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Abstract

This is a pedagogical introduction into theories with branes and extra dimensions.
We first discuss the construction of such models from an effective field theory point
of view, and then discuss large extra dimensions and some of their phenomenological
consequences. Various possible phenomena (split fermions, mediation of supersym-
metry breaking and orbifold breaking of symmetries) are discussed next. The second
half of this review is entirely devoted to warped extra dimensions, including the con-
struction of the Randall-Sundrum solution, intersecting branes, radius stabilization,
KK phenomenology and bulk gauge bosons.
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1 Introduction

Theories with extra dimensions have recently attracted enormous attention. These lectures
attempt to give an introduction to these new models. First we attempt to motivate theories
with branes in extra dimensions, and then explain how to write down an effective theory
of branes, and what kind of 4D excitations one would expect to see in such models and
how these modes couple to the standard model (SM) fields. The first lecture is closed
with a discussion of the main phenomenological implications of models with large extra
dimensions. In the second lecture we discuss various possible scenarios for theories with
flat extra dimensions that could be relevant to model building. First we discuss split
fermions, which could give a new way of explaining the fermion mass hierarchy problem,
and perhaps also explain proton stability. Next we discuss mediation of supersymmetry
breaking via a flat extra dimension, and finally we close this lecture with a discussion
of symmetry breaking via orbifolds. These topics were chosen such that besides getting
to know some of the most important directions in model building the reader will also be
introduced to most of the relevant techniques used in this field.

The second half of this review deals exclusively with warped extra dimensions: the
Randall-Sundrum model and its variations. In the third lecture we first show in detail how
to obtain the Randall-Sundrum solution, and how gravity would behave in such theories.
Then localization of gravity to brane intersections is discussed, followed by a possible solu-
tion to the hierarchy problem in infinite extra dimensions. The final lecture discusses various
issues in warped extra dimensions, including the graviton KK spectrum, radius stabiliza-
tion and radion physics, quasi-localization of fields, bulk gauge fields and the AdS/CFT
correspondence.

Inevitably, many important topics have been left out from this review. These include
the cosmology of extra dimensional models, running and unification in AdS space, uni-
versal extra dimensions and KK dark matter, black hole physics, brane induced gravity,
electroweak symmetry breaking with extra dimensions, and the list goes on. The purpose
of these lectures is not to cover every imoprtant topic, but rather to provide the necessary
tools for the reader to be able to delve deeper into some of the topics currently under in-
vestigation. I have tried to include a representative list of references for the topics covered,
and also some list for the topics left out from the review. Clearly, there are many hundreds
of references that are relevant to the topics covered here, and I apologize to everyone whose
work was not quoted here. Other recent reviews of the subject can be found in [1].

2 Large Extra Dimensions

Extra dimensions were first introduced in the 1920’s by Kaluza and Klein [2], who were
trying to unify electromagnetism with gravity, by assuming that the photon field originates
from fifth component (gµ5) of a five dimensional metric tensor. The early 1980’s lead to

2



a revitalization of these ideas partly due to the realization that a consistent string theory
will necessarily include extra dimensions. In order for such theories with extra dimensions
to not flatly contradict with our observed four space-time dimensions, we need to be able
to hide the existence of the extra dimensions in all observations that have been made to
date. The most plausible way of achieving this is by assuming that the reason why we
have not observed the extra dimensions yet is that contrary to the ordinary four space-
time dimensions which are very large (or infinite), these hypothetical extra dimensions are
finite, that is they are compactified. Then one would need to be able to probe length scales
corresponding to the size of the extra dimensions to be able to detect them. If the size of the
extra dimensions is small, then one would need extremely large energies to be able to see
the consequences of the extra dimensions. Thus by making the size of the extra dimensions
very small, one can effectively hide these dimensions. So the most important question that
one needs to ask is how large could the size of the extra dimensions be without getting
into conflict with observations. This is the first point we will address below. We will see
that answering this question will naturally lead us towards theories with fields localized to
branes. In order to be able to examine such theories, we will consider how to write down
an effective Lagrangian for a theory with a brane, and find out how the different modes
in such theories would couple to the particles of the SM of particle physics. We close this
section by explaining how to calculate various processes including the Kaluza-Klein modes
of the graviton, and by briefly sketching ideas about black-hole production in theories with
large extra dimensions. The very basics of Kaluza-Klein theories have been explained in
the lectures by Keith Dienes [3]. Therefore I will assume that the reader is familiar with
the concept of Kaluza-Klein decomposition of a higher dimensional field. Otherwise, the
lectures should be self-contained.

2.1 Matching the higher dimensional theory to the 4D effective

theory

The first question that we would like to answer is how large the extra dimensions could
possibly be without us having them noticed until now. For this we need to understand how
the effectively four dimensional world that we observe would be arising from the higher
dimensional theory. In more formal terms, this procedure is called matching the effective
theory to the fundamental higher dimensional theory. Thus what we would like to find
out is how the observed gauge and gravitational couplings (which should be thought of as
effective low-energy couplings) would be related to the “fundamental parameters” of the
higher dimensional theory.

Let us call the fundamental (higher dimensional) Planck scale of the theory M∗, assume
that there are n extra dimensions, and that the radii of the extra dimensions are given by
r. In order to be able to perform the matching, we need to first write down the action
for the higher dimensional gravitational theory, including the dimensionful constants, since
these are the ones we are trying to match. For this it is very useful to examine the mass
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dimensions of the various quantities that will appear. The infinitesimal distance is related
to the coordinates and the metric tensor by

ds2 = gMNdxMdxN (2.1)

We will always be using the (+,−,−, . . . ,−) sign convention for the metric. Assuming
that the coordinates carry proper dimensions (that is they are NOT angular variables) the
metric tensor is dimensionless, [g] = 0. Since we can calculate the Christoffel symbols as

ΓA
MN ∼ gAB∂MgNB (2.2)

we get that the Christoffel symbols carry dimension one, [Γ] = 1. Since RMN ∼ Γ2,
the Ricci tensor will carry dimension two, [RMN ] = 2, and similarly the curvature scalar
[R] = 2. The main point is that all of this is independent of the total number of dimensions,
since these were based on local equations. In order to generalize the Einstein-Hilbert action
to more than four dimensions, we simply assume that the action will take the same form
as in four dimensions:

S4+n ∼
∫

d4+nx
√

g(4+n)R(4+n). (2.3)

In order to make the action dimensionless, we need to multiply by the appropriate power
of the fundamental Planck scale M∗. Since d4+nx carries dimension −n − 4, and R(4+n)

carries dimension 2, this has to be the power n + 2, thus we take

S4+n = −Mn+2
∗

∫

d4+nx
√

g(4+n)R(4+n). (2.4)

What we need to find out is how the usual four dimensional action

S4 = −M2
P l

∫

d4x
√

g(4)R(4). (2.5)

is contained in this higher dimensional expression. Here MP l is the observed 4D Planck
scale ∼ 1018 GeV. For this we need to make some assumption about the geometry of the
space-time. We will for now assume, that spacetime is flat, and that the n extra dimensions
are compact. So the metric is given by

ds2 = (ηµν + hµν)dxµdxν − r2dΩ2
(n), (2.6)

where xµ is a four dimensional coordinate, dΩ2
(n) corresponds to the line element of the flat

extra dimensional space in some parametrization, ηµν is the flat (Minkowski) 4D metric,
and hµν is the 4D fluctuation of the metric around its minimum. The reason why we
have only put in 4D fluctuations is that our goal is to find out how the usual 4D action
is contained in the higher dimensional one. For this the first thing to find out is how the
4D graviton is contained in the higher dimensional metric, this is precisely what is given in
(2.6). This does not mean that there wouldn’t be additional terms (and in fact there will
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be as we will see very soon). From this we can now calculate the expressions that appear
in (2.4):

√

g(4+n) = rn
√

g(4), R(4+n) = R(4), (2.7)

where these latter quantities are to be calculated from h. Therefore we get

S4+n = −Mn+2
∗

∫

d4+nx
√

g(4+n)R(4+n) = −Mn+2
∗

∫

dΩ(n)r
n

∫

d4x
√

g(4)R(4). (2.8)

The factor
∫

dΩ(n)r
n is nothing but the volume of the extra dimensional space which we

denote by V(n). For toroidal compactification it would simply be given by V(n) = (2πr)n.
Comparing (2.8) with (2.5) we find the matching relation for the gravitational couplings
that we have looked for:

M2
P l = Mn+2

∗ V(n) = Mn+2
∗ (2πr)n. (2.9)

Let us now repeat the same matching procedure for the gauge couplings. Assume that the
gauge fields live in the extra dimensions, and use a normalization where the gauge fields
are not canonically normalized:

S(4+n) = −
∫

d4+nx
1

4g2
∗
FMNF MN

√

g(4+n). (2.10)

M, N denote indices that range from 1 to 4 + n, and g∗ denotes the higher dimensional
(“fundamental”) gauge coupling. Clearly, the four dimensional part of the field strength
Fµν is included in the full higher dimensional FMN . Again performing the integral over the
extra dimension we find:

S(4) = −
∫

d4x
V(n)

4g2
∗
FµνF

µν
√

g(4). (2.11)

Thus the matching of the gauge couplings is given by

1

g2
eff

=
V(n)

g2
∗

. (2.12)

Note, that it is clear from this equation, that the coupling constant of a higher dimensional
gauge theory is not dimensionless, but rather it has dimension [g∗] = −n/2. As a conse-
quence it is not a renormalizable theory, but can be thought of as the low-energy effective
theory of some more fundamental theory at even higher energies.

Now let us try to understand the consequences of (2.9) and (2.12). Since the gauge cou-
pling is dimensionful in extra dimensions, one needs to ask what should be its natural size.
The simplest assumption is that the same physics that sets the strength of gravitational
couplings would also set the gauge coupling, and thus

g∗ ∼
1

M
n
2∗
. (2.13)
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Then we would have the following two equations:

1

g2
4

= V(n)M
n
∗ ∼ rnMn

∗

M2
P l = V(n)M

n+2
∗ ∼ rnMn+2

∗ , (2.14)

from which it follows that

r ∼ 1

MP l
g

n+2
n

4 . (2.15)

This would imply that in a “natural” higher dimensional theory r ∼ 1/MP l! In this case
there would be no hope of finding out about the existence of these tiny extra dimensions
in the foreseeable future. This is what the prevailing view has been until the 90’s about
extra dimensions. However, we should note that these arguments crucially depended on
the ASSUMPTION that every field propagates in all dimensions. The purpose of these
lectures is to understand, what kind of physical phenomena one could expect if some or all
the fields of the standard model were localized in the extra dimensions to a “brane”. This
possibility has been first raised in [4, 5] (see also [6, 7]).

Before jumping into the detailed description of theories with branes, we would like to
first understand what the restrictions on the size of extra dimensions would be, if contrary
to the previous assumption the SM fields were localized to 4 dimensions, and only gravity
(or other yet unobserved fields) were to propagate into the extra dimension. In this case,
new physics will only appear in the gravitational sector, and only when distances as short as
the size of the extra dimension are actually reached. However, it is very hard to test gravity
at very short distances. The reason is that gravity is a much weaker interaction than all
the other forces. Over large distances gravity is dominant because there is only one type
of gravitational charge, so it cannot be screened. However, as one starts going to shorter
distances, inter-molecular van der Waals forces and eventually bare electromagnetic forces
will be dominant, which will completely overwhelm the gravitational forces. This is the
reason why the Newton-law of gravitational interactions has only been tested down to about
a fraction of a millimeter using essentially Cavendish-type experiments [8]. Therefore, the
real bound on the size of an extra dimension is

r ≤ 0.1 mm (2.16)

if only gravity propagates in the extra dimension. How would a large value close to the
experimental bound affect the fundamental Planck scale M∗? Since we have the relation
M2

P l ∼ Mn+2
∗ rn, if r > 1/MP l, the fundamental Planck scale M∗ will be lowered from MP l.

How low could it possibly go down? If M∗ < 1 TeV, that would imply that quantum gravity
should have already played a role in the collider experiments that have been performed until
now. Since we have not seen a hint of that, one has to impose that M∗ ≥ 1 TeV. So the
lowest possible value (and thus the largest possible size of the extra dimensions) would be
for M∗ ∼ 1 TeV. Such models are called theories with “Large extra dimensions”, proposed
by Arkani-Hamed, Dimopoulos and Dvali [9], see also [10]. For earlier papers where the
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possibility of lowering the fundamental Planck scale has been mentioned see [11,12]. Let us
check, how large a radius one would need, if in fact M∗ was of the order of a TeV. Reversing
the expression M2

P l ∼ Mn+2
∗ rn we would now get

1

r
= M∗

(

M∗
MP l

)
2
n

= (1TeV)10−
32
n , (2.17)

where we have used M∗ ∼ 103 GeV and MP l ∼ 1019 GeV. To convert into conventional
length scales one should keep the conversion factor

1GeV−1 = 2 · 10−14cm (2.18)

in mind. Using this we finally get

r ∼ 2 · 10−1710
32
n cm. (2.19)

For n = 1 this would give the absurdly large value of r = 2 · 1015 cm, which is grater than
the astronomical unit of 1.5× 1013 cm. This is clearly not possible: there can’t be one flat
large extra dimension if one would like to lower M∗ all the way to the TeV scale. However,
already for two extra dimensions one would get a much smaller number r ∼ 2 mm. This is
just borderline excluded by the latest gravitational experiments performed in Seattle [18].
Conversely, one can set a bound on the size of two large extra dimensions from the Seattle
experiments, which gave r ≤ 0.2 mm= 1012 1/GeV. This results in M∗ ≥ 3 TeV. We will
see that for two extra dimensions there are in fact more stringent bounds than the direct
bound from gravitational measurements.

For n > 2 the size of the extra dimensions is less than 10−6 cm, which is unlikely to
be tested directly via gravitational measurements any time soon. Thus for n > 2 M∗ ∼ 1
TeV is indeed a possibility that one has to carefully investigate. If M∗ was really of order
the TeV scale, there would no longer be a large hierarchy between the fundamental Planck
scale M∗ and the scale of weak interactions Mw, thus this would resolve the hierarchy
problem. In this case gravity would appear weaker than the other forces at long distances
because it would get diluted by the large volume of the extra dimensions. However, this
would only be an apparent hierarchy between the strength of the forces, as soon as one got
below scales of order r one would start seeing the fundamental gravitational force, and the
hierarchy would disappear. However, as soon as one postulates the equality of the strength
of the weak and gravitational interactions one needs to ask why this is not the scale that
sets the size of the extra dimensions themselves. Thus by postulating a very large radius
for the extra dimensions one would merely translate the hierarchy problem of the scales of
interactions into the problem of why the size of the extra dimension is so large compared
to its natural value.

2.2 What is a brane and how to write an effective theory for it?

Above we have seen that theories where certain particles (especially the light SM particles)
are localized to four dimensions, while other particles could propagate in more dimensions
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could be very interesting. In these lectures we would like to study theories of this sort.
We will refer to the surface along which some of the particles are localized as “branes”,
which stands for a membrane that could have more spatial dimensions than the usual 2
dimensional membrane. A p-brane will mean that the brane has p spatial dimensions, so
a 2-brane is just the usual membrane, a 1-brane is just a string, while the most important
object for us in these lectures will be a 3-brane, which has 3 spatial dimensions just like
our observed world, which could be embedded into more dimensions.

What is really a brane? In field theory, it is best to think of it as a topological defect
(like a soliton), which could have fields localized to its surface. For example, as we will see
in the next lecture in detail, domain walls localize fermions to the location of the domain
wall. String theories also contain objects called D-branes (short for Dirichlet banes). These
are surfaces where open string can end on. These open strings will give rise to all kinds
of fields localized to the brane, including gauge fields. In the supergravity approximation
these D-branes will also appear as solitons of the supergravity equations of motion.

In our approach, we will use a low-energy effective field theory description. We will
(usually) not care very much where these branes come from, but simply assume that there
is some consistent high-energy theory that would give rise to these objects. Therefore, our
theory will be valid only up to some cutoff scale, above which the dynamics that actually
generates the brane has to be taken into account. For our discussion we will follow the
description and notation of Sundrum in [13].

To describe the branes, let us first set up some notation. The 3-brane will be assumed
to be described by a flat four-dimensional space-time equivalent to R4, while the extra
dimensions by Rn or if compactified by T n (an n dimensional torus). The coordinates in
the bulk (bulk stands for all of spacetime) are denoted by XM , M = 0, 1, . . . , 3 + n, the
coordinates on the brane are denoted by xµ, µ = 0, 1, 2, 3, while the coordinates along the
extra dimensions only are denoted by xm, m = 4, . . . , 3 + n. For now we will concentrate
on the bosonic degrees of freedom. What are these degrees of freedom that we need to
discuss in a low-energy effective theory? Since we need to discuss the physics of higher
dimensional gravity, this should include the metric in the 4 + n dimensions GMN(X), and
also the position of the brane in the extra dimensions Y M(x). Note, that the metric is a
function of the bulk coordinate XM , while the position of the brane is a function of the
coordinate along the brane xµ. In addition, we would like to take into account the fields
that are localized to live along the brane. These could be some scalar fields Φ(x), gauge
fields Aµ(x) or fermions ΨL(x). These fields are also functions of the coordinate along the
brane xµ.

The effective theory that we are trying to build up should describe small fluctuations
of the the fields around the vacuum state. So we have to specify what we actually mean
by the vacuum. We will assume that we have a flat brane embedded into flat space. The
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Figure 1: Parametrization of the position of the brane in the bulk.

corresponding choice of vacua is then given by

GMN(X) = ηMN

Y M(x) = δM
µ xµ. (2.20)

Here and everywhere in the lectures we will use the metric convention ηMN = diag(+,−,
−, . . . ,−). The bulk action will then just be the usual higher dimensional Einstein-Hilbert
action as discussed in the previous section, plus perhaps a term from a bulk cosmological
constant Λ:

Sbulk = −
∫

d4+nX
√

|G|(Mn+2
∗ R(4+n) + Λ). (2.21)

In order to be able to write down an effective action for the brane localized fields one has
to first find the induced metric on the brane. This is the metric that should be used to
contract Lorentz indices of the brane field. To get the induced metric, we need to find what
the distance between two point on the branes is, x and x + dx:

ds2 = GMNdY (x)MdY (x)N = GMN
∂Y M

∂xµ
dxµ ∂Y N

∂xν
dxν . (2.22)

From this the induced metric can be easily read off:

gµν = GMN(Y (x))∂µY M∂νY
N . (2.23)

This is the general expression for arbitrary background metric and for an arbitrary brane.
For the flat vacuum that we have chosen one can easily see from (2.23) that the induced
metric will fluctuate around the flat 4D Minkowski metric ηµν .

After this we can discuss the basic principle for writing down the brane induced part of
the action: it has to be invariant both under the general coordinate transformation of the
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bulk coordinates X and under the general coordinate transformations of x. It is clear that
the invariance under the general coordinate transformation of the bulk coordinates just
corresponds to the usual general covariance of a higher dimensional gravitational theory.
The additional requirement that the action also be invariant under the coordinate trans-
formations of the brane coordinate x is an expression of the fact that x is just one possible
parametrization of the surface (brane), which itself can not have a physical significance,
and any different choice of parametrization has to give the same physics. This will ensure
the usual 4D Lorentz invariance of the brane induced action. Thus there are two separate
coordinate transformations that the action has to be invariant under, that corresponding
to X and to x. Practically this means that one has to contract bulk indices with bulk
indices, and brane indices with brane indices. For example ∂µY M would be a vector under
both the bulk and the brane coordinate invariance, and both indices have to be contracted
to form a scalar that can appear in the action, while the induced metric gµν would be a
tensor under the brane reparametrization, but a scalar under bulk coordinate invariance,
etc. Thus the general form of the brane action would be of the form

Sbrane =

∫

d4x
√

|g|
[

−f 4 − R(4) +
gµν

2
DµΦDνΦ − V (Φ) − gµνgρσ

4
FµρFνσ + . . .

]

. (2.24)

Here the possible constant piece f corresponds to the energy density of the brane, called the
brane-tension. This brane tension has to be small (in the units of the fundamental Planck
scale) in order to be able to neglect its back-reaction on the gravitational background. In
Chapter 4 we will investigate warped backgrounds where this back-reaction will be taken
into account. As discussed above, in addition to the usual bulk coordinate invariance
which everyone is familiar with, there is also a 4D reparametrization invariance, which is
corresponding to the fact that a different parametrization of the surface describing the brane
would yield the same physics, x → x′(x) is an invariance of the Lagrangian. Thus one needs
an additional gauge fixing condition, which will eliminate the non-physical components from
Y M . There are four coordinates, so one needs four conditions, which can be picked as

Y µ(x) = xµ, (2.25)

which is a complete gauge fixing. Thus out of the 4 + n components of Y M only the
components along the extra dimension Y m(x), m = 4, 5, . . . , 3 + n correspond to physical
degrees of freedom. These n physical fields correspond to the position of the brane within
the bulk.

