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Extreme pathways are a unique and minimal set of vectors that completely characterize the steady-state
capabilities of genome-scale metabolic networks. A framework is provided to mathematically characterize
extreme pathway length and to study how individual reactions participate in the extreme pathway structure of a
network. The length of an extreme pathway is the number of reactions that comprise it. Reaction participation
is the percentage of extreme pathways that utilize a given reaction. These properties were computed for the
production of individual amino acids and protein production in Helicobacter pylori and individual amino acid
production in Haemophilus influenzae. Reaction participation classifies the reactions into groups that are always,
sometimes, or never utilized for the production of a target product. The utilized reactions can be further
grouped into correlated subsets of reactions, some of which are non-obvious, and which may, in turn, suggest
regulatory structure. The length of the extreme pathways did not correlate with product yield or chemical
complexity. The distributions of extreme pathway lengths in H. pylori were also very different from those in H.
influenzae, showing a distinct systemic difference between the two organisms, despite overall similar metabolic
networks. Reaction participation and extreme pathway lengths thus serve to elucidate systemic biological

features.

Biochemical pathways are thought of as functional units of
metabolic networks. As such, the definitions and character-
izations of metabolic pathways allow for a detailed analysis of
robustness, physiological capabilities, and other systemic fea-
tures of these complex reaction networks. These emergent
properties necessitate the development of clear and math-
ematically precise definitions for a metabolic pathway. Math-
ematical and systemic definitions of metabolic pathways have
been proposed (Mavrovouniotis and Stephanopoulos 1990;
Liao et al. 1996; Karp et al. 1999; Schuster et al. 1999; Ouzou-
nis and Karp 2000; Schilling et al. 2000).

Extreme pathways are mathematically derived vectors
that can be used to characterize the phenotypic potential of a
defined metabolic network (Schilling et al. 1999, 2000). Ex-
treme pathway analysis has the following characteristics: (1) it
generates a unique and minimal set of systemic pathways; (2)
it describes all possible steady-state flux distributions that the
network can achieve by non-negative linear combinations of
the extreme pathways; and (3) it enables the determination of
time-invariant, topological properties of the network. The cal-
culation of extreme pathways is computationally challenging
and for large networks, generates a tremendous amount of
numerical data. (Schilling and Palsson 2000; Samatova et al.
2002). These challenges are being met and extreme pathway
analysis has been performed at a genome scale for amino acid
production in Haemophilus influenzae (Papin et al. 2002) and
protein production in Helicobacter pylori (Price et al. 2002).
With the ability to compute extreme pathways for large net-
works, it is necessary to develop methods to study the salient
features of large sets of extreme pathways.

Extreme pathways can be characterized by their length
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and reaction participation. Extreme pathway length is de-
fined as the number of reactions involved in an extreme path-
way. Extreme pathways describe the conversion of substrates
into products, while also creating all byproducts needed to
maintain the systemic elemental balance and maintaining all
cofactor pools at steady state. This characteristic distinguishes
the definition of an extreme pathway from the traditional
pathway definition of a linear chain of reactions (i.e., the
series of reactions that connect a substrate to a product). This
distinction is important because the extreme pathways ac-
count for all the reaction steps a network must use to com-
plete the synthesis process. Therefore, extreme pathways can
have multiple inputs and multiple outputs and are network
properties. Consequently, extreme pathway length can also
be characterized as the size or complexity of the correspond-
ing flux distribution map. Another important characteriza-
tion of extreme pathways is the reaction participation num-
ber, which is defined as the percentage of extreme pathways
in which a given reaction participates. Reactions that partici-
pate in a large number of extreme pathways may represent
good targets for regulation. Extreme pathway lengths and re-
action participation numbers can thus be used to characterize
the large-scale properties of metabolic networks. This study
presents the first calculations of extreme pathway length and
reaction participation for genome-scale metabolic networks,
using the networks of H. pylori and H. influenzae as case studies.

Conceptual Framework

The new concepts introduced in this study require fairly ex-
plicit definition and explanation. In this section, we describe
the conceptual framework for extreme pathway analysis and
characterization before analyzing the H. pylori and H. influen-
zae genome-scale metabolic networks.

Extreme Pathways
The phenotypic capabilities of genome-scale metabolic net-
works can be characterized by a set of systemically indepen-
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dent and unique extreme pathways (Schilling et al. 2000).
Extreme pathways correspond to steady-state flux distribu-
tions through a metabolic network. Thus, extreme pathways
do not simply describe a linear set of reactions linking sub-
strate to product, but instead, characterize the relative flux
levels through all the reactions necessary to convert substrates
to products, to balance all cofactor pools, and to secrete any
byproducts needed to maintain the network in a homeostatic
state. The sets of extreme pathways studied here lead to the
synthesis of a target product, such as an individual amino acid
or all the protein in a cell. Therefore, each extreme pathway in
the set corresponds to a complete flux map that synthesizes
the target product within the metabolic network.

