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Abstract. This course is an introduction to the physics of braneworlds. We concentrate on braneworlds with only one extra-
dimension and discuss their gravity. We derive the gravitational equations on the brane from the bulk Einstein equationand
explore some limits in which they reduce to 4-dimensional Einstein gravity. We indicate how cosmological perturbations from
braneworlds are probably very different from usual cosmological perturbations and give some examples of the preliminary
results in this active field of research.
For completeness, we also present an introduction to 4-dimensional cosmological perturbation theory and, especiallyits
application to the anisotropies of the cosmic microwave background.

1. INTRODUCTION

During recent years, cosmology has become one of the most successful fields in physics. The precise measurements
of the anisotropies in the cosmic microwave background haveconfirmed a simple ’concordance model’: The Universe
is spatially flat. Its energy density is dominated by vacuum energy (or a cosmological constant) which contributes
about 70% to the expansion of the Universe,ΩΛ ≃ 0.7. The next important contribution is cold dark matter (CDM)
with ΩCDM ≃ 0.3. The expansion velocity of the Universe is given by the Hubble constantH0 = 100hkm/sMpc, with
h≃ 0.7. Baryons only contribute a small portion ofΩbh2 ≃ 0.02. Massive neutrinos contribute similarly or less.

The structures in the Universe (galaxies, clusters, voids and filaments) have formed out of small initial fluctuations
which have been generated during inflation and have an almostscale-invariant spectrum,n= 1±0.1. There is probably
also a small amount of tensor fluctuations (gravity waves) generated during inflation, which however has not yet been
detected.

All the above numbers are accurate to a few percent and will bemeasured even more precisely with ongoing and
planned experiments. This situation is unprecedented in cosmology. About twenty years ago, these numbers where
known at best within a factor of two or even only by their orderof magnitude. The concordance model is in agreement
with most cosmological data, most notably the CMB anisotropy measurements, supernova type Ia distances (see
contribution by Varun Shani), statistical analysis of the galaxy distribution, constraints from cosmic nucleosynthesis,
cluster abundance and evolution etc.

However, on a theoretical level our understanding has remained poor. We have no satisfactory answers to the
questions:

• What is dark matter ?
• What is dark energy?
• What is the ’inflaton’? Or what is, more precisely, the physics of inflation?
• How can we resolve the Big Bang and other singularities of classical general relativity?

There is justified hope that the last question could be resolved within a theory of quantum gravity, which is anyway
needed if we want to put all fundamental interactions on a common footing. At present, the most successful attempt
towards a theory of quantum gravity is string theory. This theory is based on the assumption that the ’fundamental
objects’ are not particles but one dimensional strings. Particles then manifest as excitations, proper modes, of strings.
It would lead us much too far to give an introduction to stringtheory at this point. The interested student will have to
study the two volumes of Polchinski [1].

In this course we next give an introduction to braneworlds, or, more generally, to physical effects of extra dimen-
sions. In Section 3, we derive the gravitational equations for braneworlds with one co-dimension from Einstein’s
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equations in the bulk. We then discuss in detail the Randall–Sundrum II model, its background and its perturbations.
In Section 5, we give an introduction to 4-dimensional cosmological perturbation theory and, especially to the CMB
anisotropy spectrum. Only after this we are ready for braneworld cosmology in Section 6. We write down the most
general brane cosmology in an empty bulk and we investigate some of its modifications w.r.t. 4-dimensional cosmol-
ogy. In particular, we discuss the modification of the slow roll parameters during braneworld inflation. We also present
one example of the modifications in the evolution of cosmological perturbations which are relevant in braneworlds.
We end with some conclusions.

Notation: We use capital Latin indicesA,B, · · · to denote bulk coordinates, lower case Greek indicesµ ,ν, · · · for
coordinates on a four dimensional brane, and lower case Latin indices,i, j, · · · for spatial 3-dimensional quantities.
We sometimes also use bold symbols to denote 3d spatial vectors. We use the metric signature(−,+, · · · ,+). The
4-dimensional Minkowski metric is denoted by(ηµν ).

Throughout we setc = h̄ = kBoltzmann= 1 so that time and length scales are measured in inverse energies (usually
GeV’s), and mass and temperature correspond to an energy. The four dimensional Newton constant is then given by
G4 = 0.67×10−38GeV−2. Useful relations in this set of units are 1= 0.2GeV fm and 1 eV= 1.16×104K. Here fm
= femtometer= 10−15m.

2. BASICS OF BRANEWORLDS

2.1. What are Braneworlds?

The interest of string theory lies in the fact that it may provide a unified description of gauge interactions and
gravity. Its weak point is, that it is extremely hard to make predictions from string theory which are testable at energies
available in experiments. The reason for that is that stringtheory probably fully manifests itself only at very high
energies of the order the Planck scale. The observed 4-dimensional Planck scale is given by Newton’s constant,G4. In
our units withh̄= c= 1 the Planck scale isE4 = M4 = 1/

√
4πG4≃ 3×1018GeV. This energy scale cannot be achieved

by far at terrestrial accelerators (the LHC presently underconstruction at CERN will achieve about 7000GeV).
Nevertheless, string theory makes some relatively firm predictions which might lead to observational consequences

at low energy. First of all, it predicts that spacetime is ten-dimensional with one time and nine spatial dimensions.
Since the observed world has only four dimensions, one usually assumes that the other six are compact and very small,
so that they cannot be resolved by any physical experiment available to us so far.

Furthermore, string theory predicts the existence of so called p-branes,p+ 1-dimensional sub-manifolds of the
ten dimensional spacetime on which open strings end. Gauge fields and gauge fermions which correspond to string
end points can only move along thesep-branes, while gravitons which are represented by closed strings (loops) can
propagate in the full spacetime, the ’bulk’.

This basic fact of string theory has led to the idea of braneworlds: it may be that our 3+ 1-dimensional spacetime
is such a 3-brane. If this is so, only gravity can probe the bulk and the additional dimensions can be much larger than
the smallest length scale which we have probed so far, which is of the order of(200GeV)−1 ≃ 10−18m. Actually,
Newton’s law has been tested only down to scales of about 0.1mm [2]. Hence, in the braneworld picture where only
gravity can probe the extra-dimensions, these can be as large as 0.1mm= 10−3m. In the next subsection we show how
this fact can be employed to address the hierarchy problem.

2.2. Lowering the fundamental Planck scale

The fact that the 4-dimensional Planck scale,M4 ∼ 1019GeV is so much larger than the fundamental scale in
elementary particle physics, the electroweak scaleEew ≃ 103GeV is called the hierarchy problem. Apart from it
seeming unnatural to have two so widely separated scales to describe fundamental physics, a more serious problem
is the fact that as soon as we have a unified quantum theory which describes also gravity, the scaleM4 will enter in
quantum corrections of all electroweak scale quantities which are not especially protected e.g. by symmetries and it
will therefore completely spoil the so successful low energy standard model.

Here we show that within the braneworld picture, it is possible that the 4-dimensional Planck scale is not funda-
mental but only an effective scale which can become much larger than the fundamental Planck scaleMP if the extra-
dimensions are much large thanM−1

P . Our argument goes back to Arkani-Hamed , Dimopoulos and Dvali (1998) [3].
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Let MP be the fundamental Planck scale andL the size ofn extra dimensions. In addition there are 3 large spatial
dimensions (and time). For simplicity we assume then extra-dimensions to be rolled up as a cylinder,(S1)⊗n⊗R

3.
The gravitational constantsG(n+4) andG4 are defined by the force laws of gravity. Due to the Gauss constraint these
must have the forms

F(n+4) = G(n+4)
m1m2

rn+2 , and F4 = G4
m1m2

r2 .

d

r

FIGURE 1. A 1+1 dimensional cylinder around a 1-dimensional grid of mass points, corresponding to the de-compactification
of a mass point on a circle.

On small scales,r ≪ L, an observer on the brane seesn+4 dimensional gravity, while on large scales,r ≫ L, the
cylinder can no longer be resolved and simple 4 dimensional gravity is observed. In order to relate the constantsG4
andG(n+4), we de-compactify the compact dimensions leading to an n-dimensional lattice of masses which looks from
far like a hypersurface of mass densitym/Ln (see Fig. 1). Around the mass distribution, we now form a cylinderC of
dimensionn+2, lengthd and radiusr (see Fig. 1). To satisfy Gauss’ law, we require

∫

C
F⊥dσ = S(2+n)G(4+n)× (mass inC).

Here, F⊥ is the component of the force normal to the surface andSj is the volume of aj dimensional sphere,
Sj = 2π ( j+1)/2/Γ([ j + 1]/2), whereΓ denotes the Gamma-function,Γ([ j + 1]/2) = ([ j − 1]/2)! for integer values
of ( j +1)/2.

The first integral is 4πr2dnF(r) while the mass inside the cylinder ismdn/Ln. With the 4-dimensional force law this
implies

G4 =
S(2+n)

4π
G(4+n)

Ln . (1)

In order to relate the gravitational constant to the Planck mass, we express Newtonian gravity in terms of an action
principle. For a static weak gravitational fieldφ and a mass densityρ in 4+n dimensions, we can obtain the Poisson
equation by varying the action

I =

∫
d(3+n)x

[
M(2+n)

P

2
φ∇2

(3+n)φ + ρ (4+n)φ + ...

]
.

Integrating outφ , we obtain again the Newtonian force law and the relation

M(2+n)
P =

G−1
(4+n)

S(2+n)
. (2)

Integrating the Lagrangian over the extra dimensions relates the 4- and 4+n-dimensional Planck masses by

M2
4 = M(2+n)

P Ln .

Together with Eq. (2) this reproduces the result (1). For a sufficiently large length scaleL, M4 ≃ 3× 1018GeV can
therefore be much larger than the fundamental higher dimensional Planck scaleMP.

Experimental ’micro-gravity’ bounds [2] requireL < 0.1mm. Forn= 2 andL ∼ 1mm the fundamental Planck scale
can be of the order of the electroweak scale,MP ∼ (1 − 10)TeV . This Planck scale seems to be in agreement with
most other bounds (cooling of supernovae, evolution of the Universe, etc) but leads to the very interesting prospective
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that effects from string theory might be observable at the Large Hadron Collider (LHC) presently under construction
at CERN [4].

Using ’large’ extra-dimensions,L ≫ M−1
P , the fundamental Planck scale can therefore be of the same order as

the electroweak scale. On the other hand, there is no explanation for the length scaleL ∼ 0.1mm∼ 10−3eV. So the
hierarchy problem has not actually been solved, but it has been moved from an energy hierarchy to an unexplained
length scale. The hope is, that there would exist solutions of string theory which lead to such a scale dynamically.

2.3. New Physics from higher dimensions

Kaluza-Klein modes. We denote the four brane coordinates byxµ and the additionaln bulk coordinates byya. For
simplicity, we consider a bulk where the extra dimensions are rolled up in a cylinder of circumferenceL. In the general
situation where the compact extra dimensions form a non-flatCalabi-Yau manifold,C , the exponentials below have
to be replaced by the corresponding eigen-functions of the Laplacian onC . The case of a warped geometry, where the
extra dimensions may even be non-compact, will be discussedseparately in Section 4.

Be nowφ a massless scalar field in the ’bulk’,φ(x,y) with φ(· · · ,ya +L · · ·) = φ(· · · ,ya, · · · ). We can expand the y
dependence ofφ in Fourier series

φ(x,y) = ∑
j

φ j (x)exp(i2π j ·y/L)

Sinceφ satisfies the massless wave equation,∇2
4+nφ = 0, in the bulk, for a 4d observer which cannot resolve the scale

L, the modesj 6= 0 will become massive fields,

(∇2
4 +m2

j )φ j = 0 with m2
j =

(2π j)2

L2 .

These modes of the gravitational potential give raise to exponential corrections to Newton’s law,

V(r) =
G4

4πr
[1+

e−r/L

r2 + · · · ] .

If the extra dimensions are large, the first few masses can be very low, but if the graviton is the only bulk field, its
weak coupling to other bulk modes leaves the theory nevertheless viable [4].

As we shall see in Section 4, the mass spectrum can even be continuous, 0< m< ∞, if there are non-compact extra
dimensions.

Higher dimensional spin modes.The spin states of massless particles ind space time dimensions are characterized
by an irreducible representation ofSO(d−2). For d = 4, massless particles always carry a 1–dimensional represen-
tation of SO(2) 1. Taking into account also parity, this leads to the two helicity modes of all massless particles in
4 dimensions, independent of their spin. This situation changes drastically if we allow for extra dimensions. Let us
considerd = 5: a massless particle of spins in d = 5 spacetime dimensions, carries the representationDs of SO(3)
and thus has 2s+1 spin states, like a massive particle of spins in 4 dimensions.

Let us, for example, consider the graviton. In 4+1 dimensions it has the 5 helicity states of the tensor representation
of SO(3). Projected onto a 3+1 brane, two of them become the usual spin 2 graviton, two are aspin 1 particle, a gravi-
vector and one has spin 0, the gravi-scalar.

The gravi-vector couples to theµ4 components of the energy momentum tensor. Interpreting these as the electro-
magnetic currentJµ and the gravi-vector as the electromagnetic potentialAµ , the five-dimensional Einstein equations
lead to Maxwell’s equations forAµ andJµ . This is the so called Kaluza–Klein miracle, which is also true if any,
non–Abelian gauge group replaces the one-dimensional torus which plays here the role of the electrodynamic gauge
groupU(1). This finding of Kaluza and Klein [6] has evoked an interest inextra-dimensions in the 20ties, long before
string theory.

