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EFI-0518Cosmologial Struture Evolution and CMBAnisotropies in DGP BraneworldsIgnay Sawiki and Sean M. CarrollEnrio Fermi Institute, Department of Physis,and Kavli Institute for Cosmologial PhysisUniversity of Chiago, Chiago, IL, USA12th Otober 2005AbstratThe braneworld model of Dvali, Gabadadze and Porrati (DGP) provides an intriguingmodi�ation of gravity at large distanes and late times. By embedding a three-brane inan unompati�ed extra dimension with separate Einstein-Hilbert terms for both brane andbulk, the DGP model allows for an aelerating universe at late times even in the absene ofan expliit vauum energy. We examine the evolution of osmologial perturbations on largesales in this theory. At late times, perturbations enter a DGP regime in whih the e�etivevalue of Newton's onstant inreases as the bakground density diminishes. This leads to asuppression of the integrated Sahs-Wolfe e�et, bringing DGP gravity into slightly betteragreement with WMAP data than onventional ΛCDM. However, we �nd that this is notenough to ompensate for the signi�antly worse �t to supernova data and the distane tothe last-sattering surfae in the pure DGP model. ΛCDM is, therefore, a better �t.1 IntrodutionIt appears that the aeleration of the expansion of the Universe is now indubitable: it hasbeen independently orroborated by measurements of type Ia supernovae [1, 2, 3℄ and osmimirowave bakground radiation observations by the WMAP satellite [4℄.The simplest explanation for suh an e�et is the existene of a positive osmologi-al onstant. Unfortunately, the estimates for its natural value are at least 55 orders ofmagnitude too large (see [5, 6, 7℄ for a review). Another possibility is that the vauumenergy is zero, and the dark energy omes from the potential of a slowly-rolling salar �eld[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18℄. Yet another alternative is to modify general relativityso that the e�etive Friedmann equation predits osmi aeleration even in the abseneof dark energy. [19, 20℄. A simple approah along these lines is to add an Rn term tothe Einstein�Hilbert ation, with n < 0, whih will a�et the osmologial dynamis in theinfrared.[21℄The ase we will disuss in this work is that proposed by Dvali, Gabadadze and Porrati(�DGP�) [22, 23, 24℄ who suggest that the observed universe might be a brane embedded in ahigher-dimensional spae-time, with Standard-Model �elds propagating stritly on the brane.Gravity propagates in the bulk, but on-brane radiative orretions to the graviton propagatorresult in there being indued an additional, four-dimensional Rii salar in the ation. Theosmologial solution to this theory with a �ve-dimensional bulk has been demonstrated to1



2 ON-BRANE FIELD EQUATIONS 2possess a �self-aelerated� branh, as the universe approahes a de Sitter phase even whenthe vauum energy vanishes in both the bulk and on the brane. [25℄.By �nding the equation governing the growth of radially symmetri perturbations on aosmologial bakground with zero osmologial onstants (bulk and brane), Lue et al. [26℄onlude that the growth of struture is suppressed in a manner inonsistent with obser-vations and, in the linear regime, the DGP theory is a theory with a varying gravitationalonstant.On the other hand, Ishak et al. [27℄ have simulated data sets for CMB and weak lensing,assuming that the osmology is pure DGP, and they have found that, if suh data areanalysed assuming that the osmologial aeleration is driven by a form of dark energy,rather than a modi�ation of gravity, the forms of best-�t w obtained from the two data setsare inonsistent.Attaking the problem with more generality and a using a di�erent methodology, weshow that the quantity whih is measured as Newton's onstant for a small perturbation inthe Robertson�Walker bakground is dependent on the energy-density ontent of the uni-verse and is, in general, not equal to the (truly onstant) gravitational onstant driving theFriedmann expansion. This e�et results in a hange in the evolution of gravitational poten-tials in osmologial models using linear perturbation theory: the matter power spetrum issomewhat altered and the integrated Sahs-Wolfe (ISW) e�et is muh weakened.It is well-known that the observed CMB anisotropies have less power on the largestsales than is predited by the onventional ΛCDM model [4, 28, 29℄. As a onsequene ofthe suppressed ISW e�et, we �nd that DGP gravity provides a better �t to the temperatureanisotropies observed by WMAP than does ΛCDM. However, DGP also predits a somewhatmore gradual onset of aeleration than that expeted in ΛCDM, whih is not as good atmathing the observed Hubble diagram of Type Ia supernovae if we require that the distaneto the last-sattering be �xed. Taken together, we �nd that although the low-multipole CMBdata is signi�antly better �t by DGP, GR is preferred when both CMB and supernova dataare onsidered for a �at universe.2 On-Brane Field EquationsWe start with a single 3-brane embedded in a �ve-dimensional bulk M. We will assume thatall the standard-model �elds are on�ned to the brane. Gravity propagates in the bulk and isa fully �ve-dimensional interation, but, as �rst proposed in the model of Dvali, Gabadadzeand Porrati [22℄, there is an on-brane radiative orretion to the graviton propagator re-sulting in the indution of an on-brane, four-dimensional Rii salar in the e�etive ation.Generalizing the DGP model slightly, we will allow for both a nonzero brane tension, λ andbulk osmologial onstant, Λ. No �elds propagate in the bulk other than gravity. We thuswrite down the ation:
S =

∫

M

d5x
√
−g

[
(5)R

2κ2
− Λ − K+

κ2
− K−

κ2
+ δ(χ)

(
(4)R

2µ2
− λ + LSM)] , (1)where gµν is the metri in the bulk, (5)R is the 5D Rii salar, (4)R is the indued 4D Riisalar, χ parameterizes a vetor �eld suh that χ = 0 oinides with the position of the braneeverywhere (we assume that suh a vetor �eld exists); a partiular hoie for this vetor�eld is nµ, de�ned in (4). K± is the trae of the extrinsi urvature of either side of thebrane; this term is the Hawking�Gibbons term neessary to reprodue the appropriate �eldequations in a spae-time with a boundary. The appropriate energy sales are representedby κ2 = 8πM−3

5 for the true 5D quantum gravity sale and µ2 = 8πM−2
4 for the indued-gravity energy sale on the brane. Finally, LSM is the standard-model lagrangian, with �eldsrestrited to the brane.