Extreme pathways are so named because they are the
edges of a solution space and thus characterize the extreme
functions of the network. The extreme pathways can be
thought of as generating a convex cone in high-dimensional
space, circumscribing all possible steady-state metabolic phe-
notypes (Fig. 1). All potential steady-state flux distributions
through the network (hence, all metabolic phenotypes) are
non-negative linear combinations of the extreme pathways.
Consequently, the extreme pathways specify theoretical up-
per and lower bounds of the conversion of any substrates to
any products.

It should be noted that the extreme pathways are an
irreducible, nonredundant subset of elementary modes
(Pfeiffer et al. 1999; Schuster et al. 1999, 2000). Elementary
modes for a given network are more numerous than the ex-
treme pathways, but can all be represented by non-negative,
linear combinations of the extreme pathways.

Figure 1 Schematic representation of a convex cone characterized
by five extreme pathways. Extreme Pathways 1-5 (EP,, EP,, EP;, EP,,
and EP;) circumscribe the solution space for the three fluxes indicated
(Va, Ve, Vo). EP, lies in the plane formed by fluxes v, and vg. Conse-
quently, flux v does not participate in that extreme pathway. EP;,
EP,, and EP; are all close and represent different uses of a network to
achieve a similar overall result. All points within the convex cone can
be described as a non-negative linear combination of the extreme
pathways.
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Pathway Length and Reaction Participation Matrices
A matrix of extreme pathways can be formed in which each
column is an extreme pathway and each row corresponds to
a reaction in the network. The numerical value of the i,j'®
element corresponds to the relative flux level through the i™®
reaction in the j'® extreme pathway. The Extreme Pathway
Matrix is formed using all of the extreme pathways. A simple
example reaction network and the corresponding Extreme
Pathway Matrix are shown in Figure 2A. The Extreme Pathway
Matrix shown in Figure 2A contains three extreme pathways.
Each of these extreme pathways is displayed graphically in
Figure 2A. EP, and EP, are not simply linear reaction chains,
but instead, contain two outputs, E and the byproduct. Ex-
treme pathways can have any number of inputs or outputs.
EP;, like EP,, maintains cofactor pools at steady state. Each of
the extreme pathways results in the production of the product E.
The Pathway Length Matrix (Pp,,) is calculated directly
from the Extreme Pathway Matrix, as shown in Figure 2B. The
Extreme Pathway Matrix is first written in a binary form (P),
in which each reaction is categorized as either used (1) or not
used (0) within each extreme pathway. Then, the pathway
length matrix, Py, is computed by pre-multiplying the bi-
nary Extreme Pathway Matrix by its own transpose,

PLszT'f) (1

resulting in a symmetric matrix. The P, for the system in
Figure 2A is shown in Figure 2B. The values along the diagonal
of Pp\, correspond to the length of each extreme pathway. In
the example system, the first value along the diagonal is 6,
meaning that six reactions participate in EP;. A quick count of
the reactions shown in EP, (Fig. 2A) shows that there are six
reactions participating in the first extreme pathway.

The off-diagonal terms of Py, are equally easy to inter-
pret. They are the number of reactions that a pair of extreme
pathways have in common. For example, notice the circled
off-diagonal term in Figure 2B. This element is a comparison
of EP; (the column) and EP; (the row) and contains a value of
5. This means that EP, and EP; have five reactions in com-
mon. Upon examining EP, and EP; in Figure 2A, one can
readily see that the five reactions shared are b;, v;, v,, b,, and
b;. Thus, the off-diagonal terms of the pathway length matrix
are the reactions common to the two pathways being com-
pared at each element of the matrix.

The Reaction Participation Matrix (Rp,,) is also calculated
directly from the binary form of the Extreme Pathway Matrix.
The Reaction Participation Matrix is calculated by post-
multiplying the binary Extreme Pathway Matrix by its own
transpose,