1 The full little group for massless particles is actuallyISO(2), the group of two dimensional Euclidean motions and rotations. But for finite
dimensional representations ofISO(2) the translations are acting trivially. The reason why not all representations of the universal covering group
of SO(2), R, have to be considered, namelyeikx, k ∈ R is rather subtle. On the classical level, whereSO(2) is the relevant group, this problem
disappears. A full discussion of the finite dimensional representations of the Poincaré group for massless particles ind = 4 can be found e.g. in [5].
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The positive aspects of the vector sector are, however, overshaded by the problems coming from the gravi-scalar.
It couples to the four-dimensional energy momentum tensor and modifies gravity. It leads to a scalar-tensor theory of
gravity with several observable consequences. For example, one can calculate the modification in the slowing down
of the binary pulsar [7] PSR1913+16 due to the radiation of gravi-scalars. In Ref. [8] it is shown that in the simple
case of a 5-dimensional cylindrical bulk, this leads to a modification of the quadrupole formula by about 20%, while
observations agree with the quadrupole formula to better than 1

2%. If there are more than one extra-dimensions, there
are several gravi-scalars and this problem is only enhanced.

Clearly, a modification of higher dimensional gravity is necessary to address the problem. Usually, one gives a mass
to the gravi–scalar. There are several ways to do this and theresulting four dimensional theory in general depends on
this choice. One proposal is the Goldberger–Wise mechanism[9].

Another solution is offered by non-compact extra-dimensions. As we shall see, in curved spacetimes, extra-
dimensions can even be infinite. Due to a so called ’warp factor’ they become very small when seen from the brane. For
infinite extra dimensions it can happen that the gravi-scalar represents a non-normalizable and therefore unphysical
mode. This is precisely what happens in the Randall–Sundrummodel and we shall discuss it in this context in Section 4.

3. GEOMETRY OF FIVE DIMENSIONAL BRANEWORLD GEOMETRY

From now on we restrict ourselves to five dimensional braneworlds, i.e. braneworlds with only one extra-dimension.
The idea here is still that spacetime has 10 (or for M-theory 11) dimensions, but 5 (or 6) of them are compactified
to a static manifold of about Planck scale, while one of them is large. This picture is motivated mainly from 11-
dimensional M-theory,e.g.the Horava-Witten model [10], but we shall not try to implement a realization of this model
here. Nevertheless, it is important to note, that one co-dimension differs significantly from more than one. The main
point is that the 3-brane splits space into two parts, the ’left’ and the ’right’ hand side of the brane. We shall see, that in
this case it is possible to determine the gravitational equations on the brane by simply postulating Einstein’s equations
in the bulk. This is no longer possible in the case of two or more extra-dimensions.

In this section we derive and discuss these brane gravity equations. In the next section we shall apply them to the
Randall–Sundrum model, which we consider as beeing so far the most promising braneworld model.

To determine the gravitational equations on the brane, we start from the basic hypothesis that string theory predicts
Einstein gravity in the bulk,

GAB = κ5TAB . (3)

We want to discuss in detail the situation of a 3- brane in a 5–dimensional bulk. We denote the bulk coordinates
by (xA) = (xµ ,y), where(xµ) are coordinates along the brane andy is a transverse coordinate. We denote the brane
position byy = yb; in generalyb depends on the point on the brane,yb = yb(xµ). A more general embedding of the
brane will be discussed below. Very often we consider an energy momentum tensor of the form

TAB((x
C) = (xλ ,y)) =

Λ5

κ5
gAB+ δ µ

A δ ν
B Tµν((xλ ))δ (y−yb) . (4)

HereΛ5 is a bulk cosmological constant,Tµν is the energy momentum tensor on the brane andκ5 = 6π2G5 is the
five-dimensional gravitational coupling constant. This isthe most general ansatz if we do not allow for any matter
fields in the bulk.

3.1. The second fundamental form

As above,gAB is the bulk metric. We denote the projection operator onto the brane byqA
µ . The induced metric on

the brane, also called the first fundamental form, is then given by

gµν(xλ ) = qA
µ(xλ )qB

ν(xλ )gAB(x
λ ,yb(x

λ )). (5)

We denote the covariant derivative in the bulk byb∇A and covariant derivative on the brane (with respect to the induced
metric) by∇µ . We also introduce the brane normaln, a vector field defined on the brane which is normal to all vectors
parallel to the brane. Clearly, for an arbitrary vector fieldX = Xµ∂µ along the brane,∇µX 6= b∇µX. The difference of
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these two covariant derivatives is given by the extrinsic curvature also called the second fundamental form which we
now introduce.

Be X = Xµ∂µ andY = Yµ∂µ two vector fields on the brane. Their covariant derivative onthe brane is given by

∇YX = (Yµ∂µXν + Γν
µβ XµYβ )∂ν ,

while the covariant derivative in the bulk is

b∇YX = (Yµ∂µXν + Γν
µβ XµYβ )∂ν + Γ4

µβ ∂4 .

Therefore, there exists a bi-linear formKµν on the brane such that

b∇YX = ∇YX +K(X,Y)n . (6)

Sinceb∇YX − b∇XY = [Y,X] is tangent to the brane,K(X,Y)−K(Y,X) = 0, henceK is symmetric.K is called the
’second fundamental form’ or ’extrinsic curvature’ of the brane. Its sign is not uniquely defined in the literature; we
shall use Eq. (6) as its definition.

Sincen is the unit normal of the brane,g(n,b∇YX) = K(Y,X). But asn is normal to the brane vector fieldX we
have 0= b∇Y(g(n,X)) = g(b∇Yn,X)+g(n,b∇YX), so that

K(Y,X) = −g(b∇Yn,X) = −1
2

[
g(b∇Yn,X)+g(b∇Xn,Y)

]
.

In components,K(X,Y) = KµνXµYν , this becomes

Kµν = −1
2

[
b∇µ nν + b∇νnµ

]
. (7)

Close to the brane we can choose coordinates such that

gABdxAdxB ≡ ds2
b = gµνdxµdxν +dy2 .

In these so called ’Gaussian normal coordinates’,n= ∂y andb∇µnν = Γ4
µν =−(1/2)gµν ,4. The second fundamental

form then becomes simply

Kµν = −1
2

∂ygµν .

For general coordinates(zµ) on the brane we have to define a brane parameterizationxA = XA
b (zµ). The vector fields

(eµ) = (∂µXA
b (z)∂A) then form a basis of tangent vectors on the brane. In terms of these one obtains by means of

Eq. (7)

Kµν = −1
2

[
gAB(e

A
µ∂ν nB +eA

ν∂µnB)+eA
νeB

µnCgAB,C
]

, (8)

where a comma denotes an ordinary derivative,f,C = ∂ f
∂xC .

3.2. The junction conditions

Einstein’s equations with a thin hyper-surface of matter become singular since there is aδ - function in the energy
momentum tensor. Integrating them once across the brane leads to the so called junction or jump conditions (of Israel,
Lancos, Darmois, Misner) [11, 12, 13, 14].

Before we come to the algebraically more complicated situation of general relativity, let us first recall the well
known junction conditions of electrostatics: we consider aconducting boundary surface (e.g. capacitor plate) with
surface charge densityρ and current densityj along the surface.

The homogeneous Maxwell equations require that the tangential part of the electric fieldE‖ and the normal compo-
nent of the magnetic field,B⊥, are continuous across the boundary. This is usually derived by the following argument:
denoting the two sides of the capacitor plate by the super-scripts+ and− the homogeneous Maxwell equations imply
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S

boundary

FIGURE 2. A conducting boundary (bold line). We indicate the integration surfaceSnormal to it and the ’pill box’ type volume
V encompassing both sides. Our equations become exact in the limit where the height of the pill box and the width of the surfaces
Sapproach zero.

for some surfaceS spanning from one side to the other of our boundary or for a volumeV encompassing a little of
both sides of the boundary (see Fig. 2)

0 =
∫

S(∇∧E)dσ =
∫

∂SE‖ds= L(E+
‖ −E−

‖ ) hence
[E‖] ≡ E+

‖ −E−
‖ = 0 , and

0 =
∫
V(∇B)dv=

∫
∂V Bdσ = S(B+

⊥−B−
⊥) hence

[B⊥] ≡ B+
⊥−B−

⊥ = 0 .

(9)

In the same manner, integrating the inhomogeneous Maxwell equations implies for the normal component ofE and
the tangential component ofB

[E⊥] ≡ E+
⊥ −E−

⊥ = 4πρ , (10)

[B‖] ≡ B+
‖ −B−

‖ = 4π j ∧n . (11)

Similar junction conditions exist also for Einstein’s equations. (Lanczos, 1922, Darmois 1927, Misner & Sharp
1964, Israel 1966, see Refs [11, 12, 13, 14]), the so called junction conditions. To obtain them, we have to split the
geometrical quantities into components parallel and transverse to a given hyper–surface. This is often also done in 4d
gravity (3+1 formalism or ADM formalism), where one wants tostudy the time evolution of the metric on a 3d spatial
hypersurface. Examples are numerical relativity, or canonical quantization of gravity where the canonical fields are
the spatial metric componentsqi j and their canonical momenta are given by the extrinsic curvature,πi j = Ki j .

There one considers spacelike hypersurfaces,i.e. , hypersurfaces with timelike normaln, g(n,n)< 0. In braneworlds
we have a timelike hypersurface with spacelike normals,g(n,n) > 0.

Using a slicing of spacetime into 4d hyper surfaces, one can express the 5d Riemann curvature in terms of the 4d
one and the extrinsic curvature. The equations are relatively simple if we write them in Gaussian coordinates (Gauss-
Codazzi-Mainardi formulas, seee.g. [14])

5Rµ
ναβ = Rµ

ναβ +KναKµ
β −Kνβ Kµ

α (Gauss formula) (12)

5R4
µνα = ∇νKµα −∇αKµν (Codazzi formula) (13)

5R4
µ4ν = ∂yKµν +Kµβ Kβ

ν (Mainardi formula) (14)

5R = 5Rµν
µν +2 5R

4µ
4µ = R+2∂yK −K2−Kαβ Kαβ . (15)

For the last equation we have used∂ygµν = 2Kµν so that

gµν∂yKµν = ∂y(g
µν Kµν)− (∂yg

µν)Kµν = ∂yK −2KµνKµν , K = Kµ
µ .

From these we can determine the 5-dimensional Einstein tensor,

5G4
4 =

1
2

[
−R+K2−KµαKαµ

]
(16)

5G4
µ = ∇µ K−∇νKν

µ (17)

5Gµ
ν = Gµ

ν +2Kµ
α Kα

ν −KKµ
ν + ∂yK

µ
ν − δ µ

ν ∂yK +
1
2

gµν(K2 +Kαβ Kαβ ) . (18)

The derivatives wrty indicate that in order to determine the 5-dimensional Einstein tensor, it is not sufficient to
know the second fundamental form on the brane itself, but we also have to know it on both sides of the brane.
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We now derive equations on the brane from the bulk Einstein equation,GAB = κ5TAB which we assume to be valid
as a low energy consequence from string theory. To identify the energy momentum tensor on the brane which contains
a delta-function iny-direction, we define

SA
B = lim

ε→0

∫ yb+ε

yb−ε
TA

B dy ,

so that

lim
ε→0

∫ yb+ε

yb−ε
5G

A
Bdy= κ5SA

B .

The 4d metric is continuous and alsoKµν has no delta-function iny, but possibly a jump across the brane. This means

that5G
4
4 and5G

4
µ have no delta-function. Only5Gµν may have one stemming from the term∂yKµν −gµν∂yK if Kµν

has a jump. Hence as consequence from the junction conditions, we obtain the following relations forSAB

0 = S4
4 (19)

0 = S4
µ and (20)

κ5Sν
µ =

[
Kν

µ
]
− δ ν

µ [K] or (21)
[
Kν

µ
]

= κ5(S
ν
µ −

1
3

δ ν
µ S) where S= Sµ

µ = SA
A . (22)

3.3. Z2 symmetry

In addition to Gaussian normal coordinates (which one can always choose, at least locally) we now assumeZ2
symmetry: the two sides of the brane are mirror images. For the metric components this implies

gµν(xλ ,yb +y) = gµν(xλ ,yb−y) (23)

gµ4(x
λ ,yb +y) = −gµ4(x

λ ,yb−y) (24)

g44(x
λ ,yb +y) = g44(x

λ ,yb−y) (25)

The same symmetry is required forTAB and any other bulk tensor field.
Under this condition we haveK+ = −K− so that the junction conditions (22) reduce to

2Kµ
ν = κ5(S

µ
ν − 1

3
δ µ

ν S) . (26)

If the braneworld satisfiesZ2 symmetry, the brane energy momentum tensor determines the second fundamental form.
However, we now show that even withZ2 symmetry, knowing the brane energy momentum tensor is not sufficient to

determine the brane Einstein tensor. To demonstrate this wefirst rewrite the 4d Einstein tensor, for a general coordinate
system in terms of the 5d Riemann tensor and the extrinsic curvature:

Gµν = 5GABqA
µqB

ν +5 RABnAnBgµν −Kα
µ Kαν +KKµν

+
1
2

gµν(K2−Kαβ Kαβ )− Ẽµν . (27)

Here5RABnAnB corresponds to5R44 = 5R
µ
4µ4 in Gaussian coordinates and̃Eµν ≡ 5RABCDnAnCqD

ν qB
µ corresponds to

5R4µ4ν . Eq. (27) in Gaussian coordinates is a simple consequence ofthe expressions (12,13,14) for the Riemann
tensor. In a general coordinate system it can be found in Ref.[15, 16] (careful, the sign forKµν is different there). In
5 dimensions the Weyl tensor is given by

RABCD =
2
3
(gA[CRD]B−gB[CRD]A)− 1

6
gA[CgD]BR+CABCD . (28)

Here[AB] indicates anti-symmetrization in the indicesA andB, andCABCD is the 5-dimensional Weyl tensor defined
by Eq. (28). It is easy to verify thatCABCD is traceless and obeys the same symmetries as the Riemann tensor,RABCD.
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Inserting the 5-dimensional Einstein Eq. (3) for5GAB and Eq. (28) in the expression containing the Ricci tensor
RAB, as well as inẼµν , we obtain the 4d brane gravity equation

Gµν =
2
3

κ5

[
TABqA

µqB
ν +gµν(TABnAnB− 1

4
T)

]
−Kα

µ Kαν +KKµν

+
1
2

gµν

(
Kαβ Kαβ −K2

)
−Eµν (29)

where
Eµν = CABCDnAnCqD

ν qB
µ (30)

is the ’projection’ of the Weyl tensor along the brane normal. The Codazzi equation (13) gives in addition

κ5TABnAqB
µ = ∇µK −∇νKν

µ . (31)

Because of the last term in Eq. (29), it is not sufficient to know the bulk energy momentum tensor and initial
conditions forn, gAB andKAB to solve the gravitational equations on the brane. In addition we need to knowEµν ,
components of the bulk Weyl tensor on the brane. The Weyl tensor, which is the part of the curvature which can
be non-vanishing even if the energy momentum tensor vanishes, contains information on bulk gravity waves. Bulk
gravity waves can flow onto, respectively be emitted from thebrane and thereby affect its evolution. This information
is encoded only in the full bulk initial conditions. Therefore, to determine the evolution of the brane matter and
geometry, in principle we have to solve the full bulk equations! Only in situations with very special symmetries this
can be avoided. However, as soon as we want to perturb such symmetric solutions we have to take into account all
the bulk modes, and we do expect the solutions to differ significantly from the results of 4-dimensional perturbation
theory.