Let us now discuss how to normalize the fields in order to end up with canonically
normalized 4D actions. The bulk metric GMN is dimensionless, and we expand it in fluc-
tuations around the background which we assume to be flat space:

GMN = ηMN +
1

2M
n
2
+1

∗
hMN . (2.26)

This way the graviton fluctuation hMN has dimension n
2

+ 1 which is the right one for a
bosonic field in 4 + n dimensions. The prefactor was chosen such that the kinetic term
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reproduces the canonically normalized kinetic term when expanding the Einstein-Hilbert
action in h.

To get a canonically normalized field for the coordinates describing the position of
the brane Y m(x) we expand the leading term in the brane-action which is just the brane
tension:

∫

d4x
√

|g|
[

−f 4 + . . .
]

, (2.27)

where for the induced metric the leading dependence on Y is

gµν = GMN∂µY
m∂νYm = ηµν + ∂µY m∂νYm + . . . , (2.28)

and expanding the determinant of the metric in powers of Y we obtain

det g = −∂µY
m∂µYm, (2.29)

from which the leading term in the action is

S =

∫

d4xf 4∂µY m∂µYm. (2.30)

Thus the canonically normalized field will be

Zm ≡ f 2Y m. (2.31)

Note, that it is the brane tension which sets the size of the kinetic term for the Y m fields.
In particular, if the tension is negative, then one would have a field with negative kinetic
energy, which is thus a physical ghost. This shows that a brane with negative tension is
likely unstable, the brane wants to crumble, unless somehow these modes with negative
kinetic energy are projected out, by not allowing the brane to move. This possibility will
be encountered when we consider branes at orbifold fixed points.

2.3 Coupling of SM fields to the various graviton components

In the previous section we have discussed how one should construct an action for fields
localized on branes coupled to gravity. Next we would like to explicitly construct the
generic interaction Lagrangians between the matter on the brane (which we will simply
call the SM matter) and the various graviton modes. For our discussion we will follow the
work of Giudice, Rattazzi and Wells [14]. We have seen above that the SM fields feel only
the induced metric

gµν(x) = GMN(X)∂µY
M∂νY

N . (2.32)

It is quite clear from the previous subsection how to deal with the Y m fields, so we will
concentrate on the modes of the bulk graviton, and for now set the fluctuations of the brane
to zero, that is set Y M = δM

µ xµ, and thus Y m = 0. In this case

gµν(x) = Gµν(xµ, xm = 0). (2.33)
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The action is given by

S =

∫

d4xLSM
√

g(gµν , Φ, Ψ, A, . . .) (2.34)

The definition of the energy-momentum tensor is given by

√
gT µν =

δSSM

δgµν
. (2.35)

From this it is clear that at linear order the interaction between the SM matter and the
graviton field is given by (expanding in the fluctuation around flat space again gµν =

ηµν + hµν(xµ)

M
n
2 +1
∗

):

Sint =

∫

d4xT µν hµν(xµ)

M
n
2
+1

∗
. (2.36)

Thus generically the graviton couples linearly to the energy-momentum tensor of the matter
(this is in fact the definition of the stress-energy tensor, but it is a quantity that we know
quite well and is easy to find). Note, that in the above expression what appears is the
graviton field at the position of the brane, which is not a mass eigenstate field from the 4D
point of view, but rather a superposition of all KK modes. Using the lecture by K. Dienes
we write the graviton field in the KK expansion as

hMN (x, y) =
∞
∑

k1=−∞
. . .

∞
∑

kn=−∞

h
~k
MN(x)√

Vn

ei
~k·~y
R , (2.37)

where we have denoted the coordinates along the extra dimension by ym (until now they
were simply denoted by xm), and assumed a toroidal compactification with volume Vn =
(2πR)n. Plugging the KK expansion back into (2.36) we find the coupling of the SM fields
to the individual KK modes to be

∑

~k

∫

d4xT µν 1

M
n
2
+1

∗

h
~k
µν√
Vn

=
∑

~k

∫

d4x
1

MP l
T µνh

~k
µν , (2.38)

where we have again used the relation between the fundamental Planck scale and the
observed one. Thus we can see that an individual KK mode couples with strength 1/MP l

to the SM fields. However, since there are many of them, the total coupling in terms of the
field at the brane sums up to a coupling proportional to 1/M∗, as we have seen in (2.36).

Next let us discuss what the different modes contained in the bulk graviton field are.
Clearly, the graviton is a D by D symmetric tensor, where D = n+4 is the total number of
dimensions. Therefore this tensor has in principle D(D + 1)/2 components. However, we
know that general relativity has a large gauge symmetry – D dimensional general coordinate
invariance. Therefore we can impose D separate conditions to fix the gauge, for example
using the harmonic gauge

∂MhM
N =

1

2
∂NhM

M . (2.39)
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However, just like in the ordinary Lorentz gauge for gauge theories, this is not yet a
complete gauge fixing. Gauge transformations which satisfy the equation �ǫM = 0 are
still allowed (where the gauge transformation is hMN → hMN + ∂M ǫN + ∂N ǫM ), and this
means that another D conditions can be imposed. This means that generically a graviton
has D(D + 1)/2 − 2D = D(D − 3)/2 independent degrees of freedom. For D = 4 this
gives the usual 2 helicity states for a massless spin two particle, however in D = 5 we get
5 components, in D = 6 we get 9 components, etc. This means that from the 4D point of
view a higher dimensional graviton will contain particles other than just the ordinary 4D
graviton. This is quite clear, since the higher dimensional graviton has more components,
and thus will have to contain more fields. The question is what these fields are and how
many degrees of freedom they contain. We will go through these modes carefully in the
following.

• The 4D graviton and its KK modes

These live in the upper left 4 by 4 block of the bulk graviton which is given by a 4 + n
by 4 + n matrix:

























G
~k
µν

























(2.40)

These modes are labeled by the vector ~k, which is an n-component vector, specifying the
KK numbers along the various extra dimensions. These modes are generically massive,
except for the zero mode. In the limit of no sources these modes satisfy the 4D equation

( + k̂2)G
~k
µν = 0 (2.41)

which as usual would imply 10 components, however the gauge conditions

∂µG
~k
µν = 0, Gµ~k

µ = 0 (2.42)

eliminate 5 components, and we are left generically with 5 degrees of freedom, which is
just the right number for a massive graviton in four dimensions. The reason is that a
massive graviton contains a normal 4D massless graviton with two components, but also
“eats” a massless gauge field and a massless scalar, as in the usual Higgs mechanism. Thus
5 = 2 + 2 + 1.

• 4D vectors and their KK modes
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The off-diagonal blocks of the bulk graviton form vectors under the four dimensional
Lorentz group. This is clear, since they come from the Gµj components of the graviton:



























V
~k
µj

V
~k
µj



























(2.43)

Naively one could think there there would be n such four dimensional vectors, however we
have seen before that the 4D graviton has to eat one 4D vector to form a full massive KK
tower, thus there are only n − 1 massive KK towers describing spin 1 particles in 4D. The
missing of the last tower is expressed by the constraint

k̂jV
~k
µj = 0. (2.44)

The usual Lorentz gauge condition can also be imposed

∂µV
~k
µj = 0. (2.45)

Each of these massive vectors absorbed a scalar via the Higgs mechanism.

• 4D scalars and their KK modes

The remaining lower right n by n block of the graviton matrix clearly corresponds to
4D scalar fields:

























S
~k
ij

























(2.46)

Originally there are n(n + 1)/2 scalars, however as we discussed before the graviton eats
one scalar, and the remaining n − 1 vectors eat one scalar each. In addition, there is a
special scalar mode, whose zero mode sets the overall size of the internal manifold, and
therefore this special scalar is usually called the radion. Thus there are n(n+1)/2−n−1 =
(n2 −n−2)/2 scalars left. The equations that express the fact that n fields were eaten are

k̂jS
~k
jk = 0, (2.47)
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while the fact that we usually separate out the radion as a special field not included among
the scalars is expressed as the additional condition

S
~kj
j = 0. (2.48)

The radion is then given by h
~kj
j .

Let us now count the total number of degrees of freedom taken into account: 5 (gravi-
ton) +3(n − 1) (vectors) +(n2 − n − 2)/2 (scalars) +1 (radion) = (4 + n)(1 + n)/2 =
D(D − 3)/2. Thus we can see that all the modes of the graviton have been accounted for.

The explicit expressions for the canonically normalized 4D fields are given in unitary

gauge by (using the notation κ =
√

3(n−1)
n+2

):

radion H
~k =

1

κ
h

~kj
j

scalars S
~k
ij = h

~k
ij −

κ

n − 1
(ηij +

k̂ik̂j

k̂2
)H

~k

vectors V
~k
µj =

i√
2
h

~k
µj

gravitons G
~k
µν = h

~k
µν +

κ

3
(ηµν +

∂µ∂ν

k̂2
)H

~k. (2.49)

The equation of motion in the presence of sources is given for the above fields by

( + k̂2)











G
~k
µν

V
~k
µj

S
~k
ij

H
~k











=









1
MPl

[−Tµν + (ηµν + ∂µ∂ν

k̂2
)T µ

µ /3]

0
0

κ
3MPl

T µ
µ









. (2.50)

We can see why the radion is special: besides setting the overall size of the compact
dimension it also is the only field besides the 4D graviton that couples to brane sources. It
couples to the trace of the energy-momentum tensor. All the other fields are not important
when one tries to calculate the coupling of the matter fields on the brane to the modes of
the bulk graviton.

For example, if we take QED on the brane, the Lagrangian is given by

L =
√

g(iΨ̄γaDaΨ − 1

4
FµνF

µν), (2.51)

where the covariant derivative for fermions is given by

Da = eM
a (∂µ − ieQAµ +

1

2
σbceν

b∂µeνc), (2.52)
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where eM
a is the vielbein, and σbc the spin-connection (we will not go into detail in these

lectures on how to couple fermions to gravity, for those interested in more details we refer
to [13]). From this the energy-momentum tensor is given by

Tµν =
i

4
Ψ̄(γµ∂ν+γν∂µ)Ψ− i

4
(∂µΨ̄γν+∂νΨ̄γµ)Ψ+

1

2
eQΨ̄(γµAν+γνAµ)Ψ+FµλF

λ
ν +

1

4
ηµνF

λρFλρ.

(2.53)
Typical Feynman diagrams involving the graviton which we would get from this T when
coupled to gravity on the brane are given by:

f

f

G

f

f G

G

G

A

A

A

A

A

The last one appears only in non-Abelian gauge theories. There are similar vertices
involving the radion field.

2.4 Phenomenology with large extra dimensions

We have discussed before that the mass splitting of the KK modes in large extra dimensional
theories is extremely small,

∆m ∼ 1

r
= M∗

(

M∗
MP l

)
2
n

=

(

M∗
TeV

)
n+2

2

10
12n−31

n eV. (2.54)

This implies that for a typical particle physics process with high energies there is an enor-
mous number of KK modes available. This suggests that since the splitting of the KK
modes is very small, it is useful to turn the sum over KK modes into an integral. If N
denotes the number of KK modes whose momentum along the extra dimension is less than
k, then clearly

dN = Sn−1k
n−1dk, (2.55)
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where Sn = (2π)
n
2 /Γ(n/2) is the surface of an n dimensional sphere with unit radius. The

actual mass of a given KK mode is given by m = |k|
R

, therefore we get that

dN = Sn−1m
n−1Rn−1dmR = Sn−1

M2
P l

Mn+2
∗

mn−1dm. (2.56)

In order to calculate an inclusive cross-section for the production of graviton modes, what
one needs to do is to first calculate the cross-section for the production of an individual
mode with mass m, dσm/dt, and then using the above formula get

d2σ

dtdm
= Sn−1

M2
P l

Mn+2
∗

mn−1dσm

dt
. (2.57)

Since the cross section for an individual KK mode is proportional to 1/M2
P l, the inclusive

cross section will have a behavior of the form

d2σ

dtdm
∼ Sn−1

mn−1

Mn+2
∗

. (2.58)

With this we have basically covered all elements of calculating processes with large
extra dimensions. In the following we will briefly list some of the most interesting fea-
tures/constraints on these models. Clearly, not everything will be covered here, for those in-
terested in further details we refer to the original papers. A nice general overview of the phe-
nomenology of large extra dimensions is given in [15]. For collider signals see [14,17,19,20].
For the running of couplings and unification in extra dimensions see [21]. For consequences
in electroweak precision physics see [22]. For neutrino physics with large extra dimensions
see [23]. For topics related to inflation with flat extra dimensions see [24]. Issues related
to radius stabilization for large extra dimensions is discussed in [25]. Connections to string
theory model building can be found in for example in [26–28]. More detailed description of
supernova cooling into extra dimensions is in [29], while of black hole production in [30,32].

• Graviton production in colliders [14–16]

Some of the most interesting processes in theories with large extra dimensions involve
the production of a single graviton mode at the LHC or at a linear collider. Some of the
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typical Feynman diagrams for such a process are given by [14–17]:

f

f

q

q

q

g

g

g

g

q

g

G

G

G

G

γ

+

Note, that the lifetime of an individual graviton mode is of the order Γ ∼ m3

M2
Pl

, which

means that each graviton produces is extremely long lived, and once produced will not
decay again within the detector. Therefore, it is like a stable particle, which is very weakly
interacting since the interaction of individual KK modes is suppressed by the 4D Planck
mass, and thus takes away undetected energy and momentum. Thus in the above diagrams
wherever we see a graviton, what one really observes is missing energy. This would lead
to the spectacular events when a single photon recoils against missing energy in the linear
collider, or a single jet against missing energy at the LHC. These are processes with small
SM backgrounds (only coming from Z production with initial photon radiation, followed
by the Z decaying to neutrinos), and also usually quite different from the canonical signals
of supersymmetry, where one would usually have two jets, or two photons produced in the
presence of missing energy.

• Virtual graviton exchange [14, 17, 19]

Besides the direct production of gravitons, another interesting consequence of large
extra dimensions is that the exchange of virtual gravitons can lead to enhancement of
certain cross-sections above the SM values. For example, in a linear collider the e+e− → f f̄
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process would also get contributions from the diagram

f

f

e

e

The scattering amplitude for this process can be calculated using our previous rules:

A ∼ 1

M2
P l

∑

k

[

Tµν
P µναβ

s − m2
Tαβ +

κ2

3

T µ
µ T ν

ν

s − m2

]

≡ S(s)τ, (2.59)

where S(s) = 1
M2

Pl

∑

k
1

s−m2 and τ = T µνTµν − 1
n+2

T µ
µ T ν

ν . Note, that for n ≥ 2 the above

sum is UV divergent, which implies that the result will be UV sensitive. For more details
see [14, 17, 19].

• Supernova cooling [15, 29]

Some of the strongest constraints on the large extra dimension scenarios come from
astrophysics, in particular from the fact that just as axions could lead to a too fast cooling
of supernovae, since gravitons are also weakly coupled particles they could also transport a
significant fraction of the energy within a supernovae. These processes have been discussed
in detail in Refs. [29], here we will just briefly mention the essence of the calculation.
The production of axions in supernovae is proportional to the axion decay constant 1/f 2

a .
The production of gravitons as we have seen is roughly proportional to 1/M2

P l(T/δm)n ∼
T n/Mn+2

∗ , where T is a typical temperature within the supernova. This means that the
bounds obtained for the axion cooling calculation can be applied using the substitution
1/f 2

a → T n/Mn+2
∗ . For a supernova T ∼ 30 MeV, and the usual axion bound fa ≥ 109

GeV implies a bound of order M∗ ≥ 10− 100 TeV for n = 2. For n > 2 one does not get a
significant bound on M∗ from this process.

• Cooling into the bulk [15]

Another strong constraint on the cosmological history of models with large extra di-
mensions comes from the fact that at large temperatures emissions of gravitons into the
bulk would be a very likely process. This would empty our brane from energy density, and
move all the energy into the bulk in the form of gravitons. To find out at which temperature
this would cease to be a problem, one has to compare the cooling rates of the brane energy
density via the ordinary Hubble expansions and the cooling via the graviton emission. The
two cooling rates are given by

dρ

dt expansion
∼ −3Hρ ∼ −3

T 2

M2
P l

ρ, (2.60)
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dρ

dt evaporation
∼ T n

Mn+2
∗

. (2.61)

These two are equal at the so called “normalcy temperature” T∗, below which the universe
would expand as a normal 4D universe. By equating the above two rates we get

T∗ ∼
(

Mn+2
∗

MP l

)
1

n+1

= 10
6n−9
n+1 MeV. (2.62)

This suggests, that after inflation the reheat temperature of the universe should be such,
that one ends up below the normalcy temperature, otherwise one would overpopulate the
bulk with gravitons, and overclose the universe. This is in fact a very stringent constraint on
these models, since for example for n = 2, T∗ ∼ 10 MeV, so there is just barely enough space
to reheat above the temperature of nucleosynthesis. However, this makes baryogenesis a
tremendously difficult problem in these models.

• Black hole production at colliders [30]

One of the most amazing predictions of theories with large extra dimensions would be
that since the scale of quantum gravity is lowered to the TeV scale, one could actually form
black holes from particle collisions at the LHC. Black holes are formed when the mass of
an object is within the horizon size corresponding to the mass of the object. For example,
the horizon size corresponding to the mass of the Earth is 8 mm’s, so since the radius of
the Earth is 6000 km’s most of the mass is outside the horizon of the Earth and it is not a
black hole.

What would be the characteristic size of the horizon in such models? This usually can
be read off from the Schwarzschild solution which in 4D is given by

ds2 = (1 − GM

r
)dt2 − dr2

(1 − GM
r

)
+ r2d2Ω, (2.63)

and the horizon is at the distance where the factor multiplying dt2 vanishes: r4D
H = GM .

In 4 + n dimensions in the Schwarzschild solution the prefactor is replaced by 1 − GM
r

→
1 − M

M2+n
∗ r1+n

, from which the horizon size is given by

rH ∼
(

M

M∗

) 1
1+n 1

M∗
. (2.64)

The exact solution gives a similar expression except for a numerical prefactor in the above
equation. Thus we know roughly what the horizon size would be, and a black hole will
form if the impact parameter in the collision is smaller, than this horizon size. Then the
particles that collided will form a black hole with mass MBH =

√
s, and the cross section
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as we have seen is roughly the geometric cross section corresponding to the horizon size of
a given collision energy

σ ∼ πr2
H ∼ 1

M2
P l

(
MBH

M∗
)

2
n+1 (2.65)

The cross section would thus be of order 1/TeV2 ∼ 400 pb, and the LHC would produce
about 107 black holes per year! These black holes would not be stable, but decay via
Hawking radiation. This has the features that every particle would be produced with an
equal probability in a spherical distribution. In the SM there are 60 particles, out of which
there are 6 leptons, and one photon. Thus about 10 percent of the time the black hole
would decay into leptons, 2 percent of time into photons, and 5 percent into neutrinos,
which would be observed as missing energy. These would be very specific signatures of
black hole production at the LHC. For black hole production in cosmic rays see [31].

3 Various Models with Flat Extra Dimensions

In the previous section we have discussed theories with large extra dimensions: the moti-
vation, basic idea, some calculational tools and some of the most interesting consequences.
In this section we will consider some topics that are related to flat extra dimensions (that is
theories where the gravitational background along the extra dimension is flat, as compared
to the warped extra dimensional scenario discussed in the following two lectures).