Rpm = p-pr )

also forming a symmetric matrix. The Rp,, was calculated for
the example system, as shown in Figure 2C. The diagonal
terms in Rpy, refer to the number of pathways in which the
given reaction participates. For example, the first diagonal
term, corresponding to reaction v;, has a value of 3. This
means that reaction v; participates in all three extreme path-
ways. An examination of EP,, EP,, and EP; in Figure 2A shows
that reaction v;, which converts A — B, is in fact utilized in all
three extreme pathways. The values in the Reaction Partici-
pation Matrix can be characterized as percentages of the total
number of extreme pathways. To accomplish this, the entire
matrix, Rpy,, is normalized to the total number of extreme
pathways, three in the example case. Thus, the first diagonal
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Figure 2 Pathway Length and Reaction Participation Matrices for a simple network. (A) The example system with its corresponding stoichio-
metric and extreme pathway matrix. (A, bottom) Corresponding maps of the three extreme pathways. (B,C) The corresponding Length and
Participation Matrices, as well as their respective properties. Note in A that although the metabolite byp only participates in one exchange flux,
b3, there are two exchange flux arrows in the figure. However, both arrows correspond to the same single exchange flux.
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element would correspond to 100% reaction participation, as
reaction v, was utilized in all three extreme pathways.

The off-diagonal terms refer to the number of extreme
pathways that contain both of the corresponding reactions.
For example, notice the off-diagonal element boxed in Figure
2C containing a value of 2 (or 2/3, 67%). This element refers
to the number of pathways that contain both reaction b, (the
column) and reaction v, (the row). Upon examining the ex-
treme pathways in Figure 2A, one can see that both of these
reactions are utilized in EP, and EP;, whereas only b; is uti-
lized in EP,. The circled elements in Figure 2C show reaction
pairs that participate in exactly the same extreme pathways.
In this particular case, each of these reaction pairs participates
together in all of the extreme pathways. Thus, reactions v;, b,
b,, and b; are always present. They form a reaction group,
meaning that if one of them is utilized, the others must also
be utilized.

This section has provided a simple method to study
mathematically derived formulations describing extreme
pathway length and reaction participation. The Pathway
Length and Reaction Participation Matrices contain the mi-
nor and major product moments (Horst 1965) of the binary
Extreme Pathway Matrix, respectively. The Pathway Length
and Reaction Participation characterization of the Extreme
Pathway Matrix can be utilized together to examine the inte-
grated properties of large-scale networks.

RESULTS

The metabolic network for H. influenzae used in this study
contained 461 reactions and 367 metabolites. The metabolic
network for H. pylori used in this study contained 381 reac-
tions and 332 metabolites. The reconstruction of metabolic
networks has been reviewed previously (Covert et al. 2001).

Reaction Participation and Pathway Length Matrices
were calculated from various Extreme Pathway Matrices for
the H. influenzae and H. pylori networks described previously
(Papin et al. 2002; Price et al. 2002). Statistical analyses of
these matrices for various data sets in H. influenzae and H.
pylori were performed and the results are presented below. The
Extreme Pathway Matrices for the following data sets were
evaluated: (1) the individual production of the nonessential
amino acids in H. influenzae, (2) the individual production of
the nonessential amino acids in H. pylori, and (3) the produc-
tion of the set of nonessential amino acids in H. pylori. Al-
lowed inputs and outputs to the two genome-scale metabolic
networks are shown in Figure 3.

Reaction Participation

The reaction participation values were calculated for the three
data sets listed above. The percentages of extreme pathways in
which each reaction participated were calculated and rank
ordered as shown in Figure 4. The shape of each of the curves
in Figure 4 shows three distinct regions as follows: (1) an
initial flat portion of the curve representing the reactions that
are utilized in all extreme pathways; (2) a region in which the
reactions are sometimes, but not always, used in the extreme
pathways that produce the target product; and (3) a final re-
gion containing those reactions that are never used in an
extreme pathway that produces the target product. The sec-
ond region contains the reactions that can be used for syn-
thesis of the target product, but are not always necessary.
Thus, this region represents reactions used in various alter-
nate routes for the synthesis of the target product.
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Figure 3 lllustration of the input and output constraints for the
genome-scale metabolic networks in this study. The utilized inputs in
H. influenzae and H. pylori are listed at left. More inputs were allowed
to comprise previously defined minimal medium. However, only the
inputs listed above were utilized by the metabolic networks for the
synthesis of the specified products. The allowed outputs are listed at
right. The target products for H. pylori included the nonessential
amino acids as well as the simultaneously produced set of nonessen-
tial amino acids in both E. coli and equimolar ratios. The target prod-
ucts for H. influenzae included the nonessential amino acids.

The numbers of essential and utilized reactions for the
analyzed data sets are summarized in Table 1. A comparison of
the size of essential reaction sets for the production of amino
acids with equivalent central metabolic precursors yielded an
interesting result. The aromatic amino acids (which are all
derived from phosphoenolpyruvate and erythrose 4-phos-
phate) in H. influenzae and H. pylori have the highest number
of reactions that are in 100% of their respective extreme path-
ways (with the exception of histidine). Although the aromatic
amino acids cluster together with regard to the number of
essential reactions, not all amino acids with similar central
metabolic precursors are similarly grouped. For example, the
amino acids that are derived from oxaloacetate (aspartic acid,
asparagine, methionine, threonine, lysine, and isoleucine) do
not appear to group together according to the number of es-
sential reactions.