3.4. Brane gravity with an empty bulk

We now exemplify the effect of the bulk Weyl tensor in the caseof an empty bulk. This will be the situation which
we study for the rest of these lectures. We assume that the bulk is empty up to a simple cosmological constantΛ5.

TAB = −Λ5

κ5
gAB+qA

µqB
νSµνδ (y−yb) . (32)

whereSµν is the energy momentum tensor on the brane. It consists of a brane tensionλ and the matter energy
momentum tensorτµν .

Sµν = λgµν + τµν . (33)

The junction conditions read
[
gµν
]

= 0 first junction condition, (34)
[
Kµν

]
= −κ5

(
Sµν −

1
3

gµνS

)
second junction condition. (35)

Z2 symmetry requires that

K+
µν = −K−

µν = −κ5

2

(
Sµν −

1
3

gµνS

)
. (36)

Inserting our ansatz forTAB in the brane gravity equation (29) and using the second junction condition to eliminate
the second fundamental form, we obtain

Gµν = −Λ4gµν + κ4τµν + κ2
5σµν −Eµν , (37)

with

Λ4 =
1
2
(Λ5 +

κ2
5

6
λ 2) , (38)

κ4 = κ2
5λ/6 = 2/M2

4 (39)

σµν = −1
4

τµα τα
ν +

1
12

ττµν +
1
8

gµνταβ ταβ − 1
24

gµντ2 , (40)
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and, as beforeEµν denotes the projected 5d Weyl tensor, evaluated on either side of the brane (but not exactly on the
brane where it may be ill-defined). The quantitiesκ4 andM4 denote the 4–dimensional gravitational coupling constant
and Planck mass respectively andτ = τµ

µ is the trace of the matter energy momentum tensor. The relation between
the 4- and 5-dimensional Planck mass in the braneworld approach is now obtained as follows: usingκ5 ∼ M−3

5 and
κ4 ∼ M−2

4 , Eq. (39) shows thatM2
4 ≃ M6

5/λ . Using that the 4-dimensional cosmological constant is small, Λ4 ≪ |Λ5|,
we haveλ ≃

√
−6Λ5/κ5 ≃

√
−6Λ5M3

5, so thatM2
4 ≃ M3

5

√
−Λ5 = M3

5L with L ≃
√
−Λ5.

In the limit λ τµν ≫ τµα τα
ν we recover the 4–dimensional Einstein equation ifEµν is negligible. The existence

of this limit depends crucially on the existence of a 4–dimensional brane tension. In order for the 4d gravitational
coupling constant to be positive, the brane tension must be positive, λ > 0. At high energy densities (in the early
universe) the quadratic termσµν can become dominant and modify the dynamics (the expansion law of the universe).
In general, there is an additional part,Eµν , carrying information from the bulk geometry and evolution, which can
affect the brane evolution in a crucial way.

3.5. Energy momentum conservation

The Codazzi equation (13) together withZ2 symmetry implies

∇µK−∇νKν
µ = κ5T4

µ = 0 . (41)

With the Gauss equation (12) andZ2 symmetry this ensures energy and momentum conservation on the brane,

∇ν τν
µ = 0. (42)

From the 4-dimensional contracted Bianchi identities we obtain in addition

∇ν Eν
µ = κ2

5∇ν σν
µ . (43)

Hence, the longitudinal part ofEµν is fully determined by the matter content of the brane, whilethe transverse traceless
part is not specified:

Eµν = E(TT)
µν +E(L)

µν (44)

where∇νEν (TT)
µ = 0 and

E(L)
µν =

1
2
(∇µθν + ∇νθµ) with ∇µθ µ = 0 .

Inserting this in Eq. (43), we obtain

∇2θµ =
κ2

5

2

[
−ταβ (∇µ ταβ + ∇ατβ

µ )+
1
3
(∇α τ)(τα

µ −qα
µ τ)

]
. (45)

For given initial conditions, this equation has always a unique solutionθµ on the brane which determinesE(L)
µν .

However, the transverse part,E(TT)
µν is not determined by the brane energy momentum tensor; it comes from bulk

gravity waves. Only ifE(TT)
µν = 0 does the brane energy momentum tensor determine the brane Einstein tensor. As we

shall see, already in quite simple situations this is not thecase.

4. THE RANDALL SUNDRUM MODEL

We now consider an Anti-de Sitter (AdS) bulk,Λ5 < 0 and would like to obtain Minkowski space on the brane. Since
AdS is conformally flat,Eµν = 0. A Minkowski brane can be achieved by settingτµν = 0. If in addition the brane
tension is related to the 5–dimensional coupling constant and the cosmological constant by

λ 2κ2
5/6 = −Λ5 , (46)

Eq. (37) impliesGµν = 0. Eq. (46) is it the Randall–Sundrum (RS) fine tuning condition [17, 18]. Small deviations
from the RS condition lead to an exponentially expanding/contracting brane. The 4-dimensional gravitational constant
becomes

κ4 =
λ κ2

5

6
= −Λ5

λ
> 0 , or, equivalently λ = −Λ5

κ4
, and κ4 = κ5

√
−Λ5

6
. (47)
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4.1. The metric

The following coordinates for (a part of) Anti-de Sitter will be useful for us:

ds2 = e−2|z|/ℓηµν dxµdxν +dz2 Gaussian coordinates (48)

ds2 =

(
ℓ

y

)2(
ηµνdxµdxν +dy2) |y| > ℓ conformal coordinates. (49)

Einstein’s equations,GAB = −Λ5gAB, giveΛ5 = − 6
ℓ2 . The RS fine tuning requiresλ =

√
−6Λ5/κ2

5.
In their first model [17] (RS1 model) Randall and Sundrum propose two branes, the first positioned atz = 0 is

called the hidden brane, and the second positioned atz= kℓ is called the visible brane and represents our Universe.
The gravitational force on the visible brane is suppressed by the factor exp(−2k) w.r.t. the hidden brane, leading
to an enhancement by a factor exp(k) of the apparent Planck mass. However, also this two brane model contains a
gravi-scalar (also called radion) which has to obtain a massby some non-gravitational mechanism.

FIGURE 3. The RS1 model with two branes. The visible brane (our Universe) atz= kℓ and the hidden brane atz= 0.

FIGURE 4. The RS2 model with only one brane atz= 0.

This problem is resolved in the second model [18] (RS2 model). There, our universe is located on the brane atz= 0
corresponding toy = ℓ and no second brane is present. The apparent 4-dimensional Planck mass as measured on the
brane on scales much larger thanℓ is then again given by

λ = − κ4

Λ5
=

3M2
4

ℓ2 . Furthermore, (50)

κ2
4 = −Λ

6
κ2

5 = ℓ−2κ2
5 so that M2

4 = M3
5ℓ . (51)
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Hence in the RS2 model, the AdS curvature scaleℓ enters in the same way asL for cylindric Kaluza-Klein models.
Since the scaleℓ is limited by present day micro gravity experiments which have not detected any deviation from
Newton’s law [2], we have

ℓ < 0.1 mm implying λ > (1 TeV)4, hence M5 = (M2
4/ℓ)1/3 > 105 TeV .

4.2. Gravity waves in the RS2 model

In order to see that the radion mode is absent in the non-compact RS2 model, we consider perturbations to the AdS
metric. It is easy to show that one can always choose a gauge (local coordinate system) so that the perturbed metric is
of the form

ds2 =

(
ℓ

y

)2[
−(1+2Ψ)dt2−4Σidtdxi +((1−2Φ)δi j +2Hi j )dxidxj +4Ξidydxi (52)

−4Bdtdy+(1+2C)dy2] (53)

HereHi j andΣi , Ξi are transverse (i.e. divergence free) andHi j is traceless. In other words,∂iΣi = ∂iΞi = ∂iHi j =
H i

i = 0. As we shall see there are 5 homogeneous modes in these 10 physical perturbation variables corresponding to
the 5 gravity wave modes in 5 dimensions. We consider the homogeneous 5d wave equation in the bulk.

Since the 3-brane is homogeneous, scalar-, vector- and tensor degrees of freedom decouple and we can consider
them in turn (for more details see Section 5).

4.2.1. Tensor perturbations

We first consider only the tensorHi j , so that the perturbed metric is given by

ds2 =

(
ℓ

y

)2(
−dt2 +(δi j +2Hi j )dxidxj +dy2) . (54)

We Fourier transformHi j in the 3-dimensionalx coordinates and consider one mode with fixed wave vectork, so that
Hi j (t,y,x) = Hi j (t,y)exp(ik ·x). Since spacetime is isotropic and homogeneous inx, differentk–modes do not couple.
The bulk Einstein equations,δGAB = −ΛδgAB, for the Fourier modek then give

(
∂ 2

t +k2− ∂ 2
y +

3
y

∂y

)
Hi j = 0 . (55)

The general solution to this equation is of the form

Hi j = hmei j with hm = eiωt(my)2 [AJ2(my)+BY2(my)] . (56)

Hereei j is the polarization tensor,kiei j = ei
j = 0 andω2 = m2 + k2. The separation constantm2 is arbitrary and

can, in principle also be negative.J2 andY2 are the Bessel functions of order 2. They are oscillating anddecaying.
Bessel functions represent “δ–function normalizable” perturbations like harmonic waves in flat space, in the sense
that [19, 20] ∫ ∞

0
hmhm′

dy
m2y3 = mδ (m−m′) . (57)

These are just the ordinary gravity modes of 4-dimensional massm without a mass gap which are discussed in the
original RS paper [18]. To find the correct weight 1/y3, we use thathm satisfies

(
24 + ∂ 2

y −
3
y

∂y

)
hm = 0 , (58)

and thusȟ = hm/y3/2 satisfies the equation of motion of a scalar field in a flat 5-dimensional spacetime (withy–
dependent mass term), (

24 + ∂ 2
y −

15
4y2

)
ȟ = 0 . (59)
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This mode has to be normalizable w.r.t the Minkowski metric (no additional weight).
As we have mentioned above,m2 is arbitrary and can also be chosen negative. However, ifm2 < 0 and thereforem

is imaginary, it is more useful to decompose the two independent solutions in the form

hm = eiωt(|m|y)2 [CK2(|m|y)+DI2(|m|y)] , (60)

whereK2 andI2 are the modified Bessel functions of order 2. Considering thebehavior of the Bessel functions, one
sees thatI2 grows exponentially (see Fig. 5) and is clearly not normalizable (i.e. not square integrable with some
weight which is a power law iny). Therefore, this mode is unphysical and we have to setD = 0. It is important to note
that ω2 = k2 + m2 can become negative in this case leading toω = ±i|ω |. In other words, negative mass solutions
become exponentially growing ’tachyonic’ instabilities!It is still unclear whether these tachyonic modes are relevant
for cosmological braneworlds.

FIGURE 5. The Bessel functions of order 2.

In the limit m→ 0 only theY2–mode survives and we obtainh(m=0) = Cexp(ωt) independent of the coordinatey.
This zero-mode is normalizable with respect to the measuredy/y3.

The general solution for a tensor perturbation is of the form

h = h0 +

∫ ∞

−∞
hmdm2 . (61)

At the brane position,y= yb = ℓ, the perturbations must satisfy the junction condition (36). These represent boundary
conditions for the perturbationsHi j in the bulk. On the right hand side of Eq. (36), we can in principle have an arbitrary
perturbation of the matter energy momentum tensor. However, the only non-vanishing term of the tensor contribution

to τµν is the traceless part ofτi j , i.e. the anisotropic stress on the brane,Π(T)
i j . A short computation shows

δKi j
∣∣
yb

=

(
2
ℓ

Hi j − ∂yHi j

)∣∣∣∣
yb

, hence

− 2(∂yHi j )
∣∣
yb

= κ5Π(T)
i j , (62)

whereΠ(T) are tensor–type anisotropic stresses on the brane.
Let us first consider the homogeneous caseΠ(T) ≡ 0. Form2 > 0, the solutions are of the form

h = exp(±iωt)(my)2 [AJ2(my)+BY2(my)] . (63)

The junction condition (62) then requires

B = −A
J1(mℓ)

Y1(mℓ)
≃ π

4
(mℓ)2A , (64)
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where the last expression is a good approximation formℓ≪ 1. This is precisely the result of Randall and Sundrum [18].
It is not modified even if we allow for the negative mass modes,−m2 > 0, because a physical solution has to be of the
form

h = Cexp(±t
√
−m2−k2)(|m|y)2K2(|m|y) , with ∂yh = |m|Cexp(±t

√
−m2−k2)(|m|y)2K1(|m|y) , (65)

and sinceK1 has no zero, the junction condition (62) requiresC = 0.
But in a realistic brane universe,Π(T) is not exactly zero. In cosmology, it is typically just a factor 10 smaller than

other perturbations of the energy momentum tensor on the brane. We therefore cannot requireC ≡ 0. However, as
long asΠ(T) remains small, we do not expect the unstable modes to be present, so thatC(k,m) = 0 for k2 < −m2.
Within the framework of first order perturbation theory, theΠ(T) modes satisfy a Minkowski equation of motion and
therefore they do not grow exponentially. Hence in this case, theK–mode can only be excited forω2 = k2 +m2 > 0,
i.e. k2 > −m2. However, it is not clear whether this remains true to secondorder, where the evolution ofH feeds back
in the equation of motion forΠ(T). Actually, within a toy model, it has been shown that the full, non-linear evolution
can be exponentially unstable even if the linear equations do not excite the unstable mode [21].