These models do not necessarily assume that the size of the extra dimension is as large
as in the large extra dimension scenario discussed previously. The first model, theories
with split fermions will still be closely related to large extra dimensions, while the other
two examples: mediation of supersymmetry breaking via extra dimensions and symmetry
breaking via orbifold compactifications will be models of their own, usually in a supersym-
metric context, and thus in those models we will not assume the presence of large extra
dimensions at all.

3.1 Split fermions, proton decay and flavor hierarchy

If there are indeed large extra dimensions, and the scale of gravity is of order M∗ ∼
TeV, then one has to confront the following issue. It is usually a well-accepted fact that
quantum gravity generically breaks all global symmetries (but not the gauge symmetries),
and therefore if one is assuming that a theory has a global symmetry, one can only do this
up to symmetry breaking operators suppressed by the scale of quantum gravity. However,
this would generically cause problems with proton decay. In the SM baryon number is
an accidental global symmetry of the Lagrangian (this means that every renormalizable
operator consistent with gauge invariance also conserves baryon number, without having to
explicitly require that). However, one can easily write down non-renormalizable operators
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that do violate baryon number, and would give rise to proton decay. However, in the SM
if there is no new physics up to some high scale (the GUT or the Planck scales) then these
operators are expected to be suppressed by this large scale, and proton decay could be
sufficiently suppressed.

In principle, any new physics beyond the SM could give rise to new baryon number
violating operators, suppressed by the scale of new physics. For example, in the super-
symmetric standard model the exchange of superpartners could in principle lead to some
baryon number violating operators, which would be disastrous, since they would only be
suppressed by the scale of the mass of the superpartners. Therefore, in the MSSM one
has to make sure that all the interactions with the superpartners also conserve baryon
number, which can be achieved by imposing the so-called R-parity. Then again the remain-
ing baryon number violating operators will be suppressed by the next (very high) scale of
physics. However, in the large extra dimensional case the situation is slightly worse. The
reason is that since we are assuming that the scale of quantum gravity itself is of order
M∗ we can not really rely on a global symmetry to forbid the unwanted baryon number
violating operators. For example the operator

1

M2
∗
QQQL (3.1)

would cause very rapid proton decay.

A very nice way out of this problem that relies specifically on the existence of the
extra dimensions was proposed by Arkani-Hamed and Schmaltz [33]. Their idea is to make
use of the extra dimensions in a way that can explain why the dangerous operators are
very suppressed without having to worry about quantum gravity spoiling the suppression.
This will be done by localizing the SM fermions at slightly different points along the extra
dimension. This localization of fermions at different points is sometimes called the “split
fermion” scenario. The reason why this could be interesting for the suppression of proton
decay is that if the fermions are split, and their wave functions have a relatively narrow
width compared to the distance of splitting, then operators in the effective 4D theory that
involve fermions localized at different points along the extra dimensions could have a very
large suppression due to the small overlap of the fermion wave functions. This way one
can generate large suppression factors without the use of any symmetry, and this could
be used both to highly suppress baryon number violating operators, and also to generate
the observed fermion mass hierarchy of the SM fermions. In this section we will follow the
discussion of [33] of split fermions.

Until now we have not discussed the mechanism of localization of various fields. If we
want to pursue the program of localizing fermions at slightly different points, we will have
to go into the detail of the localization mechanism of fermions in extra dimensions. The
discussion below will thus also give an example of how one should be thinking of a “brane”
from field theory.

We will discuss the simplest case, namely a single extra dimension. For this, we have
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to first understand how fermions in 5D are different from fermions in 4D. Fermions are
forming representations of the 5D Lorentz group, which is different from the 4D Lorentz
group, since it is larger. In particular, the 5D Clifford algebra contains the γ5 Dirac matrix
as well. While in 4D the smallest representation of the Lorentz group is a two-component
Weyl fermion, and one gets four component Dirac fermions only if one requires parity
invariance, in 5D due to the fact the Clifford algebra contains γ5 the smallest irreducible
representation is the four component Dirac fermion. Since a Dirac fermion contains two two-
component fermions with opposite chirality, whenever one talks about higher dimensional
fermions one has to start out with an intrinsically non-chiral set of 4D fermions. Since
the SM is a chiral gauge theory, non-chirality of the higher dimensional fermions has to
be overcome somehow. We will see that the localization mechanism and (in the next two
subsection) orbifold projections can achieve this. First we will concentrate on describing
a viable localization mechanism that produces chiral fermions localized at different points
along the extra dimension.

We will use the following representation for the γ matrices:

γi =

(

0 σi

σ̄i 0

)

, i = 0, . . . , 3 γ5 = −i

(

1
−1

)

. (3.2)

The two type of 5D Lorentz invariants that can be formed from two four-component 5D
spinors Ψ1 and Ψ2 are the usual Ψ̄1Ψ2 which corresponds to the usual 4D Dirac mass term,
and ΨT

1 C5Ψ2, which corresponds to the Majorana mass term, and where C5 is the 5D charge
conjugation matrix C5 = γ0γ2γ5.

To describe the localization mechanism for fermions, we consider a 5D spinor in the
background of a scalar field Φ which forms a domain wall. This domain wall is a physical
example of brane that has a finite width (a “fat brane”). The background configuration of
this scalar is denoted by Φ(y). The action for a 5D spinor in this background is given by

S =

∫

d4xdyΨ̄ [iγµ∂
µ
4 + iγ5∂y + Φ(y)]Ψ. (3.3)

Note, that we have added a Yukawa type coupling between the scalar field and the fermion,
which will be essential for the localization of the fermions on the domain wall. From this
the 5D Dirac equation is given by

[

iγµ∂µ
4 + iγ5∂y + Φ(y)

]

Ψ = 0 (3.4)

We will look for solutions to this which are left- or right-handed 4D modes:

iγ5ΨL = ΨL, iγ5ΨR = −ΨR. (3.5)

To find the 4D eigenmodes of this system, we look for the eigensystem of the y-dependent
piece of the above equation. To simplify the equation (as usual when solving a Dirac-type
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equation) we also multiply by the conjugate of the differential operator to get the equation:

[

−iγ5∂y + Φ(y)
] [

iγ5∂y + Φ(y)
]

Ψ
(n)
L,R = µ2

nΨL,R, (3.6)

which gives
(

−∂2
y + Φ(y)2 ± Φ̇(y)

)

ΨL,R = µ2
nΨL,R. (3.7)

If Φ(y) had a linear profile, this would exactly give a harmonic oscillator equation. However,
even for the generic background one can define creation and annihilation operators as for
the usual harmonic oscillator using the definition

a = ∂y + Φ(y), a† = −∂y + Φ(y). (3.8)

With these operators one can turn the above Schrödinger-like problem into a SUSY quan-
tum mechanics problem, which means that one can define the operators Q and Q† such,
that

{

Q, Q†} = H , where H is the Hamiltonian of the system. For the case at hand
Q = aγ0PL, Q† = a†γ0PR will give the right anti-commutation relation (here PL,R are the
left and right-handed projectors. The SUSY quantum mechanics-like Schrödinger problems
have very special properties. For example, the eigenvalues of the L and R modes always
come in pairs, except possibly for the zero modes. The pairing of eigenmodes just corre-
sponds to the expected vectorlike behavior of the bulk fermions: for every L mode there is
an R-mode, since these are massive modes that is exactly what one would expect. The fact,
that the zero modes need not be paired is the most important part of the statement, since
these zero modes are the most interesting for us: they are the ones that could give chiral 4D
fermions. Therefore let us examine the equation for the zero mode. Since

{

Q, Q†} = H ,
the solution to HΨ = 0 are the solutions to QΨ = 0 or Q†Ψ = 0, that is

[±∂y + Φ(y)]ΨL,R(y) = 0. (3.9)

From this we find the left and right-handed zero modes to be

ΨL ∼ e−
∫ y
0 Φ(y′)dy′

,

ΨR ∼ e+
∫ y
0 Φ(y′)dy′

. (3.10)

Since we have an exponential with two different signs for the exponent, clearly both of
these solutions can not be normalizable at the same time. Therefore we get chiral zero
modes localized to the domain wall. For example, if the profile of the domain wall is linear,
Φ(y) ∼ 2µ2y, then the solution for the left-handed zero mode is:

ΨL(y) =
µ

1
2

(π/2)
1
4

e−µ2y2

(3.11)

This would be a zero mode localized at y = 0, which is exactly the point at which the
domain wall profile switches sign, that is where Φ(y) = 0. Thus we have described a
dynamical mechanism to localize a chiral fermion to a domain wall. These are sometimes
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called domain-wall fermions, and are extensively used for example in trying to put chiral
fermions on a lattice [34].

Let us now consider the case when we have many fermions in the bulk, Ψi, and their
action is given by

S =

∫

d4xdyΨ̄i [iγµ∂
µ
4 + iγ5∂y + λΦ(y) − m]ij Ψj. (3.12)

There will now be chiral fermion zero modes centered at the zeroes of

(λΦ(y) − m))ij. (3.13)

If we again imagine that the domain wall is linear in the region where all these fermions
will be localized, then the center of the fermion wave functions will be at

yi =
mi

2µ2
, (3.14)

where the mi’s are the eigenvalues of the mij matrix. Thus the different fermions will be
localized at different positions!

Let us now try to write down what the Yukawa couplings between such fermion zero
modes would be in the presence of a bulk Higgs field that connects these fermions. The 5D
action would be given by

S =

∫

d5xL̄[iγM∂M +Φ(y)]L+

∫

d5xĒc[iγM∂M +Φ(y)−m]Ec+

∫

d5xκHLT C5E
c, (3.15)

where the last term is the bulk Yukawa coupling written such that it is both gauge invariant
and 5D Lorentz invariant. From this the effective 4D Yukawa coupling for the zero modes
will be of the form

∫

d4xκHlec

∫

dyΨL(y)Ψec(y − r), (3.16)

where l, ec are the zero modes of the bulk fields, and ΨL(y), Ψec(y−r) are the wave functions
of these zero modes. These wave functions are assumed to be Gaussians centered around
different points (y = 0 and y = r) in the linear domain wall approximation, and so this
integral will just be a convolution of two Gaussians, which is also a Gaussian:

∫

dyΦL(y)Φec(y) =

√
2µ√
π

∫

dye−µ2y2

e−µ2(y−r)2 = e−
µ2r2

2 . (3.17)

Thus the effective 4D Yukawa coupling between the zero modes is

κe−
µ2r2

2 , (3.18)

which could be exponentially small even if the bulk Yukawa coupling κ is of order one.
The exponential suppression factor depends on the relative position of the localized zero
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modes. Thus split fermions could naturally generate the fermion mass hierarchy observed
in the SM. Basically, this method translates the issue of fermion masses into the geography
of fermion localization along the extra dimension.

To close this subsection, we get back to our original motivation of proton stability.
Imagine, that the leptons and the quarks are localized on opposite ends of a fat brane. A
dangerous proton decay operator generated by quantum gravity at the TeV scale would
have the form

∫

d5x
1

M3
∗
(QT C5L)†(U cT C5D

c). (3.19)

Again calculating the wave function overlap of the zero modes as before we get that the
effective 4D coupling is suppressed by the factor

∫

dy(e−µ2y2

)3e−µ2(y−r)2 ∼ e−
3
4
µ2r2

. (3.20)

Here r is the separation between quarks and leptons, and we can see that arbitrarily large
suppression of proton decay is possible in such models without invoking symmetries.

What would a model with large extra dimensions then look like in this scenario? One
would have the large extra dimensions of size TeV−110

32
n , where the gravitational degrees

of freedom propagate. Within that large extra dimension there is a “fat brane”, which
is basically the domain wall that we have discussed above. The fat brane has the gauge
fields and the Higgs scalar living along its world volume. The width of this fat brane
could be of the order TeV−1, such that the KK modes of the gauge fields arising from the
“fatness” of the brane are sufficiently heavy. Within this fat brane fermions are localized
at different positions of this brane, which will eliminate the problem with proton decay and
the geography of the localized zero modes will generate the fermion mass hierarchy. The
width of the localized fermions is much smaller than the width of the fat brane, of order
0.1 − 0.01 TeV−1. For more on split fermions see [35].

3.2 Mediation of supersymmetry breaking via extra dimensions
(gaugino mediation)

Until now we have considered non-supersymmetric theories, and were trying to solve the hi-
erarchy problem using large extra dimensions. In the following two examples we will assume
that the hierarchy problem is solved by supersymmetry, and ask the question whether extra
dimensions and branes could still play an important role in particle phenomenology. First
we will discuss the issue of mediation of supersymmetry breaking via an extra dimension,
and then discuss how to break symmetries via the geometry of the extra dimension.

Assuming that the hierarchy problem is solved by supersymmetry, the most important
issue would then be how supersymmetry is broken. In the MSSM (the minimal supersym-
metric standard model – see the lectures by Carlos Wagner [36]) the soft supersymmetry
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breaking parameters are usually inputted by hand, parameterizing our ignorance of what
exactly the supersymmetry breaking sector is. However, most of the arbitrary parameter
space for the supersymmetry breaking parameters is excluded by experiments. For example,
if the susy breaking masses for the scalar partners of the fermions form an arbitrary mass
matrix, then there would be large flavor changing neutral currents generated at the one
loop level, contributing for example to K − K̄ mixing. In the SM the K − K̄ is suppressed
by the well-known GIM mechanism, namely the one loop diagram

d
_

s
_

s d

W W

qq

q

is proportional to leading order to the off-diagonal element of (V †V )CKM , which vanishes
due to the unitarity of the CKM matrix. However, in the MSSM due to the presence of the
superpartners of both the quarks and the gluino there is an additional vertex of the form

d
_

s
_

g∼ g∼

s d
qq

q
x

x

which is proportional to V †
CKMM2

squarksVCKM , and is therefore not suppressed, unless the
mass matrix of the squarks themselves is close to the unit matrix, in which case the ordinary
GIM mechanism would operate here as well. The question of why should the squarks (at
least for the first two generations) be almost degenerate is called the susy flavor problem
(see much more on this in the lectures by Ann Nelson [37]). Here we will show that
extra dimensions can be used to transmit supersymmetry breaking to the SM in a way
that this susy flavor problem could be resolved. There are two prominent proposals for
this: anomaly mediation [38] (proposed by Randall and Sundrum, simultaneously to a
similar proposal by Guidice, Luty, Murayama and Rattazzi), and gaugino mediation [39]
(proposed simultaneously by D.E.Kaplan, Kribs and Schmaltz and by Chacko, Luty, Nelson
and Ponton). Anomaly mediation involves supergravity in the bulk of extra dimensions,
and therefore is technically more involved. Here we will only consider proposal for gaugino
mediation of supersymmetry breaking following the paper by Kaplan, Kribs and Schmaltz
in [39], and for anomaly mediation we refer the reader to the original papers [38] and [40].

In both anomaly mediated and gaugino mediated scenarios the main assumption is
that the MSSM matter fields are localized to a brane along an extra dimension, on which
supersymmetry is unbroken. Supersymmetry is only broken on another brane in the extra
dimension (it is not broken in the bulk either), and is transmitted to the MSSM matter fields
via fields that live in the bulk, and thus couple to both the susy breaking brane (the hidden
brane) and the visible MSSM brane. The difference between the two scenarios is what
those bulk fields are that transmit the supersymmetry breaking. In the anomaly mediated
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scenario one has pure supergravity in the bulk, while in the gaugino mediated scenario the
MSSM gauge fields live in the bulk, and thus the gauginos of the MSSM will directly feel
supersymmetry breaking, and will get the leading supersymmetry breaking terms. The
MSSM scalars, since they are localized on a different brane will only get susy breaking
masses via loops in the extra dimension, and will be therefore suppressed compared to the
gaugino masses. The arrangement of fields for the gaugino mediated scenario is given in
the figure below:

MSSM gauge 
      fields

SUSYMSSM matter

As mentioned before, these models have been formulated in the presence of a single
extra dimension. In order to be able to proceed with the discussion of the gaugino mediated
model, we need to first formulate supersymmetry in 5D. The issue is similar to the discussion
of fermions in 5D when we were considering the split fermion model: since in 5D the smallest
spinor is the 4 component Dirac spinor, in 5D the smallest number of supercharges must be
8. (As a reminder, in 4D the smallest supersymmetry algebra corresponds to the situation
when there is a single complex two-component Weyl spinor supercharge, which means there
would be four real components. Thus N = 1 susy in 4D corresponds to 4 supercharges.)
Since in 5D the smallest spinor has 8 real components, N = 1 supersymmetry in 5D is
twice as large as in 4D, and the dimensional reduction of the 5D theory would correspond
to N = 2 in 4D. For example, the 5D vectormultiplet would have to contain a massless
5D vector, and also a Dirac spinor. Since the Dirac spinor has four components on-shell,
and the 5D massless vector 3, there needs to be an additional massless real scalar in the
vectormultiplet, which is then:

(AM , λ, Φ),

where AM is the 5D vector, λ is a Dirac spinor, and Φ is a real scalar. When reduced to
4D the vector will go into a 4D vector plus A5 which is a scalar, and the Dirac fermion
into two Weyl fermions. The A5 together with Φ will form a complex scalar, and we can
see that from the 4D point of view the 5D vector multiplet is a 4D vector multiplet plus
a 4D chiral superfield in the adjoint (or equivalently from the 4D point of view an N = 2
vector superfield, which is exactly a vector plus a chiral superfield). This would mean that
we would get two gauginos in the 4D theory, if 5D Lorentz invariance is completely intact.
However, when one has branes in the extra dimension, 5D Lorentz invariance is anyways
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broken.

One of the simplest ways of implementing the breaking of the 5D Lorentz invariance is
to compactify the extra dimension on an orbifold instead of a circle. The meaning of an orb-
ifold is to geometrically identify certain points along the extra dimension, and then require
that the bulk fields have a definite transformation property under this symmetry geometric
symmetry. We will discuss such orbifolds in much more detail in the next subsection, and
there is also a whole lecture about them in these volumes by Mariano Quiros [41].

For now we will simply compactify the extra dimension on an interval (an S1/Z2

orbifold) rather than a circle, and require that the bulk fields are either even or odd under
the Z2 parities y → −y, and L−y → L+y. This is basically a fancy way of saying that we
require that the bulk fields satisfy either Dirichlet or Neumann boundary conditions (bc’s).
A convenient choice of these Z2 parities for the bulk 5D vector superfield discussed above
is

(Aµ, λL) → (Aµ, λL),

(A5, Φ, λR) → −(A5, Φ, λR). (3.21)

This means that Aµ and λL satisfy Neumann boundary conditions at y = 0, L while the
other fields Dirichlet boundary conditions. Therefore, the KK expansions for these fields
will differ from the usual expansion on a circle. The modes for the various fields will be of
the form:

Aµ, λL ∼ cos π
ny

L
,

A5, Φ, λR ∼ sin π
ny

L
. (3.22)

Here the mass of the n-th mode is as usual m2
n = n2π2/L2. We can see, that for n = 0 the

wave functions of the odd modes are vanishing. Thus the orbifolding procedure effectively
“projects out” the zero mode for the states that have odd parities (that is the ones that
have a Dirichlet bc).

Therefore, the zero mode spectrum is no longer necessarily vectorlike, but orbifold
compactifications can lead to a chiral fermion zero mode spectrum. What we see is that
with the above choice of parities the zero modes will only appear for the fields that also
appear in the MSSM. Thus the boundary conditions take care of the unwanted modes as
compared to the MSSM!

