are

already strong limits on w without the need to assume a flat universe prior.

The marginalized best fit values for the equation of state and curvature are

w = −1.062+0.128
−0.079 and Ωk = −0.024+0.016

−0.013 at the 68% confidence level.
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Fig. 18.— Constraints on a flat universe with quintessence-like dark en-

ergy and non-relativistic neutrinos. The contours show the 2-d marginal-

ized contours for the mass of non-relativistic neutrinos, mν, and the

dark energy equation of state, w, assumed constant, based on the the

CMB+2dFGRS+SDSS+supernova data sets. The figure shows that with the

combination of CMB+2dFGRS+SDSS+supernova data sets, there is not a

strong degeneracy between neutrino and dark energy properties. Even in this

more general model, we still have an interesting constraint on the neutrino mass

and equation of state:
∑

mν < 1.0 eV(95% CL) and w = −1.06+0.13
−0.10 (68% CL). This

suggests that the astronomical dark energy and neutrino limits are robust even

when we start to consider more baroque models.



– 56 –

0.0 1.0 1.50.5 2.0

0.5

0.4

0.2

0.6

0.7

0.8

0.9

WMAP
WMAP+SDSS

Fig. 19.— Joint two-dimensional marginalized contours (68% and 95% confi-

dence levels) of (σ8, mν) for WMAP only (left panel), Model M7 in Table 3, and

WMAP+SDSS (right panel). By measuring the growth rate of structure from

z = 1088 to z ≃ 0, these observations constrain the contribution of non-relativistic

neutrinos to the energy density of the universe.
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Fig. 20.— Range of non-flat cosmology models consistent with the WMAP data

only. The models in the figure are all power-law CDM models with dark energy

and dark matter, but without the constraint that Ωm + ΩΛ = 1 (model M10 in

Table 3). The different colors correspond to values of the Hubble constant as

indicated in the figure. While models with ΩΛ = 0 are not disfavored by the

WMAP data only (∆χ2
eff = 0; Model M4 in Table 3), the combination of WMAP

data plus measurements of the Hubble constant strongly constrain the geometry

and composition of the universe within the framework of these models. The

dashed line shows an approximation to the degeneracy track: ΩK = −0.3040 +

0.4067ΩΛ.
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Fig. 21.— Joint two-dimensional marginalized contours (68% and 95%) for mat-

ter density, Ωm, and vacuum energy density, ΩΛ for power-law CDM models

with dark energy and dark matter, but without the constraint that Ωm + ΩΛ = 1

(model M10 in Table 3). The panels show various combinations of WMAP and

other data sets. While models with Ωm = 0.415 and ΩΛ = 0.630 are a better fit

to the WMAP three year data alone than the flat model, the combination of

WMAP three year data and other astronomical data favors nearly flat cosmolo-

gies. (Upper left) WMAP+HST key project measurement of H0. (Upper right)

WMAP+SDSS LRG measurement of the angular diameter distance to z = 0.35.

(Middle left) WMAP+SNLS data. (Middle right) WMAP+SNGold. (Lower left)

WMAP+2dFGRS. (Lower right) WMAP+SDSS. Note that for this figure we as-

sume a flat prior on H0.
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8. Are CMB Fluctuations Gaussian?

The detection of primordial non-Gaussian fluctuations in the CMB would have a pro-

found impact on our understanding of the physics of the early universe. While the simplest

inflationary models predict only mild non-Gaussianities that should be undetectable in the

WMAP data, there are a wide range of plausible mechanisms for generating significant and

detectable non-Gaussian fluctuations (Bartolo et al. (2004a) for a recent review). There are

a number of plausible extensions of the standard inflationary model (Lyth et al. 2003; Dvali

et al. 2004; Bartolo et al. 2004b) or alternative early universe models (Arkani-Hamed et al.

2004; Alishahiha et al. 2004) that predict skewed primordial fluctuations at a level detectable

by WMAP.

There are other cosmological mechanisms for generating non-Gaussianity. The smallness

of the CMB quadrupole seen by both WMAP and COBE has stimulated interest in the

possibility that the universe may be finite (Luminet et al. 2003; Aurich et al. 2005). If

the universe were finite and had a size comparable to horizon size today, then the CMB

fluctuations would be non-Gaussian (Cornish et al. 1996; Levin et al. 1997; Bond et al. 2000;

Inoue et al. 2000). While analysis of the first year data did not find any evidence for a finite

universe (Phillips & Kogut 2004; Cornish et al. 2004), these searches were non-exhaustive so

the data rule out most but not all small universes.

Using an analysis of Minkowski functionals, Komatsu et al. (2003) did not find evidence

for statistically isotropic but non-Gaussian fluctuations in the first year sky maps . The

Colley & Gott (2003) reanalysis of the maps confirmed the conclusion that there was no

evidence of non-Gaussianity.