4.2.2. Vector perturbations

We now consider vector perturbations only, so that, in generalized longitudinal gauge, the metric takes the form

ds2 =

(
ℓ

y

)2(
−dt2−4Σidtdxi + δi j dxidxj +4Ξidydxi +dy2) (66)

The bulk Einstein equations for a modek of the vector perturbationsΣ andΞ are
(

∂ 2
y − 3

y
∂y

)
Σ =

(
∂ 2

t +k2)Σ , (67)
(

∂ 2
y −

3
y

∂y +
3
y2

)
Ξ =

(
∂ 2

t +k2)Ξ , (68)
(

∂y−
3
y

)
Ξ = −∂tΣ , (69)

whereΣ andΞ are transverse vectors,(k ·Σ) = (k ·Ξ) = 0. The constraint equation (69) fixes the relative amplitudes
of Σ andΞ, showing that there is only one independent vector perturbation in the bulk (the “gravi-photon”). One can
check that these equations are consistent, e.g. with the master function approach of Ref. [22].

As in the tensor case, the solutions are Bessel functions of order two (and one). Considering just one component
Σ = Σi one obtains the expected oscillatory modes for positive mass-squared,m2 > 0,

Σ = exp(±iωt)(my)2 [AJ2(my)+BY2(my)] , (70)

Ξ =
±iω
m

exp(±iωt)(my)2 [AJ1(my)+BY1(my)] , (71)

whereω =
√

m2 +k2. These solutions have been found in Ref. [23]. For a negativemass-square,m2 < 0, we obtain
again tachyonic solutions. Like in the tensor case, the solution containing the modified Bessel functionIν cannot be
accepted as it is exponentially growing and thus representsa non-normalizable mode. However, theKν -solution is
exponentially decaying and perfectly acceptable. For tachyonic vector perturbations withω2 = m2 +k2 < 0 we have

Σ = Cexp(±|ω |t)(|m|y)2K2(|m|y) , (72)

Ξ =
±|ω |
|m| Cexp(±|ω |t)(|m|y)2K1(|m|y) . (73)

For large enough scales,−m2 > k2, these solutions again grow exponentially.
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The boundary conditions at the brane relate these perturbations to the brane energy momentum tensor. For the
energy momentum tensor on the brane, the vector degrees of freedom are defined according to

(
Sµν
)

=

(
0 Vj

Vi Π(V)
i j

)
−λ

(
qµν
)

, (74)

whereVi andΠ(V)
i are divergence-free vector fields andΠ(V)

i j ≡ [∂ jΠ
(V)
i + ∂iΠ

(V)
j ]. The first junction condition simply

requires thatΣ be continuous at the brane, which it is since the (modified) Bessel functions of even index are even
functions. The second junction condition results in (for a detailed derivation, see [24])

∂tΞ + ∂yΣ = κ5V , (75)

Ξ = κ5Π(V) , (76)

∂tV = −k2Π(V) . (77)

The last equation follows from (75) and (76) and the bulk equations (67)–(69). It represents momentum conservation
on the brane, which is guaranteed as long as we have vanishingenergy flux off the brane andZ2–symmetry.

Like for tensor perturbations, we consider homogeneous solutions, settingΠ(V) ≡V ≡ 0. This requiresΞ(|m|ℓ) = 0,
hence

B = −A
J1(mℓ)

Y1(mℓ)
for m2 > 0 , (78)

C≡ 0 for m2 < 0 . (79)

Equation (75) is then identically satisfied.
However, it seems more realistic to allow a small but non-vanishing anisotropic stress contributionΠ(V) and

corresponding vorticityV. In this case, again, we can have solutions withC 6= 0 which can grow exponentially in
time; hence small initial data can lead to an exponential instability like for tensor perturbations.

Using the normalization condition (57) for them= 0 mode of the variableΞ ∝ y (this is the one which enters as
dynamical variable in the perturbed action, see [25]), one finds that

∫ |Ξ|2/y3dy diverges logarithmically. Contrary to
the tensor case, the vector zero-mode is not normalizable. Therefore, on the brane there is only the ordinary massless
spin–2 graviton, but there are a continuous infinity of massive spin–2 and spin–1 particles (the modes discussed here,
with m 6= 0).

4.2.3. Scalar perturbations

We now discuss the most cumbersome, the scalar sector. Scalar–type metric perturbations in the bulk are of the form

ds2 =
ℓ2

y2

[
−(1+2Ψ)dt2−4Bdtdy

+(1−2Φ)δi j dxidxj +(1+2C )dy2] . (80)
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The bulk Einstein perturbation equations for the modek become, after some manipulations and introducing the
combinationΓ ≡ Φ+ Ψ (see Ref. [21]),

Φ−Ψ = C , (81)
(

∂ 2
y − 3

y
∂y

)
Γ =

(
∂ 2

t +k2)Γ , (82)

(
∂ 2

y −
3
y

∂y +
4
y2

)
C =

(
∂ 2

t +k2)
C , (83)

∂yΦ+

(
∂y−

3
y

)
C = −∂tB , (84)

3
y

(
∂y−

2
y

)
C = 3∂ 2

t Φ+k2(Φ+C ) , (85)

3∂t

(
∂yΦ− 1

y
C

)
= k2

B , (86)

∂t (2Φ−C ) =

(
∂y−

3
y

)
B . (87)

Clearly these equations are not all independent, Eqs. (86)–(87) are identically satisfied if Eqs. (81)–(85) are.
The solutions are obtained as for tensor and vector perturbations. For a positive mass-square,m2 > 0, we find
(ω =

√
m2 +k2)

Γ = exp(±iωt)(my)2[A′J2(my)+B′Y2(my)
]

, (88)

C = exp(±iωt)(my)2 [AJ0(my)+BY0(my)] , (89)

Φ =
1
2

exp(±iωt)(my)2[A′J2(my)+B′Y2(my)

+AJ0(my)+BY0(my)] , (90)

Ψ =
1
2

exp(±iωt)(my)2[A′J2(my)+B′Y2(my)

−AJ0(my)−BY0(my)] , (91)

B =
±im3y2

2ω
exp(±iωt)×

[
(A′−3A)J1(my)+ (B′−3B)Y1(my)

]
, (92)

with A′ = 3A
m2

m2+2ω2 , and B′ = 3B
m2

m2 +2ω2 . (93)

For a negative mass-square,m2 < 0, we obtain (ω =
√
−m2−k2)

Γ = exp(±ωt)(|m|y)2C′K2(|m|y) , (94)

C = exp(±ωt)(|m|y)2CK0(|m|y) , (95)

Φ =
1
2

exp(±ωt)(|m|y)2×
[
C′K2(|m|y)+CK0(|m|y)

]
, (96)

Ψ =
1
2

exp(±ωt)(|m|y)2×
[
C′K2(|m|y)−CK0(|m|y)

]
, (97)

B =
±|m|3y2

2ω
exp(±ωt)[C′ +3C]K1(|m|y) , (98)

with C′ = −3C
|m|2

|m|2 +2ω2 , (99)
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where we have already used that theI–mode is not normalizable and therefore cannot contribute.Like for vector and
tensor perturbations, we find again tachyonic solutions with m2 < 0 which represent an exponential instability for
sufficiently small wave numbersk (large scales).

Determining the boundary conditions via the first and secondjunction conditions now requires a bit more care. Since
we have already fully specified our coordinate system by the adopted choice of perturbation variables, we must allow
for brane bending. We cannot fix the brane atyb = ℓ, but we must allow fory+

b = ℓ+E andy−b =−ℓ−E , respectively.
Fortunately,E is a scalar quantity and brane bending therefore does not affect vector and tensor perturbations. The
anti-symmetryy+

b = −y−b is an expression ofZ2–symmetry. The introduction of the new perturbation variable E (xµ)
describing brane bending enters the exressions for the firstand second fundamental forms. From Eq. (5), we obtain
qµν = gµν to first order, which implies thatΦ andΨ, henceC , have to be continuous. At the brane position, the
perturbed components of the extrinsic curvature (8) are

δK00 =
1
ℓ

[
Φ−3Ψ+2

E

ℓ

]
+ ∂yΨ−2∂tB + ∂ 2

t E , (100)

δK0 j = ∂ j (∂tE −B) , (101)

δKi j =

[
1
ℓ

(
Ψ−3Φ−2

E

ℓ

)
+ ∂yΦ

]
δi j + ∂i∂ jE . (102)

For the energy momentum tensor on the brane, we parameterizethe four degrees of freedom according to

(
Sµν
)

=

(
ρ v j

vi pδi j + Π(S)
i j

)
−λ

(
qµν
)

, (103)

wherevi ≡ ∂iv andΠ(S)
i j ≡

(
∂i∂ j − 1

3∆δi j
)

Π(S). With Eqs. (100)–(102), the second junction condition reads

1
λ

(2ρ +3p) = Φ−Ψ+ℓ∂t (∂tE −2B)+L∂yΨ , (104)

3
λ ℓ

v = ∂tE −B , (105)

3
λ ℓ

Π(S) = E , (106)

1
λ

[
ρ −∆Π(S)

]
= Ψ−Φ+ ℓ∂yΦ . (107)

Combining the time derivative of Eq. (105) with Eqs. (104), (84) and (107), we obtain momentum conservation on the
brane,

∂tv =
2
3

∆Π(S) + p . (108)

Similar manipulations imply energy conservation on the brane,

∂tρ = ∆v . (109)

Like for tensor and vector perturbations, we look for solutions with vanishing brane matter. SettingΠ(S) ≡ ρ ≡ P≡
v≡ 0 forbids brane bending,E = 0. Then Eq. (105) impliesB(mℓ) = 0, thus

B′−3B= −(A′−3A)
J1(mℓ)

Y1(mℓ)
for m2 > 0 , (110)

C′ +3C = 0 for m2 < 0 . (111)

The other equations are all satisfied if we require separately

B
A

=
B′

A′ = −J1(mℓ)

Y1(mℓ)
for m2 > 0 , (112)

C = C′ ≡ 0 for m2 < 0 . (113)
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SinceB/A = B′/A′, equations (110) are (112) are equivalent.
As for vector perturbations, them= 0 scalar mode is not normalizable. Like for tensor and vectorperturbations, we

have found “scalar gravitons” which appear on the brane as massive particles. If the brane matter is unperturbed, only
oscillatingm2 > 0 solutions are possible. However, if we allow for non-vanishing matter perturbations on the brane,
we can haveC 6= 0 and the tachyonic modesm2 < 0 can appear exactly like in the tensor and vector sectors.

It is not surprising that the same instability appears in thescalar, vector and tensor sectors, because all modes
describe the same bulk particle, the five-dimensional graviton.

4.3. Green’s function, correction to the Newtonian potential

We want to determine the modification to Newton’s law in the RS2 model. Since the extra dimension is not compact
and there are massive (homogeneous) modes of all massesm2 > 0, we expect a modification which is not exponentially
suppressed.

The 5d Green’s function is defined by
∇2G(x,x) = δ 5(x−x) ,

where∇2 is the 5d d’Alembertian in AdS spacetime and we have to glue together aZ2–symmetric solution on both
sides which satisfies the homogeneous junction condition. We can obtain the retarded Green’s function in the standard
way from the homogeneous solutions of the equation (seee.g. [26]):

GR(x,x′) = −
∫

d4k
(2π)4eikµ (xµ−x′µ )

[
y−2y′−2ℓ3

k2− (ω + iε)2
+
∫ ∞

0
dm

um(y)um(y′)

m2 +k2− (ω + iε)2

]
.

The first term comes from them= 0 solution and the functionsum are the properly normalized massive modes,

um(y) =

√
mℓ

2
J1(mℓ)Y2(my)−Y1(mℓ)J2(my)√

J1(mℓ)2 +J1(mℓ)2
.

The general retarded solution for a given energy momentum tensorτµν on the brane is now of the form

hµν(x) = −2κ5

∫
d4x GR(x,x′)Sµν(x′) .

For a stationary matter distribution it is simpler to use theGreen’s function of the spatial Laplacian which is related to
GR via integration over time

G(x,y,x′,y′) =

∫ ∞

−∞
dt′GR(x,x′) = −

∫
d3k

(2π)3eik·(x−x′)
[

y−2y′−2ℓ3

k2 +

∫ ∞

0
dm

um(y)um(y′)
m2 +k2

]
, (114)

=
−y−2y′−2ℓ3

4πr
+

1
2π

∫ ∞

0
dmum(y)um(y′)exp(−mr) . (115)

On the brane,y = y′ = ℓ, the first term gives the usual 1/r behavior,r = |x−x′|. Expanding the second term to lowest
order inℓ/r we obtain

G(x, ℓ,x′, ℓ) ≃ −1
4πℓr

[
1+

ℓ2

2r2 + · · ·
]

.

This determines the Newtonian potential of a point mass on the brane with massM,

κ5MG≃ −κ4M
4πr

[
1+

ℓ2

2r2 + · · ·
]

. (116)

Since the extra dimension is non-compact, the correction isnot exponentially suppressed but only as a power law.
Away from the wall, the potential at large separation is given by

G(x, ℓ,x′, ℓ+y)≃ −ℓ

8π(ℓ+y)2

2r2 +3y2

(r2 +y2)3/2
(117)

The equipotential lines are shown in Fig 6. This formulas have been derived in Ref. [27] from which also Fig. 6 is
drawn.
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FIGURE 6. The equi-potential lines for the gravitational potential from a point mass on the brane in RS2. Figure from [27].

5. COSMOLOGICAL PERTURBATION THEORY IN 4 DIMENSIONS

Before studying brane cosmology and 5d effects on cosmological perturbations, I present a brief introduction to 4d
cosmological perturbation theory and some aspects of 4d cosmology. Much more details can be founde.g.in [28, 29].
Some knowledge of 4d cosmology is however assumed (Friedmann equations etc. as they can be found in the first
chapter of standard textbooks on cosmology like Refs. [30] or [29]). Students who are familiar with this subject may
skip this section.