The Lagrangian of the gaugino mediated model will then schematically be of the form:

L =

∫

dy [L5 + δ(y)LMSSMmatter + δ(y − L)Lsusybreaking] . (3.23)

We will not specify the dynamics that leads to supersymmetry breaking on the hidden
brane, but rather assume that there is a field S which has a supersymmetry breaking
F -term:

〈S〉 = Fθ2. (3.24)
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Since the gauginos live in the bulk, they can couple to this susy breaking field via the
operator

∫

d2θ
S

M2
WαW α + h.c. (3.25)

What should be the suppression scale M in the above operator be? We have assumed,
that the gauge fields (contrary to the large extra dimensional scenario) live in the bulk.
This means that we have a 5D gauge theory. However, the 5D gauge coupling is not

dimensionless, and therefore the 5D gauge theory is not renormalizable. This simply means,
that at some scale M the 5D gauge interactions will become strong, above which the
perturbative definition of the theory should not be trusted. However, below that scale the
theory is a perfectly well-defined effective field theory, which however has to be completed
in the ultra-violet (above the scale M). The real question is how the scale M is related
to the length of the extra dimension and the 4D gauge coupling. The scale at which the
theory becomes strongly coupled is where the effective dimensionless coupling g2

5M becomes
as large as a loop factor,

g2
5M

16π2
∼ 1. (3.26)

However, as we have seen already the effective 4D gauge coupling, which is of order one
since these are the visible MSSM gauge couplings are given by

1

g2
4

=
L

g2
5

= O(1). (3.27)

Combining these two equations we get that ML ∼ 16π2 ∼ O(100), which implies that the
scale M is a factor of 100 or so larger than 1/L, the scale that sets the mass of the first
KK mode. This means, that there is a hierarchy between M and 1/L, and between these
two scales it is justified to use an effective 5D gauge theory picture.

Coming back to the size of the supersymmetry breaking gaugino mass, substituting
the vev of S into (3.25) we get that the gaugino mass term is

F

M2
λλ|y=L. (3.28)

This is a 4D mass term (since it is on the surface of the susy breaking brane only) for a
5D bulk field λ. In order to get the effective 4D mass term for the zero mode, we have to
rescale the 5D field to have a canonically normalized kinetic term for the zero mode. Since
the 5D kinetic term is just the usual

Lkin =

∫

λ̄i∂MγMλd5x, (3.29)

after integrating over the extra dimension we get for the zero mode that λ(5)L
1
2 = λ(4).

Then the gaugino mass for the correctly normalized 4D field will be

mgaugino =
F

M

1

ML
. (3.30)
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Note, that the physical mass is suppressed by the size of the extra dimension, and this is
the consequence of the fact that the mass is localized on a brane while the field extends
everywhere in the extra dimension. (3.30) implies that at the high scale M all gauginos
have a common mass term.

The most important question is what the magnitude of the masses of the scalar partners
of the SM fermions will be, since as we have seen at the beginning of this section, this is
what leads to the susy flavor problem. Qualitatively we can already see its features: since
we have assumed that the SM matter fields are on the visible brane, they will not directly
couple to the susy breaking sector. Thus they will feel susy breaking effects only through
loops that go across the extra dimension and connect the scalar fields on one brane with
the susy breaking vev on the other brane. This means, that this operator should be a
loop factor smaller, than the gaugino mass term. However, even this would be too large, if
arbitrary flavor structure was allowed. The important point is that the loops in the extra
dimensions involve the gaugino fields, which couple universally (as determined by the gauge
couplings) to the MSSM matter fields. Therefore, just as in the so called gauge mediated
models (which we have not discussed here since those are not relying on extra dimensions)
the corrections to the soft scalar masses will be flavor universal, and thus this setup has a
chance of solving the susy flavor problem.

Even though we basically already roughly know the answer for what the size of the
scalar masses is going to be, it is still illustrative to go through the calculation in detail, since
this should also teach us how to handle diagrams that involve loops in the bulk. Before we
go into the detail of the calculation, let us just make one comment: every extra dimensional
loop which involves propagation from one brane to the other must be necessarily UV finite.
The reason is that usually divergences appear when the size of the loops in a usual Feynman
diagram shrinks to zero. However here the size of the extra dimension provides a UV cutoff,
and the integral will be finite (the loop can not shrink to zero in coordinate space since the
fields have to propagate from one brane to the other.)

The diagram that one needs to calculate is illustrated below:

λ

λ

λ
Ψ

φ

φ

Since we know that the fields have to propagate from one brane to the other and back,
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it is useful to use the propagators in the y coordinate, however, for the 4D propagators
we want to use the usual momentum representation. Therefore we need the propagator
in a mixed q, yi, yf representation. Even though what we really need is the propagator for
fermions, since in the above loop it is the gaugino that is propagating through the bulk,
it is instructive to first calculate the scalar propagator P (q2, a, b), which corresponds to a
scalar with four momentum q2 propagating from y = a to y = b. Since the bulk scalars are
odd under the Z2, their wavefunctions are

φn(y) =

√

2

L
sin

πny

L
. (3.31)

The bulk propagator can then be written in terms of the wave functions as

P (q2, a, b) =
∑

m,n

φ∗
n(a)φm(b)

δmn

q2 + p2
n

=
2

L

∑

n

sin

(−πna

L

)

sin

(

πnb

L

)

1

q2 + p2
n

. (3.32)

Here pn = nπ
L

, and one can convert the sum to an integral via ∆n = dp L/π to get

P (q2, a, b) = −1

π

∫ ∞

−∞
dp

sin(bp) sin(ap)

p2 + q2
∼ − 1

2q
e−|b−a|q. (3.33)

A similar calculation for the fermions yields

P (q2, 0, L) ∼ 2PLqµγ
µ

q
e−qL. (3.34)

Evaluating the diagram above we get

g2
5

(

FS

M2

)2 ∫
d4q

(2π)4
Tr

1

qµγµ
PLP (q, 0, L)CP T (q, L, L)C−1P (q, L, 0). (3.35)

Plugging in the propagator and evaluating the integral we get for the scalar mass

m2
S ∼ g2

5

16π2

(

FS

M2

)2
1

L3
=

g2
4

16π2
m2

g. (3.36)

Thus we find that as expected the scalar mass is flavor universal (it depends only on the
gauge coupling) and a loop-factor suppressed compared to the gaugino mass.

In the end, the free parameters of the gaugino mediated model are the size of the extra
dimension L, the unified gaugino mass M 1

2
, the ratio of Higgs VEVs tan β, and the sign of

the µ-term. With these input parameters one has to start running down the above susy
breaking soft masses from the scale M to the electroweak scale, and find the appropriate
physical mass spectrum. This gives a phenomenologically acceptable mass spectrum, for
details see [42].
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3.3 Symmetry breaking via orbifolds

We have seen in the previous section, that compactification can break some of the sym-
metries of the higher dimensional theory. The particular example that we discussed was
the breaking of supersymmetry from 8 supercharges (N = 2 in 4D) to just 4 supercharges
(N = 1 in 4D). In this section we will consider examples both of gauge symmetry break-
ing and of supersymmetry breaking via boundary conditions in extra dimensions. Such
symmetry breakings have been considered by the string theorists for a long time, see for
example [43]. Here the first example we will discuss in detail will be the breaking of the
grand unified gauge group as proposed by Hall and Nomura [44], see also [45–48]. while
the discussion of the breaking of supersymmetry is based on the model by Barbieri, Hall
and Nomura [49], see also [50].

We will use orbifold projections on a theory on a circle to obtain the symmetry breaking
boundary conditions, even though these can be also formulated very conveniently just by
considering a theory on an interval.

Through out this section we will just consider a single extra dimension, and try to
find what are the orbifold projections one can do to arrive at the final set of boundary
conditions. By orbifold boundary projections we mean a set of identifications of a geometric
manifold which will reduce the fundamental domain of the theory. One can give a different
description of theories with boundary conditions by starting with the variational principle
for theories on an interval. For this approach see [95].

Let us first start with an infinite extra dimension, an infinite line R, parametrized by y,
−∞ < y < ∞. One can obtain a circle S1 from the line by the identification y → y +2πR,
which we can denote as “modding out the infinite line by the translation τ , R → S1 = R1/τ .
This way we obtain the circle.

Another discrete symmetry that we could use to mod out the line is a reflection Z2

which takes y → −y. Clearly, under this reflection the line is modded out to the half-line
R1 → R1/Z2.

If we apply both discrete projections at the same time, we get S1/Z2, the orbifold that
we have already used in the previous section when we discussed gaugino mediation. This
orbifold is nothing else but the line segment between 0 and πR.

Let us now see how the fields ϕ(y) that are defined on the original infinite line R1 will
behave under these projections. The fields at the identified points have to be equal, except
if there is a (global or local) symmetry of the Lagrangian. In that case, the fields at the
identified points don’t have to be exactly equal, but merely equal up to a symmetry trans-
formation, since in that case the fields are still physically equal. Thus, under translations
and reflection the fields behave as

τ(2πR)ϕ(y) = T−1ϕ(y + 2πR), (3.37)

Zϕ(y) = Zϕ(−y), (3.38)
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where T and Z are matrices in the field space corresponding to some symmetry transfor-
mation of the action. This means that we have made the field identifications

ϕ(y + 2πR) = Tϕ(y), (3.39)

ϕ(−y) = Zϕ(y). (3.40)

Again, Z and T have to be symmetries of the action. However, Z and T are not completely
arbitrary, but they have to satisfy a consistency condition. We can easily find what this
consistency condition is by considering an arbitrary point at location y within the funda-
mental domain 0 and 2πR, apply first a reflection around 0 Z(0), and then a translation
by 2πR, which will take y to 2πR − y. However, there is another way of connecting these
two points using the translations and the reflections: we can first translate y backwards by
2πR, which takes y → y − 2πR, and then reflect around y = 0, which will also take the
point into 2πR − y. This means that the translation and reflection satisfy the relation:

Z(0)τ−1(2πR) = τ(2πR)Z(0). (3.41)

When implemented on the fields ϕ this means that we need to have the relation

TZ = ZT−1, or ZTZ = T−1 (3.42)

which is the consistency condition that the field transformations Z and T have to satisfy.

As we have seen, the reflection Z is a Z2 symmetry, and so Z2 = 1. T is not a Z2

transformation, so T 2 6= 1. However, for non-trivial T ’s T 6= 1 (T is sometimes called the
Scherk-Schwarz-twist) one can always introduce a combination of T and Z which together
act like another Z2 reflection. We can take the combined transformation τ(2πR)Z(0). This
combined transformation takes any point y into 2πR − y. That means, that it is actually
a reflection around πR, since if y = πR − x, then the combined transformation takes it to
πR + x, so x → −x. So this is a Z2 reflection. And using the consistency condition (3.42)
we see that for the combined field transformation Z ′ = TZ

Z ′2 = (TZ)2 = (TZ)(ZT−1) = 1, (3.43)

so indeed the action of the transformation on the fields is also acting as another Z2 sym-
metry. Thus we have seen that the description of a generic S1/Z2 orbifold with non-trivial
Scherk-Schwarz twists can be given as two non-trivial Z2 reflections Z and Z ′, one which
acts around y = 0 and the other around y = πR. These two reflections do not necessarily
commute with each other. A simple geometric picture to visualize the two reflections is
to extend the domain to a circle of radius 4πR, with the two reflections acting around
y = 0, 2πR for Z and πR, 3πR for Z ′. One can either use this picture with the fields living
over the full circle, or just living on the fundamental domain between y = 0 and 2πR. The
two pictures are equivalent. In the remainder of this section we will focus on two particular
models that employ an orbifold structure of the form above, with the two reflections Z and
Z ′ commuting with each other.
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Figure 2: The action of the two Z2 reflections in the extended circle picture. The funda-
mental domain of the S1/Z2 orbifold is just the interval between 0 and πR, and the theory
can be equivalently formulated on this line segment as well.

3.3.1 Breaking of the grand unified gauge group via orbifolds in SUSY GUT’s

One of the main motivation for considering supersymmetric gauge theories (besides the
resolution of the hierarchy problem) is the unification of gauge couplings. The SM matter
fields seem to fall nicely into SU(5) representations 10 + 5̄. This has motivated people in
the 70’s to consider theories based on an SU(5) gauge symmetry, which is broken down at
high scales to SU(3)×SU(2)× U(1). If one calculates the running of the SM gauge couplings
in the non-supersymmetric SM, they get close to each other at a scale ∼ 1014 GeV, but
don’t really unify to the level required by the experimental precision of the three gauge
couplings. However, in supersymmetric theories the precision of unification of the couplings
is much better than in the non-supersymmetric case and the scale of unification is pushed
to somewhat larger values, of order 2 · 1016 GeV. This is a consequence of the modification
of the beta functions that determine the running of the couplings due to the addition of
the superpartners at some relatively low scale. The other important consequence of the
higher unification scale is that proton decay mediated by the exchange of gauge bosons
that transform both under SU(3) and SU(2) (the so-called X, Y gauge bosons) will be
more suppressed, since the decay rate depends on the fourth power of the X, Y gauge
boson mass, which is proportional to the unification scale. Thus it looks like a complete
supersymmetric GUT model could be completely realistic without fine tuning. There is
however one important conceptual problem in SUSY GUT’s (and also in ordinary GUT’s
in general): the doublet-triplet splitting problem.

In order to get the set of beta functions in a SUSY GUT which leads to a sufficiently
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accurate prediction of the strong coupling at low energies one needs to have the beta
functions of the MSSM. As explained before, the SM matter fields fall into complete SU(5)
multiplets, however the two Higgs doublets of the MSSM do not. Thus if one takes the
GUT idea seriously one needs to embed the Higgses into some complete SU(5) multiplets,
and then somehow make the extra fields much heavier than the doublet. However, this
seems very difficult: one needs to give a mass to the extra fields that are 1014 times larger
than the doublets. For example in the simplest case the two Higgs doublets are embedded
as Hu = 2 → 5, Hd = 2∗ → 5̄. In this case we had to add an extra triplet and antitriplet of
SU(3), which have to be very heavy, while the doublets from the same multiplet light. This
is another naturalness problem that is specific to SUSY GUT’s. If the mass of the triplet
was too low, the beta functions would change, and unification of couplings would not occur.
Even if one can somehow arrange naturally for the triplets to be heavy (there are some nice
natural solutions to the doublet-triplet splitting problem), they still contribute to proton
decay at a rate that is usually too large. The reason is that due to supersymmetry and
grand unification the fermionic partners of heavy color triplet Higgses necessarily couple
to the SM fermions and the scalar partners via a Yukawa coupling term. Since the triplets
have to be massive there is necessarily a diagram of the form

q~ q~

H
~

H
~

q l

1 2

which is baryon number violating. Here the dotted line is a squark, and H̃1,2 are the
color triplet Higgsinos. The squark-quark-color triplet Higgsino vertex must exist, since
the ordinary Yukawa coupling must exist, and this is the grand unified extension of the
superpartner of the ordinary Yukawa vertex. The cross denotes the mass term between
the two color triplet Higgsinos, which should also exist to lift the mass of these triplets
to above the GUT scale. Now one can take this diagram and dress it up with some more
couplings that turn the squarks back to quarks to get a contribution to proton decay:
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H
~

H
~

q~ q~

g,W,B~ ~~

q l

1 2

q q

The additional vertices used in this diagram must exist due to supersymmetry, as well as
the gaugino mass insertions since the gauginos have not been observed.

In extra dimensional theories an S1/Z2 orbifold structure with a Z2 × Z ′
2 reflection

structure could give a nice explanation for the absence of the light triplets. In order to
start building up an extra dimensional GUT, we take a 5D SU(5) gauge theory with the
minimal amount of supersymmetry N = 1 in 5D (meaning eight superchages) in the bulk.
Then by definition we need to have the 5D N = 1 vector superfields in the bulk, while for
the matter fields one can choose if they are brane fields or bulk fields. For now we will
choose the fermionic matter fields to be brane fields, while the Higgs fields to be bulk fields.
One of the two Z2 reflections will act exactly as in the case of gaugino mediation: its role
is simply to split the 4D N = 2 multiplets into a 4D N = 1 vector superfield which has a
zero mode, while the 4D N = 1 chiral superfield which does not have a zero mode:

A

λ λ
φ

µ

L R

+

−

In order to have a grand unified extra dimensional SUSY GUT, the Higgs doublets
will live in 5D chiral superfields in the 5 representation of SU(5), which correspond to a
4D N = 2 hypermultiplet. Since we have two Higgses in the MSSM, we will effectively
introduce four 4D chiral superfields in the 5 of SU(5):

H = (5, 5̄), H ′ = (5′, 5̄′). (3.44)

We will use the second Z2 reflection to break the SU(5) GUT symmetry down to the
SU(3)×SU(2)×U(1) of the MSSM. We will do this by picking the representation matrix
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for Z ′
2 on the fundamental of SU(5) to be non-trivial:

Z ′
2 :
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−

−
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+
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. (3.45)

Once the action of the second reflection is fixed on the fundamental 5 of SU(5), we can
also determine its action on the adjoint 24. Since an adjoint is a product of a fundamental
and anti-fundamental, the action of Z ′

2 will be such, that the various components of the
adjoint matrix pick up the following signs:

Z ′
2 :
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+ −

− +









. (3.46)

This implies, that the fields at the position of the X, Y gauge bosons will be odd under
this second reflection, while the others will be even. The fields that are even under both
Z2 reflections will have a zero mode, while the others will not. We can now list the parities
of all the bulk fields and find out what kind of KK towers these fields will have. The
bulk fields are the following. The 5D vector superfield of SU(5) consists of the 4D vector
superfield and the 4D chiral superfield in the adjoint:









V a
SM X

Y V a
SM
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λa x

y λa









. (3.47)

The bulk Higgs fields decompose as

H = (3 + 2, 3̄ + 2̄), H ′ = (3′ + 2′, 3̄′ + 2̄′). (3.48)

With this notation we can give the two Z2 charges of all fields, and the corresponding KK
masses:

(Z2, Z
′
2) mode KK mass wave function

(+, +) V a
SM , 2, 2′ 2n

R
cos 2ny

R

(+,−) λa, 3, 3̄′ 2n+1
R

sin (2n+1)y
R

(−, +) x, y, 3̄, 3′ 2n+1
R

cos (2n+1)y
R

(−,−) X, Y, 2̄, 2̄′ 2n+2
R

sin 2ny
R

, n = 0, 1, 2, . . . (3.49)

We can see from this table that with the charge assignments as above we would get a zero
mode only for the fields that are present in the MSSM as well, while the KK towers for the
other fields would start at a non-zero value, which is determined by the radius of the extra
dimension.
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Figure 3: The KK towers for the various modes of the orbifold GUT theory of Hall and
Nomura.

The structure of the KK towers for the various fields is depicted in Fig. 3.3.1. From
this figure we can see that by simply assigning different Z2 transformation properties to
the doublet and the triplet in 5 one can achieve the doublet-triplet splitting, due to the
fact that the boundary condition for the triplet will not allow the existence of a triplet zero
mode, while there is one for the doublet. Also note, that since 3 and 3̄ have different wave
functions, there can be no mass term of the form 33̄, which implies that the dimension
five proton decay operator discussed above is vanishing, since in that diagram the mass
insertion (the cross) is vanishing. Instead the 3 and 3̄ get masses with 3̄′ and 3’ respectively,
which will not give any contribution to proton decay. The vanishing of the 33̄ mass term is a
consequence of N = 2 supersymmetry. However, at the brane where N = 2 supersymmetry
is broken to N = 1, one could in principle add an operator that would include a mass term
for these fields. These mass terms can nevertheless be forbidden by requiring that a U(1)R

global R-symmetry is obeyed, under which the charges of the fields are given by

Σ H H̄ H ′ H̄ ′ T10 F5̄

U(1)R 0 0 0 2 2 1 1
(3.50)

Since we are talking about a GUT model, it is important to make sure that the model
would actually predict the unification of the gauge couplings. Since the GUT symmetry is
broken at one of the endpoints of the interval, there can be a brane-induced kinetic term
for the SM gauge fields on the GUT breaking brane which does not necessarily have to be
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SU(5) symmetric. Therefore the tree-level matching between the 4D effective SM couplings
and the 5D gauge coupling is given by

1

g2
eff, i

=
πR

g2
5

+
1

g2
brane, i

, (3.51)

where the first term on the right is the SU(5) symmetric bulk gauge coupling, while the
second term is the (possibly) SU(5) violating brane coupling. How precisely the couplings
will unify depends on the ratio of the brane induced term to bulk term. If the size of the
extra dimension is reasonably large compared to the cutoff scale (for example 1/R ∼ MGUT ,
Mcutoff ∼ 100MGUT ) then the SU(5) violating brane term will be volume suppressed, and
it is reasonable to expect unification to a good precision.