For a broad class of theories, we can parameterize the effects of non-linear physics by

a simple coupling term that couples a Gaussian random field, ψ, to the Bardeen curvature

potential, Φ:

Φ(~x) = ψ(~x) + fNLψ
2(~x) (16)

Simple inflationary models based on a single slowly-rolling scalar field with the canoni-

cal kinetic Lagrangian predict |fNL| < 1 (Maldacena 2003; Bartolo et al. 2004a); how-

ever, curvaton inflation (Lyth et al. 2003), ghost inflation (Arkani-Hamed et al. 2004), and

Dirac-Born-Infeld (DBI) inflation models (Alishahiha et al. 2004) can generate much larger

non-Gaussianity, |fNL| ∼ 100. Using the WMAP first year data, Komatsu et al. (2003) con-

strained −54 < fNL < 134 at the 95% confidence level. Several different groups (Gaztañaga

& Wagg 2003; Mukherjee & Wang 2004; Cabella et al. 2004; Phillips & Kogut 2004; Crem-

inelli et al. 2005) have applied alternative techniques to measure fNL from the maps and

have similar limits on fNL. Babich et al. (2004) note that these limits are sensitive to the
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physics that generated the non-Gaussianity as different mechanisms predict different forms

for the bispectrum.

Since the release of the WMAP data, several groups have claimed detections of signif-

icant non-Gaussianities (Tegmark et al. 2003; Eriksen et al. 2004b; Copi et al. 2003; Vielva

et al. 2004; Hansen et al. 2004; Park 2004; Cruz et al. 2005). Almost all of these claims

imply that the CMB fluctuations are not stationary and claim a preferred direction or orien-

tation in the data. Hajian et al. (2005) argue that these detections are based on a posteriori

selection of preferred directions and do not find evidence for preferred axes or directions.

Because of the potential revolutionary significance of these detections, they must be treated

with some caution. Galactic foregrounds are non-Gaussian and anisotropic, and even low

level contamination in the maps can produce detectable non-Gaussianities (Chiang et al.

2003; Naselsky et al. 2005), but have only minimal effects on the angular power spectrum

(Hinshaw et al. 2003). Because of the WMAP scan pattern, the variance in the noise in the

maps is spatially variable. There is significant 1/f noise in several of the Difference Assem-

blies (DAs) (particularly W4)— which leads to anisotropies in the two-point function of the

noise. Finally, most of the claimed detections of significant non-Gaussianities are based on a

posteriori statistics. Many of the claimed detections of non-Gaussianity can be tested with

the three year WMAP data (available at lambda.gsfc.nasa.gov). Future tests should use the

simulated noise maps, Monte Carlo simulations and the difference maps (year 1 − year 2,

year 2 − year 3, etc.) to confirm that the tests are not sensitive to noise statistics and the

multi-frequency data to confirm that any claimed non-Gaussianity has a thermal spectrum.

Claims of non-Gaussianity incorporating data close to the galactic plane (within the Kp2

cut) should be treated with caution, as the foreground corrections near the plane are large

and uncertain.

The following subsections describe a number of statistical tests designed to search for

non-Gaussianities in the microwave sky. All of these analyses use three year maps cleaned

with the KKaHaDust templates (Hinshaw et al. 2006). We refer to these maps as the

“template-cleaned maps”. In the first subsection, we show that the probability distribution

function of the cleaned CMB maps is consistent with Gaussianity. In the second subsec-

tion, we show that the Minkowski functionals are consistent with expectations for Gaussian

fluctuations. Next, we compute the bispectrum of the cleaned maps. The final subsection

describes measurements of the four point function.
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8.1. One Point Distribution Function

One of the simplest tests of non-Gaussianity is a measurement of the one point prob-

ability function. However, because the detector noise in the map is inhomogeneous (higher

in the ecliptic plane and lower near the poles), this test is non-trivial. We account for the

spatial variations in noise by computing a variance-normalized temperature for each pixel in

a given map:

ui =
Ti

√

σ2
noise/Nobs + σ2

CMB

(17)

where Ti is the measured temperature signal, the detector noise depends on the number of

observations of a given pixel, Nobs. Here, we apply the analysis to template-cleaned maps

outside the Kp2 skycut. For this analysis, we compute σnoise, the noise per observation, from

the year 1 − year 2 difference maps and fit σCMB, the CMB signal, to the sum of the year

one and year two maps. With Nside = 1024, the computed σnoise value is within 0.5% of the

value of σ0 estimated from the time series (Jarosik et al. 2006). As we lower the resolution,

the value of σnoise slowly drops with pixel size. For W4, the channel with the large 1/f noise,

this change is most dramatic; the value of σ0 at resolution Nside = 32 is 6% higher than the

value computed for Nside = 1024.

Figures 22 and 23 shows the one-point distribution function of the cleaned sky maps as

a function of resolution. At the level of the one point function, the CMB sky appears to be

Gaussian. This result is consistent with that from the area of hot and cold spots (one of the

Minkowski functionals), which measures the cumulative one point probability function.

Fig. 22.— Normalized one point distribution function of temperature anisotropy,

defined in equation (17), for the template-cleaned Q (left), V (middle) and W

(right) band maps outside the Kp2 cut. The sky maps have been degraded to

Nside = 256 for this figure. The red line shows a Gaussian distribution, which is

an excellent fit to the one point distribution function.
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Fig. 23.— Normalized one point distribution function of temperature anisotropy,

defined in equation (17), for the template-corrected V band data maps outside

the Kp0 cut. The sky maps have been degraded to Nside = 16(left), 64(middle)

and 256(right) for this figure. The red line shows the best fit Gaussian, which is

an excellent fit to the one point distribution function.