Correlation of Reaction Participation Values; Definition

of Reaction Subsets

The choices of which reactions can be used in a particular
extreme pathway are not independent. The off-diagonal ele-
ments of the Reaction Participation Matrix can be used to
determine subsets of reactions that always appear together
across all of the extreme pathways. One obvious reaction sub-
set is the set of all reactions that must appear in every extreme
pathway. Other reaction subsets can be nonobvious.

The reaction subsets are shown in Tables 2 and 3 for
lysine production in H. influenzae and H. pylori, respectively.
The reactions in these reaction subsets must be either all pre-
sent or all absent in any extreme pathway. Because these en-
zymes must operate together in all steady states, it seems
likely that these enzymes would be coexpressed (Pfeiffer et al.
1999; Schilling and Palsson 2000). Thus, these reaction sub-
sets provide groups of enzymes that may be coregulated.
Tables 2 and 3 are related to the data shown in Figure 4. The
reactions listed in the first group of both Tables 2 and 3 cor-
respond to the first region of their respective curves in Figure
4, indicating that these reactions were always used, whereas
the rest of the reaction groups shown in Tables 2 and 3 cor-
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Figure 4 Reaction participation values for all of the data sets calculated in this study. (A,B) The spec-
trum of reaction participation values, with a shortened x-axis so as to highlight the non-zero reaction
participation values. Note the three regions in A and B as follows: (1) set of reactions that participate in
all of the extreme pathways; (2) reactions that participate in varying amounts of extreme pathways; and
(3) reactions that do not participate in any of the extreme pathways. Also note that the ordering of the
reaction number is different for each data set so that the reaction number in each set corresponds to a

different reaction.

respond to the reactions in the drop-off region of the respec-
tive curves in Figure 4. Note that Tables 2 and 3 do not list
reactions that are never used.

From detailed analysis of these reaction subsets, some
interesting characteristics emerge. First, the pentose phos-
phate reactions in H. influenzae lysine synthesis (group 6 in
Table 2) and the serine synthesis reactions (group 2 in Table 2)
form obvious groups. A nonobvious group for lysine synthesis
in H. influenzae consists of the reactions in group 4 of Table 2
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& 60% | alsoleucine reaction subsets. Group 13 con-
T 500 . ; sists of the following reactions:
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|4 Tyrosine CMP - cytidine monophosphate,
Reaction Number "+Valine CDP - cytidine diphosphate ATP
— adenosine triphosphate, and

ADP - adenosine diphosphate. It
is interesting to note that two re-
actions (CDSA and CDH) associ-
ated with phospholipid and fatty
acid metabolism were correlated
with two reactions (CMKA and
NDK3) associated with nucleotide
synthesis. Another interesting
grouping in H. pylori lysine synthesis was seen in groups 7 and
8. Both subsets contain reactions associated with glycolysis,
and yet, the reactions do not group together. This result
ocurrs because the metabolite 3-phosphoglycerate (3PG) can
be used in the reaction SERA; thus, 3PG produced by the re-
action PGK need not be consumed in the reaction PGM. Rather,
3PG can be siphoned off from glycolysis and consumed by the
reaction SERA. Consequently, PGK and PGM are not in the same
reaction subset for lysine synthesis in H. pylori.
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Table 1. Number of Reactions Involved in the Production
of the Indicated Target Product

H. pylori Essential Utilized
Target product reactions reactions
Tryptophan 32 105
Tyrosine 28 101
Cysteine 25 102
Glycine 22 97
Lysine 22 102
Serine 16 91
Threonine 14 96
Asparagine 13 91
Aspartic Acid 12 91
Proline 10 91
Glutamic Acid 7 91
Glutamine 6 91
Equimolar Amino Acids 85 140
E. coli Ratio Amino Acids 85 140
H. influenzae Essential Utilized
Target product reactions reactions
Histidine 51 112
Tryptophan 41 108
Phenylalanine 36 108
Tyrosine 36 108
Methionine 34 106
Isoleucine 31 108
Lysine 31 108
Glycine 29 82
Threonine 26 103
Asparagine 25 98
Serine 25 97
Leucine 23 105
Aspartic Acid 22 97
Glutamine 21 102
Proline 18 103
Valine 17 102
Alanine 12 99

See Fig. 3 for the indicated network inputs and outputs. Essential
reactions refers to the number of reactions that were used in every
extreme pathway (region | in Fig. 4). Utilized reactions refers to
the number of reactions that were used at least once in the set of
extreme pathways for the production of the associated product
(region Il in Fig. 4). The individual amino acids are sorted in de-
scending order according to the number of essential reactions.
Equimolar amino acids refers to the set of amino acids in
equimolar ratios. E. coli ratio amino acids refers to the set of amino
acids in ratios analogous to those seen in E. coli biomass.