2 ON-BRANE FIELD EQUATIONS 3The ratio of the two gravitational sales, the ross-over sale,
rc :=

κ2

2µ2
, (2)was shown by Dvali et al. [22℄ to appear in the propagator of the graviton in the 5D-bulk DGP theory. It is at this distane sale that the potential owing to one-gravitonexhange undergoes a transition from 4D to 5D behavior. Also, De�ayet [25℄ has shownthat an FRW osmology enters a self-aelerated phase when H ∼ r−1

c . If we wish toexplain the osmologial aeleration using this phase, then we need to set rc ∼ 1 Gp,i.e. approximately the urrent Hubble radius. Dvali et al. [22℄ show that, at distanes muhsmaller than the ritial radius, when expanded around the Minkowski bakground, µ2 entersthe gravitational potential as the onstant of proportionality, i.e. µ2 = 8πG. This fores usto set M4 ≡ MPl = 1028 eV and, therefore, M5 = 100 MeV.Varying the ation leads to the following equation of motion:
(5)Gµ

ν = κ2T µ
ν , (3)where the indies run over all the �ve dimensions, from 0 to 4. We write down the induedmetri on the brane as

qµν = gµν − nµnν , (4)with nµ a spaelike vetor �eld with unit norm, normal to the brane at χ = 0. We an thenwrite down the energy-momentum tensor as
Tµν = −Λgµν + Sµνδ(χ) , (5)with the on-brane ontribution desribed by

Sµν = τµν − λqµν − 1

µ2
(4)Gµν . (6)Here, (4)Gµν is the Einstein tensor obtained by varying the usual ∫ d4x (4)R, restrited toexist on the brane, while τµν is the energy-momentum tensor resulting from varying LSM withrespet to qµν . As already mentioned, the bulk is empty, save for a osmologial onstant Λ.We then proeed by following the methodology �rst proposed by Shiromizu, Maeda andSasaki [30℄: we arry out a 4 + 1 deomposition of the theory (3) and alulate the e�etiveon-brane �eld equations. This result was �rst obtained by Maeda et al. in [31℄. The detailedderivation is presented in Appendix A.We use the Gauss equation to alulate the Riemann tensor on the brane:

(4)Rα
βγδ = (5)Rµ

νρσqα
µqν

βqρ
γqσ

δ + Kα
γKβδ − Kα

δKβγ , (7)where Kµν := qα
µqβ

ν∇αnβ is the extrinsi urvature of the brane. We an ompute thisurvature by assuming a Z2 symmetry of the odimension; using the Israel juntion onditionsfor the jumps in the indued metri and the extrinsi urvature aross the brane [32℄, weobtain
2q+

µν = q+
µν − q−µν =: [qµν ] = 0 (8)

2K+
µν = [Kµν ] = −κ2

(

Sµν − 1

3
qµνS

)

. (9)We now ontrat (7) appropriately and, after some manipulation, we obtain the equation forthe 4D Einstein tensor:
(

1 +
λκ4

6µ2

)

(4)Gµν = −
(

κ2

2
Λ +

κ4λ2

12

)

qµν +
λκ4

6
τµν +

κ4

µ4
fµν − Eµν , (10)



3 COSMOLOGICAL SOLUTION 4where the tensors fµν and Eµν are de�ned as
fµν :=

1

12
AAµν − 1

4
A α

µ Aνα +
1

8
qµν

(

AαβAαβ − 1

3
A2

) (11)
Eµν = (5)C⊥

α⊥β qα
µqβ

ν , (12)with
Aµν := (4)Gµν − µ2τµν . (13)

Eµν is the projetion onto the brane of the bulk Weyl tensor (5)Cα
βγδ (⊥ signi�es an indexontrated with nµ). fµν desribes brane terms that are quadrati in τµν and Gµν ; hene-forth we will drop the supersript (4) and assume all quantities are four-dimensional unlessotherwise spei�ed. In Appendix A we expliitly de�ne the ross terms appearing in fµν as

πµν , γµν and ξµν ; see equations (64)�(66) for preise de�nitions.We an reover the standard Einstein equations from (10) by sending the brane tension
λ to in�nity, i.e. in the limit when the brane is `sti�'.The di�erene between DGP gravity and the standard Randall�Sundrum result of [30℄ isthe presene of the 4D Einstein tensor in Sµν , resulting in additional terms ontaining (4)Gµνexpliitly: we now have an equation whih is quadrati in the Einstein tensor, i.e. urvaturean at as a soure of urvature, leading to a potentially non-zero Rii in the vauum (asobtained, for example, by Gabadadze and Iglesias in [33, 34℄ for their Shwarzshild-likesolution in DGP).3 Cosmologial SolutionThe quadrati nature of (10) makes this formulation omputationally imposing. In addition,it was already noted by Shiromizu et al. in [30℄ that the transverse-traeless omponent of
Eµν ontains the information about gravitational radiation oming o� and onto the brane aswell as the transition from 4D to 5D gravity, and its evolution is neessarily dependent onthe state of the bulk: the equation of motion for Eµν does not lose on the brane.Nevertheless, the large symmetry of a Robertson-Walker universe allows us to makeprogress. Choosing Gaussian normal o-ordinates, with the brane positioned at y = 0 and aRobertson�Walker metri on the brane, our bulk metri beomes:

ds2 = −N2(y)dt2 + A2(t, y)γijdxidxj + dy2 , (14)and we are allowed to pik the normalization suh that N(0) = 1 by resaling the timevariable; γij is a 3D maximally-symmetri spatial metri. We also de�ne the value of A onthe brane: a(t) := A(t, 0). In these oordinates, the 4D tensors are signi�antly simpli�ed,with only zero entries in the olumns and rows orresponding to the dimension perpendiularto the brane. We thus obtain for Gµ
ν :

G0
0 = −3

(
ȧ2

a2
+

k

a2

) (15)
Gi

j = −
(

2
ä

a
+

ȧ2

a2
+

k

a2

)

δi
j (16)

Gµ
µ = −6

(
ä

a
+

ȧ2

a2
+

k

a2

)