8.2. Size and Shape of Hot and Cold Spots

Minkowski functionals (Minkowski 1903; Gott et al. 1990; Schmalzing & Gorski 1998;

Winitzki & Kosowsky 1998) measure the contour length, area, and number of hot and cold

spots. Following the approach used in the first year analysis, we compute the Minkowski

functionals as a function of temperature threshold, ν = ∆T/σ, where σ is the standard

deviation of the map. For a two dimensional map, we measure three Minkowski functionals,

the genus, G(ν), of the maps, the contour length, C(ν) and the area within the contours,

A(ν).

We compare the measured values of the Minkowski functionals to their expected am-

plitude for a Gaussian sky. We simulate a series of maps based on the best fit parameters

for ΛCDM and the WMAP noise patterns. For the analysis, we use the template-cleaned

V+W maps outside the Kp0 sky mask region. Following the approach used in Komatsu

et al. (2003), we compute the Minkowski functionals at 15 thresholds from −3.5σ to +3.5σ

and compare each functional to the simulations using a goodness of fit statistic,

χ2 =
∑

ν1 ν2

[

F i
WMAP −

〈

F i
sim

〉]

ν1
Σ−1
ν1 ν2

[

F i
WMAP −

〈

F i
sim

〉]

ν2
(18)

where F i
WMAP is the Minkowski functional computed from the WMAP data, F i

sim is the

Minkowski functional computed from the simulated data, and Σν1ν2 is the bin-to-bin co-

variance from the simulations. Figure 24 shows the Minkowski functionals as a function of

threshold for a map with Nside = 128 (28 ′ pixels). These pixels are small enough to resolve

the acoustic spots, but not so small as to be noise dominated. The figure shows that the con-

tour length, area, and number of spots is consistent with expectations for a Gaussian theory.



– 63 –

Table 12 lists the probability of measuring the observed values of the Minkowski function-

als as a function of pixel size. At all resolutions, the maps are consistent with Gaussian

simulations.

We have also simulated non-Gaussian sky with non-Gaussian signals generated according

to equation (16). By comparing these simulations to the data, we can constrain fNL = 7±66

at the 68% confidence level, consistent with the bispectrum measurement (§8.3).

Table 12: χ2 for Minkowski Functionals for 15 thresholds for the template-cleaned VW
Pixels Minkowski χ2 DOF < Sim > F>WMAP

128 Genus 20.9 15 15.4 0.17

128 Contour 19.2 15 15.1 0.19

128 Spot Area 14.0 15 15.3 0.54

128 Combined 51.6 45 47.2 0.31

64 Genus 18.3 15 14.9 0.24

64 Contour 19.3 15 14.9 0.19

64 Spot Area 8.4 15 15.5 0.93

64 Combined 50.0 45 47.2 0.36

32 Genus 17.3 15 15.4 0.31

32 Contour 27.8 15 15.8 0.04

32 Spot Area 8.5 15 15.8 0.89

32 Combined 43.8 45 49.1 0.61

16 Genus 28.2 15 15.8 0.05

16 Contour 19.0 15 15.7 0.29

16 Spot Area 14.1 15 15.6 0.47

16 Combined 84.6 45 49.4 0.03

8 Genus 10.8 15 15.5 0.62

8 Contour 24.3 15 16.0 0.09

8 Spot Area 28.8 15 15.0 0.05

8 Combined 100.5 45 49.0 0.03

8.3. Bispectrum

The bispectrum is sensitive to both primordial non-Gaussianity and various sources

of secondary anisotropy (Spergel & Goldberg 1999; Goldberg & Spergel 1999; Komatsu &

Spergel 2001). Here, we use the WMAP 3 year data to constrain the amplitude of primordial
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Fig. 24.— The WMAP data are in excellent agreement with the Gaussian sim-

ulations based on the analysis of the Minkowski functionals for the three year

WMAP data outside the Kp0 cut. The filled circles in the left panel shows the

values for the data at Nside = 128 (28′ pixels). The gray band shows the 68%

confidence interval for the Gaussian Monte Carlo simulations. The right panels

show the residuals between the mean of the Gaussian simulations and the WMAP

data. Note that the residuals are highly correlated from bin to bin, so the χ2 are

consistent with Gaussianity.
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non-Gaussianity and to detect the amplitude of the point source signal in the cleaned Q, V

and W band maps.

The amplitude of the primordial non-Gaussian signal can be found by computing a cubic

statistic on the map (Komatsu et al. 2005):

Sprimordial =
1

fsky

∫

4πr2dr

∫

d2n̂

4π
A(r, n̂)B2(r, n̂) (19)

where fsky is the fraction of the sky used in the analysis, B(r, n̂) is a Weiner filtered map

of the primordial fluctuations and A is optimized to detect the form of the non-linearities.