5.1. Perturbation variables

The observed Universe is not perfectly homogeneous and isotropic. Matter is arranged in galaxies and clusters of
galaxies and there are large voids in the distribution of galaxies. Let us assume, however, that these inhomogeneities
lead only to small variations of the geometry which we shall treat in first order perturbation theory. For this we define
the perturbed geometry by

gµν = ḡµν +a2hµν , ḡµνdxµdxν = a2(−dη2+ γi j dxidxj) . (118)

Here ḡµν is the unperturbed Friedmann metric,a(η) is the scale factor,η denotes conformal time andγi j is the
3d metric for a space of constant curvatureK. The perturbations are assumed to be small,|hµν | ≪ 1. The energy
momentum tensor is given by

Tµ
ν = T

µ
ν + θ µ

ν , T
0
0 = −ρ̄, T

i
j = p̄δ i

j |θ µ
ν |/ρ̄ ≪ 1. (119)

The background energy densityρ and pressurep satisfy the Friedmann equations,

H
2 ≡

(
ȧ
a

)2

+K =
8πG4

3
a2ρ̄ +

1
4

a2Λ4 (120)

ρ̇ = −3(ρ̄ + p̄)H , (121)

where an over-dot denotes the derivative w.r.t. conformal time η .
Without loss of generality we can choose the so-called longitudinal gauge so that perturbations of the metric are of

the form
(
hµν
)

=

(
−(1+2Ψ) Bi

Bi (1−2Φ)γi j +Hi j

)
. (122)

HereBi is an divergence free vector andHi j is a trace-free, divergence free tensor field. The scalar quantitiesΨ andΦ
are called the Bardeen potentials. In the Newtonian approximation they are both equal and reduce to the Neewtonian
potential.
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We also decompose the perturbations into different ’Fourier modes’,

Ψ(η ,x) = Yk(x)Ψ(η ,k), Φ(η ,x) = Yk(x)Φ(η ,k), Bi(η ,x) = Y(V)i
k (x)B(η ,k), Hi j (η ,x) = Y(T)

k i j (x)H(η ,k) .

In a Friedmann Universe with vanishing curvature, these arejust ordinary Fourier modes, while in the general case,

the functionsYk are eigenfunctions of the spatial Laplacian with eigenvalue −k2. The functionsY(V)i
k and Y(T)

k i j
correspondingly are vector- and tensor-type eigenfunctions of the spatial Laplacian with vanishing divergence. For
later use we also define a scalar type vector and tensor as wellas a vector-type tensor,

Y(S)
k i = −k−1∇iYk , Y(S)

k i j = k−2(∇i∇ j −
1
3

δi j ∆)Yk , (123)

Y(V)
k i j =

k−1

2
(∇iY

(V)
k j + ∇ jY

(V)
k i ) . (124)

Note that contrary to the vector-type vector fieldY(V)
i , the vector fieldY(S)

i is not divergence free. The same is true for

the tensor fieldsY(S)
i j andY(V)

i j .

Let Tµ
ν = T

µ
ν +θ µ

ν be the full energy momentum tensor. We define its energy density ρ and its energy flux 4-vector
u as the time-like eigenvalue and eigenvector ofTµ

ν :

Tµ
ν uν = −ρuµ , u2 = −1. (125)

We then parameterize their perturbations by

ρ = ρ̄ (1+ δ ), u = u0∂t +ui∂i . (126)

u0 is fixed by the normalization condition,

u0 =
1
a
(1−Ψ). (127)

We further set

ui =
1
a

vi =
1
a

(
VY(S)i +V(V)Y(V)i

)
. (128)

Hereδ is called the density contrast and(vi) is the peculiar velocity.
We definePµ

ν ≡ uµuν + δ µ
ν , the projection tensor onto the part of tangent space normalto u and the stress tensor

τµν = Pµ
α Pν

β Tαβ . (129)

In the unperturbed case we haveτ0
0 = 0,τ i

j = p̄δ i
j . Including perturbations, to first order we still obtain

τ0
0 = τ0

i = τ i
0 = 0. (130)

But τ i
j contains in general perturbations. We set

τ i
j = p̄

[
(1+ πL)δ i

j + Πi
j

]
, with Πi

i = 0. (131)

We decomposeΠi
j into scalar- vector- and tensor-type contributions,

Πi
j = Π(S)Y(S) i

j + Π(V)Y(V) i
j + Π(T)Y(T) i

j . (132)

Another important variable is

Γ = πL −
c2

s

w
δ (133)

wherec2
s ≡ ṗ/ρ̇ is the adiabatic sound speed andw≡ p/ρ is the enthalpy. One can show thatΓ is proportional to the

divergence of the entropy flux of the perturbations. Adiabatic perturbations are characterized byΓ = 0.
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We shall use also other perturbation variables describing the density contrast and peculiar velocity, which actually
correspond to these perturbations in different coordinatesystems (gauges). One can show that on sub-horizon scales,
k≫ H , on which perturbations are actually measurable, they all coincide.

D ≡ δ +3(1+w)

(
ȧ
a

)
V
k

, (134)

Dg ≡ δ −3(1+w)Φ , (135)

Ω ≡ V(V) −B(V) , (136)

Ω−V(V) = −B(V) ≡ σ (V). (137)

Here we use the customary name,σ (V) = −B(V), for the vector-type metric perturbation. These variablescan be
interpreted nicely in terms of gradients of the energy density and the shear and vorticity of the velocity field [31].

5.2. Einstein’s equations

We do not derive the first order perturbations of Einstein’s equations. This can be done by different methods, for
example with Mathematica. We just write down the results.

5.2.1. Constraint equations

4πGa2ρD = −(k2−3K)Φ (00)
4πGa2(ρ + p)V = k

(
H Ψ+ Φ̇

)
(0i)

}
(scalar) (138)

8πGa2(ρ + p)Ω =
1
2

(
2K−k2)σ (V) (0i) (vector) (139)

5.2.2. Dynamical equations

k2 (Φ−Ψ) = 8πGa2pΠ(S) (i 6= j) (scalar) (140)

H

[
Ψ̇+

(
H 2− Ḣ

H 2 Φ+H
−1Φ̇

)•]
+ (141)

(
H

2 +2Ḣ
)[

Ψ+
H 2− Ḣ

H 2 Φ+H
−1Φ̇

]
= 4πGa2

(
c2

sDg +wΓ− 2
3

wΠ
)

(i i) (scalar) (142)

k

(
σ̇ (V) +2

(
ȧ
a

)
σ (V)

)
= 8πGa2pΠ(V) (i j ) (vector) (143)

Ḧ(T) +2

(
ȧ
a

)
Ḣ(T) +

(
2K +k2)H(T) = 8πGa2pΠ(T) (i j ) (tensor) (144)

For perfect fluids, whereΠi
j ≡ 0, we haveΦ = Ψ, σ (V) ∝ 1/a2, andH(T) obeys a damped wave equation. The damping

term can be neglected on small scales (over short time periods) whenη−2 <∼ 2K + k2, so thatH(T) represents a
propagating gravitational wave. For vanishing curvature,the scaleskη ≫ 1 are simply the sub-horizon scales. For
K < 0, waves oscillate with a somewhat smaller frequency,ω =

√
2K +k2, while forK > 0 the frequency is somewhat

higher thank.
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5.2.3. Energy momentum conservation

The conservation equations,∇νTµν ≡ Tµν
;ν = 0 lead to the following perturbation equations.

Ḋg +3
(
c2

s −w
)(

ȧ
a

)
Dg +(1+w)kV+3w

(
ȧ
a

)
Γ = 0

V̇ +
(

ȧ
a

)(
1−3c2

s

)
V = k

(
Ψ+3c2

sΦ
)
+

c2
sk

1+wDg

+ wk
1+w

[
Γ− 2

3

(
1− 3K

k2

)
Π
]





(scalar), (145)

Ω̇+
(
1−3c2

s

)( ȧ
a

)
Ω =

p
2(ρ + p)

(
k− 2K

k

)
Π(V) (vector). (146)

These can of course also be obtained from the Einstein equations since they are equivalent to the contracted Bianchi
identities.

For scalar perturbations we have 4 independent equations and 6 variables. For vector perturbations we have 2
equations and 3 variables, while for tensor perturbations we have 1 equation and 2 variables. To close the system we
must add matter equations. The simplest prescription is to set Γ = Πi j = 0. These matter equations, which describe
adiabatic perturbations of a perfect fluid give us exactly two additional equations for scalar perturbations and one each
for vector and tensor perturbations.

Another example is a universe with matter content given by a scalar field. We shall discuss this case in the next
section. More complicated examples are those of several interacting particle species of which some have to be
described by a Boltzmann equation. This is the actual universe at late times, sayz

<∼ 1010.

5.2.4. A special case

Here we rewrite the scalar perturbation equations for a simple but important special case. We consider adiabatic
perturbations of a perfect fluid. In this caseΠ = 0 andΓ = 0. Eq. (140) impliesΦ = Ψ. Using the first equation of
(138) and Eqs. (135,134) to replaceDg in the second of Eqs. (145) byΨ andV, finally replacingV by (138) one can
derive a second order equation forΨ, which is, the only dynamical degree of freedom

Ψ̈+3H (1+c2
s)Ψ̇+[(1+3c2

s)(H
2−K)− (1+3w)(H 2 +K)+c2

sk
2]Ψ = 0 . (147)

Another interesting example (especially when discussing inflation) is the scalar field case. There, as we shall see
in Section 5.4,Π = 0, but in generalΓ 6= 0 sinceδ p/δρ 6= ṗ/ρ̇. Nevertheless, since this case again has only one
dynamical degree of freedom, we can express the perturbation equations in terms of one single second order equation
for Ψ. In Section 5.4 we shall find the following equation for a perturbed scalar field cosmology

Ψ̈+3H (1+c2
s)Ψ̇+[(1+3c2

s)(H
2−K)− (1+3w)(H 2 +K)+k2]Ψ = 0 . (148)

The only difference between the perfect fluid and scalar fieldperturbation equation is that the latter is missing the
factorc2

s in front of the oscillatoryk2 term. Note also that forK = 0 andw = c2
s = constant, the time dependent mass

termm2(η) = −(1+3c2
s)(H

2−K)+ (1+3w)(H 2 +K) vanishes.
It is useful to define the variable [32]

u = a
[
4πG(H 2− Ḣ +K)

]−1/2 Ψ, (149)

which satisfies the equation
ü+(ϒk2− θ̈/θ )u = 0, (150)

whereϒ = c2
s or ϒ = 1 for a perfect fluid or a scalar field background respectively, and

θ =
3H

2a
√

H 2− Ḣ +K
. (151)

Another interesting variable is

ζ ≡ 2(H −1Ψ̇+ Ψ)

3(1+w)
+ Ψ . (152)
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For the rest of this section we setK = 0 for simplicity. Using Eqs. (147) and (148) respectively one then finds

ζ̇ = −k2 ϒH

H 2− Ḣ
Ψ . (153)

On super-horizon scales,k/H ≪ 1, this time derivative is suppressed by a factor∼ (k/H )2 ≃ (kη)2 and this variable
is (nearly) conserved on large scales.

The evolution ofζ is closely related to the canonical variablev defined by

v = −a
√

H 2− Ḣ√
4πGϒH

ζ , (154)

which satisfies the equation

v̈+(ϒk2− z̈/z)v = 0 , for z=
a
√

H 2− Ḣ + κ
ϒH

. (155)

5.3. Dust and radiation

Next we discuss two simple applications which are importantto understand the anisotropies in the cosmic mi-
crowave background (CMB).

5.3.1. The pure dust fluid for K= 0,Λ = 0

’Dust’ is the cosmological term for non-relativistic particles for which we can neglect the pressure so thatw = c2
s =

p = 0 andΠ = Γ = 0. The Friedmann equation implies for dusta ∝ η2 so thaH = 2/η . Equation (147) then reduces
to

Ψ̈+
6
η

Ψ̇ = 0 , (156)

with the general solution

Ψ = Ψ0 + Ψ1
1

η5 (157)

with arbitrary constantsΨ0 andΨ1. Since the perturbations are supposed to be small initially, they cannot diverge for
η → 0, and we have therefore to keep only the ’growing’ mode,Ψ1 = 0. But also theΨ0 mode is only constant. This
fact led Lifshitz who was the first to analyze cosmological perturbations to the conclusions that linear perturbations do
not grow in a Friedman universe and cosmic structure cannot have evolved by gravitational instability [33]. However,
the important point to note here is that, even if the gravitational potential remains constant, matter density fluctuations
do grow on sub-horizon scales, scales wherekη ≫ 1 and hence structure can evolve on scales which are smaller than
the Hubble scale.

Definingx = kη , we obtain for the velocity potential and the density contrast

V = Ψ0
x
3

(158)

Dg = −5Ψ0−
1
6

Ψ0x2 , D = Dg +3Ψ+
6
x
V = −1

6
Ψ0x2 . (159)

In the variableD the constant term has disappeared and we haveD ≪ Ψ on super-horizon scales,x≪ 1.
On sub-horizon scales, the density fluctuations grow like the scale factora ∝ x2. Nevertheless, Lifshitz’ conclu-

sion [33] that pure gravitational instability cannot be thecause for structure formation has some truth: if we start from
tiny thermal fluctuations of the order of 10−35, they can only grow to about 10−30 due to this mild, power law instability
during the matter dominated regime. Or, to put it differently, if we want to form structure by gravitational instability,
we need initial fluctuations of the order of at least 10−5, much larger than thermal fluctuations. According to what we
have said here, we need these fluctuations at the beginning ofthe matter dominated phase, but as we shall see below,
perturbations do not grow at all during the radiation dominated era, so that reallyinitial fluctuationswith amplitudes
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≃ 10−5 are needed. One possibility to create such fluctuations is quantum particle production in the classical gravita-
tional field during inflation. The rapid expansion of the universe during inflation quickly expands microscopic scales,
at which quantum fluctuations are important, to cosmological scales where these fluctuations are then “frozen in” as
classical perturbations in the energy density and the geometry. We will discuss the induced spectrum on fluctuations
in Section 5.5.