, (17)with the dot representing di�erentiation with respet to the t oordinate. In addition, weassume that the brane is �lled with a homogeneous distribution of a perfet �uid, suh that
τµ

ν = diag(−ρ, p, p, p, 0) (18)
p = wρ . (19)



3 COSMOLOGICAL SOLUTION 5This allows us to obtain the 0-0 omponent of the quadrati tensor fµ
ν of (11):

f0
0 = − 1

12

[

µ2ρ − 3

(
ȧ2

a2
+

k

a2

)]2

. (20)The remaining issue is the tensor Eµν . Sine we are dealing with an isotropi and ho-mogeneous universe, we must set it to be just a funtion of the time on the brane. Sine itis traeless, it behaves just like radiation and deays as a−4; beause of this property, thisterm is usually referred to as dark radiation (see, for example, the review of Maartens [35℄).For the moment we will set:
E0

0 =
C

a4
, (21)although ultimately we will set this term to zero.Substituting the above into (10) and replaing ȧ
a with H , we obtain a quadrati equationfor the energy density (or, equivalently, for H2):

κ4

12
ρ2 +

(
λκ4

6
− κ4

2µ2

(

H2 +
k

a2

))

ρ +
3

4

κ4

µ4

(

H2 +
k

a2

)2

−

−3

(

1 +
κ4λ

6µ2

)(

H2 +
k

a2

)

+
κ2

2

(

Λ +
κ2λ2

6

)

+
C

a4
= 0 , (22)where k = −1, 1, 0 depending on whether the spatial hypersurfae on the brane has negative,positive or no urvature. We an write this relation as a version of the Friedmann equationwith modi�ed dependene on the Hubble parameter,

H2 ± 2µ2

κ2

√
(

H2 +
k

a2

)

− κ2

6
Λ − C

3a4
=

µ2

3
(ρ + λ) − k

a2
. (23)So, provided that the Λ and C terms remain negligible, and H2 + k

a2 ≫ 2µ2

κ2 , the evolution ofthe sale fator in the early universe does not di�er from that in standard FRW osmology.As H dereases the evolution beomes non-standard; this an be demonstrated more learlyby solving (22) for H2:
H2 = 2

µ4

κ4
+

µ2

3
(ρ + λ) − k

a2
+ 2ǫ

µ2

κ2

√

µ4

κ4
+

µ2

3
(ρ + λ) − κ2

6
Λ − C

3a4
, (24)with ǫ = ±1 representing the two possible embeddings of the brane in the bulk (see [25℄).The above result has been obtained previously obtained by Collins and Holdom [36℄ andShtanov [37℄.We are going to follow De�ayet [25℄ by naming the ǫ = +1 branh as `self-aelerated'and ǫ = −1 branh as `non-aelerated'. The reason for this nomenlature beomes obviousin the ase of �at bulk and a zero brane tension and no dark radiation, i.e. k, λ, Λ, C = 0.Equation (24) then redues to that originally obtained by De�ayet (ibid):

H2 = 2
µ4

κ4
+

µ2

3
ρ + 2ǫ

µ2

κ2

√

µ4

κ4
+

µ2

3
ρ . (25)As mentioned previously, this solution ontains a ross-over sale above whih the self-aeleration term dominates:

rc :=
κ2

2µ2
. (26)For ǫ = +1, one µ2ρ/3 ≪ r−2

c /2, H approahes the nonzero onstant r−1
c = 2µ2/κ2, andthe universe enters an aelerated de Sitter phase. If we wish to use this model to replae



4 LINEARIZED EQUATIONS AND THE POTENTIAL 6the e�ets of the osmologial onstant, we should set rc to be approximately the urrentHubble radius. The non-aelerated branh with ǫ = −1 behaves like the usual Friedmanuniverse, with H2 tending to zero in the �at-universe ase.Note that there are two distint limits in whih we an reover the ordinary Friedmannequation in the presene of a osmologial onstant,
H2 =

µ2

3
(ρ + ρva) − k

a2
, (27)where ρ is the energy density in everything other than the osmologial onstant. One limit isto simply let κ2 → ∞, deoupling the extra dimension entirely and leaving us with ρva = λ.The other is to set the brane tension to zero, λ = 0, and take both κ2 and −Λ to in�nitywhile keeping their ratio onstant, yielding

ρva =

√

−6Λ

κ2
. (28)In our investigation of DGP osmology, we will set the brane tension to zero while leaving thebulk osmologial onstant Λ as a free parameter and alulating its likelihood as determinedby the data. Then Λ = 0 orresponds to �pure DGP,� while Λ → −∞ orresponds to ordinary

ΛCDM.4 Linearized Equations and the PotentialIn this setion, we will derive the Poisson equation for a perturbation of the Robertson�Walker bakground and demonstrate that it deviates from the usual version: in its linearregime, the DGP theory on the brane is a varying-G theory. This derivation will assumethat we are able to neglet all terms not linear in the gravitational potential. This range ofvalidity of this assumption is disussed in �5.We start o� by introduing salar perturbations to the metri. Sine we are only going tobe dealing with on-brane diretions, we an use the 4D formalism in the onformal Newtoniangauge, parameterizing the perturbed metri by:
ds2 = −(1 + 2Ψ(x, t))dt2 + a(t)(1 + 2Φ(x, t))γijdxidxj . (29)This allows us to alulate the Einstein tensor up to �rst order in the perturbations:
G0

0 = −3H2 + 6H2Ψ − 6HΦ̇ +
2

a2
∇

2Φ + O(Φ2, Ψ2) . (30)The above approximation is permitted provided Φ, Ψ ≪ 1. If we onsider distane sales muhsmaller than Hubble sale, i.e. upon taking the Fourier transform, (k/a)2Φ ≫ H2Ψ, HΦ̇, thenfrom the �rst-order terms we reover the potential for the �at Minkowski spaetime:
(1)G0

0 =
2

a2
∇

2Φ . (31)Alternatively, by inluding the Hubble �ow, we an obtain the 0-0 omponent of the osmo-logial evolution equation for the gravitational potentials in GR:
1

a2
∇

2Φ + 3H2Ψ − 3HΦ̇ = −µ2

2
ρ̄δ (32)where ρ̄ is the average matter/radiation energy density of the universe, δρ is the deviationfrom this mean, and the frational density exess is de�ned as δ := δρ/ρ̄.