The amplitude of Sprimordial can be related directly to fNL. Here, we use A and B as defined

in (Komatsu et al. 2005). While we used ℓmax = 265 for the first-year analysis, we use

ℓmax = 350 for the present analysis, as noise is significantly lower with three years of data.

The error on fNL begins to increase at ℓlmax > 350 due to the presence of inhomogeneous

noise. Note that Creminelli et al. (2005) argue that the optimal estimator for Sprimordial
should include a term that is linear in temperature anisotropy as well as a cubic term that

we already have in equation (19). They claim that their estimator could reduce the error on

fNL by about 20%. While their result is attractive, we shall not include the linear term in

our analysis, as their estimator has not been tested against non-Gaussian simulations and

thus it is not yet clear if it is unbiased.

Point sources are an expected cause of non-Gaussianity. Because point sources are

not very correlated on the angular scales probed by WMAP, the point sources make a

constant contribution to the bispectrum, bsrc. Komatsu et al. (2005) develops a cubic statistic

approach for computing bsrc:

Sps =
1

m3

∫

d2n̂

4π
D3(n̂) (20)

where m3 = (4π)−1
∫

d2n̂M3(n̂), M(n̂) = [σ2
CMB + N(n̂)]−1, and D(n̂) is a match filter

optimized for point source detection:

D(n̂) =
∑

ℓ,m

bℓ

C̃ℓ
almYlm(n̂) (21)

where bℓ is a beam transfer function and C̃ℓ = Ccmb
ℓ b2ℓ + Nl. We weighted the temperature

maps by M(n̂) before we calculate alm. We use ℓmax = 1024 for calculating D(n̂). (See § 3.2

of Komatsu et al. (2003) for details of weighting method.) Given the uncertainties in the

source cut-off and the luminosity function, the values for bsrc in Table 13 are consistent with

the values of cps in Hinshaw et al. (2006).

Table 13 lists the measured amplitude of the non-Gaussian signals in the 3 year maps.

The values are computed for template-cleaned Q, V and W band maps. With three years
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of data, the limits on primordial non-Gaussianity have improved from −58 < fNL < 137 to

−54 < fNL < 114 at the 95% confidence level. The improvement in limit on fNL is roughly

consistent with the expectation in the signal-dominated regime, ∆fNL ∝ l−1
max (Komatsu &

Spergel 2001). The level of point source non-Gaussianity in the 3 year maps is lower than in

the first year maps. This drop is due to the more sensitive 3 year masks removing additional

sources.

8.4. Trispectrum

Fig. 25.— Constraints on the amplitude of four point function. The measured

amplitude of the four point function (expressed in terms of a non-Gaussian

amplitude defined in equation (23)) is compared to the same statistic computed

for simulated Gaussian random fields. The yellow line shows the results for Q,

V and W bands and the red histogram shows the distribution of the results of

the Monte-Carlo realizations. Note that in both the simulations and the data A

is greater than 0 due to the inhomogeneous noise. The excess in Q is may be

due to point source contamination.

Table 13: Amplitude of Non-Gaussianity

fNL bsrc
[10−5 µK3 sr2]

Q 41 ± 55 4.8 ± 2.0

V 25 ± 50 0.12 ± 0.52

W 11 ± 50 −0.21 ± 0.34

V+W 18 ± 46 0.25 ± 0.26

Q+V+W 30 ± 42 0.73 ± 0.36
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Motivated by claims that there are large scale variations in the amplitude of fluctua-

tions, we consider a non-Gaussian model that generates a non-trivial four point function for

the curvature (and temperature) fluctuations, but does not produce a three-point function.

This model describes a cosmology where the value of one field modulates the amplitude of

fluctuations in a second field:

Φ(~x) = φ(~x)[1 + gNLψ(~x)] (22)

where φ and ψ are Gaussian random fields and Φ is the Bardeen curvature potential. The

presence of such a term would generate variations in the amplitude of fluctuations across the

sky.

Appendix B derives an estimator for the amplitude of non-Gaussian term, g2
NL|ψ|

2. This

estimator is based on approximating the CMB fluctuations as arising from an infinitely thin

surface of last scatter. We measure the amplitude of the four point function by computing

G =
∑

i

(T fi ∇
2T fi −N2

i )
2, (23)

where T f is a smoothed map (e.g., an Nside = 128 map), Ti is an unsmoothed map, and Ni

is the expected value of Tf∇
2Ti for a map without any signal.

Figure 25 shows measurements of G from the Q, V and W band data. V and W

bands show any evidence for a non-trivial four point function, while Q band may show

the contamination from point sources. At the S/N level of the 3 year data, there are no

significant cosmological and systematic effects modulating the amplitude of the fluctuations

as a function of scale.