5.3.2. The pure radiation fluid, K= 0,Λ = 0

In this limit we setw = c2
s = 1/3, andΠ = Γ = 0 so thatΦ = −Ψ. We conclude fromρ ∝ a−4 and the Friedmann

equation thata ∝ η . For radiation, theu–equation (150) becomes

ü+(
1
3

k2− 2
η2 )u = 0, (160)

with general solution

u(x) = A

(
sin(x)

x
−cos(x)

)
+B

(
cos(x)

x
−sin(x)

)
, (161)

where we have setx = kη/
√

3 = cskη . For the Bardeen potential we obtain with (149), up to constant factors,

Ψ(x) =
u(x)
x2 . (162)

We must setB = 0 for perturbations to remain regular at early times. On super-horizon scales,x≪ 1, we then have

Ψ(x) ≃ A
3

. (163)

For the density and velocity perturbations one finds

Dg = 2A

[
cos(x)− 2

x
sin(x)

]
, V = −

√
3

4
D′

g . (164)

In thesuper-horizon regime, x≪ 1, this yields

Ψ =
A
3

, Dg = −2A− A

3
√

3
x2, V =

A

2
√

3
x . (165)

Onsub-horizon scales, x≫ 1, we obtain oscillating solutions with constant amplitudeand with frequencyk/
√

3:

V =

√
3A
2

sin(x) , Dg = 2Acos(x) , Ψ = −Acos(x)/x2 . (166)

Note that also radiation perturbations outside the Hubble horizon are frozen to first order. Once they enter the horizon
they start to collapse, but pressure resists the gravitational force and the radiation fluid fluctuations oscillate at constant
amplitude. The perturbations of the gravitational potential oscillate and decay like 1/a2 inside the horizon.

5.3.3. Adiabatic initial conditions

Adiabaticity requires that the perturbations of all contributions to the energy density are initially in thermal
equilibrium. This fixes the ratio of the density perturbations of different components. There is no entropy flux and thus
Γ = 0. Here we consider a mixture of non relativistic matter and radiation. Since the matter and radiation perturbations
behave in the same way on super-horizon scales,

D(r)
g = A+Bx2, D(m)

g = A′ +B′x2, V(r) ∝ V(m) ∝ x, (167)
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we may require a constant ratio between matter and radiationperturbations. As we have seen in the previous section,
inside the horizon (x > 1) radiation perturbations start to oscillate while matterperturbations keep following a power
law. On sub-horizon scales a constant ratio can thus no longer be maintained. There are two interesting possibilities:
adiabatic and isocurvature perturbations. Here we concentrate on adiabatic perturbations which seem to dominate the
observed CMB anisotropies.

FromΓ = 0 one easily derives that two components withpi/ρi = wi =constant,i = 1,2, are adiabatically coupled if

(1+w1)D
(2)
g = (1+w2)D

(1)
g . Energy conservation then implies that their velocity fields agree,V(1) = V(2). This result

is also a consequence of the Boltzmann equation in the strongcoupling regime. We therefore require

V(r) = V(m), (168)

so that the energy flux in the two fluids is coupled initially.
We restrict ourselves to a matter dominated background, thesituation relevant in the observed universe after equality.

We first have to determine the radiation perturbations during a matter dominated era. SinceΨ is dominated by the
matter contribution (it is proportional to the background density of a given component), we haveΨ ≃ const= Ψ0.
We neglect the contribution from the sub-dominant radiation to Ψ. Energy momentum conservation for radiation then
gives, withx = kη , andd/dx= ′

D(r)′
g = −4

3
V(r) (169)

V(r)′ = 2Ψ+
1
4

D(r)
g . (170)

HereΨ is just a constant given by the matter perturbations, and it acts like a constant source term. The general
solution of this system is then

D(r)
g = Acos(csx)−

4√
3

Bsin(csx)+8Ψ [cos(csx)−1] (171)

V(r) = Bcos(csx)+

√
3

4
Asin(csx)+2

√
3Ψsin(csx), (172)

wherecs = 1/
√

3 is the sound speed of radiation. Our adiabatic initial conditions require

lim
x→0

V(r)

x
= V0 = lim

x→0

V(m)

x
< ∞. (173)

ThereforeB = 0 andV = V0x with V0 = A/4−2Ψ on super horizon scales,x ≪ 1. Using in additionΨ = 3V0 (see
(158)) we obtain

D(r)
g =

4
3

Ψcos

(
x√
3

)
−8Ψ (174)

V(r) =
1√
3

Ψsin

(
x√
3

)
(175)

D(m)
g = −Ψ(5+

1
6

x2) (176)

V(m) =
1
3

Ψx. (177)

On super-horizon scales,x≪ 1 we have

D(r)
g ≃−20

3
Ψ and V(r) ≃ 1

3
xΨ , (178)

note thatD(r)
g = (4/3)D(m)

g andV(r) = V(m) as it is required for adiabatic initial conditions.
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5.4. Scalar field cosmology

We now consider the special case of a Friedmann universe filled with self interacting scalar field matter. We keep
spatial curvatureK = 0 in this section. The action is given by

S=
1

16πG

∫
d4x
√
|g|R+

∫
d4x
√
|g|
(

1
2

∂µϕ∂ µϕ −W(ϕ)

)
= Sg +Sm (179)

whereϕ denotes the scalar field andW is the potential. The energy momentum tensor is obtained by varying the matter
part of the action,Sm wrt the metricgµν ,

Tµν = ∂µ ϕ∂νϕ −
[

1
2

∂λ ϕ∂ λ ϕ +W

]
gµν (180)

The energy densityρ and the energy fluxu are defined by

Tµ
ν uν = −ρuµ . (181)

For a homogeneous and isotropic universe,ϕ = ϕ(t) andgµν = a2ηµν we obtain

ρ =
1

2a2 ϕ̇2 +W (uµ) =
1
a
(1,0) . (182)

The pressure is given by

T i
j = pδ i

j p =
1

2a2 ϕ̇2−W . (183)

We now consider scalar field perturbations,
ϕ = ϕ̄ + δϕ . (184)

Clearly, the scalar field only generates scalar-type perturbations (to first order). The perturbed metric is therefore
given byds2 = −a2(1+ 2Ψ)dη2 + a2(1−2Φ)δi j dxidxj . Inserting Eq. (184) in the definition of the energy velocity
perturbationV,

(uµ) =
1
a
(1−Ψ,−V,i ) (185)

and the energy density perturbationδρ ,
ρ = ρ̄ + δρ , (186)

we obtain

δρ =
1
a2

˙̄ϕδϕ̇ − 1
a2

˙̄ϕ2Ψ+W,ϕ δϕ (187)

and

V =
k
˙̄ϕ

δϕ . (188)

From the stress tensor,Ti j = ϕ ,i ϕ , j −
[

1
2∂λ ϕ∂ λ ϕ +W

]
gi j we find

pπL =
1
a2

˙̄ϕδϕ̇ − 1
a2

˙̄ϕ2Ψ−W,ϕ δϕ and Π = 0 . (189)

Short calculations give

Dg = −(1+w)

[
4Ψ+2

ȧ
a

k−1V −k−1V̇

]
, (190)

Ds = Dg +3(1+w)Ψ , (191)

Γ =
2W,ϕ

pρ̇
[

˙̄ϕρDs− ρ̇δϕ
]

, (192)

Π = 0 . (193)
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The Einstein equations then lead to the following second order equation for the Bardeen potential which we have
discussed above:

Ψ̈+2(H − ϕ̈/ϕ̇)Ψ̇+(2Ḣ −2H ϕ̈/ϕ̇ +k2)Ψ = 0 (194)

or, using the definitionc2
s = ṗ/ρ̇,

Ψ̈+3H (1+c2
s)Ψ̇+(2Ḣ +(1+3c2

s)H
2 +k2)Ψ = 0 . (195)

As already mentioned above, this equation differs from theΨ equation for a perfect fluid only in the last term
proportional tok2. This comes from the fact that the scalar field is not in a thermal state with fixed entropy, but it
is in a fully coherent state (Γ 6= 0) and field fluctuations propagate with the speed of light. Onlarge scales,kη ≪ 1,
this difference is not relevant, but on sub–horizon scales it does play a certain role.

5.5. Generation of perturbations during inflation

So far we have simply assumed some initial fluctuation amplitudeA, without investigating where it came from
or what thek–dependence ofA might be. In this section we discuss the most common idea about the generation of
cosmological perturbations, namely their production fromquantum vacuum fluctuations during an inflationary phase.
The treatment here is focused mainly on getting the correct result with as little effort as possible; we ignore several
subtleties related,e.g.to the transition from quantum fluctuations of the field to classical fluctuations in the energy
momentum tensor. The idea is of course that the source for themetric fluctuations are theexpectation valuesof the
energy momentum tensor operator of the scalar field.

The basic idea is simple: A time dependent gravitational field very generically leads to particle production, analo-
gously to the electron positron production in a classical, time dependent, strong electromagnetic field.

Let us first fix our notation. Inflation is an era during which the expansion of the scale factor is accelerated,d2a
dt2

> 0.

In terms of conformal time,ddη = ˙ , this becomes

d2a
dt2

=
1
a
Ḣ > 0 .

We shall only consider simple power law inflation, wherea = (cη)q for some constantsc andq. For the scale factor
to be positive and real we requirecη > 0. Expansion then happens whencq> 0 and accelerated expansion when in
additionq < 0. Hence for power law inflation, the scale factor behaves like

a ∝ |η |q

andη < 0 as well asq < 0. It is easy to see that de Sitter inflation,a ∝ exp(Ht), corresponds toq = −1. In general,
for a fluid with p = wρ

q =
2

1−3w
.

Inflation therefore requiresw<−1/3. During scalar field inflation, the energy density must therefore be dominated by
the potential,W > a−2ϕ̇2. We suppose that the field is ’slowly rolling’ down the potential until at some later moment
the conditionw < −1/3 breaks down and inflation stops. How far away a given moment is from this end of inflation
can be cast in terms of the slow roll parametersε1 andε2 defined by

ε1 = − Ḣ
aH2 , H =

H

a
is the Hubble parameter (196)

ε2 = −
a2d2ϕ

dt2

H ϕ̇
=

[
1− ϕ̈

H ϕ̇

]
=

[
1+

a2W′

H ϕ̇

]
. (197)

5.5.1. Scalar perturbations

The main result of this subsection is the following: During inflation, the produced particles induce a gravitational
field with a (nearly) scale invariant spectrum,

k3|Ψ(k,η)|2 = kn−1×const. with n≃ 1 . (198)
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The quantityk3|Ψ(k,η)|2 is the squared amplitude of the metric perturbation at comoving scaleλ = π/k. To ensure
that this quantity is small over a broad range of scales, so that neither black holes form on small scales nor large
deviation from homogeneity and isotropy on large scales appear, we must requiren≃ 1. These arguments have been
put forward by Harrison and Zel’dovich [34] (ten years before the advent of inflation), leading to the name ’Harrison-
Zel’dovich spectrum’ for a scale invariant perturbation spectrum.

To derive the above result we consider a scalar field background dominated by a potential, hencea ∝ |η |q with
q∼−1. Developing the action of this system,

S=
∫

dx4
√
|g|
(

R
16πG

+
1
2
(∇ϕ)2−W

)
,

to second order in the perturbations (see [32]) around the Friedmann solution one obtains

δS=

∫
dx4
√
|g|1

2
(∂µv)2 (199)

up to a total differential. Herev is the perturbation variable

v = −a
√

H 2− Ḣ√
4πGH

ζ (200)

introduced in Eq. (154). Via the Einstein equations, this variable can also be interpreted as representing the fluctuations
in the scalar field. Therefore, we quantizev and assume that initially, on small scales,k|η | ≪ 1,v is in the (Minkowski)
quantum vacuum state of a massless scalar field with mode function

vin =
v0√

k
exp(ikη) . (201)

The pre-factorv0 is ak-independent constant which depends on convention, but is of order unity. From (153) we can
derive

(v/z)· =
k2u
z

,

wherez ∝ a is defined in Eq. (155) andu ∝ aηΨ is given in Eq. (149). On small scales,k|η | ≪ 1, this results in the
initial condition foru

uin =
−iv0

k3/2
exp(ikη) . (202)

In the case of power law expansion,a ∝ |η |q, the evolution equation foru, Eq. (150), reduces to

ü+(k2− q(q+1)

η2 )u = 0. (203)

The solutions to this equation are of the form(k|η |)1/2H(i)
µ (kη), whereµ = q+ 1/2 andH(i)

µ is the Hankel function

of the ith kind (i = 1 or 2) of orderµ . The initial condition (202) requires that onlyH(2)
µ appears, so that we obtain

u =
α

k3/2
(k|η |)1/2H(2)

µ (kη) ,

where againα is a constant of order unity. We define the value of the Hubble parameter during inflation, which is
nearly constant byHi . With H = H /a≃ 1/(|η |a), we then obtaina∼ 1/(Hi|η |). With the Planck mass defined by
4πG= M−2

4 , Eq. (149) then gives

Ψ =
Hi

2M4
u≃ Hi

M4
k−3/2(k|η |)1/2H(2)

µ (kη) . (204)

On small scales this is a simple oscillating function while on large scalesk|η | ≪ 1 it can be approximated by a power
law,

Ψ ≃ Hi

M4
k−3/2(k|η |)1+q , for k|η | ≪ 1 . (205)
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Here we have usedµ = 1/2+q< 0. This yields

k3|Ψ|2 ≃
(

Hi

M4
(k|η |)1+q

)2

∝ kn−1 , (206)

hencen ≃ 1 if q ∼ −1. Detailed studies have shown that the amplitude ofΨ can still be somewhat affected by the
transition from inflation to the subsequent radiation era, the spectral index, however, is very stable. Simple deviations
from de Sitter inflation, likee.g.power law inflation,q > −1, lead to slightly blue spectra,n

>∼ 1.
With a somewhat more careful treatment, one finds that both, the amplitude and the spectral index depend on scale

via the slow roll parametersε1 andε2,

k3|Ψ|2 =
2H2

i

M2
4ε1

(kη f )
n−1 , (207)

n|k=a(η)H(η) = 1−4ε1(η)−2ε2(η) . (208)

Vector perturbations are not generated during standard inflation; and even if they are generated they only decay
during subsequent evolution and we therefore do not discussthem any further. This may change drastically in
braneworlds (see [24])!