4 LINEARIZED EQUATIONS AND THE POTENTIAL 7In DGP gravity, the 0-0 omponent of the right-hand side of the modi�ed Einstein equa-tion (10), �rst-order in Φ or Ψ , is:
(1)[RHS]00 = −δρ

κ4

6
(λ + ρ̄) +

κ4

µ2
HΦ̇ − 3κ4

µ4

(

H3Φ̇ + H4Ψ
)

+
κ4

2µ2
(δρ − 2ρ̄Ψ)H2

+

(
κ4

µ4
H2 − κ4ρ̄

3µ2

)

a−2
∇

2Φ . (33)In alulating the above, we have assumed that the e�et of the perturbations of the Weyltensor, Eµν in this equation at sub-horizon sales are insigni�ant. Sine we are dealing witha quasi-stati situation, gravitational radiation is negligible. In addition, this tensor enodesthe transition of gravity from 4D to 5D behavior. However, this e�et only ours at alength sale determined by rc, whih, as shown in the data �ts of �6.2, is muh larger thanthe horizon sale even today, let alone in the past. As suh, it is unlikely to have anysigni�ant e�et on the quantities under onsideration.Performing some algebrai manipulation and substituting for H2 from (24) we obtain theDGP equivalent of (32):
1

a2
∇

2Φ + 3H2Ψ − 3HΦ̇ = −µ2

2
ρ̄







1 +
ǫ

√

1 + 4
3µ2r2

c

(

ρ̄ + λ − rcΛ − κ4C
µ4a4

)







δ (34)If we apply similar approximations to those that led to (31), i.e. assuming that Φ, Ψ ≪ 1,drop terms ontaining H by onsidering sales over whih the Hubble �ow is negligible, weobtain:
∇

2Φ = −µ2ρ̄a2

2







1 +
ǫ

√

1 + 4
3µ2r2

c

(

ρ̄ + λ − rcΛ − κ4C
µ4a4

)







δ . (35)This form of (35) signi�es that the weak-�eld approximation in a Robertson�Walker bak-ground is a varying-G theory, with the e�etive Newton's onstant dependent on the averageenergy density of the Universe:
Ge� =

µ2

8π







1 +
ǫ

√

1 + 4
3µ2r2

c

(

ρ̄ + λ − rcΛ − 3C
a4µ2

)







. (36)Note that, in the numerial solutions desribed below, we do not neglet terms ontaining
H ; we are taking that limit here purely for expository purposes.The large-sale evolution of the universe is always driven by (24), i.e. the energy saleenoded in µ2. This is the parameter whih drives the onditions during, for example,nuleosynthesis. However, at least in part, the evolution of struture is driven by the e�etiveNewton's onstant, i.e. equation (36): this is generally true at late times for di�use loudsof gas. This insight will provide a onstraint for some of the parameters of the theory.As we an observe from equation (36) and assuming that we are in the self-aeleratedbranh of the solution (ǫ = +1), the value of the e�etive Ge� varies from one to, at most,two times the underlying Newton's onstant, with the inrease ourring in the late universeas ρ̄ → 0. (A related e�et has been observed in the presene of Lorentz-violating vetor�elds [38℄, whih result in a osmology where Newton's onstant di�ers from the onstantrelating energy density to the Hubble parameter in the Friedmann equation.) In the limitdesribed at the end of setion 3, in whih we take Λ → −∞, the time-dependent piee of



5 RANGE OF VALIDITY OF LINEAR REGIME 8
Ge� goes away, and we obtain Ge� = µ2/8π = onstant, so that ordinary ΛCDM is indeedreovered.By onsidering the i�j equations of motion in GR, we an get the an equation relatingthe two potentials Φ and Ψ to the anisotropi stress of the osmologial �uid, π:

k2

a2
(Φ + Ψ) = µ2π (37)Sine the anisotropi stress is negligible in models with no neutrinos, we an set Φ = −Ψ .The analogous alulation in DGP is a little more omplex; however, it yields similar results:without a soure of signi�ant anisotropi stress in the osmologial �uid, we an set Φ = −Ψ .

(

1 +
κ2

6µ2

(

λ +
1

2
ρ̄(1 − 3w) − 3ä

µ2a

))
k2

a2
(Φ + Ψ) = (38)

=
κ2

6µ2

(

λ +
1

2
ρ̄(1 − 3w) − 3ä

µ2a

)

µ2π − πE

πE is a new term and is the anisotropi stress enoded in the the Weyl tensor Eµν , i.e. aresult of o�-brane e�ets, suh as graviton evaporation into the bulk and any gravitationalwaves going o� or oming onto the brane. We will set this to zero in the subsequent analysis.5 Range of Validity of Linear RegimeIn setion 4, we assumed that we an use the linear approximation to the modi�ed Einstein'sequation (10). It is important to verify this expliitly, sine the large magnitude of theoe�ients of the quadrati terms in (10), might lead to their dominating over the linearterms.After a systemati review of all the quadrati terms in the expansion of (10), we onludethat the quadrati term whih is most likely to be large arises from the (Gµν)2 term and isof the form
κ4

µ4

(
∇

2Φ
)2 (39)Assuming that the Poisson equation is approximately valid, despite the evolving osmologialbakground, we have ∇

2Φ ∼ µ2ρ̄δ, and using the de�nition of rc, (26), leads to the onditionthat for the linearization of DGP to be valid
r2
cµ

2ρ̄δ ≪ 1 (40)If we assume that the density perturbation is in the form of a spherial top hat with aharateristi size D, we an write down the mass of this objet as M ∼ D3ρ̄δ. Finally, theShwarzshild radius in four dimensions is rS ∼ µ2M , giving us:
r2
crS ≪ D3 (41)We have thus reovered the result �rst disovered by Dvali et al [39℄, that there is a newsale in DGP theory,

r∗ = (r2
crS)1/3 . (42)At small distanes (between the Shwarzshild radius and r∗), gravity behaves essentially asin 4D GR, beause the quadrati terms dominate the modi�ed Einstein equation (10). If weset Λ = λ = 0, in this regime we are looking for the solution to

fµ
ν ≈ 0 (43)