8.5. CMB Modulation by Arbitrary Function

Among the many possibilities, we choose to address in a unifying manner the large scale

“asymmetry”, “alignment” and low ℓ power issues discussed in the literature after the first

year release (see for example Tegmark et al. (2003); de Oliveira-Costa et al. (2004); Eriksen

et al. (2004b,a); Land & Magueijo (2005a,b)). We do so by testing the hypothesis that the

observed temperature fluctuations, T̃ , can be described as a Gaussian and isotropic random

field modulated on large scales by an arbitrary function, namely

T̃ (n̂) = T n̂) [1 + f(n̂))] (24)

where f(n̂) is a real and arbitrary modulation function and T is an isotropic Gaussian

random field. If the observed sky is Gaussian and isotropic then f is equals to 0. If f were
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a dipolar function, it would entail an isotropy breaking on large scales and an asymmetry

along the dipole direction. If f were a quadrupolar function, then the quadrupolar and

octopolar modes in the observed field would be aligned and the value of the lowest ℓ of the

Gaussian field T would be influenced (Gordon et al. 2005). Note however that although those

properties are interesting by themselves, the physical motivations for such a modulation are

currently unclear. Modulation on large scales has been studied in great analytical details in

Hajian & Souradeep (2003); Hajian et al. (2005); Prunet et al. (2005) and its physics and

phenomenology investigated in Tomita (2005, 2006) and Gordon et al. (2005).

To test this hypothesis, we first expand f(n̂) in spherical harmonics

f(n̂) =
ℓmax
∑

ℓ=1

m
∑

ℓ=−m

fℓmYℓm(n̂)) (25)

with either ℓmax = 1 or ℓmax = 2. We then study the probability that f is different from 0 in

a Bayesian framework. To do so we consider the likelihood function L(T̃ |fℓm, Cℓ), where Cℓ
is the angular power spectrum of the Gaussian field T , and solve for the maximum of this

likelihood using a Markov Chain Monte Carlo solver. The likelihood is computed exactly

in pixel space. We restrict ourselves to the region outside the Kp2 mask to avoid any

spurious galactic contamination and we work at res 3 (Nside = 8). Details of the likelihood

computation are presented in the Appendix C. We use as inputs the template-cleaned Q, V

and W maps.

We tested this approach on simulations by studying either a pure Gaussian field or a

Gaussian field modulated by a field of the above form with power up to ℓmax = 1 or ℓmax = 2

set to a realistic amplitude. We checked that in both cases our maximum likelihood estimator

recovers the input fℓm and Cℓ, whether the ℓmax assumed in the measurement is higher or

lower than the input ones.

We then applied to the data our method and the results are the following. We quote

here numbers coming from the maps combining the three years of data from V band only,

but similar results were obtained using either the Q or W band. The maximum likelihood

peaks as well as marginalized values for the fℓms with 95% error values are given in Table

14. Note that some important degeneracies are observed between C1,2,3 and the fℓms.

Whereas mild deviations from 0 are observed, the change in ln L when compared to

the case where f = 0 and only Cℓs are varied is ∆ ln L = -1.7 for ℓmax = 1 (i.e. , 3 extra

parameters) and ∆ ln L = -3.98 for ℓmax = 2 (i.e. , 8 extra parameters.)

Figure 26 shows the best fit form for f : an axis lying near the ecliptic plane. This

is the same feature that has been identified in a number of papers on non-Gaussianity. If
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Table 14: Maximum likelihood peak values and 1D marginalized values for the fℓms for

ℓmax = 1 and ℓmax = 2 using the V band only.

ℓmax = 1 f10 f11

(−0.104, 0.000) (0.117, 0.054)
(

−0.057−0.225
+0.119, 0.000

) (

0.127+0.014
+0.268,−0.053−0.185

+0.087

)

ℓmax = 2 f10 f11

(−0.032, 0.0) (0.141,−0.068)
(

−0.020−0.201
+0.133, 0.0

) (

0.145−0.002
+0.264,−0.061−0.179

+0.068

)

f20 f21 f22

(−0.0283, 0.00) (−0.0570,−0.089) (0.129,−0..036)
(

−0.028−0.214
+0.172, 0.0

) (

−0.076−0.194
+0.042,−0.109−0.201

0.033

) (

0.105−0.002
+0.242,−0.045−0.165

+0.098

)

instead of trying to fit all 8 modes, we had chosen to look for a preferred axis, then we

would had made the a posteriori choice to search for non-Gaussianity with a δχ2 of 8. If we

were eager to claim evidence of strong non-Gaussianity, we could quote the probability of

this occurring randomly as less than 2%. We, however, do not interpret the improvement of

∆χ2 = 8 with 8 additional parameters as evidence against the hypothesis that the primordial

fluctuations are Gaussian. Since the existence of non-Gaussian features in the CMB would

require dramatic reinterpretation of our theories of primordial fluctuations, more compelling

evidence is required.

9. Conclusions

The standard model of cosmology has survived another rigorous set of tests. The errors

on the WMAP data at large ℓ are now three times smaller and there has been significant

improvements in other cosmological measurements. Despite the overwhelming force of the

data, the model continues to thrive.

The data are so constraining that there is little room for significant modifications of

the basic ΛCDM model. The combination of WMAP measurements and other astronomical

measurements place significant limits on the geometry of the universe, the nature of dark

energy, and even neutrino properties. While allowing for a running spectral index slightly

improves the fit to the WMAP data, the improvement in the fit is not significant enough to

require a new parameter.
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Cosmology requires new physics beyond the standard model of particle physics: dark

matter, dark energy and a mechanism to generate primordial fluctuations. The WMAP data

provides insights into all three of these fundamental problems:

• The clear detection of the predicted acoustic peak structure implies that the dark

matter is non-baryonic.