Extreme Pathway Length

The extreme pathway lengths were calculated for the three
data sets described above. Figures 5 and 6 show the histo-
grams of extreme pathway lengths for the production of the
amino acids in H. pylori and H. influenzae, respectively. Table
4 presents a summary of the statistical properties for the ex-
treme pathway length distributions shown in Figures 5 and 6.

Extreme Pathway Length Distribution

The histograms of extreme pathway lengths for the produc-
tion of each of the nonessential amino acids in H. pylori are
shown in Figure 5. The distributions in extreme pathway
length corresponding to the production of each of the amino
acids are very diverse. However, a few common features exist
among these distributions. One striking characteristic shown
in Figure S is that many of the distributions have more than
one peak. Thus, it seems that there are often multiple com-
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Table 2. Reaction Subsets for Lysine Synthesis in H.
influenzae

1 THRA1, ASD, DAPA, DAPB, DAPD, DAPC, DAPF, LYSA,
GDHA, ASPC2, FBA, TPIA, GAPA, PGK, GPMA, ENO,
SUCCD, PPC, FRUTR, FRUK, PTA, ACKA, CO2TR, ACTR,
NH3TR, ACxt, CO2xt, FRUxt, NH3xt, LYS

2 SERA, SERC, SERB

3 GLYA, GCV, FMT, FOLD1, FOLD2

4 ASNA, ANSB, ADKT

5 ASPA, FUMC

6 PGI1, ZWF, GND, RPIA, RPE, TALB, TKTA1, TKTA2, PGL

7 ACCABCD, FABD, FABH, FABB

8 DGKA, PAPHTSE

9 GLMS, NAGB

10  PYRG, NDK2, NDK3, CDD1, CMKB2, CMKB3, USHA6

11 NDK1, UDK

12 NDK5, TMK2, DUT

13 TDK1, USHA2

14 TDK2, USHA1

15 GLGC, GLGA, GLGP

16 GLPA, GPSA

17 CYDA, O2TR, O2xt

18 MGSA, GLOA, GLOB

Each of the reactions subsets above are correlated in the extreme
pathways that correspond to lysine synthesis in H. influenzae. For
example, in every extreme pathway, the reactions TDK2 and
USHAT (group 14) are either used or not used together. Group |
contains the reactions that are always utilized (region | in Fig. 4)
and Groups 2-18 above are in the variable region (region Il in
Fig. 4)

Table 3. Reaction Subsets for Lysine Synthesis in H. pylori

=

ASPB1, METL1, ASD, DAPA, DAPB, DAPD, DAPC, DAPE,
DAPF, LYSA, MAEB, MDH, OOR, ALATP, SUCTP, FRDO,
ATPA, NH3TP, ALAxt, NH3xt, SUCCxt, LYS

2 SDAA, SERA, SERC, SERB

3 PUTAI, PROC

4 PUTA2, ORNTRSN, ROCF, ARGTP, UREASE, ARGxt

5 DADA, ALR

6 ASNA, ANSB

7 PGI, FBP, FBA, TPI, GAP, PGK, PGL

8 PGM, ENO, PPSA

9 GND, RPI, RPE, TAL, TKTA1, TKTA2

10 EDD, EDA
11 GLTA, ACNB, ICD
12 POR, FLDO

13 CDSA, CDH, CMKA, NDK3
14 GUAB, GUAA, GUAC

15  NDK5, TMK2, DUT

16 PTA, ACKA

17 ACTP, ACxt

18 PROTP1, NATP

19 LACTP, DLD, LACxt

20 BC10, O2TP, O2xt

21 CO2TP, CO2xt

Each of the reactions subsets are correlated in the extreme path-
ways that correspond to lysine production in H. pylori. For ex-
ample, in every extreme pathway, the reactions SDAA, SERA,
SERC, SERB (group 2) are either used together or not used at all.

mon extreme pathway lengths around which deviations can
be made.

The histograms for the extreme pathway lengths for the
production of each of the amino acids in H. influenzae are
shown in Figure 6. The extreme pathway length distribution
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Figure 5 Extreme pathway length distributions in H. pylori. The x-axis in each of the figures represents the length of an extreme pathway. The
y-axis in each of the figures represents the number of extreme pathways at the corresponding length.

of valine and alanine are essentially identical, except that the
extreme pathway lengths of valine are shifted. It can be seen
that for all of the longer pathways, it takes three extra reaction
steps to make valine instead of alanine. However, for the
shorter extreme pathways, it actually takes five extra reaction
steps to make valine instead of alanine. Thus, the number of
extra reaction steps needed to make valine instead of alanine
depends upon the set in which the active extreme pathways
lie.