5.5.2. Tensor perturbations

The situation is different for tensor perturbations. Againwe consider the perfect fluid case,Π(T)
i j = 0. Eq. (144)

implies

Ḧi j +
2ȧ
a

Ḣi j +k2Hi j = 0 . (209)

If the background has a power law evolution,a∝ ηq this equation can be solved in terms of Bessel or Hankel functions.
The less decaying mode solution to Eq. (209) isHi j = ei j x1/2−β J1/2−q(x), whereJν denotes the Bessel function of
orderν, x = kη andei j is a transverse traceless polarization tensor. This leads to

Hi j = const for x≪ 1 (210)

Hi j =
1
a

for x
>∼ 1 . (211)

One may also quantize the tensor fluctuations which represent gravitons. Doing this, one obtains (up to log corrections)
a scale invariant spectrum of tensor fluctuations from inflation: for tensor perturbations the canonical variable is simple
given byhi j = MPaHi j . The evolution equation forhi j = hei j is of the form

ḧ+(k2 +m2(η))h = 0 , (212)

wherem2(η) = −ä/a. During inflationm2 = −q(q−1)/η2 is negative, leading to particle creation. Like for scalar
perturbations, the vacuum initial conditions are given on scales which are inside the horizon,k2 ≫ |m2|,

hin =
1√
k

exp(ikη) for k|η | ≫ 1.

Solving Eq. (212) with this initial condition, gives

h =
1√
k
(k|η |)1/2H(2)

q−1/2(kη) ,

where H(2)
ν is the Hankel function of degreeν of the second kind. On super-horizon scales where we have

H(2)
q−1/2(kη) ∝ (k|η |)q−1/2, this leads to|h|2 ≃ |η |(k|η |)2q−1. Using the relation betweenhi j = hei j andHi j one obtains

the spectrum of tensor perturbations generated during inflation. For exponential inflation,q ≃ −1 one finds again a
scale invariant spectrum forHi j on super-horizon scales,

k3|Hi j H
i j | ≃ (2Hin/M4)

2(kη f )
nT with nT = 2(q+1)≃ 0 . (213)
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Again, a more careful treatment within the slow roll approximation gives

nT = −2ε1 . (214)

A more detailed analysis also of the amplitudes of the scalarand tensor spectra leads to the consistency relationnT =
−2A2

T/A2
S of slow roll inflation. HereAT andAS are the amplitudes of tensor and scalar perturbations, respectively.

More details on inflation can be found in many cosmology books, e.g.Refs. [29, 35, 36].

5.6. Power spectra

The quantities which we have calculated in the previous subsection are not the precise values ofe.g.Ψ(k,η), but
only expectation values〈|Ψ(k,η)|2〉. In different realizations of the same inflationary model, the ’phases’α(k,η)
given byΨ(k,η) = exp(iα(k))|Ψ(k)| are different. They are random variables. Since the processwhich generates the
fluctuationsΨ is stochastically homogeneous and isotropic, these phasesare uncorrelated (for different values ofk).
However, the quantity which we can calculate for a given model and which then has to be compared with observation
is the power spectrum. Power spectra are the “harmonic transforms” of the two point correlation functions2. If the
perturbations of the model under consideration are Gaussian, this is a relatively generic prediction from inflationary
models, then the two-point functions and therefore the power spectra contain the full statistical information of the
model.

Let us first consider the power spectrum of matter,

PD(k) =
〈∣∣Dg (k,η0)

∣∣2
〉

. (215)

Here〈 〉 indicates a statistical average, ensemble average, over “initial conditions” in a given model.PD(k) is usually
compared with the observed power spectrum of the galaxy distribution.

The spectrum we can both, measure and calculate to the best accuracy is the CMB anisotropy power spectrum. It
is defined as follows: The fluctuations of the radiation temperature as observed in the sky,∆T/T, is a function of our
positionx0, timeη0 and the photon directionn. We develop then–dependence in terms of spherical harmonics. We will
suppress the argumentη0 and often alsox0 in the following calculations. All results are for today (η0) and here (x0).
By statistical homogeneity statistical averages over an ensemble of realizations (expectation values) are supposed to
be independent of position. Furthermore, we assume that theprocess generating the initial perturbations is statistically
isotropic. Then, the off-diagonal correlators of the expansion coefficientsaℓm vanish and we have

∆T
T

(x0,η0,n) = ∑
ℓ,m

aℓm(x0,η0)Yℓm(n), 〈aℓm ·a∗ℓ′m′〉 = δℓℓ′δmm′Cℓ . (216)

TheCℓ’s are the CMB power spectrum.
The two point correlation function is related to theCℓ’s by

〈
∆T
T

(n)
∆T
T

(n′)

〉

n·n′=µ
= ∑

ℓ,ℓ′,m,m′
〈aℓm ·a∗ℓ′m′〉Yℓm(n)Y∗

ℓ′m′(n′) =

∑
ℓ

Cℓ

ℓ

∑
m=−ℓ

Yℓm(n)Y∗
ℓm(n′)

︸ ︷︷ ︸
2ℓ+1
4π Pℓ(n·n′)

=
1

4π ∑
ℓ

(2ℓ+1)CℓPℓ(µ), (217)

where we have used the addition theorem of spherical harmonics for the last equality; thePℓ’s are the Legendre
polynomials.

For given metric perturbations and perturbations of the energy momentum tensor of the cosmic fluid, the tem-
perature perturbations can be determined by following the oscillations in the radiation fluid before decoupling (see

2 The “harmonic transform” in usual flat space is simply the Fourier transform. In curved space it is the expansion in terms of eigenfunctions of the
Laplacian on that space,e.g.on the sphere it corresponds to the expansion in terms of spherical harmonics
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subsection 5.3.2) and by following the propagation of photons along geodesics in the perturbed spacetime after de-
coupling. Decoupling of photons and matter happens during recombination (T ≃ 3000K,z≃ 1000), where electrons
and protons recombine to neutral hydrogen. During that process, the number density of free electrons with which the
photons can scatter drops drastically and finally becomes solow, that the mean free path of the photons grows larger
than the Hubble scale. The surface of constant temperature,Tdec= T(ηdec), at which this happens is also called the
’last scattering surface’. After last scattering, the photons effectively cease to interact and move freely along geodesics
(more details can be founde.g.in [29, 28, 37]).

Clearly thealm’s from scalar-, vector- and tensor-type perturbations areuncorrelated,
〈

a(S)
ℓma(V)

ℓ′m′

〉
=
〈

a(S)
ℓma(T)

ℓ′m′

〉
=
〈

a(V)
ℓm a(T)

ℓ′m′

〉
= 0. (218)

Since vector perturbations decay, their contributions, theC(V)
ℓ , are negligible in models where initial perturbations

have been laid down very early,e.g., after an inflationary period. Tensor perturbations are constant on super-horizon
scales and perform damped oscillations once they enter the horizon.

Let us first discuss in somewhat more detail scalar perturbations. We restrict ourselves to the caseK = 0 for
simplicity. We suppose the initial perturbations to be given by a spectrum,

〈
|Ψ|2

〉
k3 = A2kn−1ηn−1

0 . (219)

We multiply by the constantηn−1
0 , the actual comoving size of the horizon, in order to keepA dimensionless for all

values ofn. A then represents the amplitude of metric perturbations at horizon scale today,k = 1/η0.
Foradiabaticperturbations we have obtained onsuper-horizon scales,

1
4

D(r)
g = −5

3
Ψ+O((kη)2), V(b) = V(r) = O(kη) . (220)

The dominant contribution to the temperature fluctuations on super-horizon scales (neglecting the integrated Sachs–
Wolfe effect

∫
Φ̇− Ψ̇ ) comes from two terms: the first, 2Ψ, is the change of photon energy due to the gravitational

potential at the last scattering surface,η = ηdec, and the second,1/4D
(r)
g represents the intrinsic temperature fluctuations

(for more details see [38, 30, 37]). With Eq. (220) this yields the famous Sachs-Wolfe formula

∆T
T

(x0,n,η0) = 2Ψ(xdec,ηdec)+
1
4

D(r)
g (xdec,ηdec) =

1
3

Ψ(xdec,ηdec). (221)

The Fourier transform of (221) gives

∆T
T

(k,n,η0) =
1
3

Ψ(k,ηdec) ·eikn(η0−ηdec) . (222)

Using the decomposition

eikn(η0−ηdec) =
∞

∑
ℓ=0

(2ℓ+1)iℓ jℓ(k(η0−ηdec))Pℓ(k̂ ·n) ,

where jℓ are the spherical Bessel functions, we obtain
〈

∆T
T

(x0,n,η0)
∆T
T

(x0,n′,η0)

〉
(223)

=
1
V

∫
d3x0

〈
∆T
T

(x0,n,η0)
∆T
T

(x0,n′,η0)

〉

=
1

(2π)3

∫
d3k

〈
∆T
T

(k,n,η0)

(
∆T
T

)∗
(k,n′,η0)

〉

=
1

(2π)39

∫
d3k
〈
|Ψ|2

〉 ∞

∑
ℓ,ℓ′=0

(2ℓ+1)(2ℓ′+1)iℓ−ℓ′

· jℓ(k(η0−ηdec)) jℓ′(k(η0−ηdec))Pℓ(k̂ ·n) ·Pℓ′(k̂ ·n′) . (224)
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In the second equal sign we have used the unitarity of the Fourier transformation. InsertingPℓ(k̂n) =
4π

2ℓ+1 ∑mY∗
ℓm(k̂)Yℓm(n) and Pℓ′(k̂n′) = 4π

2ℓ′+1 ∑m′ Y∗
ℓ′m′(k̂)Yℓ′m′(n′), the integration over directionsdΩk̂ gives

δℓℓ′δmm′ ∑mY∗
ℓm(n)Yℓm(n′).

Using as well∑mY∗
ℓm(n)Yℓm(n′) = 2ℓ+1

4π Pℓ(µ), whereµ = n ·n′, we find

〈
∆T
T

(x0,n,η0)
∆T
T

(x0,n
′,η0)

〉

nn′=µ
=

∑
ℓ

2ℓ+1
4π

Pℓ(µ)
2
π

∫
dk
k

〈
1
9
|Ψ|2

〉
k3 j2ℓ (k(η0−ηdec)). (225)

Comparing this equation with Eq. (217) we obtain foradiabatic perturbationson scales 2≤ ℓ ≪ (η0−ηdec)/ηdec
∼ 100

C(SW)
ℓ ≃ 2

π

∫ ∞

0

dk
k

〈∣∣∣∣
1
3

Ψ
∣∣∣∣
2
〉

k3 j2ℓ (k(η0−ηdec)) . (226)

If Ψ is a pure power law as in Eq. (219) and we setk(η0 − ηdec) ∼ kη0, the integral (226) can be performed
analytically. For the ansatz (219) one finds

C(SW)
ℓ =

A2

9

Γ(3−n)Γ(ℓ− 1
2 + n

2)

23−nΓ2(2− n
2)Γ(ℓ+ 5

2 − n
2)

for −3 < n < 3 . (227)

Of special interest is thescale invariantor Harrison–Zel’dovich spectrum,n = 1 (see Section 5.5). It leads to

ℓ(ℓ+1)C(SW)
ℓ = const. ≃

〈(
∆T
T

(ϑℓ)

)2
〉

, ϑℓ ≡ π/ℓ . (228)

This is precisely (within the accuracy of the experiment) the behavior observed by the DMR experiment aboard the
satellite COBE [39] and more recently with the WMAP satellite [40].

Inflationary models predict very generically a HZ spectrum (up to small corrections). The DMR discovery has
therefore been regarded as a great success, if not a proof, ofinflation. There are other models like topological defects
[41] or certain string cosmology models [42] which also predict scale–invariant,i.e. Harrison Zel’dovich spectra of
fluctuations. These models do however not belong to the classinvestigated here, since in these models perturbations
are induced by seeds which evolve non–linearly in time.

For gravitational waves (tensor fluctuations), a formula analogous to (227) can be derived,

C(T)
ℓ =

2
π

∫
dk k2

〈∣∣∣∣
∫ η0

ηdec

dηḢ(η ,k)
jℓ(k(η0−η))

(k(η0−η))2

∣∣∣∣
2
〉

(ℓ+2)!
(ℓ−2)!

. (229)

To a very crude approximation we may assumeḢ = 0 on super-horizon scales and
∫

dηḢ jℓ(k(η0−η)) ∼ H(η =
1/k) jℓ(kη0). For a pure power law,

k3
〈
|H(k,η = 1/k)|2

〉
≃ A2

TknT η−nT
0 , (230)

one obtains

C(T)
ℓ ≃ 2

π
(ℓ+2)!
(ℓ−2)!

A2
T

∫
dx
x

xnT
j2ℓ (x)

x4

=
(ℓ+2)!
(ℓ−2)!

A2
T

Γ(6−nT)Γ(ℓ−2+ nT
2 )

26−nT Γ2(7
2 −nT)Γ(ℓ+4− nT

2 )
. (231)

For a scale invariant spectrum (nT = 0) this results in

ℓ(ℓ+1)C(T)
ℓ ≃ ℓ(ℓ+1)

(ℓ+3)(ℓ−2)
A2

T
8

15π
. (232)
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The singularity atℓ = 2 in this crude approximation is not real, but there is some enhancement ofℓ(ℓ + 1)C(T)
ℓ at

ℓ ∼ 2 see Fig. 7). Again, inflationary models (and topological defects) predict a scale invariant spectrum of tensor
fluctuations (nT ∼ 0).