Of course it is not enough to build an extra dimensional GUT model, it is also impor-
tant to check that the appearance of the new states charged under the SM gauge groups
(the KK modes of the various gauge and Higgs fields) do not ruin the actual unification
of couplings of the MSSM. This has been shown to be the case in [44], and the reader is
referred for the details of that calculation to the original paper.

3.3.2 Supersymmetry breaking via orbifolds

We have seen in the previous two models that we can use a Z2 projection under the y → −y
reflection symmetry to break N = 2 supersymmetry down to N = 1 SUSY. We have also
seen that in the case of a single extra dimension there are two separate Z2’s at our disposal
at both ends of the interval. This yields the following nice possibility: one could use one
Z2 to break one half of the supercharges, and the other Z2 to break the other half:

A

λ λ
φ

µ

L R

+

−

A

λ λ
φ

µ

L R

+

−

First  Z Second Z2 2

The two Z2’s leave a different combination of N = 1 supercharges unbroken. The
two projections together completely break supersymmetry, but locally there is always some
amount of supersymmetry unbroken. The full supersymmetry breaking is only felt glob-

ally. This will have the important implication that the properties which follow from local
supersymmetry will be maintained in the non-supersymmetric theory.

The next task is to also include the MSSM matter fields and Higgs fields into this
theory. A generic matter field of the SM will be an N = 2 hypermultiplet (two fermions
and two scalars), and we can assign the Z2 parities for the matter fields again such that
only the one of the fermions will have a zero mode, while all the other fields from this
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hypermultiplet will have no zero modes. For example for quarks this can be achieved by
the following choice of Z2 projections:

q~

q c

q~c q~c
q~

q c

+

−

+

−

First  Z Second Z2 2

q q

For the Higgs, one has two possibilities: introducing two separate hypermultiplets for
the two MSSM Higgs fields, which is the more straightforward but less exciting possibility,
or introduce just a single Higgs doublet hypermultiplet which contains both of the MSSM
Higgs doublets. We will consider the latter possibility, and then use the projections

ψ
Η

ψ
Η

φΗ
φ

Η

ψ
Η
c+ ψ

Η
c+

φ
Η
c+ φ

Η
c++

−

First  Z Second Z2 2

+

−

In this case, there will only be a single Higgs zero mode, contrary to the MSSM which
has two Higgs doublets. So the zero mode spectrum really reproduces that of the SM, and
not that of the ordinary particles of the MSSM.

N = 2 supersymmetry does not allow a Yukawa-type coupling between hypermul-
tiplets. This means that in the bulk one can not write down the appropriate couplings
necessary for generating the fermion masses from the Yukawa couplings to the Higgs field.
However, since on the fixed points N = 2 supersymmetry is broken to N = 1, these
couplings can be added on the fixed points. One may wonder how this could be possibly
done in a supersymmetric theory with just one Higgs field. The point is that since it is a
different set of supercharges that remains unbroken at the two fixed point, one needs to
use a different splitting of the bulk Higgs hypermultiplet into N = 1 chiral multiplets on
the two fixed points. Thus from the full bulk Higgs hypermultiplet





ΨH

H Hc†

Ψc†
H



 (3.52)

we form the chiral multiplets

Hu ∼
(

H
ΨH

)

, Hd ∼
(

H∗

Ψc
H

)

. (3.53)

Note, that it is the same scalar component (the one with a zero mode) appearing in both
chiral multiplets, while one has a different fermionic partner corresponding to them de-
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pending on which set of supercharges are unbroken. Thus we can write down the following
superpotential terms at the fixed point yielding the required Yukawa couplings:

  Rπ

2  Rπ

3  Rπ

H QU
_

λ
u

u

λd λd
e

H QD+  H LE
_

d

0

Z

Z’

Z

Z’

The tree-level Higgs potential will be fixed just as in ordinary supersymmetric theories.
Without a bulk mass term the form of the potential is just determined from the D-terms,
and is given by:

Vtree =
g2 + g′2

8
|H|4. (3.54)

This on its own determines that the Higgs mass has to be light, as in any supersymmetric
theory. Electroweak symmetry breaking can then happen radiatively, due to the top quark
loops. Since the top Yukawa coupling is localized at one of the fixed points, the resulting
contribution to the Higgs potential can also only be a term at the fixed point. Since at
least some of supersymmetry is locally unbroken everywhere, the contribution can not be
quadratically divergent. In fact, the contribution to the potential from the top quark loop
is actually finite. However, there can be localized U(1) Fayet-Iliopoulos terms at the fixed
points which can be quadratically divergent, which will contribute to the Higgs potential.
Also, one can add a bulk mass term for the Higgs hypermultiplet, which also obviously
contributes to the Higgs mass. For further details on the prediction of the physical Higgs
mass of this model see [46, 49, 51].

4 Warped Extra Dimensions

Until now we have considered flat extra dimensions, that is assumed that whatever gravi-
tational sources there are present, their effects will be negligible for determining the back-
ground metric, that is we ignored the backreaction of gravity to the presence of the branes
themselves. If the tensions of the branes are small, then this is a good approximation.
However, interesting situations may arise, if this is not the case.

One can immediately see that taking the reaction of gravity to brane sources into
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account could be very important. The reason is that if one has a 4D theory with only
4D sources, these will necessarily lead to an expanding universe. However, if one has 4D
sources in 5D, one can balance the effects of the 4D brane sources by a 5D bulk cosmological
constant to get a theory where the effective 4D cosmological constant would be vanishing,
that is the 4D Universe would still appear to be static and flat for an observer on a brane [4].
The price to pay for this is that the 5D background itself will be curved, which is clear
from the fact that one had to introduce a bulk cosmological constant. Thus one can “off-
load curvature” from the brane into the bulk [4, 52], and keep the brane to be still flat by
curving the extra dimension. Such curved extra dimensioned are commonly referred to as
“warped extra dimensions”. This possibility has been first pointed out by Rubakov and
Shaposhnikov [4]. This shows that for example the cosmological constant problem will be
placed into a completely different light from an extra dimensional point of view: in 4D one
had to explain why the vacuum energy is very small, while in higher dimensions one has
to explain why the vacuum energy of the SM fields is exactly canceled by a bulk vacuum
energy [52].

In the following we will discuss the best known and most concrete example of warped
extra dimensions, the Randall-Sundrum model [53, 54]. First we discuss in detail how to
solve the Einstein equations to find the RS background, and discuss the mass scales in the
model. Then we discuss the phenomenology of various interesting models based on the
Randall-Sundrum backgrounds.

4.1 The Randall-Sundrum background

We will show how to derive the Randall-Sundrum solution (and the conditions under which
a 4D flat background exists). We will begin again with a finite length [53] for the extra
dimension, that is we consider an S1/Z2 orbifold, which by now is familiar to everyone.
Since we are interested in warped solutions, we will assume that there is a non-vanishing
5D cosmological constant Λ in the bulk. We are also interested in solutions that have the
property mentioned above, that is even though the extra dimension is curved, the brane
itself remains static and flat, that is it preserves 4D Lorentz invariance. This means that
the induced metric at every point along the extra dimension has to be the ordinary flat 4D
Minkowski metric, and the components of the 5D metric depend only on the fifth coordinate
y. The ansatz for the most general metric satisfying these properties is given by:

ds2 = e−A(y)dxµdxνηµν − dy2. (4.1)

The amount of curvature (warping) along the extra dimension depends on the function
e−A(y), which is therefore called the warp-factor. Our task is to find this function A(y).
Note, that there are of course various ways of writing this metric, by doing various coordi-
nate transformations. For example one could as well have gone into the coordinate system
where there is an overall prefactor in front of all coordinates, which is called the conformally
flat metric. This is the simplest coordinate system, and this is what we will use to find A.
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To go into the conformally flat frame, we need to make a coordinate transformation of the
form z = z(y). The coordinate transformation should not depend on the 4D coordinates
x, since those would induce off-diagonal terms in the metric. In order to ensure that the
metric be conformally flat in the new frame, dy and dz have to be related by

e−A(z)/2dz = dy, (4.2)

such that the full metric in the z coordinates will be:

ds2 = e−A(z)(dxµdxνηµν − dz2). (4.3)

This metric is conformally flat, so a conformal transformation (that is an overall rescaling
of the metric) connects it to the flat metric:

gMN = e−A(z)g̃MN , g̃MN = ηMN . (4.4)

A very useful relation connects the Einstein tensor GMN = RMN − 1
2
gMNR calculated from

g̃ and g in any number of dimensions and for arbitrary function A (see for example [55]):

GMN = G̃MN +
d − 2

2

[

1

2
∇̃MA∇̃NA + ∇̃M∇̃NA − g̃MN(∇̃K∇̃KA − d − 3

4
∇̃KA∇̃KA)

]

.

(4.5)
Here the covariant derivatives ∇̃ are with respect to the metric g̃, while on the left the
Einstein tensor GMN is calculated from gMN . For us g̃MN = ηMN , and therefore the
covariant derivative ∇̃M → ∂M , and d = 5. Using these expression we can now easily
evaluate the non-vanishing components of the Einstein tensor:

G55 =
3

2
A′2

Gµν = −3

2
ηµν(−A′′ +

1

2
A′2). (4.6)

This takes care of the left hand side of the bulk Einstein equation GMN = κ2TMN , where
κ2 is the higher dimensional Newton constant, in 5D it is related to the 5D Planck scale
by

κ2 =
1

M3
∗
. (4.7)

The 5D Einstein action for gravity with a bulk cosmological constant Λ is

S = −
∫

d5x
√

g(M3
∗R + Λ). (4.8)

One can then use the definition of the stress-energy tensor to find the Einstein equation:

GMN = κ2TMN =
1

2M3
∗
ΛgMN . (4.9)
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The 55 component of the Einstein equation will then be:

3

2
A′2 =

1

2M3
∗
Λe−A. (4.10)

The first thing that we can see is that a solution can only exist if the bulk cosmological
constant is negative Λ < 0. This means that the important case for us will be considering
anti-de Sitter spaces, that is spaces with a negative cosmological constant. Once a negative
cosmological constant is fixed, we can take the root of the above equation

A′ =

√

− Λ

3M3
∗
e−A/2. (4.11)

Introducing the new function e−A/2 ≡ f we get the equation

−f ′/f 2 =
1

2

√

− Λ

3M3
∗
, (4.12)

from which we can read off the solution for the metric

e−A(z) =
1

(kz + const.)2
, (4.13)

where we have introduced

k2 = − Λ

12M3
∗
. (4.14)

The constant in (4.13) can be fixed by fixing the value of the metric at some point (this is
an irrelevant rescaling of the units), we choose e−A(0) = 1, from which the constant is set
to 1. So a simple form for writing the metric is

e−A(z) =
1

(kz + 1)2
. (4.15)

However since we are on a S1/Z2 orbifold, the solution must be symmetric under z → −z
reflection, and therefore the final form of the RS solution can be written in the form

ds2 =
1

(k|z| + 1)2
(ηµνdxµdxν − dz2). (4.16)

With this the 55 component of the Einstein equations is solved everywhere. However one
needs to check whether the 4D components are also satisfied. We have seen above that
these components are given by −3/2ηµν(−A′′ + A′2/2). This means that (unlike in the 55
component) A′′ will appear, which will imply that there are delta function contributions
to the Einstein tensor at the fixed points. Thus (4.16) can be a solution only, if there
are also localized energy densities on the brane that compensate these delta functions.
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This is exactly as we have expected at the beginning of this section: there can be a non-
vanishing bulk cosmological constant and still have flat induced 4D space if there is some
energy density on the brane that compensates. Note however, that the 55 component of
the Einstein equation already determined (together with the S1/Z2 assumption) the full
solution. So the energy density on the brane necessary to have a static solution would be
fine-tuned against the bulk cosmological constant. Evaluating A′′ we get

A′′ = − 2k2

(k|z| + 1)2
+

4k

k|z| + 1
(δ(z) − δ(z − z1)), (4.17)

where z1 is the location of the negative tension brane, and so the µν components of the
Einstein tensor are

Gµν = −3

2
ηµν

[

4k2

(k|z| + 1)2
− 4k(δ(z) − δ(z − z1))

k|z| + 1

]

(4.18)

The first term (the term without the delta functions) exactly matches the bulk contri-
bution to the energy momentum tensor from the bulk cosmological constant. Therefore
the remaining delta function terms are the ones that need to be compensated by adding
additional sources onto the branes. To match these sources we need to find out what the
energy-momentum tensor of a brane tension term V (an energy density localized on the
brane) would be. The action for this is given by

∫

d4xV
√

ginduced =

∫

d5xV

√
g

√
g55

δ(y) (4.19)

for a flat brane at y = 0. This implies that the energy momentum tensor is

Tµν =
1√
g

δS

δgµν
=

1

2
√

g55
gµνV δ(y). (4.20)

Thus the final form of the energy-momentum tensor for a brane tension is:

T tension
µν =

1

2
diag(V,−V,−V,−V, 0)e−A/2δ(y). (4.21)

Therefore to satisfy the Einstein equations at the brane we need to have two brane tensions,
one at each end of the interval (at the two fixed points), and so we need the equality

−3

2
ηµν

[

−4k(δ(z) − δ(z − z1))

k|z| + 1

]

=
ηµν

2M3
∗

[

V0δ(z) + V1δ(z − z1))

k|z| + 1

]

. (4.22)

This implies that the two brane tensions at the two fixed points will have to be opposite,
and given by

V0 = −V1 = 12kM3
∗ . (4.23)
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Plugging in the expression for k we obtain that the bulk cosmological constant and the
brane tensions have to be related by

Λ = − V 2
0

12M3
∗
, V1 = −V0. (4.24)

Thus there is a static flat solution only, if the above two fine tuning conditions are satisfied.
At this point it is not clear why we ended up with two fine tuning conditions. We could have
expected at least one fine tuning, related to the vanishing of the 4D cosmological constant.
However, at this point the meaning of the second fine tuning condition is obscure, but we
will find out the reason behind the second fine tuning shortly in Sec. 5.2.

Now that we have found that the RS solution in the z coordinates where the metric is
conformally flat is

ds2 =
1

(k|z| + 1)2
(ηµνdxµdxν − dz2), (4.25)

we can ask what the metric in the original y coordinates would be. The reason why this is
interesting is that y is the physical distance along the extra dimension, since in that metric
there is no warp factor in front of the dy2 term. Since the relation between z and y was
given by

e−A(z)/2dz =
dz

k|z| + 1
= dy, (4.26)

we get that (by choosing y = 0 to correspond to z = 0):

1

(k|z| + 1)2
= e−2k|y|, (4.27)

and so the RS metric in its more well-known form is finally given by:

ds2 = e−2k|y|dxµdxνηµν − dy2. (4.28)

Let us now discuss what the physical scales in a theory like this would be, if the matter
fields were localized on one of the fixed points. First we assume this to be the brane with
the negative tension (the brane where the induced metric is exponentially small compared
to the other fixed point). Consider thus a scalar field (for example the Higgs scalar) on the
negative tension brane. Its action would be given by

SHiggs =

∫

d4x
√

gind[gµνD
µHDνH − V (H)], V (H) = λ[(H†H) − v2)2]. (4.29)

If the size of the extra dimension is b, then the induced metric at the negative tension is
given by

gind
µν |y=b = e−2kbηµν . (4.30)

Plugging this in for the above action we get that the action for the Higgs is given by

SHiggs =

∫

d4xe−4kb[e2kbηµν∂
µH∂νH − λ(H†H − v2)2]. (4.31)
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We can see that due to the non-trivial value of the induced metric on the negative tension
brane the Higgs field will not be canonically normalized. To get the action for the canoni-
cally normalized field one needs a field redefinition H̃ = e−kbH . In terms of this field the
action is

SHiggs =

∫

d4x[ηµν∂
µH̃∂νH̃ − λ[(H̃†H̃) − (e−kbv)2]2]. (4.32)

This is exactly the action for a normal Higgs scalar, but with the VEV (which sets all the
mass parameters) “warped down” to

ṽHiggs = e−kbv. (4.33)

This shows, that all mass scales are exponentially suppressed on the negative tension brane,
but not on the positive tension brane. Therefore, the positive tension brane is often also
referred to as the Planck-brane, since the fundamental mass scale there would be unsup-
pressed of the order of the Planck scale, while the negative tension brane is referred to as
the TeV-brane since the relevant mass scale there is TeV. The curvature in the bulk leads
to a redshifting of all energy scales away from the positive tension brane. This means that
if one introduces a bare Higgs VEV (and thus also Higgs mass) of order the 5D Planck scale
M∗ into the Lagrangian, the physical Higgs mass and VEV will be exponentially suppressed.

In order to find out, whether this exponential suppression is interesting we need to also
find out what the effective scale of gravity (the 4D Planck scale) would be in this model.
For this we need to find out how the effective 4D gravitational action depends on the radius
b of the extra dimension. To find this out quickly, for now we will just assume that the 4D
graviton hµν is embedded into the full 5D metric as

ds2 = e−2k|y|[ηµν + hµν(x)]dxµdxν − dy2. (4.34)

The subject of the next section will be mostly to verify this and to analyze the consequences
of this equation in more detail, but for now we just accept this result. In this case the 5D
Ricci tensor R

(5)
µν will contain the Ricci tensor calculated from hµν : R

(4)
µν ⊂ R

(5)
µν . The reason

behind this is that Rµν is invariant under a constant rescaling of the metric. Plugging in
the explicit metric factors that appear in the action we get that the relevant piece of the
5D Einstein-Hilbert action containing the 4D metric is

S = −M3
∗

∫

d5x
√

gR(5) ⊃ −M3
∗

∫

e−4k|y|
√

g(4)e2k|y|R(4)d5x. (4.35)

From this we can read off the value of the 4D effective Planck scale:

M2
P l = M3

∗

∫ y=b

y=−b

e−2k|y|dy =
M3

∗
k

(1 − e−2kb). (4.36)

For moderately large values of b this expression barely depends on the size of the extra
dimension, and it is completely different from the analogous expression (2.9) for large extra
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dimensions. It also shows, that if all bare parameters M∗, Λ, V0, vHiggs are of the same
order and of the order of the Planck scale, then while the scale of the Higgs VEV (the weak
scale) gets exponentially suppressed, the scale of gravity itself will remain of the order of
the Planck scale. This means that with a moderately large b one can naturally introduce
an exponential hierarchy between the weak and the Planck scales! This is exactly what
one would like to achieve when solving the hierarchy problem. So we can see that the
Randall-Sundrum model has the possibility of giving a completely new explanation to the
hierarchy problem. We will have a much better understanding of how the RS model solves
the hierarchy problem after the next section, where we consider the behavior of gravity at
different locations along the extra dimension in this model.

4.2 Gravity in the RS model

To find out more why the RS model solves the hierarchy problem, we need to study the
properties of gravity in this AdS background in more detail [54]. Thus we really need to find
the KK decomposition of the graviton in this curved background. Normally, when one has
a flat extra dimension on a circle, one expects that there would be a graviton zero mode, a
scalar zero mode and a vector zero mode, making up for the five degree of freedom in the
5D massless graviton, while at the massive level there would just be massive 4D gravitons,
which also have 5 degrees of freedom. However, due to the y → −y orbifold projection the
zero mode of the vector will be eliminated. The reason is that from the generic form of the
metric

ds2 = e−2k|y|gµνdxµdxν + Aµdxµdy − b2dy2, (4.37)

where gµν parametrizes the graviton, Aµ the vector and b the scalar fluctuations, one can
see that since ds2 is symmetric under y → −y, Aµ has to be flipping sign, and thus can
not have a zero mode. Therefore at the zero mode level one expects only a graviton and
a scalar, while at the massive level only gravitons. First we will focus exclusively on the
graviton modes setting the scalar fluctuation to zero at first, and then later we will discuss
the relevance of the scalar mode.