It is instructive to compare the extreme pathway length
distributions for the same products between H. pylori and H.
influenzae. For example, a comparison of aspartic acid produc-
tion in H. pylori and H. influenzae reveals a distribution that is
roughly reversed between the two organisms. A similar pat-
tern is seen with tryptophan and tyrosine. The extreme path-
way length distributions for asparagine are similar for the two
organisms, whereas many distributions of the other amino
acids are quite different.

The extreme pathway length distributions for the simul-
taneous production of the set of nonessential amino acids in
H. pylori is shown in Figure 5, both for equimolar ratios and
for ratios corresponding to the amino acid composition in
Escherichia coli. The range of pathway lengths was quite small,
varying between 99 and 112 for both sets with a coefficient of

variation of 2%. The shape of the distributions for both com-
positions was very similar.

Correlation to Product Yield and Molecule Complexity

The yield of the target product (defined as output flux per unit
carbon input flux) was plotted against the pathway length for
all data sets in H. pylori and H. influenzae, with a representative
set shown in Figure 7. In all cases, there was a very poor
correlation between the yield of the target product (amino
acids, ribonucleotides) and the length of the extreme path-
way. However, for proline synthesis in H. pylori and alanine
and valine synthesis in H. influenzae, the maximum yield
pathways were also the pathways with the shortest length
(data not shown). There was no obvious correlation between
the yield and the pathway length for the other extreme path-
ways. Thus, finding the shortest extreme pathway between
substrate and product did not correlate to finding the extreme
pathway of highest yield.

The extreme pathways were also evaluated to determine
whether extreme pathway length could be correlated with the
complexity of the molecule being synthesized. Molecular
complexity was defined by (1) the number of carbon and
nitrogen atoms in the molecule, (2) the total number of atoms
in the molecule, and (3) the molecular weight of the mol-
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Figure 6 Extreme pathway length distributions in H. influenzae. The x-axis in each of the figures represents the length of an extreme pathway.
The y-axis in each of the figures represents the number of extreme pathways at the corresponding length. Tyrosine and phenylalanine have the

exact same pathway length distributions.

ecule. The average pathway length was plotted against these
characterizations of molecular complexity (Fig. 8). A line was
fitted to the data to determine the degree of linear correlation
between the two variables. The resultant R* values for the
three cases are indicated on the plots (with P values << 0.001
for the slopes and intercepts in all three cases). Thus, there
appears to be a weak correlation between extreme pathway
length and the chemical complexity of the target product.

DISCUSSION

This study presents mathematically precise definitions of ex-
treme pathway length and reaction participation, and their
evaluation for genome-scale metabolic networks. These ex-
treme pathway characterizations help to study emergent
properties of metabolic networks. From the Reaction Partici-
pation and Pathway Length Matrices, several key results were
obtained as follows: (1) the reaction participation values dem-
onstrated the computation of essential reaction subsets with-
out which the network would be incapable of synthesizing
the product of interest; (2) the off-diagonal terms of the Re-
action Participation Matrix elucidated sets of reactions that
were systemically correlated; (3) the minimal extreme path-
way length indicated the minimum number of reactions nec-
essary to synthesize a given product, including a set of vari-
able reactions in addition to the essential reaction set; (4) the
extreme pathway lengths were not correlated with the prod-
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uct yield and were poorly correlated with different measures
of molecular complexity of the target product; and (5) there
were distinct extreme pathway length distribution differences
between the two organisms studied. Thus, Reaction Participa-
tion and Pathway Length Matrices can be used to clearly and
quantitatively enumerate emergent properties of defined
metabolic networks.

The Reaction Participation Matrix allowed the definition
of essential reaction sets. The determination of these essential
reaction sets could enable the identification of the organism’s
weaknesses. A knockout of any one of these reactions would
result in the complete crippling of the synthesis capability for
the corresponding product. For lysine synthesis in H. influen-
zae, there were 31 reactions in all of the extreme pathways
forming the core set of reactions that must be present in ly-
sine synthesis. However, there were 37 reactions in the short-
est extreme pathway, showing that at least 6 additional reac-
tions were needed to complete a pathway in addition to the
core set of reactions. For the synthesis of the equimolar amino
acid set in H. pylori, there were 85 reactions in all of the ex-
treme pathways, with a length of 99 reactions for the shortest
extreme pathway. The difference between the size of the es-
sential reaction set and the minimum and maximum path-
way lengths represents a certain degree of redundancy in the
network, an ability of the metabolic network to make a selec-
tion in how the product is synthesized. Identifying the reac-