6 COSMOLOGICAL SIMULATIONS 9with the obvious solution being Gµ
ν = µ2τµ

ν , i.e. the usual 4D Einstein equation. On inter-mediate sales (between r∗ and rc), gravity is desribed by a salar-tensor theory, onsistentwith our desription above in terms of a time-dependent gravitational onstant. It is in thisregime that the linearized DGP equations are valid.As we will see below, as a perturbation of �xed omoving size expands along with theuniverse, it typially goes from being less than r∗ to being greater than r∗. Eah mode istherefore desribed by 4D GR at early times, and later on by linearized DGP.6 Cosmologial Simulations6.1 The SimulationIn order to test the e�ets on osmologial observations of modifying gravity, we built asimple osmologial simulation ontaining only dark matter and radiation and modeled theirevolution aording to linearized equations � linearized DGP or ordinary 4D GR, dependingon the regime a given mode is in. The model produes as outputs the matter power spe-trum and the ontribution of the Sahs�Wolfe e�et (both integrated and non-integrated)to the radiation power spetrum. The di�erene between the matter power spetra is slight;however, the impat on the ISW is signi�ant, resulting in a large redution of power at lowmultipoles.We ompare the results of the onordane ΛCDM model to that of DGP osmology.The onordane model is de�ned by Ωm = 0.27, Ωm/Ωr = 3234 and Ωλ + Ωm + Ωr = 1.For the DGP osmologies we use the same matter to radiation energy ratio, and hoose theself-aelerated embedding, ǫ = +1. We keep Ωrh
2 onstant. As our aim is to explain theaeleration of the expansion of the universe using e�ets arising from modi�ed gravity, wehave set the brane tension λ (whih is equivalent to the osmologial onstant in ΛCDM) tozero in all our onsiderations. For simpliity we have also set C and k to zero, i.e. we areassuming a �at osmology. We keep the bulk osmologial onstant Λ as a free parameter.We parameterize the DGP models by rewriting (24) as:

H2

H2
0

=
1

2β2
+ Ωma−3 + Ωra

−4 +
1

β

√
1

4β2
+ Ωma−3 + Ωra−4 − ΩΛ (44)where H0 is the Hubble parameter today,

β := rcH0 ross-over radius in Hubble units
Ωm + Ωr := µ2ρ̄0/3H2

0 = 1 − β−1
√

1 − ΩΛ energy density
ΩΛ := κ2Λ/6H2

0 dimensionless bulk osmologial onstant
Ωr = Ωm/3234 frational radiation density

Ωm is the ontribution of matter to the total energy density of the universe (the remainderoming from the DGP urvature). Realisti DGP models will have Ωm ∼ 0.3, just as in
ΛCDM. The energy sale for the bulk osmologial onstant is Λ ≈ (10−8 eV)5ΩΛ.A signi�ant issue in modeling DGP is deiding on where the the transition between theEinstein and the linear DGP regimes ours and how to implement it. The simulation wasbuilt to swith from GR to linearized DGP instantaneously at the point in evolution de�nedby the sale r∗. We will apply DGP gravity when the sale of the perturbation is

D3 ∼ r3
∗ = 2GMr2

c =
1

24
µ2D3r2

c ρ̄δ (45)The perturbation size is eliminated from the relationship, yielding for the frational densityperturbation at whih GR transitions to linear DGP:
δ ∼ 24

µ2r2
c ρ̄0

a3(1+w(a)) (46)



6 COSMOLOGICAL SIMULATIONS 10where w(a) is the e�etive equation of state parameter for the �uid omprising the universeand a is the sale fator; δ is dependent on the initial onditions, and thus is a funtion ofthe mode under onsideration. Thus, for matter and radiation, the transition ours fromGR to DGP and ours only one in the evolution of the perturbations. This transition hasbeen plotted on Figure 1. We an determine the suess of the spliing between GR andthe linear DGP regimes by omparing the value of the e�etive Newton's onstant at thetransition point. We found that the transition ours at around z = 20 for modes of the sizeof the horizon today, with Ge� ≈ 1.02G, with this transition ourring at larger redshifts forhigher modes and Ge� even loser to 1.
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Figure 1: Value of sale fator at whih the gravity driving evolution transitions from GRto linear DGP. Solid line is for Minkowski bulk (ΩΛ = 0), dashed for ΩΛ = −1. Shape oftransition line is a proessed dark-matter power spetrum.In Figure 2 we plot the evolution of the Newtonian gravitational potential Φ for di�erentmodes in both ΛCDM and DGP. Eah mode diminishes in amplitude when it �rst omesinto the Hubble radius (more so during radiation domination), before settling to a onstantamplitude. In ΛCDM, linear modes one again derease in amplitude when vauum energybegins to dominate over matter. In DGP, in ontrast, the e�etive gravitational onstantinreases just when the universe begins to aelerate, leading to an inrease in the amplitudeof Φ that an be appreiable for ertain wavelengths. This behavior is also re�eted in thetransfer funtion for dark matter perturbations, plotted in Figure 3, whih shows a slightenhanement in DGP over ΛCDM.6.2 Constraints from Expansion HistoryBefore onsidering details of CMB anisotropies, we turn to two soures of onstraints onthe expansion history of the universe: the Hubble diagram of Type Ia supernovae, and thedistane to last sattering as measured by WMAP. These imply a tight relationship betweenthe two free parameters in the DGP model: β ≡ rcH0 and ΩΛ. We will then alulate CMBanisotropies in models that obey this relationship.For the supernova data, we used the Riess et al. Gold SNe Ia data set [40℄ (156 super-novae) and searhed for the parameters minimizing χ2. In the DGP senario with both β and
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Figure 2: Evolution of Newtonian potential Φ in GR and DGP (GR� solid lines, DGP�dashed). In DGP, the growth of the e�etive Newton's onstant leads to a wavelength-dependent growth in the potentials at late times, as opposed to the deay observed in ΛCDM.(ΛCDM: onordane model; DGP: ΩΛ = 0, β = 1.38)
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Figure 3: Transfer funtions in ΛCDM and DGP (ΩΛ = 0, β = 1.38). The transfer funtionis de�ned here as ratio of size of initial perturbation in Φ to its �nal value, renormalized to1 at large sales. In GR, the growth rate for the potential during dark-energy domination isindependent of k, so the quantity shown here is equivalent to the usual transfer funtion. ForDGP, the growth rate depends on k.
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ΩΛ free, the optimization routine hooses very large and negative values for ΩΛ, orrespond-ing to the ΛCDM limit as disussed at the end of Setion 3. The supernova data, in otherwords, prefer a very large and negative bulk osmologial onstant, reduing the observablephysis to GR. This is the result of the fat that ΛCDM �ts the supernova data slightlybetter (see Table 1). In terms of the e�etive equation-of-state parameter w, the supernovadata prefer w ≈ −1 or even a little less, while pure DGP orresponds to we� ≈ −0.7 today.If we �x ΩΛ = 0, supernova data �t best when β = 1.20, implying Ωm = 0.20. Thedetails of the �t are presented in Table 1.The WMAP experiment has determined, to a high level of preision, the distane to thelast-sattering surfae as dls = 14.0+0.2