In order to find the KK expansion of the graviton modes, we will go to the conformal
frame for the metric, and parametrize the graviton fluctuation by

ds2 = e−A(z)
[

(ηµν + hµν(x, z))dxµdxν − dz2
]

. (4.38)

Clearly the most general graviton fluctuations can be parametrized like this. Now we use
our formula (4.5) that relates the Einstein tensor of conformally related metrics. We take
as the metric g the metric following from (4.38), while the conformally related metric as
g = e−A(z)g̃. Then the Einstein tensors are related by

GMN = G̃MN +
d − 2

2

[

1

2
∇̃MA∇̃NA + ∇̃M∇̃NA − g̃MN(∇̃R∇̃RA − d − 3

4
∇̃RA∇̃RA)

]

,

(4.39)
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in general d dimensions. Next we impose the gauge choice for the perturbations

hµ
µ = ∂µh

µ
ν = 0, (4.40)

which is usually called the RS gauge choice. We will get back to the possibility of always
choosing such a gauge later.

Since g̃ is the fluctuation of a flat metric, the linearized Einstein tensor for this case
G̃µν is written in every book on general relativity. This is however not everything, since
the covariant derivatives ∇̃ is evaluated with respect to the perturbed metric ηµν +hµν , and
so the Christoffel symbols are not all vanishing (as they would be for the flat background).
Taking these extra terms in the derivatives in (4.39) into account is a tedious but doable
work, which we will leave to the reader as an exercise. Finally, we need the perturbation
of the right hand side of the Einstein equation (the perturbation of the energy-momentum
tensor TMN ), which is quite trivial since the only change is due to gMN → gMN + δgMN .
The perturbed Einstein equation is of course δGMN = κ2δTMN , which after putting all
terms together yields the linearized Einstein equation in a warped background to be

−1

2
∂R∂Rhµν +

d − 2

4
∂RA∂Rhµν = 0. (4.41)

In order to get to an equation that we have more intuition about, we can transform it
into the form of a conventional one-dimensional Schrödinger equation, by rescaling the
perturbation as

hµν = e
d−2
4

Ah̃µν . (4.42)

This field redefinition was chosen such, that the first derivative terms in the differential
equations cancel, so one is really left with a second derivative (kinetic energy) term and a
no derivative potential term. The form of the equation in the new basis is

−1

2
∂R∂Rh̃µν +

[

(d − 2)2

32
∂RA∂RA − d − 2

8
∂R∂RA

]

h̃µν = 0. (4.43)

The second derivative is given by ∂R∂R = − x −∇2
z, where the 4D box operator is defined

as = −ηµν∂µ∂ν . Finally, we separate the variables as h̃µν(x, z) = ĥµν(x)Ψ(z), and require

that the ĥ be a four dimensional mass eigenstate mode ĥµν = m2ĥµν . Then the final
Schrödinger type equation that we get for the KK modes is given by [54, 56–58]

−∂2
zΨ +

(

9

16
A′2 − 3

4
A′′
)

Ψ = m2Ψ. (4.44)

Thus the Schrödinger potential is given by

V (z) =
9

16
A′2 − 3

4
A′′. (4.45)

In our case e−A(z) = 1/(1 + k|z|)2, A = 2 log(k|z| + 1), and so the potential is

V (z) =
15

4

k2

(1 + k|z|)2
− 3kδ(z)

1 + k|z| . (4.46)
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This potential has the shape of a volcano, since there is a peak in it due to the first term,
but then there is a delta function which is like the crater of the volcano. This is why it is
commonly referred to as the “volcano potential”. Note, that for any warp factor A(z) one
can always define the operators Q = ∂z + 3

4
A′ and Q† = −∂z + 3

4
A′, such that the equation

is written as Q†QΨ = m2Ψ [56–58]. This means, that we are again facing a SUSY quantum
mechanics problem, which can be solved as in the case when discussing the localization of
fermions. Therefore, as we know there is always a zero mode solution to this equation given
by

Ψ0 = e−
3
4
A(z) =

1

(1 + k|z|) 3
4

. (4.47)

The existence of a zero mode is not very surprising, since we have not broken 4D Lorentz
invariance, so we expect a massless 4D graviton to exist. The interesting question to ask is
under what circumstances will this graviton zero mode actually be normalizable. For this
we have to evaluate the usual quantum mechanical norm

∫ z0

0

dz|Ψ0|2 =

∫ z0

0

dze−3/2A(z) =

∫ z0

0

dz
1

(1 + k|z|) 3
2

. (4.48)

If one is wondering whether this is really the relevant normalization, one can simply follow
all the field and coordinate redefinitions backwards and find that the coefficient of the 4D
kinetic term of the graviton zero mode is indeed proportional to this factor. Above z0 is
the size of the extra dimension in the z coordinates.

The most important comment about the above integral is that it is converging even
in the limit when the size of the extra dimension becomes infinitely large, z0 → ∞. This
usually does not happen in extra dimensional theories: when there is a compact extra
dimension there is usually a graviton zero mode and KK tower. As the size of the extra
dimension gets infinitely large, the zero mode becomes more and more decoupled due to its
huge spread in the extra dimension, however the KK modes become lighter and lighter, and
eventually form a continuum that reproduces higher dimensional gravity. Here however one
does not find that the zero mode would decouple in the infinitely large extra dimension
limit, and the reason for that is that contrary to the flat extra dimensional case, the zero
mode of the graviton has a non-trivial wave function that is peaked around the positive
tension brane. This implies that in the RS model gravity itself becomes localized around
the positive tension brane, and far away one only has a small tail for the graviton wave
function. In the original y coordinates the wave function of the graviton zero mode is given
by

ds2 = e−2k|y|(ηµν + hµν) − dy2. (4.49)

This confirms the ansatz that we have used in (4.34) to calculate the effective 4D Planck
scale, and also sheds much more light on the nature of the solution to the hierarchy problem
in the RS model. Since gravity is confined to the positive tension brane, observers living
far away from the positive tension brane (for example on the other end of the interval)
will only feel the tail end of the graviton wave function, which is exponentially suppressed
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Figure 4: The shape of the volcano potential that localizes gravity in the RS model.

compared to the Planck brane. On the other hand particle physics interactions will have
equal strength irrespectively of where one is along the extra dimension. So the solution
of the hierarchy problem can be summarized by saying that gravity is weak compared to
particle physics because we happen to live at a point in extra dimension that is far away
from where gravity is localized. As a comparison, in large extra dimensions the way that
the hierarchy problem is resolved is by saying that gravity is much weaker than particle
physics because its fundamental strength does get diluted by fluxes spreading out into the
large dimensions, while since particle physics is localized on a brane it does not get diluted
and we feel the fundamental strength of interactions.

Getting back to the issue of the wave function of the graviton zero mode: since it is
localized around the Planck brane, and remains normalizable even in the limit of infinite
extra dimension, it opens the possibility of recovering 4D gravitational interactions even
when the size of the extra dimension is very large, since the zero mode remains localized
around the Planck brane. However, this on its own is not sufficient to really have a 4D
gravity theory without compactification. As explained above in the infinite extra dimension
limit there will be a continuum of KK modes for the graviton, and usually these continuum
modes are responsible for turning gravity into higher dimensional gravity. There will be a
continuum of KK modes in the RS model as well, however there is hope that these would
not turn gravity over into a higher dimensional theory of gravity, since these continuum
modes also feel the volcano potential of Fig. 4, and this means that in order to get to the
TeV brane they have to tunnel through a large barrier, and thus their wave functions will
be strongly suppressed at the Planck brane [54].

One can easily estimate the suppression of the wave function by a the WKB approx-
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imation for the tunneling rate [56]. Consider a continuum mode with mass m, then the
semiclassical tunneling amplitude is

T (m) ∼ e
−2
∫ z1(m)

z0(m)
dz
√

V (z)−m2

, (4.50)

where z0(m) and z1(m) are the classical turning points for a particle with mass m in the
volcano potential. In order for the KK modes to not give a large contribution to the 4D
gravitational potential one would need that limm→0 T (m) = 0. The reason is that the
potential between two test charges located at the Planck brane are given by the exchange
of the zero mode and the KK modes:

U(r) ∼ GNM1M2

r
+

1

M3
∗

∫ ∞

0

dm
M1M2e

−mr

r
Ψ2

m(0), (4.51)

where the first term comes from the exchange of the zero mode which would cause 4D
gravitational interactions, but the second term is due to the exchange of the KK modes.
If for small m → 0 we would have Ψm(0) → const. we would get unsuppressed 1/r2

corrections due to the integral around m = 0. Thus we need that Ψm(0) → 0 for small m,
and this can only be due to T (m) → 0. In the RS case V (z) ∼ 1/z2 for large z, and so as
m → 0 we get that

T (0) ∼ e−
∫∞
0

1
z
dz. (4.52)

The integral in the exponent diverges, so that we expect the KK modes to indeed decouple
in the RS model and to recover 4D gravity even in the infinitely large extra dimension
limit. In order to really establish this rigorously, a slightly more precise analysis is needed.
Assume that the volcano potential for large z behaves like α(α + 1)/z2 (for the RS case
α = 3/2). Then the asymptotic form of the Schrödinger equation

−Ψ′′
m +

α(α + 1)

z2
Ψm = m2Ψm (4.53)

has solutions in terms of the Bessel functions

Ψm = amz
1
2 Yα+ 1

2
(m(z + 1/k)) + bmz

1
2 Jα+ 1

2
(m(z + 1/k)) (4.54)

If one does a careful matching of the wave function inside and outside the potential we get
that in the RS case

Ψm(0) ∼
(m

k

)
1
2
. (4.55)

Therefore the correction to Newton’s law is of the form
∫ ∞

0

dm
M1M2

r
e−mr

(m

k

)

. (4.56)

Since
∫∞
0

e−mrm ∼ 1/r2 we get the final form of the corrected Newton potential to be

V (r) = GN
M1M2

r

(

1 +
C

(kr)2

)

, (4.57)
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where C is a calculable constant of order one. This shows, that the full correction due
to the KK modes is extremely small for distances larger than the AdS curvature 1/k,
which in our case is of the order of the Planck length. This means that for distances
above the Planck length one would really get a 4D gravitational potential irrespectively
of the compactification. Thus in the presence of localized gravity there is no need to
compactify [54] the extra dimension! Also, due to the wave function suppression of the
KK modes the production of the continuum KK modes would be suppressed on the Planck
brane by p2/k2.

Besides reproducing the ordinary 4D Newton potential, one should however go some-
what further before claiming that 4D gravity as we know it (that is 4D Einstein gravity,
not just Newtonian gravity) is in fact reproduced on the brane. The reason is that as we
mentioned several times before, there could be an extra massless scalar in the graviton.
That would also give a 1/r potential, so would also lead to Newtonian gravity, however
the tensor structure of the graviton propagator could be modified, which would lead to a
so called scalar-tensor theory of gravity. It is somewhat subtle to show that this does not
indeed happen, and one needs to take so called brane bending effects into account for that.
The analysis that shows that RS reproduces 4D Einstein gravity completely on the Planck
brane has been performed in [59, 60], see also [61].

4.3 Intersecting branes, hierarchies with infinite extra dimen-
sions

We close this section by discussing two pressing issues. The first is what happens if we have
more than a single extra dimensions: can we still localize gravity somehow? The second
issue is whether if one has an infinite extra dimension, can one still solve the hierarchy
problem (since now there is no negative tension brane)?

4.3.1 Localization of gravity to brane intersections

The easiest way to localize 4D gravity in more than one extra dimension is to consider the
intersection of co-dimension one branes (that is intersection of d − 1 spatial dimensional
branes in d spatial dimensions). The simplest possibility for intersecting branes is for two
4-branes in 6 space-time dimensions to intersect orthogonally [62]. To find the solution we
should first think about what the RS solution with just the Planck brane is (this situation
is usually referred to as the RS2 model): it is nothing else but two copies of slices of
AdS5 spaces glued together at the Planck brane. This is what we need to do in the case of
orthogonally intersecting 4-branes as well: we need to take four “quarters” (or quadrangles)
of the AdS6 space and glue them together at the branes (of course in the general case of
intersecting 2 + n branes one needs to glue 2n copies). One quadrangle can just be given
by the usual AdS6 metric. An AdS6 metric is exactly the same form as the AdS5 metric in
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the conformally flat coordinates:

ds2 =
1

(kz + 1)2

[

dxµdxνηµν − dy2 − dz2
]

, (4.58)

where we can bring this metric by the coordinate redefinition z = (z1 + z2)/
√

2, y =
(z1 − z2)/

√
2 to

ds2 =
1

(k(z1 + z2) + 1)2

[

dxµdxνηµν − dz2
1 − dz2

2

]

. (4.59)

A simple way of patching these solutions together at two four-branes is by the metric

ds2 =
1

(k(|z1| + |z2|) + 1)2

[

dxµdxνηµν − dz2
1 − dz2

2

]

. (4.60)

This metric will be the same AdS6 metric in all four quadrangles, and continuous at the
intersections. Generically for the intersection of n branes in 4 + n space-time dimensions
the metric can be written as

ds2 = Ω2(z)(dxMdxNηMN), Ω(z) =
1

(k
∑n

i=1 |zi| + 1)
. (4.61)

To find out what the relation of the tensions of the intersecting branes to the bulk cosmo-
logical constant is we need to find the Einstein tensor for the above metric. One can again
use the formula for a conformally flat metric that gives the Einstein tensor:

GMN = (n + 2)
[

∇̃M log Ω∇̃N log Ω − ∇̃M∇̃N log Ω + g̃MN(∇̃R∇̃R log Ω+

n + 1

2
∇̃R log Ω∇̃R log Ω)

]

, (4.62)

55



and we find that

GM
N =

n(n + 2)(n + 3)

2
k2δM

N − 2(n + 2)k

Ω
δ(z1)
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. (4.63)

This needs to be equated with the energy momentum tensor from the bulk cosmological
constant, which exactly matches the first term, and the brane tensions on the intersecting
branes exactly have to match the individual subleading terms. From these we get matching
relations analogous to that of the 5D RS model:

n(n + 2)(n + 3)

2
k2 = Λκ2

4+n, 2(n + 2)k = V κ2
4+n, (4.64)

where Λ is the 4 + n dimensional bulk cosmological constant, while V is the (common)
brane tension. One can again find the perturbed Einstein equation for the graviton, the
result is given by:

[

−1

2
∇2

z +
n(n + 2)(n + 4)k2

8
Ω2 − (n + 2)kΩ

2

∑

j

δ(zj)

]

Ψ =
1

2
m2Ψ. (4.65)

One can again show [62] that there is a single bound state zero mode solution to this

equation, and its wave function is proportional to Ω
n+2

2 . The zero mode is localized to the
intersection of the branes. The relevant length scale for gravity is again the AdS curvature
scale L ∼ k−1, where this is given by k2 ∼ Λκ2

4+n ∼ Λ/M2+n
∗ , where κ4+n is the 4 + n

dimensional Newton constant, while M∗ as always is the 4 + n dimensional Planck scale.
Therefore

L ∼
(

M2+n
∗
Λ

)
1
2

, (4.66)
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Figure 5: Intersecting branes in the RS model.

and so we get a relation between the AdS length, the 4 + n D Planck scale and the 4D
Planck scale of the form [62]

M2+n
∗ Ln = M2

P l. (4.67)

For scales much larger than L gravity will behave like ordinary 4D gravity, while for dis-
tances smaller than that scale gravity will behave as 4 + n dimensional gravity. (4.67)
implies that the scale L is analogous to the real radius of compact flat extra dimensions.
Thus one can try to solve the hierarchy problem in the presence of infinite extra dimensions
by lowering the fundamental Planck scale M∗ down to a TeV, which would of course also
imply that the brane tensions and the bulk cosmological constants would be themselves
much smaller than M∗.

One can go further with the intersecting brane picture, and consider brane junc-
tions [63] – that is semi-infinite co-dimension one branes ending at the same point, the
brane junction (see Fig. 5). One can show, that such static junctions may exist only, if the
total force from the tensions acting on the junction vanishes:

∑

i

~Vi = 0. (4.68)

In that case there will be a single remaining fine tuning relation between the bulk cosmo-
logical constant and the brane tensions, equivalent to the vanishing of the 4D cosmological
constant. For more details see [63].
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4.3.2 The hierarchy problem in the infinite RS case

Finally, one may ask whether a solution to the hierarchy problem really necessitates the
compactification as discussed at the beginning of this lecture. One possible way to avoid
this we have seen above, where we simply lower the fundamental Planck scale M∗ down
to the TeV as in the large extra dimension scenarios. However, this would then raise the
issue of why the AdS curvature L is so large compared to its natural value. However, one
could just live in the infinite extra dimensional scenario on a brane (that has a very small
tension) away from the Planck brane [64]. Due to the small curvature gravity would not be
much affected, and due to the large warp factor one would still get that the particle physics
scales on this brane would be warped down to an exponentially small scale. But would we
still get 4D gravity on this brane? The corrections to Newton’s law would be given by the
form

V (r) = GN
M1M2

r

(

1 +

∫ ∞

0

dm
e−mr

r

(

Ψm(z0)

Ψ0(z0)

)2
)

. (4.69)

The important point is that it is the local ratio of the KK amplitudes vs. the zero mode
that will appear in this expression. One can show that this ratio is still scaling the same
way as at the Planck brane

Ψm(z0)

Ψ0(z0)
=

Ψm(0)

Ψ0(0)
∼ m

1
2 , (4.70)

for small values of m. Thus the corrections to Newton’s potential will be similarly negligible
far away from the Planck brane as on the Planck brane. Thus the conclusion is that one
really does not need to compactify, one can recover 4D gravity and solve the hierarchy
problem. In fact, one can show without too much calculation that this indeed needs to be
the case: the zero mode contribution gives a potential of the form k/(M3

∗ r), while the KK
modes at worst would give 1/(M3

∗ r2). For relatively large values of r the second term is
always suppressed compared to the first and gravity will have to look four dimensional.

5 Phenomenology of Warped Extra Dimensions

This lecture will cover some important topics about further developments in the RS model,
and warped spaces in general.

5.1 The graviton spectrum and coupling in RS1

The first issue that we would like to discuss is what the phenomenology of the graviton KK
modes would be in the RS model with two branes, which is often also referred to as the
RS1 model. We have already seen that the graviton fluctuations obey the Schrödinger-type
equation

−∂2
zΨ + (

9

16
A′2 − 3

4
A′′)Ψ = m2Ψ, (5.1)
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where hµν = e3A/4ĥµν(x)Ψ(z), where the ĥµν(x) are the 4D modes that satisfy ĥµν =

m2ĥµν . For the RS background A = 2 log(k|z|+ 1). Until now we have not discussed much
what the BC of these equations should be, since we were imagining them in the infinite
RS2 case. For the case with finite branes we need to find the appropriate set of BC’s, which
can be read off from the fact that we imposed an orbifold projection y → −y, under which
the graviton was symmetric. Therefore, in y coordinates ∂yhµν = 0 at the two fixed points,
from which it follows that also ∂zhµν = 0. Since the graviton can be recovered from the

Schrödinger frame wave function Ψ(z) as hµν = e3A/4ĥµν(x)Ψ(z), and A = 2 log(k|z| + 1)
we can translate the BC on hµν to a BC on Ψ:

∂zΨ = −3

2
kΨ|z=0

∂zΨ = −3

2

k

k|z1| + 1
Ψ|z=z1, (5.2)

where z1 is the location of the second fixed point (with negative tension) in the z coordi-
nates, z1 = ekb/k. The equation between the two boundaries for the RS case is

−∂2
zΨ +

15

4

k2

(kz + 1)2
Ψ = m2Ψ. (5.3)

Generically, the solution of this equation is given in terms of Bessel functions:

Ψ(z) = am(kz + 1)
1
2 Y2(m(z + 1/k)) + bm(kz + 1)

1
2 J2(m(z + 1/k)). (5.4)

The two boundary conditions will completely determine the masses of the KK tower m’s,
where the nth solution is given by

m(n) = kxne
−kb = O(TeV ), J1(xn) = 0, (5.5)

where b is the distance between the two branes. Thus the spacing of the graviton zero
modes is of order TeV, and not of order MP l as one would have naively suspected from the
fact that the proper length of the extra dimension is of order 1/MP l. The fact that the
KK modes are spaced by TeV suggests that it is better to think of this model with extra
dimension of size 1/TeV, that is a relatively large extra dimension, rather than a really
small one. The answer to any physical observable will convey this impression. For example,
if one were to ask how long it takes for light to bounce back and fourth between the two
branes, the time we get will be of order 1/TeV due to the warping, much longer than the
naively expected 1/MP l.