Length and Participation in Extreme Pathways

Table 4. Summary of the Statistical Analyses of Extreme Pathway Lengths

Pathway length

H. pylori
Target product Number of EPs  average = maximum minimum  coefficient of variation
Asparagine 340 44 54 28 15%
Aspartic Acid 491 43 52 24 14%
Cysteine 1022 59 71 45 10%
Glutamine 315 41 53 23 18%
Glutamic Acid 493 141 53 25 17%
Glycine 377 51 60 38 10%
Lysine 611 54 66 39 12%
Proline 867 43 56 15 16%
Serine 355 45 54 33 12%
Threonine 469 48 60 31 14%
Tryptophan 1958 64 73 51 6%
Tyrosine 1008 58 68 44 7%
Equimolar Amino Acids 6032 106 112 99 2%
E. coli Ratio Amino Acids 5553 106 112 99 2%
Pathway length
H. influenzae
Target product Number of EPs  average = maximum minimum  coefficient of variation
Alanine 1739 36 49 18 10%
Asparagine 445 39 52 29 13%
Aspartic Acid 690 35 49 27 14%
Glutamine 690 37 46 28 11%
Glycine 456 39 48 35 7%
Histidine 1507 65 74 61 3%
Isoleucine 1480 47 61 37 9%
Leucine 3884 42 55 31 10%
Lysine 1168 47 61 37 9%
Methionine 1343 48 63 40 8%
Phenylalanine 1758 51 64 43 7%
Proline 2624 38 51 25 11%
Serine 690 37 50 30 10%
Threonine 1318 42 55 32 10%
Tryptophan 3540 58 69 49 6%
Tyrosine 1758 51 64 43 7%
Valine 1739 39 52 23 9%

The coefficient of variation is the standard deviation normalized to the average (expressed as a percent). Equimolar
amino acids refers to the set of amino acids in equimolar ratios. E. coli ratio amino acids refers to the set of amino acids
in ratios analogous to those seen in E. coli biomass. EPs, extreme pathways.

tions in this variable group can indicate where an organism'’s
robustness resides.

An analysis of the off-diagonal values of the Pathway
Length and Reaction Participation Matrices led to interesting
characterizations. The off-diagonal terms of the Pathway
Length Matrix indicated the number of reactions that a pair of
extreme pathways has in common, in other words, their
shared length. Many core reactions are used in the synthesis
of most products. From the Reaction Participation Matrix, we
can determine the number of pathways that use both of a
given pair of reactions. The shared participation in part indi-
cates the correlation between reactions for a given metabolic
network under specified conditions. Interestingly, nonobvi-
ous reaction subsets were found. Whereas obvious reaction
subsets (e.g., pentose phosphate reactions) indicate an ex-
pected functional connection under the specified conditions,
less-obvious groups indicate a functional connection that
goes beyond traditional classifications, as discussed above.
Subsequently, these less-obvious reaction subsets could corre-
spond to genes that are transcriptionally coregulated (Pfeiffer
et al. 1999; Schilling and Palsson 2000). This study presents
the first analysis of reaction correlation from the full comple-

ment of metabolic genes. If the groups are not transcription-
ally coregulated, it would be interesting to investigate why
the reactions in a subset are functionally coregulated, perhaps
serving to better understand physiological behavior, objec-
tives, or adaptive pressures.

Interestingly, the length of an extreme pathway was
found to be uncorrelated with the yield values for all cases
studied herein. This result suggests that a simple visual in-
spection of a metabolic network cannot readily identify opti-
mal pathways for the production of a given product. For ex-
ample, simply identifying the shortest pathway from reactant
to product is not necessarily the pathway of maximum yield.
There could be multiple routes that combine carbon lost as a
byproduct in one reaction step and reincorporated in another
reaction step to produce the highest yield for a given product.
Furthermore, various measures of molecular complexity were
also not strongly correlated with the target product yield. This
result further supports the observation that metabolic net-
works are so inherently interconnected and complex that in-
tegrative analytical approaches are needed to elucidate sys-
temic characterizations.