• The WMAP data are consistent with nearly flat universe in which the dark energy has

an equation of state close to that of a cosmological constant, w = −1. The combina-

tion of WMAP data with measurements of the Hubble Constant, baryon oscillations,

supernova data and large-scale structure observations all reinforces the evidence for

dark energy.

• The simplest model for structure formation, a scale-invariant spectrum of fluctuations,

is not a good fit to the WMAP data. The WMAP data requires either tensor modes

or a spectral index with ns < 1 to fit the angular power spectrum. These observations

match the basic inflationary predictions and are well fit by the predictions of the simple

m2φ2 model.

Further WMAP observations and future analyses will test the inflationary paradigm.

While we do not find convincing evidence for significant non-Gaussianities, an alternative

model that better fits the low ℓ data would be an exciting development. Within the context

of the inflationary models, measurements of the spectral index as a function of scale and

measurements of tensor modes directly will provide a direct probe into the physics of the

first moments of the big bang.
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A. SZ Marginalization and Priors

The analysis now includes marginalization over the amplitude of the SZ contribution,

normalizing to the expected SZ CTT
l spectrum predicted by Komatsu & Seljak (2002) for a

model with Ωm = 0.26,Ωb = 0.044, h = 0.72, ns = 0.97 and σ8 = 0.8 We define the amplitude

of the signal (relative to this model with ASZ) and marginalize over this parameter with a

flat prior, 0 < ASZ < 2. This range is based on the assumption that the Komatsu & Seljak

(2002)(KS) approach estimates the SZ signal with an order unity uncertainty.

Numerical simulations (Nagai 2005) and analytical studies (Reid & Spergel 2006) find a

tight correlation between mass and SZ signal, with the largest uncertainties associated with

the cluster gas fraction. These results support the KS approach and suggest that the range

of the prior is generous. Afshordi et al. (2005) analysis of the SZ signal from 116 nearby

clusters in the WMAP data finds that the signal from nearby clusters is 30-40% weaker than

expected. Since these nearby clusters are the dominant source of fluctuations in the WMAP

angular power spectrum, this implies that ASZ < 1.

We have also made a number of changes in the priors and the analysis techniques from

the first year analysis. We are now using the amplitude of the angular power spectrum peak,

C220, rather than A as a parameter in the Markov Chain. This choice of prior leads to a

slightly lower best fit amplitude.

Figure 27 shows how the change in priors and the SZ treatment alters our estimates of

cosmological parameters. Except for changes σ8, the effects are all relatively small. We have

estimated that roughly half of the change in the best fit σ8 value is due to the change in the

form of priors and half is due to the SZ marginalization. The spectral slope also has a weak

dependence on ASZ (see Figure 28).

When we are comparing results directly to the first year analysis, we use the same set

of priors as used in the first year analysis (Table 2 and Figure 2). Otherwise, we use the

approach outlined in §2.

This preprint was prepared with the AAS LATEX macros v5.2.
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In §7.3, the use of a flat prior on H0 favors flat models over models with Ωm = 1.3 and

ΩΛ = 0 as dH/dΩΛ decreases as ΩΛ decreases. When WMAP is combined with other data

sets, the prior choice is much less important.

B. Trispectrum methodology

B.1. Predicted Trispectrum Signal

We consider here a model that generates a non-trivial trispectrum, but no bispectrum

signal. We assume that the gravitational potential Φ, is a product of two independent

Gaussian fields, φ and ψ:

Φ(~x) = φ(~x)[1 + gNLψ(~x)] (B1)

where gNL characterizes the strength of the non-linear term.

Following Komatsu et al. (2005) approach for the bispectrum, extended recently to the

trispectrum in Kogo & Komatsu (2006), the observed temperature multipoles are:

aℓm = bℓ

∫

r2drΦℓm(r)αℓ(r) + nℓm (B2)

where bℓ is the beam, nℓm is the noise and αℓ(r) is the radiation transfer function:

αℓ(r) =
2

π

∫

k2dkgTℓ(k)jℓ(kr) (B3)

The non-linear coupling term generates a second order term:

aℓm = nℓm + bℓ

∫

r2drαℓ(r)
[

φℓm(r) + φℓ′m′(r)ψℓ′′m′′(r)Cℓ′m′ℓ′′m′′

ℓm

]

(B4)

where

Cℓ′m′ℓ′′m′′

ℓm =

√

4π

(2ℓ+ 1)(2ℓ′ + 1)(2ℓ′′ + 1)

(

ℓ ℓ′ ℓ′′

0 0 0

)(

ℓ ℓ′ ℓ′′

m m′ m′′

)

. (B5)

This term does not have any effect on the bispectrum as < φ3 >= 0 and < ψ3 >= 0.

However, it does have a non-trivial effect on the trispectrum.