Let us now ask how one would detect these KK graviton resonances if one were to live
on the TeV brane (the negative tension brane, where the hierarchy problem is resolved).
Ordinarily one would think that these states will be completely unobservable, since they
are relatively heavy (of order TeV), and only gravitationally coupled. However, our naive
intuition fails us again! The point is that even though these KK modes are indeed gravi-
tationally coupled, since they are repelled from the Planck brane by the tunneling through

59



the volcano potential, their wave function must be exponentially peaked on the TeV brane.
Therefore their couplings will also be exponentially enhanced to matter on the TeV brane
(compared to gravitational strength coupling). Thus the picture that emerges is the fol-
lowing: on the TeV brane one has the graviton zero mode, that is peaked on the other
brane therefore its coupling to TeV brane matter is weak (this is what sets the scale of
gravitational coupling), and one also has the KK modes of the graviton whose masses are
of order TeV, but their couplings are enhanced to 1/TeV rather than 1/MP l on the TeV
brane:

LTeV = − 1

MP l
T αβh

(0)
αβ − 1

MP le−kb
T αβ

∞
∑

n=1

h
(n)
αβ . (5.6)

The detailed coefficients in the equation above have been worked out in [65], but by now
none of the features of this coupling are surprising: the graviton modes couple to the
stress-energy tensor of matter on the TeV brane, and the scales of coupling come from the
consideration of the wave functions of the zero and KK modes as discussed above.

This implies that in TeV scale colliders such as the LHC will be (and already at
the Tevatron) one could study these KK modes as individual resonances in the scattering
cross section. Some of these cross-sections have been worked out in detail by Davoudiasl,
Hewett and Rizzo in [65]. Some sample cross sections in the presence of the KK resonances
for the LHC and a linear collider calculated in [65] are given in Fig. 6. Note, that the
phenomenology of the RS model is very different from that of large extra dimensions.
In the case of large extra dimensions the spacing of the KK modes is very small, in the
extreme case of 2 large extra dimensions of order 10−3 eV. This is tiny enough to allow
energetics to produce it in all colliders, however since the couplings of the individual modes
is extremely small, of gravitational strength 1/MP l one can certainly not see the individual
modes. Their collective effects will be visible as a raise in cross sections at the LHC or the
Tevatron. However, for RS as we discussed the individual KK modes are much heavier and
much more strongly coupled, leading to well-defined resonances in high energy scatterings.

5.2 Radius stabilization

Until now we have treated the radius of the RS1 model as a fixed given constant, and found
that radius r (which we have denoted b until now) has to be r ∼ 30/k in order for the
hierarchy problem to be resolved (since Mweak ∼ 10−16MP l, from which rk ∼ log 1016 ∼ 30).
This raises several important questions, that need to be addressed:

• Since the radius is not dynamically fixed at the moment, but rather just set to its
desirable value, there will be a corresponding massless scalar field in the effective
theory, which corresponds to the fluctuations of the radius of the extra dimensions,
called the radion [66–69]. One can understand the masslessness of this field by real-
izing, that the RS solution discussed until now did not make any reference to the size
of the extra dimension, it was a solution for arbitrary values. This means that in the
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Figure 6: Scattering cross section for e+e− → µ+µ− at a linear collider in the presence
of the tower of Randall-Sundrum KK gravitons, as calculated and plotted by Davoudiasl,
Hewett and Rizzo [65]. The mass of the first KK resonance is fixed to be 600 GeV, and the
various curves correspond to different values of k/MP l = 1, 0.7, 0.5, 0.3, 0.2, 0.1 from top to
bottom. For details and LHC processes see the original paper [65].

effective theory this parameter is also arbitrary, and thus has no potential, and so is
a flat direction. Thus it can have no mass. This massless radion would contribute
to Newton’s law and result in violations of the equivalence principle (would cause a
fifth force), which is phenomenologically unacceptable, and therefore it does need to
obtain a mass – the radius has to be stabilized.

• The radius has to be stabilized at values somewhat larger than its natural value (we
need kr ∼ 30, while one would expect r ∼ 1/k). Does this reintroduce the hierarchy
problem?

• We have seen that one needed two fine tunings to obtain the static RS solution, one
of which was equivalent to the vanishing of the 4D cosmological constant, and is thus
expected. But can we shed light on what the nature of the second fine tuning is and
whether we can eliminate it somehow?

A mechanism for radius stabilization will address all the above mentioned issues. The
simplest and most elegant solution for stabilization of the size of the extra dimension
was proposed by Goldberger and Wise [66], and is known as the Goldberger-Wise (GW)
mechanism. Here we will discuss the details of this mechanism and its effect on the radion
mass and radion physics, however before plunging into the details and the formalism let
us first summarize the main idea behind the GW mechanism. Radius stabilization at non-
trivial values of the radius usually occurs dynamically, if there are different forces, some of
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which would like to drive the extra dimension very large, and some very small. Then there
is a hope that these forces may balance each other at some value and a stable non-trivial
minimum for the radius could be found. A possible way to find such a tension between
large and small radii is if there is a tension between a kinetic and a potential term, one
which would want derivatives to be small (and thus large radii) and the other which would
want small radii to minimize the potential. The proposal of Goldberger and Wise was
to use exactly this scenario. Introduce a bulk scalar field into the RS model, and add
a bulk mass term to this field. This will result in a non-trivial potential for the radius,
since due to the bulk mass the radius wants to be as small as possible. However, if we
somehow achieve that there is also a non-trivial profile (a VEV that is changing with the
extra dimensional coordinate) for this scalar, then the kinetic term would want the radius
to be as large as possible, so as to minimize the kinetic energy in the 5th direction. Then
there would be a non-trivial minimum. To achieve the non-trivial profile for this scalar
field GW suggested to add brane potentials for this scalar on both fixed points, which have
minima at different values from each other. Then one is guaranteed the non-trivial profile,
and thus radius stabilization as well. The main question is not whether this mechanism
works, it is intuitively clear that it should, but rather whether one can naturally achieve
the somewhat large radius using this mechanism without fine tuning, and if yes what will
be the characteristic mass of the radion.

To describe the GW mechanism in some detail one needs to set up some formalism
for theories with extra scalar fields in the bulk. The reason is that as we will see the
back-reaction of the metric to the presence of the scalar field in the bulk will be important,
therefore it would be very nice to simultaneously solve the Einstein and the bulk scalar
equations, to have the back-reaction exactly under control. One can get away without such
an exact solution either by just calculating a 4D effective potential for the radion [66, 67],
or by calculating the back-reaction order-by-order. However, with some formalism we will
be able to solve the coupled equations exactly for certain scalar potentials, and therefore
we will discuss the issue of radius stabilization using this approach [56, 57, 70, 71]. Denote
the scalar field in the bulk by Φ, and consider the action

∫

d5x
√

g

[

−M3
∗R + +

1

2
(∇Φ)2 − V (Φ)

]

−
∫

d4x
√

g4λP (Φ) −
∫

d4x
√

g4λT (Φ), (5.7)

where the first term is the usual 5D Einstein-Hilbert action and the bulk action for the
scalar field, while the next two terms are the brane induced potentials for the scalar field
on the Planck (P) and on the TeV (T) branes. We will denote the 5D Newton constant
as always by κ2 = 1/2M3

∗ , and look for an ansatz of the background metric again of the
generic form as in the RS case to maintain 4D Lorentz invariance:

ds2 = e−2A(y)ηµνdxµdxν − dy2. (5.8)

The Einstein equations are exactly as we have derived for the RS case, except here we have
an energy-momentum tensor that is derived from the action of the scalar field. So everyone
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should be able to derive the following equations on their own using the tools presented
until now:

4A′2 − A′′ = −2κ2

3
V (Φ0) −

κ2

3

∑

i=P,T

λi(Φ0)δ(y − yi)

A′2 =
κ2

12
Φ′2

0 − κ2

6
V (Φ0). (5.9)

The first equation is the i, j component of the Einstein equations, while the second one is
the 5, 5 component. Φ0 denotes the solution of the scalar field, which (by the requirement
of Lorentz invariance) is assumed to be only a function of y: Φ = Φ0(y). In addition to
these two equations that we are already used there will be another one determining the
shape of the scalar field in the bulk, and it is simply the bulk scalar equation of motion in
the warped space, derived from the generic scalar equation

∂µ
√

ggµν∂νΦ =
∂V

∂Φ

√
g. (5.10)

By the substituting the scalar and metric ansatz into this equation we get

Φ′′
0 − 4A′Φ′

0 =
∂V

∂Φ0
+
∑

i

∂λi(Φ0)

∂Φ
δ(y − yi). (5.11)

We can separate these equations into the bulk equations that do not contain the delta
functions, and the boundary conditions which will be obtained by matching the coefficients
of the delta functions at the fixed points. For example, the first Einstein equation contains
the explicit delta function term −κ2

3

∑

i=P,T λi(Φ0)δ(y−yi) at the branes which naively does
not seem to be balanced by anything. However, there is no requirement for the derivative
of the metric to be continuous (the metric itself is a physical quantity which should be
continuous), and so there could be a jump in the derivative A′ at the branes, which would
imply that A′′ also contains a term proportional to a delta function. If the derivative A′

jumps from A′(0 − ǫ) to A′(0 + ǫ), this implies that locally A′ contains a term of the form
(A′(0 + ǫ) − A′(0 − ǫ))θ(y), where θ(y) is the step function. Therefore, A′′ will contain
the term (A′(0 + ǫ) − A′(0 − ǫ))δ(y), thus the delta function is proportional to the jump

of the derivative of A, sometimes denoted by [A′]0 ≡ A′(0 + ǫ) − A′(0 − ǫ). Therefore, the
boundary conditions derived this way are sometimes also called the jump equations, which
in our case will be given by

[A′]i =
κ2

3
λi(Φ0),

[Φ′
0]i =

∂λi(Φ0)

∂Φ
. (5.12)

The bulk equations (5.9-5.11) together with these boundary conditions form the equations
of the coupled gravity-scalar system. These are coupled second order differential equations,
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which are quite hard to solve. However, for specific potentials it is possible to simplify the
solution. Let us assume that we have found a solution to the system of equations above
given by A(y), Φ0(y). We can define the function W (Φ) via the equations

A′ ≡ κ2

6
W (Φ0),

Φ′
0 ≡

1

2

∂W

∂Φ
. (5.13)

If we plug in these expressions for A′ and Φ′
0 into the Einstein and scalar equations we will

find that all equations are satisfied, if the following consistency condition holds:

V (Φ) =
1

8

(

∂W

∂Φ

)2

− κ2

6
W (Φ)2, (5.14)

and the jump conditions are given by

1

2
[W (Φ0)]i = λi(Φ0),

1

2
[
∂W

∂Φ
]i =

∂λi(Φ0)

∂Φ
. (5.15)

If W were given we would reduce the equations from coupled second order differential
equations to ordinary first order equations that are quite easy to solve. The price to pay is
that it is very hard to find W for a given V (Φ): one needs to solve a non-linear second order
differential equation (5.14) to find the “superpotential” W . However, if our goal is not to
solve the equations for a very particular bulk potential V (Φ), but rather a bulk potential
which has some properties, we can simply start with a superpotential W that will produce
a V with the required properties, and we will be able to easily get the full solution of the
equations. In our case we would like the bulk potential to include a cosmological constant
term (independent of Φ) and a mass term (quadratic in Φ), but we will not care if there
are some other terms as well if those make solving the equations simpler. So we choose [57]

W (Φ) =
6k

κ2
− uΦ2. (5.16)

The first term is just what one needs for a cosmological constant, while the second term will
provide the mass term when taking the derivative. Let us first discuss the jump conditions.
Since the metric is an even function of y, if we try to solve the equations on the S1/Z2

orbifold again as in the RS case A(y) must also be an even function, and therefore A′ is
odd. However, one the equations we have above is that A′ ∼ W , which means that W must
be an odd function at the branes, it must change signs. To satisfy the jump conditions
(5.15) I must choose the brane potentials to be of the form

λ(Φ)± = ±W (Φ±) ± W ′(Φ±)(Φ − Φ±) + γ±(Φ − Φ±)2, (5.17)
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where Φ± are the values of the scalar field at the two branes, which we will also denote by
Φ+ = ΦP at the Planck brane, and Φ− = ΦT at the TeV brane. Then the solution will be
given by the solution of the equation

Φ′ =
1

2

∂W

∂Φ
= −uΦ, (5.18)

which is simply
Φ0(y) = ΦP e−uy. (5.19)

From this the value of the scalar field at the TeV brane is determined to be

ΦT = ΦP e−vr. (5.20)

This means that the radius is no longer arbitrary, but given by

r =
1

u
ln

ΦP

ΦT
. (5.21)

The value of the radius is determined by the equations of motion, which is exactly what
we were after. This is the GW mechanism. The metric background will then be obtained
from the equation

A′ =
κ2

6
W (Φ0) = k − uκ2

6
Φ2

P e−2uy (5.22)

given by the solution

A(y) = ky +
κ2Φ2

P

12
e−2uy. (5.23)

The first term is the usual RS warp factor (remember that A has to be exponentiated to
obtain the metric), while the second term is the back-reaction of the metric to the non-
vanishing scalar field in the bulk. We will assume that the back-reaction is small, and thus
that κ2Φ2

P , κ2Φ2
T ≪ 1, and that v > 0. The values of ΦP and ΦT are determined by the

bulk and brane potentials, so ΦP /ΦT is a fixed value. Since we want to generate the right
hierarchy between the Planck and weak scales we need to ensure that

kr ∼ 30, (5.24)

from which we get that
k

u
ln

(

ΦP

ΦT

)

∼ 30, (5.25)

which implies that u/k is somewhat small (but not exponentially small). This is the ratio
that will set the hierarchy in the RS model, and we can see that indeed one can generate
this hierarchy using the GW stabilization mechanism by a very modest (O(50)) tuning of
the input parameters of the theory.

Once we have established the mechanism for radius stabilization, we know that the
radion is no longer massless. The next obvious question then is what will be the value
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of the radion mass: is it naturally sufficiently large to avoid the problems mentioned at
the beginning of this section or not? We will answer this question by finding what the
radion mode is in the GW stabilized RS model, and explicitly find its mass [71, 72], see
also [67,68,73]. For this, we need to find the scalar fluctuations of the coupled gravity-scalar
system. This can be parametrized in the following way:

ds2 = e−2A−2F (x,y)ηµνdxµdxν − (1 + G(x, y))2dy2,

Φ(x, y) = Φ0(y) + ϕ(x, y). (5.26)

At this moment it looks like there would be three different scalar fluctuations, F, G and
ϕ. However, if we plug this ansatz into the Einstein equation the 4D off-diagonal µν
components are satisfied only if

G = 2F, (5.27)

while the µ5 components imply the following further relation among the fluctuations:

ϕ =
1

Φ′
0

3

κ2
(F ′ − 2A′F ). (5.28)

This means, that in the end there is just a single independent scalar fluctuation in the
coupled equation, which we can choose to be F . Requiring the above two relations we find
that the rest of the Einstein equations are all satisfied if the following equation holds:

F ′′ − 2A′F ′ − 4A′′F − 2
Φ′′

0

Φ′
0

F ′ + 4A′Φ
′′
0

Φ′
0

F = e2A
�F (5.29)

in the bulk and the following boundary condition:

(F ′ − 2A′F )i = 0. (5.30)

Let us first assume that there is no stabilization mechanism, that is the background is
exactly the RS background given by A = k|y|, and Φ0 = 0. In this case most of the terms
in the above equation disappear, and we are left with

F ′ − 2kF = e2kym2F, (F ′ − 2kF )i = 0. (5.31)

We can see that the only solution is for m2 = 0, and the wave function of the un-stabilized
radion will be given by

F (y) = e2k|y|. (5.32)

This wave-function has been first found by Charmousis, Gregory and Rubakov, and thus
the metric corresponding to radion fluctuations in the RS model corresponds to

ds2 = e−2k|y|−2ek|y|f(x)ηµνdxµdxν − (1 + 2e2k|y|f(x))dy2. (5.33)

This is a single scalar mode, that is exponentially peaked at the TeV brane, just like all the
graviton KK modes. Since it is peaked on the TeV brane, it means that its coupling on the
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Planck brane will be strongly suppressed, while it will be of its natural size (suppressed by
1/TeV) on the TeV brane. The exponential peaking on the TeV brane also implies, that if
we move the TeV brane to infinity (that is consider the RS2 model) then the radion will
no longer be a normalizable mode and completely decouples from the theory. This implies
that in that case one is really recovering 4D gravity with just the tensor couplings on the
Planck brane in RS2.

Generically, for the RS1 case we now have a complete set of modes (the radion mode
is the one that is missing if we are imposing the RS gauge choice): without stabilization
at the zero mode level there is a graviton and a radion mode (which does not have a KK
tower), while at the massive level there are the graviton KK modes only. In the presence
of the GW stabilization the scalar mode will acquire a KK tower: the lowest mass mode of
this tower will behave like the radion, while the higher mass modes will be identified with
what used to be the KK tower of the GW bulk scalar.

To find the radion mass for the case with stabilization, we simply need to plug into
(5.29) the full background for A and Φ0 with stabilization:

F ′′ − 2A′F ′ − 4A′′F + 2uF ′ − 4uA′F + m2e2AF = 0. (5.34)

We can see that if the back-reaction of the metric was neglected (A′′ = 0) we would still
not get a mass for the radion zero mode. Thus to find the leading term for the radion mass
we expand in terms of the back-reaction of the metric in the parameter l = κΦP /

√
2, and

obtain the mass of the radion

m2
radion =

4l2(2k + u)u2

3k
e−2(u+k)r. (5.35)

As a reminder, the mass of the graviton KK modes is of the order

mgraviton ∼ ke−kr, (5.36)

and so the radion/graviton mass ratio is

m2
radion

m2
graviton

∼ l2
u2

k2
e−2ur. (5.37)

Thus we can see that the radion mass is smaller than the graviton mass, and the radion
would be likely the lightest new particle in the RS1 model. The other scalar KK modes
that originate mostly from the GW bulk scalar will have masses of the same order as the
graviton.

In order to find the coupling of the radion to SM matter fields on the TeV brane we need
to find the canonically normalized radion field. The wave function (not yet normalized) is
of the form

F (x, y) = e2k|y|(1 + corrections)R(x), (5.38)
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where the correction terms above are suppressed by the back-reaction, and since these are
not the leading terms we can neglect them. R(x) is the 4D radion field. The induced metric
will be

gind
µν = e−2Aηµν(1 − 2F (x, y)). (5.39)

The coupling to matter on the TeV brane will be as usually given by Tµνg
µν, which will

result in a coupling of the form T µ
µ R(x). The question is what will be the coefficient in

front of this coupling be? Once we go to the canonically normalized radion field r(x) we
find (after calculating the normalization of the kinetic term for the radion) that the radion
coupling is given by

1√
6MP le−kr

r(x)Tr T. (5.40)

Thus the coupling is suppressed by the TeV scale just like for the graviton KK modes,
except the masses are somewhat smaller. One can also write this coupling in the form

v√
6Λ

r(x)

v
Tr T ≡ γ

r(x)

v
Tr T, (5.41)

where we have denoted Λ = MP le
−kr as the “TeV scale” that one obtains from the RS

hierarchy, γ = v/
√

6Λ, and v is the usual Higgs VEV v = 246 GeV. This coupling is
exactly equivalent to the coupling of the SM Higgs boson. The reason is that both the
radion and the Higgs will couple to the mass terms in the Lagrangian, the Higgs via H/v,
the radion via r/v, the only difference is the extra suppression factor γ in the strength of
the radion coupling. Thus the phenomenology of the radion would be very similar to that
of the SM Higgs boson.