−0.3 Gp ≡ 3.32+0.04
−0.08 H−1

0 [4℄. This restrition needsto be inluded in the likelihood alulation. Whereas for ΛCDM the two sets of data areonsistent, they are not so for pure DGP. A good �t for the CMB distane in DGP with
ΩΛ = 0 requires a higher β = 1.66, implying Ωm = 0.40.This is very di�erent from the requirements of the supernovae. Putting the two sets ofdata together results in the onlusion that owing to the inonsisteny between parameterspreferred by the SN and CMB distane data, the overall �t to pure DGP assuming a �atosmology (ΩΛ = 0) is muh worse than for onordane ΛCDM.Senario β ≡ rcH0 Ωm χ2 per d.o.f. Con�deneSN DGP 1.26+0.01

−0.02
0.20 ± 0.01 1.15 9%SN ΛCDM � 0.30 1.14 10%CMB dist. DGP 1.66+0.08

−0.02
0.40+0.02

−0.01
� �CMB dist. ΛCDM � 0.29 � �Total DGP 1.38+0.02

−0.01
0.28 ± 0.01 1.21 4%Total ΛCDM � 0.29 1.14 11%Table 1: A set of best-�t parameters for ΛCDM and DGP osmologies with ΩΛ = 0. `SN'represents �ts to just SN data; `CMB' are �ts to the distane to the last-sattering surfae;`total' ombine the two data sets. For ΛCDM, the two �ts are onsistent, for pure DGP theyare not, resulting in a signi�antly worse overall �t.Using both the SN and WMAP data, with both ΩΛ and β free, the maximum likelihoodfor the DGP osmology is attained for ΩΛ = −7.3 and β = 4.1. However, sine the range ofadmissible values of β inreases for more negativeΩΛ, the likelihood for just ΩΛ (marginalizedover β) inreases monotonially as ΩΛ attains lower values. Figure 4 shows the likelihood for