In summary, the Pathway Length and Reaction Partici-
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rows) and all corresponding meta-
bolic reactions and transport pro-
cesses (n columns). The flux repre-

sents the amount of mass moving
through the associated reaction. An
exchange flux corresponds to a flux

across the system boundary. An in-
ternal flux corresponds to a reac-

tion within the system.
A metabolic network can be

constrained by implementing
simple thermodynamic principles
regarding the irreversibility of reac-

tions. With reversible reactions de-
composed into their respective for-

ward and reverse directions, all in-
ternal fluxes are constrained to be
non-negative, as expressed in Equa-

tion 3.
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ternal fluxes of the metabolic net-

Figure 7 Correlation of extreme pathway length and yield (mol of protein/mol of carbon input) in
H. pylori protein synthesis. There was essentially zero correlation between target product yield and
extreme pathway length in all of the data sets evaluated in this study, as illustrated in this figure.

pation Matrices are presented herein as unambiguous and
mathematically derived characteristics of metabolic networks.
Extreme pathways represent a unique and independent set of
vectors whose non-negative linear combinations characterize
all possible steady-state phenotypes. As such, the Pathway
Length and Reaction Participation Matrices serve as unique
and independent characterizations of the metabolic network.
These characterizations have elucidated emergent systemic
properties of reconstructed genome-scale metabolic networks
in H. influenzae and H. pylori. As modern queries of biological
systems expand in complexity, emergent systemic properties
will become more difficult to parse out of the raw data. Ex-
treme Pathway Matrices and their resultant characterizations
may become an important method for the analysis necessary
to determine these systemic properties.

METHODS

Genome-Scale Maps

The in silico models for H. pylori (Schilling et al. 2002) and H.
influenzae (Edwards and Palsson 1999; Schilling and Palsson
2000) were reconstructed previously using established meth-
odologies (Covert et al. 2001). The reactions used in these in
silico models can be found at http://gcrg.ucsd.edu/
downloads. These in silico strains were constrained to mini-
mal medium requirements and defined exchange fluxes. Fig-
ure 3 illustrates schematically the systemic input and output
constraints utilized in this study.

Extreme Metabolic Pathways and Convex Analysis

The Extreme Pathway Matrices utilized in the present study
were calculated as described previously for H. influenzae
(Papin et al. 2002) and H. pylori (Price et al. 2002). Briefly,
Extreme Pathway Matrices are derived directly from the stoi-
chiometric matrix describing the known metabolic network
of an organism. The m X n stoichiometric matrix, S, of a
reconstructed metabolic network includes all metabolites (m
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work.

The stoichiometric constraints
of a metabolic system (conservation
of mass) at steady state can be de-
scribed by Equation 4, in which S is
the m X n stoichiometric matrix de-
scribed above. The fluxes through each of the n corresponding
reactions of the stoichiometric matrix are represented by the
vector, v.

S-v=0 4

A convex basis is constructed to span all solutions to Equation
4, subject to the inequality constraints from Equation 3, so
that pathways do not use fluxes opposite the direction of an
irreversible reaction. The vectors forming this convex basis
are the extreme pathways (p;). From this convex basis, a cone
can be generated to circumscribe all allowable solutions. Ev-
ery point within the cone can be written as a non-negative
combination of the extreme pathways (Equation 5). Thus,
this cone circumscribes all valid solutions to Equation 4.

k
C={v:v=2 ap; ;= 0, Vi} (5)
i=1

Any point in the interior of this cone represents a valid
steady-state set of flux values for the metabolic network and
corresponds to a particular metabolic phenotype. A more de-
tailed description of the theory behind extreme pathway
analysis and a description of the algorithm used to calculate
the pathways can be found elsewhere (Schilling et al. 2000).
For the purposes of this study, the flux corresponding to the
target product was constrained to be positive.

Statistical Calculations

All statistical calculations and plots were generated with Sta-
tistica (Statsoft) and Excel (Microsoft) software.

Reaction Subset Calculations

The correlated reaction groups were determined by inspecting
the off-diagonal terms of the Reaction Participation Matrix. A
MATLAB program was used to scan through all of the off-
diagonal terms of the reaction participation matrix. Reaction
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Figure 8 Correlation of extreme pathway length with molecule complexity. The molecule complexity is characterized by the number of carbons
and nitrogens, the total number of atoms, and the molecular weight of the target product. The line that best fits the data is indicated, along with
its corresponding equation and R? value. All of the weak linear correlations are statistically significant (P-value << 0.001).

i and reaction j were placed into the same subset whenever
element i,j was equal to both element i,i and element j,j.
These subsets of two were then joined whenever they had
elements in common, until no more groupings could be made
and each reaction was a member of no more than one group.
For example, if the elements i,i, and j,j each had a value of 30,
reactions i and j would participate in 30 extreme pathways. If
the element i,j had a value of 30, then the reactions i and j
would participate together in 30 extreme pathways. Subse-
quently, when the elements i,i, j,j, and i,j have equivalent
values, then the corresponding reactions always appear to-
gether.
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