On intermediate scales, 100< ℓ < 1000, the acoustic oscillations of radiation density fluctuations before decoupling
(see subsection 5.3.2) lead to a characteristic series of peaks in the CMB power spectrum which is being measured
in great detail and contains very important information on cosmological parameters [43]. On small angular scales,
ℓ

>∼ 800, fluctuations are damped by collisional damping (Silk damping). This effect has to be discussed with the
Boltzmann equation for photons, which goes beyond the scopeof this introduction (see [29, 43]).

FIGURE 7. Adiabatic scalar (left) and tensor (right) CMB anisotropy spectra are shown. The dimensionless quantityℓ(ℓ +
1)Cℓ/(2π) is plotted. The top panels show the temerature anisotropieswhile the bottom panels show the corresponding polarization
spectra (for an introduction to polarization seee.g.[29]).

6. BRANEWORLD COSMOLOGY

We now want to study cosmology of an expanding maximally symmetric braneworld. We still require the bulk to be
empty andZ2–symmetric. One can show that the most general empty bulk allowing for a homogeneous and isotropic
brane is Schwarzschild-AdS (Sch-AdS). In the cosmologicalsetting we allow the brane to move in the bulk. As we
shall see, this can mimic cosmological expansion. The situation is as depicted in Fig 8.

The 5d metric of Sch-AdS is of the form

ds2 = −F(R)dT2 +
dR2

F(R)
+R2

(
dr2

1−Kr2 + r2dΩ2
)

(233)

where the functionF is determined by the AdS curvature radiusℓ, the 5d massC and the curvatureK of 3d space (on
the brane) via

F(R) = K +
R2

ℓ2 − C
R2 .
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.R=0
R=R(T)

FIGURE 8. A moving brane in AdS-Schwarzschild. In this coordinates the AdS horizon is atR= ∞.

From this we can calculate the 5d Weyl tensor,CABCD, and its ’electric’ components defined in (30) with the result

Eµν = ρEuE
µuE

ν + πE
µν with u = R−1(1,0) , (234)

E00 =
C
a4 = ρE and πE

µν = 0 . (235)

HereR(T) = a(t), wheret is cosmic time on the brane andu is the unit normal vector in direction of cosmic time on
the brane.R(T) is the brane position at timet(T).

6.1. The modified Friedmann equations

From the brane gravity equations,

Gµν = −Λ5gµν + κ4τµν + κ2
5σµν −Eµν

with Λ4 = 1
2(Λ5 + κ5/6λ 2), κ4 = κ2

5λ/6 and

σµν = −1
4

τµα τα
ν +

1
12

ττµν −
1
8

gµνταβ ταβ − 1
24

gµντ2

with τµν = (ρ + p)uµuν − pgµν we obtain

H2 =
κ4

3
ρ
(

1+
ρ
2λ

)
+

C
a4 +

Λ4

3
+

K
a2 , (236)

where H is the Hubble parameter. In this section we denote the derivative with respect tocosmological time t
determined bydt = adη by an over-dot, so thatH = ȧ/a andH = ȧ.

The termρ2/(2λ ) in Eq. (236) is a correction to the Friedmann equation which is important only at high energies
and ρE = C/a4, comes from the Weyl tensor. It is called ’Weyl radiation’ since it scales like cosmic radiation,
∝ a−4. Observations (nucleosynthesis) tell us that latest at thetemperatureT ∼ 1MeV these additional terms should
be unimportant. More precisely,ρE/ρ

∣∣
(nuc)

<∼ 0.1 andλ >∼ (1MeV)4. For the 5d Planck mass this impliesM5
>∼

3×104GeV. The conservation equation of 4-dimensional cosmologyremains unchanged,

ρ̇ = −3(ρ + p)
ȧ
a

. (237)

Solutions forC = K = Λ4 = 0 are readily found. If the equation of state is given byp = wρ we find

a = a0 [t(t + tλ )]
1

3(1+w) , tλ =
M4√

3πλ(3+w)
< 1sec, (238)
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where we have usedλ > 1(Mev)4 for the inequality. This is to be compared with the usual 4-dimensional behavior
from general relativity (GR). There we havea= a0t2/3(1+w), which corresponds to the above result in the limitλ → ∞.
Especially interesting is also the case of de Sitter inflation wherep = −ρ and henceρ =constant, so thata = a0eHt ,
with

H =

√
κ4

ρ
3

(
1+

ρ
2λ

)
>

√
κ4ρ
3

= HGR . (239)

At low energies we recover the usual Friedmann equation while at high energies,ρ ≥ λ , the expansion law differs.
During a radiation epoch,p = ρ/3 with ρ ≫ λ we havea ∝ t1/4 (instead of the usual GR behavior,a ∝ t1/2). This
comes from the fact that in braneworlds at high energiesH ∝ ρ , where as in 4d GR we haveH ∝ √ρ. If λ is given
by the electroweak scale,λ ≥ 1TeV4, the observed low energy cosmology, like nucleosynthesis which starts after
ρ ∼ 1MeV4 is not affected (ifC is sufficiently small).

However, perturbations will carry 5d effects which should in principle be observable in the fluctuation spectrum of
the cosmic microwave background radiation (CMB) and in the large scale distribution of matter. These effects are still
under investigation. In Section 6.3 I shall present some preliminary partial results.

6.2. Brane inflation

We now want to study scalar field inflation in braneworlds. Since energy momentum conservation is still valid, the
scalar field evolution equation is also not modified,

ϕ̈ +3Hϕ̇ +W′(ϕ) = 0 .

In 4d GR, the condition for inflation, ¨a > 0 , is equivalent tȯϕ2 < V which corresponds to the violation of the strong
energy condition

p =
1
2

ϕ̇2−W < −1
3

ρ = −1
3

(
1
2

ϕ̇2 +W

)
, w =

p
ρ

< −1
3

, or ϕ̇2 < W .

The braneworld Friedmann equation (239) leads to a strongercondition on w for accelerated expansion. For
branewords 0< ä

a = Ḣ +H2 requires

w < −1
3

[
1+2ρ/λ
1+ ρ/λ

]
, or ϕ̇2 < W+

[
1
2ϕ̇2 +W

λ

(
5
4

ϕ̇2− 1
2

V

)]
(240)

for inflation to happen. This becomes the usualw < −1/3 at low energy,ρ << λ , but turns intow < −2/3 at high
energy.

If the slow roll approximation (̇ϕ2 ≪W) is satisfied we have

H2 ≃ κ4

3
W

[
1+

W
2λ

]
, ϕ̇ ≃−W′

3H
.

Since the Hubble rate is increased, slow roll is maintainedlongerthan in usual 4d inflation. Correspondingly, the slow
roll parameters are reduced,

ε1 ≡− Ḣ
H

=
M2

4

16π

(
W′

W

)2[ 1+W/λ
(1+W/2λ )2

]
, ε2 ≡− ϕ̈

ϕ̇H
=

M2
4

8π

(
W′′

W

)[
1

(1+W/2λ )

]
. (241)

In the high energy regime,V ≫ λ they are reduced by factors 4λ/V and 2λ/V, respectively. Hence, the universe may
be inflating only because it is in the high energy regime and turn into kinetic dominated expansion,w≃ 1, as soon as
V < λ . Such models are constrained since they induce a blue spectrum of gravity waves [44].

In standard 4d GR the perturbation spectrum induced by inflation is well known and the scalar spectrum agrees
extremely well with the observed anisotropies in the CMB. This will most probably lead to the most stringent
constraints for braneworlds, which however have not yet been explored in full generality so far. This is still a very
active field of research.
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6.3. Observable consequences from braneworld cosmology

So far, we have seen that it is conceivable that our Universe is a 3-brane. At least at low energy and disregarding
perturbations, we cannot distinguish cosmological evolution due to 4d Einstein equations or the (so different!) brane
gravity equations. We finally want to study ways to discover whether the braneworld idea is realized in nature. Are
there tell-tale observational signatures which would betray whether we live on a brane?

As we have seen, the gravitational equations for braneworlds differ significantly from Einstein gravity. However, at
low energy the Friedmann equations for a homogeneous and isotropic Universe are recovered. Hence there are two
regimes in which deviations from Einstein gravity will be found:

• At high energy. This is especially interesting for the generation of inflationary perturbations which may
be affected by high energy braneworld behavior. As long as werestrict ourselves on background effects the
calculations are relatively straight forward and well under control.

• In the perturbations. Cosmological brane perturbation theory is not well under control and still a subject of
active research. One main point are bulk perturbations which can affect the brane and act there like ’sources’. On
the other hand, gravity wave perturbations generated on thebrane can be emitted into the bulk.

Here we give examples of both aspects, how effects from braneworlds can enter cosmological perturbations, but we
are by no means exhaustive (more details and especially references can be found in [16]).

Let us first consider the high energy universe. During inflation scalar and tensor perturbations are generated. The
spectrum of scalar perturbations is|Ψ|2k3 = A2

Sk2q−2 = A2
S(k/H0)

ns−1. The slow roll approximation for braneworlds
gives [16]

A2
S≃

512π
75M6

4

W3

W′2

[
2λ +W

2λ

]3

, nS = 1−4ε1−2ε2 . (242)

Similarly, for tensor perturbations,|H|2k3 = A2
Tkn

T one obtains in the slow roll approximation [45]

A2
T ≃ 8W

75M2
4

F2(H/µ) , nT = −2ε1 , where F(x) =
[√

1+x2−x2sinh−1(1/x)
]−1/2

(243)

µ =

√
4π
3

√
λ

M4
and x = H/µ ≃

(
W
λ

)−1/2

(244)

Combining these slow roll equations, at low energy one obtains the same consistency relation as for ordinary inflation,

A2
T

A2
S

≃ M2
4W′2

16πW2 = ε1 = −nT/2 . (245)

At higher energies, however the relation is different. Furthermore, the tensor to scalar ratioR = (AT/AS)
2 and the

spectral indices, both depend on the energy scaleW. In Fig. 9 the behavior of the different quantities is indicated as
function of the energy. Of course also the amplitude of the perturbations strongly depends on the parameterW/M4

4.
In Fig. 10 two models are shown, quartic inflation withW = αϕ4 and quadratic inflation withW = m2ϕ2. The lines

of these models in the(R,ns) plane for varyingλ are drawn. The parapetersm respectivelyα are chosen such that
the scalar amplitude is compatible with the measured value,A2

S≃ 10−10 for each brane tensionλ . The observational
constraints from WMAP data [40] are also indicated. It is clear, that quartic braneworld inflation fares even worse than
ordinary quartic inflation. It is virtually excluded. Also quadratic inflation with strong braneworld effects fits the data
somewhat less well than usual quadratic inflation, since it predicts too strong tensor contributions. But clearly, in lack
of a concrete model of inflation (e.g., a given potential) there is little which can be said.

Discussing the effects on perturbations from braneworlds is opening Pandora’s box. There is a plethora of new
phenomena some of which we don’t even know the sign. For example: during ordinary inflation, gravitational
waves are generated. For a given inflationary potential, their amplitude can be calculated accurately. However, in
the braneworld context, a fraction of these waves will be radiated into the bulk and thereby reduce the gravity wave
amplitude. On the other hand, there is also gravity wave generation in the bulk, and some of these accumulate on the
brane, increasing the amplitude of gravity waves on the brane. Therefore, depending on the precise realization, even
the sign of the braneworld effect on a gravity wave background is unknown.

For a more concrete example, let us concentrate on scalar perturbations. We just take into account, that on the
perturbative level the Weyl tensorEµν can no longer be neglected. Its energy density perturbationδρE acts like
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FIGURE 9. We show the slow roll parametersε1 (dotted, red) andε2 (long dashed, blue) as function of the energy scale of

inflation,V/λ . The spectral indexn (solid, black) and the tensor to scalar ratioR (dashed, magenta) are also indicated. ForW/λ <∼ 1
the slow roll parameters stay nearly constant and correspond to their initial values which are chosenε1(0) = 0.1 andε2(0) = 0.02.

 Quartic

H.E. → 

 ← L.E.
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FIGURE 10. The dependence on the brane tensionλ of the parameters(R,ns) is shown for quartic and quadratic inflation. The
1-, 2- and 3-σ contours from the WMAP experiment are also indicated (from [45]).

a radiation perturbation. In addition, however it can have an arbitrary amount of anisotropic stress,ΠE. The latter
induces a difference between the two Bardeen potentials,Ψ−Φ ∝ ΠE. This affects mainly the Sachs–Wolfe term in
the CMB fluctuations, hence the low multi-poles up to roughlythe first peak. In Fig. 11 we show the effect of a Weyl
perturbation as function of an amplitude parameter

Cdark≡
δρE/ρr

4ζm
. (246)

Hereζm is theζ variable defined in Eq. (155), due to ordinary matter (without the Weyl component). The anisotropic
stressΠE , on large scales,ℓ≪ 1/k, can be determined as function ofCdark andζm. Confidence plots for the amplitude
Cdark and several other cosmological parameters from the WMAP data are shown in Fig. 12.

There are many more effects which may come from perturbations in the bulk and the different perturbation equations
on the brane which are presently under study. A systematic investigation is still lacking.
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FIGURE 11. The dependence of the CMB power spectrum on the amplitude of the Weyl perturbation,Cdark for a fixed set of
other cosmological parameters corresponding to the concordance model (from [46]).

FIGURE 12. Confidence plots from the CMB data for the amplitudeCdark and other cosmological parameters. The line contours
indicate 2- and 3-σ . Clearly, a Weyl contribution to the perturbations of more than about 10% is strongly disfavored by the data.

7. CONCLUSIONS

In these lectures we have studied the possibility that our Universe may represent a 3-brane in a higher dimensional
space. This idea is motivated by string theory. We have especially investigated the case of one large extra dimension
where the brane gravitational equations can be obtained purely from the bulk equations. Even though the resulting
gravity on the brane differs strongly from Einstein gravity, we have seen that for an Anti–de Sitter bulk, Newton’s
law is recovered at large distances and the Friedmann equations for the evolution of the Universe are obtained at low
energy.

It is, however by no means clear, to which extent the different gravitational equations will spoil the successes of
cosmological perturbation theory. This is still an open question and its answer will be crucial for braneworlds.
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