There is one more important possibility for the physics of the radion. There could
be a brane induced operator on the TeV brane mixing the radion and the SM Higgs field
H [74]:

∫

d4xξH†HR(gind)
√

gind. (5.42)

Using our master-formula (4.5) for calculating curvature tensors for conformally flat metrics
we get

R(Ω2(r)ηµν) = −6Ω−2(� ln Ω + (∇ lnΩ)2). (5.43)

The interaction term will then be given by

Lξ = −6ξΩ2(� ln Ω + (∇ ln Ω)2)H†H. (5.44)

Expanding both the Higgs H and the warp factor Ω in the uneaten physical Higgs and the
radion respectively

H =

(

0
v+h√

2

)

, Ω(r) = 1 − γ
r

v
+ . . . (5.45)

we get
Lξ = 6ξγh�r + 3ξγ2(∂r)2. (5.46)
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Thus there will be kinetic mixing induced between the Higgs and the radion fields. One
needs to diagonalize the full quadratic Lagrangian

L = −1

2
h�h − 1

2
m2

hh
2 − 1

2
(1 + 6ξγ2)r�r − 1

2
m2

rr
2 + 6ξγh�r. (5.47)

After the diagonalization, we find that not only is the coupling of the radions affected, but
the couplings of the SM Higgs will also be modified from their SM expressions, and thus
the radion-Higgs mixing could significantly affect ordinary Higgs physics as well [71, 75].

5.3 Localization of scalars and quasi-localization

We have seen in previous sections that the zero mode graviton is strongly peaked at the
Planck brane, that is gravity is localized by the RS background. An important question
to discuss is whether fields with spins other than 2 would also be localized or not. In the
following we will discuss two examples of that: a bulk scalar field and a bulk gauge field.
We will not discuss the issue of bulk fermions, the reader is referred to references [76–81]
for that case.

We will start by (again) considering a bulk scalar field (see for example [78, 82]. We
have already discussed the equation of motion for the bulk scalar, in the absence of a bulk
potential it is given by

∂M(
√

ggMN∂NΦ) = 0. (5.48)

If we are interested in whether or not a zero mode exists, we simply have to assume that
the 4D derivative on Φ vanishes, so the equation that a zero mode has to satisfy is

∂ye
−4ky∂yΦ = 0. (5.49)

The solution to this is simply Φ = const. = Φ0. However, this is not enough. We need to
figure out whether or not this mode is normalizable in the limit when the extra dimension
becomes infinitely large (that is we want to find out if the effective 4D kinetic term remains
normalizable or not). We write the zero mode as Φ = Φ0ϕ(x), where ϕ is the 4D wave
function for a massless 4D mode �4ϕ = 0. The normalization of the kinetic term then
comes from

∫ √
g∂µΦ∂νΦgµνdyd4x =

∫

e−4kye2kyΦ2
0dy

∫

∂µϕ∂νϕηµνd4x. (5.50)

We can see that the y-integral converges even when the extra dimension is infinitely large,
so this means that the scalar field is localized in the RS background, even though in y
coordinates its wave function is constant (if we went to the z coordinates we would of
course find a wave function peaked at the Planck brane). However, this analysis was done
in the absence of a mass term (or bulk potential in general), which is quite unnatural for a
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scalar field. Let us ask how the solutions will be modified if there is a bulk potential (and
still keep the extra dimension infinitely large). The equation of motion will now be

∂M(
√

ggMN∂NΦ) =
√

g
∂V

∂Φ
. (5.51)

Clearly, there will be no more zero mode solution. In order to find out what happened to
the zero mode, we need to consider the full continuum spectrum [83]. The scalar equation
for a 4D mode with 4D momentum p in the presence of a bulk mass term m2Φ2 in the bulk
potential will be:

∂2
yΦ − 4kΦ′ + p2e2kyΦ − m2Φ = 0. (5.52)

As we mentioned before, p2 = 0 is not a solution to this equation, there is no zero mode.
Naively we would have thought that the zero mode just picks up a mass from the bulk mass
term and will sit at p2 = m2, but p2 = m2 is not a solution to the bulk equations either.
So now we might be really puzzled what happened to our zero mode. The continuum
spectrum can be determined at large y, where the extra m2 term from the bulk mass is
unimportant. Thus the continuum spectrum will be unchanged compared to the m2 = 0
spectrum, except the wave functions will be distorted for small y. The general solution to
the equation above will be in terms of Hankel functions,

Φ(y) = const · e2kyH(1)
ν (

p

k
eky), ν =

√

4 +
m2

k2
. (5.53)

Since we have not included a source on the Planck brane the Z2 symmetry will imply that
the BC (jump equation) at the Planck brane will just be ∂yΦ|y=0 = 0. This implies that

pH
(1)
ν−1(

p
k
)

kH
(1)
ν ( p

k
)

+ 2 − ν = 0. (5.54)

The solution to this equation for small values of the bulk mass m is

p = m0 − iΓ, m2
0 =

m2

2
,

Γ

m0

=
π

16

(m0

k

)2

. (5.55)

Thus what we find is that rather than having a single localized mode with mass m, the mass
will be shifted to m0, and pick up an imaginary part. This implies that a discrete mode
with a finite lifetime will exist. We call this mode a quasi-localized mode for the following
reason: if the lifetime is sufficiently long, then this mode for relatively short times will
behave like an ordinary localized 4D mode. However, after some long times it will decay
into some continuum bulk KK modes due to its finite lifetime. This mode can also be
interpreted as a resonance in the continuum KK spectrum, rather than an individual mode
with complex mass. This interpretation could be understood by calculating the effective
volcano-type potential for this system. What we find is that the tunneling out amplitude
for the mode trapped in the volcano will now be finite, and therefore it will have a finite
width and lifetime.
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Either way the result is the same: for short times one has an effectively localized
4D particles, which however decays into the bulk after a long time. If this field were to
carry bulk gauge charges, then it would lead to apparent non-conservation of this charge
from the 4D observers point of view, even though of course there is no real violation of
charge conservation in the full 5D theory once the continuum KK modes are also taken
into account (which are however suppressed on the brane). This case is merely the simplest
example of quasi-localization in an infinite volume space-time. Several attempts have been
made to construct a viable quasi-localized model for gravity, which would be very exciting,
since that would tell that the graviton would not strictly be massless, and have a finite
width. The examples include the GRS model [84], and the DGP modes [85]. However, none
of them are quite satisfactory, either since there is an inherent instability in the spectrum,
or because 4D gravity is not reproduced at large distances (the latter issue is still subject
to debate).

5.4 SM Gauge fields in the bulk of RS1

The next example we will discuss is the theory with gauge fields in the bulk [78, 86]. In
this case one has to solve Maxwell’s equation in a curved background, which is given by

∂µ(
√

ggµνgαβFνβ) = 0. (5.56)

We will choose a gauge where ∂µAµ = A5 = 0. The equation for the zero mode (similar to
the considerations for the scalar) is just given by

A′′
µ = 0. (5.57)

The solution would again be a constant wave-function along the fifth dimension, Aµ =
A0aµ(x), however in this case (contrary to the case with the bulk scalar) the wave function
is not normalizable (the kinetic term for the 4D gauge zero mode diverges), as one can see
from

∫

d5x
√

ggµνgαβFµαFνβ =

∫

dye−4kye2kye2kyA2
0

∫

d4xF (4)
µν F (4)µν . (5.58)

Due to the different power of the warp factor (which is simply due to the more indices in
the gauge field) the y integral is no longer normalizable, and thus there will be no localized
zero mode. In fact, as we will see below the zero mode wave function is flat also in the z
coordinates, and is thus not localized. One can show similarly, that bulk fermions would
also not be localized in RS2.

Nevertheless, we can consider the RS1 model with the two branes in the presence of
bulk gauge fields (and also possibly bulk fermions). However, we will assume that the
Higgs is still localized on the negative tension brane (there is good reason to do that – it
turns out that if it was in the bulk one would need extreme fine tuning in the bulk mass
parameter to lower the Higgs mass from TeV to ∼ 100 GeV). One should ask, how in this
case with Higgs on the brane and gauge fields in the bulk would electroweak symmetry
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breaking work. The Lagrangian for the gauge fields would be given by (after the Higgs on
the TeV brane gets a VEV)

∫

d4x

∫ R′

R

dz
√

G

[

−1

4
GMPGNQ

(

1

g2
5

W a
MNW a

PQ +
1

g′
5
2 BMNBPQ

)

+

v2

8

δ(z − R′)√
G55

GMP (W 1
MW 1

P + W 2
MW 2

P + (W 3
M − B3

M)(W 3
P − B3

P ))

]

. (5.59)

Here we have used the perhaps simplest form of the RS metric:

ds2 =

(

R

z

)2

(ηµνdxµdxν − dz2), (5.60)

where R = 1/k (do not confuse this with the size of the extra dimension in proper y
coordinates), and the variable z runs between R and R′, R′/R = ekr = 1016. g5 and g′

5 are
the 5D bulk SU(2)L×U(1)Y gauge couplings.

One would actually like to calculate the gauge boson masses and check if the prediction
agrees with that of the SM [87]. If there was no Higgs VEV, we have seen that the gauge
boson would have zero modes and completely flat wave functions. However, the Higgs
VEV on the TeV brane will deform the gauge boson wave functions, and the expression for
the gauge boson masses will not be as simple as in the SM. To find the MW , MZ masses
one needs to actually solve the bulk equations in the presence of a non-trivial boundary
condition set by the brane Higgs field, and find the lowest lying eigenstates which should
be identified with the bulk gauge bosons. The bulk equation for an eigenmode is

(∂2
z − 1

z
∂z + m2 − 1

4
v2g2

5δ(z − R′)
R

R′ )Ψ(z) = 0. (5.61)

The solutions are as always Bessel functions zJ1(mz) and zY1(mz), and the BC’s are that
Ψ is flat at the Planck brane and satisfies a mixed BC depending on the Higgs VEV on the
TeV brane. The equation determining the W mass is then

J0(MW R)(4MW R′Y0(MW R′) + g2
5v

2RY1(MWR′)) =

Y0(MW R)(4MW R′J0(MW R′) + g2
5v

2RJ1(MW R′)). (5.62)

Expanding the solution of this equation in powers of R2v2 we get that

M2
W =

g2
5

R ln R′

R

R2v2

4R′2 − g4
5R

2v4R′2

32R′4 ln R′

R

+ . . . (5.63)

The term
g2
5

R ln R′

R

can be identified with the tree-level 4D gauge coupling (see next section on

AdS/CFT), and the term R2v2

R′2 = v2e−2kr is just the warped down (physical) Higgs VEV.
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Thus the first term is just the usual SM expression for the W -mass, however there is a
relatively large correction to this expression which is of order

∆M2
W

M2
W

∼ (vSMR′)2

16
ln

R′

R
. (5.64)

This on its own is not yet very meaningful, since a shift in a single mass can always be
absorbed by redefining the value of the Higgs VEV v slightly. What one needs to do is
calculate the full set of electroweak precision observables (for example the MW /MZ mass
ratio, etc) and compare those to the experimental values. This has been done in [87],
where it was found that generically all electroweak precision observables will get these type
of corrections, and can be brought in agreement with experiment only if the value of the
TeV scale 1/R′ is raised to above 10 TeV. This would be quite bad for these models, since in
a case like this both the graviton and the KK gauge boson masses would be raised to values
above those observable at the LHC. However, it has been pointed out recently in [88] that
the reason for these corrections is that custodial SU(2) of the SM is violated. They have
proposed a model based on SU(2)L × SU(2)R bulk gauge symmetry where the corrections
to electroweak precision observables can be greatly reduced and the bound on R′ relaxed
(see also the discussion in the next section).

5.5 AdS/CFT

A big advance of string theory has been recently the realization, that certain string theories
in an AdS background are completely equivalent to some 4D supersymmetric gauge theories.
In particular, Maldacena conjectured [89], that type IIB string theory on AdS5 × S5 space
is equivalent to N = 4 supersymmetric SU(N) Yang-Mills theory for large N . AdS5 × S5

is a ten dimensional space (as superstring theories live in 10 space-time dimensions), and
the AdS5 space that appears here is the full, un-truncated AdS space, for example given
by the metric (5.60) for 0 < z < ∞. This supersymmetric gauge theory is also a conformal
field theory in four dimensions. The meaning of this correspondence is that if you take any
operator O in the N = 4 SU(N) theory, there will be a field Φ in the string theory that
couples to this operator as OΦ on the boundary of the AdS space. Then all correlators in
the field theory will be related to the boundary-to-boundary propagator of this field Φ in
the AdS space. The important piece for us is the notion that the bulk of AdS5 space is
equivalent to a conformal field theory in 4D. By bulk here we really mean the KK modes
of gravity in the AdS background as discussed in the RS model. That it is the AdS and
not the 5-sphere that really gives the CFT can be seen from the fact that the conformal
symmetry group is exactly equivalent to the isometries of the AdS space.

However, in the above correspondence gravity does not appear on the 4D CFT side.
Why is that? The reason is that we have considered the full AdS space, without the Planck
and the TeV branes as in the RS model. Without these branes the graviton zero mode
will not be normalizable, and decouples from the theory. So it is not so surprising that
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the 5D gravity theory on AdS space corresponds to a 4D theory without gravity. However,
once the Planck brane is introduced, and AdS space is cut off, the zero mode will become
normalizable [90,91]. This means that gravity will be coupled to the CFT, and also due to
the appearance of a brane at high energies the CFT will have a UV cutoff determined by
the position of the Planck brane. If we were to also introduce matter on the Planck brane,
this matter would couple with order one strength to the zero mode graviton, however as we
have seen the KK modes are exponentially suppressed on the Planck brane, and therefore
will basically not couple to matter on the Planck brane. Since the KK modes represent
correspond to the CFT, this means that in the dual CFT picture the matter fields on the
Planck brane do not couple directly to the CFT, only through the fact that the graviton
zero mode couples both to the matter fields and the CFT. This picture can be checked
via a non-trivial calculation. If the above proposal is right, one should be able to predict
the form of the corrections to Newton’s law on the Planck brane due to the fact that
these corrections come from the KK modes, which should also have a prediction in terms
of a CFT. This has been done by Gubser [90], and below we will briefly summarize his
argument. In AdS/CFT language the correction to the graviton propagator is due to the
interaction with the CFT. A graviton always couples to the stress-energy tensor, so in this
case it would be gµνT

µν
CFT . The correction will be of the form

TCFT TCFT1/p2

Thus we can see that the corrections to Newton’s potential generically boil down to
calculating the two-point function of the stress-energy tensor in a CFT, 〈TT 〉CFT . In con-
formal field theories this correlator is well-know (and determined by conformal invariance).
The result is given by 〈T (x)T (0)〉 ∼ c/x8, since the dimension of the stress-energy tensor
in 4D is 4. Converting this to momentum space we get 〈T (p)T (−p)〉 = p4 log p. Thus the
Newton potential from the figure above will pick up the terms

1

p2
+

1

p2
p4 log p

1

p2
. (5.65)

Fourier-transforming back to coordinate space we get that the first term is of course 1/x2,
while the second is the Fourier transform of 1/x4, thus AdS/CFT predicts the form of the
gravitational potential on the Planck-brane to be

F ∼ Gm1m2

r2
(1 + C

1

(kr)2
). (5.66)

This is in agreement with what we have seen in (4.57).

What would be the interpretation of the negative tension (TeV) brane on the CFT
side [92,93]? Once the TeV brane is introduced, instead of the continuum spectrum of KK
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modes we will get the discrete spectrum of KK gravitons strongly peaked on the brane.
These have a well-defined mass scale, which implies that conformal invariance must have
been broken on the CFT side in the IR. Thus we may think of the RS1 scenario as an almost
conformal field theory, that very slowly runs, but suddenly becomes strongly interacting at
some scale around the TeV, spontaneously breaks the conformal invariance, confines and
produces the bound state resonances that correspond to the KK gravitons. All the modes
localized on the TeV brane should correspond to such CFT bound states, including the SM
Higgs and SM matter and gauge fields. So the RS1 model can be simply interpreted as a
CFT that becomes strongly interacting and produces the composite SM matter and Higgs
fields. The hierarchy problem is simply solved due to the compositeness of the Higgs field!

What happens if we put gauge fields in the bulk of AdS [92,93]? We have mentioned at
the beginning of this section, that N = 4 SYM corresponds to the full AdS5 ×S5 type IIB
string theory. The gauge theory has an SU(4) global symmetry, called the R-symmetry.
This global symmetry is reflected by the isometries of the S5 internal space. Since an
isometry implies gauge boson zero modes, which we can indeed find in the string theory
side. We thus conclude, that the global symmetry of the CFT corresponds to a gauge
symmetry in the bulk [92, 93]. This global symmetry may be weakly gauged, if there is a
normalizable zero mode for the bulk gauge field (as in the case of RS1). But then the CFT
modes couple directly to the gauge fields (since they are no longer on the Planck brane),
and will give direct contribution to the running of the gauge coupling. In fact, we have
seen before that the matching relation between the 4D and the 5D gauge couplings at tree
level is

g2
4 =

g2
5

R log R′/R
. (5.67)

The extra log appearing in this matching relation exactly reflects this running due to the
CFT modes first noted by Pomarol, which is a tree-level effect in the gravity side, however
a quantum loop effect on the CFT side.

The nicest interpretation of the RS1 model is when the gauge fields and fermions are
in the bulk, while the Higgs is on the brane. In this case there is a CFT that is slowly
running, the gauge and matter fields are coupled to the CFT, but are not composites. At
some scale the slow running of the CFT will suddenly turn into strong interactions breaking
the conformal symmetry, and producing a composite Higgs particle, which then breaks the
electroweak symmetry. Thus this should be interpreted as a walking technicolor model
with a composite Higgs [92]. From the AdS/CFT point of view we now also understand
why we got the large corrections to the W and Z masses: in the SM the relation of these
masses is protected by a global symmetry called custodial SU(2). However, we have seen
that if there was a global symmetry like this, we would need to see bulk gauge fields. So
the real problem is that the strong interaction (the CFT) does not obey the custodial
SU(2) symmetry. The resolution is simple [88]: simply impose this additional global SU(2)
by putting SU(2)L × SU(2)R gauge bosons in the bulk, and break the SU(2)R on the
Planck brane to eliminate its zero mode. This way custodial SU(2) will be restored and
the corrections to electroweak observables will be smaller. However, this model would still

75



correspond to a walking technicolor with a composite Higgs. One may ask, what would real
technicolor (without a Higgs) then correspond to? In that case it is the strong interactions
themselves (the appearance of the negative tension brane) which should break electroweak
symmetry, rather than a composite Higgs on the TeV brane. This means that to get real
technicolor, one needs to break electroweak symmetries by BC’s on the TeV brane. A
model for this has been recently proposed in [94], (see also [95]).

6 Epilogue

In these lectures I was trying to summarize some of the important/interesting topics in
theories with extra dimensions. These notes should be sufficient for an advanced graduate
student to get started on research in this area. However, the topics covered here are by far
not complete. Some examples of entire fields left out are brane cosmology [96, 97], higher
dimensional warped space [98], the self-tuning approach to the cosmological constant prob-
lem [52], 1/TeV size extra dimensions [99], dark matter from Kaluza-Klein modes [100],
unification in warped extra dimensions [101], black holes in the RS models [102], electroweak
symmetry breaking using the fifth component of the gauge field as a Higgs [103–105], super-
symmetric Randall-Sundrum models [77,106], deconstruction of extra dimensions [107–109],
and the list could go on and on. That the list of omitted topics is so extensive shows how
much interest there is currently in this subject. Whether any of these ideas will become
reality or remain speculation forever can only be decided by experiment. All of those in
the field hope that in ten years some of the topics listed will no longer be speculation about
the behavior of nature at high energies, but undeniable facts established by experiments at
the LHC. Until then we will happily keep on speculating...
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[94] C. Csáki, C. Grojean, L. Pilo and J. Terning, arXiv:hep-ph/0308038; Y. No-
mura, arXiv:hep-ph/0309189; R. Barbieri, A. Pomarol and R. Rattazzi,
arXiv:hep-ph/0310285.
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