β given a partiular value of ΩΛ, while �gure 10 shows the likelihood for ΩΛ marginalizedover the supernova absolute magnitude and β. From the expansion history alone, ordinaryGR (orresponding to ΩΛ → −∞) is preferred.6.3 Simulation ResultsThe matter power spetrum for DGP is slightly di�erent than that for ΛCDM. We have foundthat there is exess power at large sales and a de�ieny of power at low sales. Resultsare shown in Figures 5 and 6. This hange is a result of the di�erent late-time evolutionof the gravitational potential and the hange in the rate of growth of density perturbationsassoiated with it.Using the sets of parameters presented in Figure 4, we omputed the ISW e�et forthe DGP model. We have found it to be signi�antly redued at low multipoles and tohave a (very) slight exess in the power for ℓ above 20 as ompared to the onordane
ΛCDM model. Making the bulk osmologial more negative restores the behavior observedin ΛCDM. A positive ΩΛ signi�antly inreases the ISW e�et. The results are shown inFigure 7.
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−0.5 1.71 0.28 1810 1.38 0.28 1880.2 1.23 0.27 1970.5 0.99 0.29 228Figure 4: Plot showing the one sigma (dark olor) and three sigma (light olor) range forbest-�t values of β for given values of ΩΛ for CMB distane (green), SN (blue) and ombined(red) For ΩΛ lose to 0 the preferred values for the two data sets are signi�antly di�erent,leading to a poor overall �t. As ΩΛ → −∞ the preferred parameter spaes inreasinglyoverlap. In this regime DGP is indistinguishable from GR. The table presents values of best-�t β's for a seletion of ΩΛ and the χ2's of the respetive �ts to ombined CMB-distaneand SN data. It an be learly seen that a positive bulk osmologial onstant is stronglyexluded.6.4 Impat on CMBFrom the �ts performed in �6.2, we obtain a range of values of β for eah ΩΛ whih satisfythe onstraints of the supernova data and the distane to the last-sattering surfae. Inour subsequent analysis and simulations we pik as β the entral values of the likelihooddistributions for eah ΩΛ. A seletion of ΩΛ and β pairs is presented in the table ontainedin Figure 4.By requiring that the distane to the last sattering surfae is e�etively �xed and byassuming the same radiation-density-to-matter-density ratio as in the onordane model,we ensure that the part of the CMB spetrum resulting from plasma osillations remainsunhanged, despite the di�erent theory of gravity. We are thus able to take the ΛCDMoutput of CMBFAST and `replae' the ISW part of the power spetrum with the new DGPalulation, provided we properly take into aount the ross-orrelations between the ISWe�et and the other ontributions to the CMB power spetrum.
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Figure 7: Contribution to Cℓ from ISW e�et as alulated for ΛCDM and a range of DGPosmologies. The e�et is signi�antly redued at low multipoles in DGP. Making the bulkosmologial onstant more negative brings the e�et bak to ΛCDM levels. Making ΩΛ morenegative brings the DGP power spetrum towards the ΛCDM one.Sine the low multipoles are dominated by the SW and ISW e�ets, we an omputeboth the ISW and SW e�et in all ases and then assume that the orrelation between thetwo is equal to the orrelation between the ISW ontribution and the rest of the signal. Theproedure is explained in detail in Appendix B.The results of performing the above proedure for models for DGP osmologies with arange of ΩΛ (with β as implied by SNe Ia data and dls as from WMAP) are presented inFigure 8. The total signal strength at low multipoles is signi�antly redued. The likelihoodfor ΩΛ as implied by the �t to the low-multipole WMAP data alone is presented in Figure 9.For this data alone the maximum likelihood is found at ΩΛ = +0.06, with a bulk osmologialonstant higher than that strongly exluded. Thus, the CMB data alone slightly prefer pureDGP to ΛCDM.Finally, we ombine the likelihoods obtained from the SNe Ia data, and the CMB data,presented in Figure 9 to obtain an overall likelihood distribution for ΩΛ. This has beenpresented in Figure 10. Taking all experimental data together does not hange the onlusionthat ΛCDM is preferred to DGP: the better �t to low-ℓ multipole data of WMAP is notenough to ompensate for the inonsisteny between �ts to CMB distane and supernovadata.7 ConlusionsWe have performed a projetion of the equations of the Dvali�Gabadadze�Porrati modi�edtheory of gravity in 5D bulk (Minkowski, de Sitter and anti-de Sitter) onto a 4D braneembedded in it. We have rederived a osmologial solution to the theory and have derivedequations governing the evolution of linear perturbations. We �nd that the theory governingthe linear perturbations, in ertain regimes, is one where G is not a onstant, but is dependenton the average energy density in the universe.Using the new equations, we built a simple osmologial simulation ontaining radiationand dark matter, driven by DGP gravity. We have disovered that, in DGP osmologies, the
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Figure 10: Likelihood for a range of values of ΩΛ as implied by data: dotted line inludesonly CMB distane and SNe Ia. Solid line is the modi�ation to the likelihood aused byadding onstraints from low-multipole WMAP data. Despite the fat that WMAP dataprefers pure DGP, the preferred hoie for the value of the bulk osmologial onstant is highenough to be exluded by the other data. ΛCDM is learly preferred.Newtonian potential Φ exhibits a period of growth at late times, prior to its deay; this isin ontrast with GR, where the potential deays one dark energy dominates. The preisedetails of this e�et are a funtion of the wavelength of the perturbation, and lead to analtered transfer funtion and a hanged dark-matter power spetrum, with slightly higherpower at large sales.The impat of the hange in the evolution of the potentials an be seen through theIntegrated Sahs-Wolfe e�et. We simulate the CMB anisotropy and demonstrate that inDGP osmologies the ISW e�et is signi�antly weaker at low multipoles.We onstrain the parameters of the theory through a �tting proedure using supernovadata and the WMAP results and perform a alulation of the likelihood funtion for the pa-rameter spae. We �nd that assuming a �at osmology, pure DGP with no bulk osmologialonstant is signi�antly worse when simultaneously �t to supernova data and the distaneto the last-sattering surfae. DGP �ts better to low-ℓ multipole data from WMAP, owingto the redued ISW e�et. However, this does not ompensate for the poor �t to the former,leading to the onlusion that GR and ΛCDM are preferred by all the data available takentogether.8 AknowledgementsWe would like to thank Wayne Hu, Yong-Seon Song and Dragan Huterer for fruitful disus-sions. This work was supported in part by the U.S. Dept. of Energy ontrat DE-FG02-90ER-40560, the NSF grant PHY-0114422, and the David and Luile Pakard Foundation.The KICP is an NSF Physis Frontier Center.



A DERIVATION OF ON-BRANE FIELD EQUATIONS 18A Derivation of On-Brane Field EquationsIn this appendix we will repliate the work of [30, 31℄, deriving the projeted, on-brane �eldequations for DGP gravity in 5D bulk.We start o� with Einstein's equation in a 5D manifold M
Gµν = κ2Tµν . (47)The Greek indies run over all the dimensions, i.e. from 0 to 4.We want to put in a 3-brane, B, (we will denote its position by invoking a spaelike vetor�eld χ in the neighborhood of the brane, suh that χ = 0 will oinide with the position ofthe brane. We want then to �nd the e�etive equation of motion for gravity on B itself.Let us �rst take are of the LHS of (47). We will �rst de�ne the indued metri on the3-brane, qµν :

qµν = gµν − nµnν , (48)where gµν is the metri on M, and nµ is a spaelike vetor �eld in M, with unit norm,whih is normal to the brane at χ = 0. Now we invoke the Gauss equation to alulate theRiemann tensor on the 3-brane
(4)Rα

βγδ = (5)Rµ
νρσqα

µqν
βqρ

γqσ
δ + Kα

γKβδ − Kα
δKβγ , (49)where Kµν := qα

µqβ
ν∇αnβ is the extrinsi urvature.In order to simplify our notation, we are going to de�ne the perpendiular subsript tosignify Aµ⊥ := Aµνnν .Contrating α and γ in (49) we obtain the 4D Rii tensor:

(4)Rβδ = (5)Rνσqν
βqσ

δ − (5)R⊥
ν⊥σqν

βqσ
δ + KKβδ − K α

β Kδα . (50)and, then, the 4D Rii salar:
(4)R := (4)Rµνgµν = (5)Rµνqµν − (5)R⊥

µ⊥νqµν + K2 − K ν
µ Kµ

ν (51)
= (5)R − (5)R⊥⊥ − (5)R⊥ β

β⊥ + (5)R⊥
⊥⊥⊥

︸ ︷︷ ︸

=0

+K2 − KαβKαβ .An observer on the brane will only be able to measure the 4D Rii tensor and salar,and not their �ve-dimensional ounterparts, so will naturally de�ne the 4D Einstein tensoras:
(4)Gβδ := (4)Rβδ −

1

2
qβδ

(4)R = (52)
= (5)Rµνqµ

βqν
δ − (5)R⊥

µ⊥νqµ
βqν

δ −
1

2
gµνqµ

βqν
δ

(
(5)R − (5)R⊥⊥ − (5)R⊥ α

α⊥

)

+ KKβδ − K α
β Kδα − 1

2
qβδ

(
K2 − KαβKαβ

)
.We an simplify this by:

(5)R⊥⊥ = gαβnγ (5)Rβγα⊥ = gαβnγ
(5)Rγ

β⊥α = (5)R⊥ β
β⊥ . (53)and also expanding the Riemann tensor in terms of the Riis and the Weyl tensor in 5D[41, (3.2.28)℄:

qα
µqβ

νnρnσ (5)Rρασβ = qα
µqβ

νnρnσ

(
1

3

(

gρσ
(5)Rβα − gρβ

(5)Rσα − gασ
(5)Rβρ+ (54)

+gαβ
(5)Rσρ

)

− 1

12
(gρσgβα − gρβgσα) (5)R + (5)Cρασβ

)

=

=
1

3

(
(5)Rαβqα

µqβ
ν + qµν

(5)R⊥⊥

)

− 1

12
qµν

(5)R + (5)C⊥α⊥βqα
µqβ

ν
︸ ︷︷ ︸

=:Eµν

.



A DERIVATION OF ON-BRANE FIELD EQUATIONS 19We an also manipulate the 5D Einstein equation (47) to obtain:
(5)R = −2

3
κ2T (55)

(5)Rρσ = κ2

(

Tρσ − 1

3
gρσT

) (56)
R⊥⊥ = κ2

(

T⊥⊥ − 1

3
T

)

. (57)Using all of the above in (52), we obtain:
(4)Gµν = (5)Gρσq ρ

µ q σ
ν + (5)R⊥⊥qµν + KKµν − K ρ

µ Kνρ − 1

2
qµν

(
K2 − KαβKαβ

)
−

− 1

3
(5)Rαβqα

µqβ
ν − 1

3
qµν

(5)R⊥⊥ +
1

12
qµν

(5)R − Eµν =

=
2κ2

3

(

Tρσqρ
µqσ

ν + qµν

(

T⊥⊥ − 1

4
T

))

+ KKµν − K ρ
µ Kνρ−

− 1

2
qµν

(
K2 − KαβKαβ

)
− Eµν . (58)Now let's take are of the energy-momentum tensor. It has ontributions from the bulk(whih we will limit to just a bulk osmologial onstant, Λ) as well as the brane ontributions.One of the ontributions in the brane is the radiatively indued DGP 4-gravity term; theation here is just the usual µ−2δ(χ)

∫
d4x (4)R, restrited to the brane, the variation of whihgives the 4D Einstein tensor. The stress-energy tensor has the form:

Tµν = −Λgµν +
(

−λqµν + τµν − µ−2 (4)Gµν

)

︸ ︷︷ ︸

=:Sµν

δ(χ) . (59)We are going to perform our alulation just o� the brane. The energy-momentumtensor there onsists of just the bulk osmologial onstant. The extrinsi urvature an bedetermined from the Israel juntion onditions, one of the formulations of whih allows usto ompute the jump in the metri and extrinsi urvature aross a thin shell of non-zeromomentum-energy [32℄:
q+
µν − q−µν =: [qµν ] = 0 (60)

[Kµν ] = −κ2

(

Sµν − 1

3
qµνS

) (61)Assuming that the universe is symmetri about the brane allows us to obtain the values ofthe extrinsi urvature expliitly, K+
µν = −K−

µν = 1
2 [Kµν ] and K+ = 1

6κ2S. Substitutinginto (58) and making 4D subsripts impliit:
Gµν = −κ2

2
Λqµν − κ4

12
S

(

S − 1

3
qµνS

)

− κ4

4

(

S σ
µ − 1

3
q σ
µ S

)(

Sνσ − 1

3
qνσS

)

−

− κ4

8
qµν

(

1

9
S2 −

(

Sµν − 1

3
qµνS

)2
)

. (62)We then substitute for Sµν from its de�nition and, after a bit of algebra, obtain:
(

1 +
λκ4

6µ2

)

Gµν = −
(

κ2

2
Λ +

κ4λ2

12

)

qµν +
λκ4

6
τµν + κ4πµν +

κ4

µ4
γµν +

κ4

µ2
ξµν − Eµν . (63)



B MODIFYING CMBFAST DATA 20where the new tensors are quadrati in Gµν and τµν and are de�ned as:
πµν =

1

12
ττµν − 1

4
τ α
µ τνα +

1

8
qµν

(

ταβταβ − 1

3
τ2

) (64)
γµν =

1

12
GGµν − 1

4
G α

µ Gνα +
1

8
qµν

(

GαβGαβ − 1

3
G2

) (65)
ξµν = − 1

12
(τGµν + τµνG) +

1

4

(
τ α
µ Gαν + G α

µ τνα

)
− 1

4
qµν

(

ταβGαβ − 1

3
τG

) (66)
Eµν = C⊥

α⊥β qα
µqβ

ν . (67)These quadrati tensors are related to fµν of (11) by
fµν = µ4πµν + µ2ξµν + γµν . (68)B Modifying CMBFAST dataThis appendix explains how CMBFAST data was modi�ed to re�et the expeted DGPsignal.Our osmologial simulation was used to alulate the ontribution to the CMB powerspetrum from the ISW and SW e�ets, as well as the total of the two (taking into aountthe ross-orrelation). We then de�ned the ISW-SW ross-orrelation fator as

R :=
CISW-SW

ℓ
√

CISW-ISW
ℓ CSW-SW

ℓ

=
Ctotal

ℓ − CSW-SW
ℓ − CISW-ISW

ℓ

2
√

CISW-ISW
ℓ CSW-SW

ℓ

(69)The R thus de�ned was then assumed to be idential to the ross-orrelation fatorbetween the ISW e�et and the total CMBFAST signal. This is a very good approximationat the lowest multipoles. With this assumption we an ompute the non-ISW part of thepower spetrum by solving for C∼ISW
ℓ in

CCMBFAST
ℓ ≈ C∼ISW

ℓ + 2
√

C∼ISW
ℓ CISW-ISW

ℓ R + CISW-ISW
ℓ (70)Finally, to ompute the power spetrum for DGP osmologies, we take the values of R and

CISW-ISW
ℓ alulated for the partiular model and use them in equation (70). This output ispresented in Figure 8.
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