As with gravitational lensing (see Hu (2001)), the largest trispectrum term is the diag-

onal term, T ℓℓℓℓ (0) =< CℓCℓ > −3 < Cℓ >
2. This term would generate an excess in the χ2 of
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the fit of the model to the data:

T ℓℓℓℓ (0) = g2
NLCℓ

∫

r2dr

∫

r̃2dr̃αℓ(r)αℓ(r̃)

∑

mℓ′m′ℓ′′m′′

∑

ℓ̃′m̃′ ℓ̃′′m̃′′

< φℓ′m′(r)φℓ̃′m̃′(r̃) >< ψℓ′′m′′(r)ψℓ̃′′m̃′′(r̃) > Cℓ′m′ℓ′′m′′

ℓm C ℓ̃′m̃′ ℓ̃′′m̃′′

ℓm .(B6)

We can then use

< φℓ′m′(r)φℓ̃′m̃′
(r̃) >= δ

ℓ′ℓ̃′
δm′m̃′

∫

k2dkPφ(k)jℓ′(kr)jℓ′(kr̃) (B7)

and the equivalent relationship for ψ to rewrite the trispectrum as

T ℓℓℓℓ (0) = g2
NLξℓC

2
ℓ (B8)

where

ξℓ =
4π

Cℓ

∫

k2dkPφ(k)

∫

(k′)2dk′Pψ(k′)

(

ℓ ℓ′ ℓ′′

0 0 0

)2 ∫

r2dr

∫

r̃2dr̃αℓ(r)αℓ(r̃)jℓ′(kr)jℓ′′(k
′r)jℓ′(kr̃)jℓ′′(k

′r̃). (B9)

While this full integral is numerically intractable, we approximate the surface of last scatter

as a thin screen so that

aℓm = bℓΦℓm(r∗)αℓ + nℓm (B10)

then, the trispectrum coupling term reduces to

ξℓ =
4παℓ

2

Cℓ

∫

k2dkPφ(k)j
2
ℓ′(kr∗)

∫

k′2dk′Pψ(k
′)j2

ℓ′′(k
′r∗)

(

ℓ ℓ′ ℓ′′

0 0 0

)2

. (B11)

Recall that in this limit,

Cℓ = αℓ
2

∫

k2dkPφ(k)j
2
ℓ (kr∗) (B12)

Thus,

ξℓ =
4παℓ

2Cℓ′

ᾱ2
ℓ′Cℓ

∫

k′2dk′Pψ(k′)j2
ℓ′′(k

′r∗)

(

ℓ ℓ′ ℓ′′

0 0 0

)2

(B13)

The amplitude of ξℓ is, thus, roughly the variance in the ψ field on the scale r∗/ℓ. Note that

ξℓ is a positive definite quantity so that T ℓℓℓℓ (0) should be always positive.
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B.2. Detecting the Non-Gaussian Signal

If we assume that ξℓ is constant, then we can follow Hu (2001) and compute an optimal

quadratic statistic. We approximate the optimal statistic as
∑

i(T
f
i ∇

2T fi −N2
i )

2, where T f

is a smoothed map (e.g., a res 7 map) and we use the approximation that Cℓ = A/ℓ(ℓ+ 1).

This has the advantage that we can easily compute it and has well-defined noise properties.

B.2.1. Practical implementations

We define for this purpose the dimensionless G statistic as

G =
∑

p,b1,b2,b3,b4

wp,b1T̂p,b1wp,b2T̂p,b2wp,b3T̂p,b3wp,b4T̂p,b4

−
∑

b1,b2,b3,b4

(

∑

p1

wp1,b1T̂p1,b1wp1,b2T̂p1,b2

)(

∑

p2

wp2,b1T̂p2,b1wp2,b2T̂p2,b2

)

(B14)

where bi refers to various bands (Q, V, and W for yr1, yr2 and yr3) that are all distinct for

a single term so that the noise bias is null for this statistic, wp,bi is a particular pixel weight

(we will consider it equal unity first) and T̂b is a filtered map defined as

T̂pb =
Tpb

√

∑

q T
2
qb

(B15)

Tpb =
∑

ℓm

fℓbã
M
ℓmbYℓm(n̂p) (B16)

where ãMℓm’s are the spherical harmonic coefficients of the masked sky. We use at this level the

Kp12 mask to hide the brighter part of the galaxy (and potentially the brighter point sources)

and ignore cut sky effects in considering those pseudo-aℓms. But when computing the sum

over pixels in G, we consider only pixels outside the Kp2 area. The obvious advantage of

this simple real space statistic is its ability to handle inhomogeneous noise and to localize its

various contributions in real space. The second term in the definition of G aims at subtracting

off the Gaussian unconnected part, so that if the T̂ fields are homogeneous Gaussian fields,

we obtain 〈Gps〉 = 0.

The exact nature of fℓ will depend on the source of the signal. For example, point

sources do contribute to all n-points functions in real or harmonic space and are as such

visible in the power spectrum, bispectrum and trispectrum. The first two have been used to

set limits and corrections.
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Should we want to isolate the point sources contribution with the G statistic, we would

proceed in the following manner. The point sources power spectrum is well approximated

by a constant, white noise like, power spectrum Cps
ℓ (see Komatsu et al. (2003)). Given the

measured power spectrum, C̃ℓ = Cℓb
2
ℓ +C

ps
ℓ b

2
ℓ +Nℓ, the Wiener like filter to reconstruct point

sources is to f psℓ = b2ℓ/C̃ℓ. Note that this filter would be optimal only if point sources were

drawn from a Gaussian distribution, which is not true. We can however expect it to be close

to optimal.

In order to constrain the CMB contribution to the trispectrum and constrain gNL close

to optimality, we will set fℓ1 and fℓ2 to the Wiener filter for the CMB field, fℓ1 = fℓ3 =

Ctheory
ℓ b2ℓ/C

measured
ℓ and fℓ2 = fℓ4 = ℓ(ℓ + 1)fℓ1, where Ctheory

ℓ is the best fit model angular

power spectrum and Cmeasured
ℓ is the measured raw power spectrum including the signal and

the noise and not corrected for the beam window function.

We restrict ourselves to a unit weighting which is nearly optimal in the signal dominated

regime where we draw our conclusions from, i.e. at resolution lower than 6.

B.2.2. Explicit relation to the trispectrum

Ignoring the weights, it is easy to show using the relation recalled in the next section

that

〈T1(n̂)T2(n̂)T3(n̂)T4(n̂)〉c =
∑

p

T1pT2pT3pT4p (B17)

=
∑

ℓ1m1ℓ2m2ℓ3m3ℓ4m4

〈tℓ1m1
tℓ2m2

t∗ℓ3m3
t∗ℓ4m4

〉c

∫

dΩ(n̂)Yℓ1m1
(n̂)Yℓ2m2

(n̂)Y ∗
ℓ3m3

(n̂)Y ∗
ℓ4m4

(n̂)

(B18)

=
∑

ℓ1m1ℓ2m2ℓ3m3ℓ4m4LM

√

(2ℓ1 + 1)(2ℓ2 + 1)

4π(2L+ 1)

√

(2ℓ3 + 1)(2ℓ4 + 1)

4π(2L+ 1)
CL0
ℓ10ℓ20

CL0
ℓ30ℓ40C

LM
ℓ1m1ℓ2m2

CLM
ℓ3m3ℓ4m4

× 〈tℓ1m1
tℓ2m2

t∗ℓ3m3
t∗ℓ4m4

〉c . (B19)

It is then easy to relate to standard expression for the connected part of the trispectrum as

in Hu (2001) and Komatsu (2001).
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C. Computing the likelihood of a modulated Gaussian field

To recall the previous notations, we write the temperature modulated field as

T̃ (n̂) = T (n̂) [1 + f(n̂)] (C1)

where T (n̂) is a statistically isotropic random Gaussian field whose angular power spectrum

we note Cℓ, while f(n̂) is some arbitrary mathematical function. Therefore, T̃ (n̂) is still a

Gaussian field but whose statistical isotropy is violated. f is an arbitrary function that we

expand in spherical harmonic

f(n̂) =
ℓmax
∑

ℓ=1

m
∑

ℓ=−m

fℓmYℓm(n̂) . (C2)

The covariance matrix of the observed T̃ fields is

C̃(n̂, m̂) ≡ [1 + f(n̂)] C(n̂, m̂) [1 + f(m̂)] (C3)

where C is the covariance matrix of the isotropic field T :

C(n̂, m̂) =
∑

ℓ

2ℓ+ 1

4π
CℓPℓ(n̂ · m̂). (C4)

The likelihood function of T̃ (n̂) given Cℓ’s and fℓm’s can then be written as follows:

L(T̃ |fℓm, Cℓ) ∝
1

√

det C̃
exp

[

−
1

2

T̃ (n̂)

1 + f(n̂)
C−1(n̂, m̂)

T̃ (m̂)

1 + f(m̂)

]

, (C5)

where N is the number of pixels considered and

det C̃ = det C

(

N
∏

i=1

(1 + f(n̂i))

)2

. (C6)

In practice, we compute ln L exactly at res 3 (Nside = 8) restricting ourselves to pixels

outside the Kp2 region. We checked that it was equivalent to marginalizing over the non-

observed pixels. The degradation and masking are performed as described in the appendix

of Hinshaw et al. (2006). In solving for the maximum likelihood with a MCMC solver, we

fix the Cℓ’s for ℓ greater than 10 to their ML values obtained in Hinshaw et al. (2006) and

vary simultaneously Cℓ=0,...10 and the fℓm imposing the reality condition, f ∗
ℓm = fℓ−m.
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Fig. 26.— The best-fit large-scale field modulating the temperature fluctuations,

f(n̂) for lmax = 2.
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Fig. 27.— The effect of SZ marginalization on the likelihood function. The red

curve is the likelihood surface for the three-year WMAP data for the power-

law ΛCDM model with ASZ = 0. The black curve is the likelihood surface after

marginalizing over the amplitude of the SZ contribution.
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Fig. 28.— The likelihood surface for (n,ASZ) for the power-law ΛCDM model and

WMAP data.


