Mathematical review

1. Sets

A set is any collection of elements.

Examples:

a. A=1{0,2,4,6,8,10} - the set of even numbers between zero and 10.

b. B ={red, white, bule} - the set of colors on the national flag.

c. C={U of M students| feamale, GPA > 3.2} -the set of U of M students that satisfy
the conditions listed after the vertical bar.

d. D={(x,y)eR*|x=y} -the set of vectors in the two dimensional Euclidean space,
such that the x-coordinate is equal to the y-coordinate.

e. E={(x,y)eR*|0<x<1,0<y<1, x> y}-the set of vectors in the two
dimensional Euclidean space such that both coordinates are between 0 and 1 and the
x-coordinate is greater or equal to the y-coordinate. It is useful to illustrate this set
graphically.
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The set E is colored blue.

Cartesian product of A and B is sets the set of all ordered pairs such that the first
element belongs to A and the second belongs to B. We denote the Cartesian product by
AxB.

Example: 4 ={1,2,3}, B={7,8}, then 4x B ={(1,7),(1,8),(2,7),(2,8),(3,7),(3,8)} .
Convex sets: A set Bis convex if Vx,ye B ax+(1-a)ye B Vae[0,1]. In words, a
linear combination of any two elements in the set also belongs to the set.



2. Functions of one variable.
A function f: 4 — B consists of the domain set (A) the range set (B) and a rule that

assigns to every element in the domain, a unique' element in the range. We can say that

the function f maps from A into B.

Examples:

a. Let A={xeR|0<x<100}.Let B={4,4—,B+,B,B—,C+,C,C—,D+,D,F}.The
grading scale at the end of the syllabus is a rule that assigns a unique element in B (a
letter grade) to every numerical grade between 0 and 100. We can give this grading
function a name - G, and write G : A —> B, where A is the domain and B is the range.

b. Let f: R — R be a function from the set of real numbers into the set of real
numbers, such that f(x) = x*. The domain of this function is R, the range is also R
and the function assigns to every number its square.

2.1.  Graphs of Functions.
The graph of a function f: 4 — B is a set that all ordered pairs of the form (x, f(x))

such that x € 4and f(x) € B. Formally Gr(f)={(x,y)e AxB|y= f(x)}.
Example: let f:R—> R,and f(x)=x".Then Gr(f)={(x,y) e RxR|y=x"} is the
graph of f.

2.2.  Linear functions.
The general form of a linear function is f(x) = a + bx . Here a is the intercept with the

vertical axis and b is the slope of the function. It is important to be able to plot linear
functions given their equation. The following formula gives the equation of a linear

function based on two points in the plane. Let (x,,y,), (x,,,) be two points in R*. The
equation for the line through those points is given by
The quotient on the right hand side is the slope pf the line. Hence, we can use this
formula to find a linear function when given only one point and the slope. Let (x,,y,) be
apoint in R* and given that the slope of a line that passes through this point is b, the
equation of the line is given by

y=bx-x)+y

2.3. Inverse functions.
Let f'be a function. Then f'has an inverse if there is a function g such that the domain of
g is the range of f'and such that
fx)=y if and onlyif g(y)=x
for all x in the domain of f'and all y in the range of /. In this case, g is the inverse of f, and
is designated by f .

! A mapping that assigns possibly more than one value to every element in the domain is called
correspondence.



Thus

f)=y ifandonlyif f7(y)=x
for all x in the domain of f'and all y in the range of f.
Example: let f(x)=x". Then f'(y)=x"".

2.4. Implicit and explicit functions.
Some times when a function is defined, it is clear which variable is the function of the
other, for example: y: R — R, y(x)=2x. Here it is clear that y is a function of x and we

call this form explicit form or explicit function. On the other hand, in some cases it is
not clear which variable is the function of the other variable. For example, when we see
the equation y —2x =0, it is not clear that y is a function of x (in which case we can

write y(x) =2x) or x is a function of y (in which case we write x(y)=0.5y). We call
the form y —2x =0 implicit form or implicit function. In general, an implicit function
of two variables is of the form g(x, y) = ¢, where c is a constant.

2.5. Derivatives of functions.

. If such limit

G
X

f'(x). If fis differentiable at all point in the domain, we say that f'is differentiable

function. The derivative of a function at x is equal to the slope of the function at x. If we

let x vary over the domain, then the derivative itself is a function of x and we call it the

derivative function.

Important rules of differentiation.

The derivative of a function at the point x is defined to be %m(}
n—>

S+h)=h
h

exists, we say that fis differentiable at the point x and denote this limit by

For constants, o : i(0{) =0.
dx

For sums: %[f(x) T g(x)]=f'(x)x g'(x).

Power rule: i(ooc") =nox"".
dx

Product rule: %[f (X)g(x)] = f'(x)g(x)+ f(x)g'(x).

d {f(x)} _ S g - f(0)g'(x)
d(x)| g(x) [g()]’

Chain rule: %[f (g(x)]= f'(g(x)g'(x).

Quotient rule:

Logarithmic function: iln(x) = l
dx X

X X

Exponential function: d—e =e
X



2.6.  Second derivatives.
The second derivative of a function is the derivative of the derivative function. Suppose
v = f(x) and the derivative function is f"'(x). Then the second derivative of f(x) with
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Example: f(x)=x’, the (first) derivative function of fis f'(x) =3x” and the second

derivative is f''(x) = 6x.

respect to x is

3. Functions of several variables.

Our definition of a function in section 2 was general and we did not restrict the domain to

be one-dimensional. Now we focus attention on functions of several variables.

Examples:

a. Let M:R’xG —> R, M = f(w,n,r,g) be the function that describes the size of a
muscle as a function of (w) workout, (n) nutrition, (r) rest time, and (g) genetic
characteristics of the athlete. This is a function of four variables where the first three
are assumed to be expressed in terms of real variables and the last one belongs to a set
of all possible genetic characteristics for human.

b. Let 7:R* - R, 7 = f(p,a) be the profit function of a firm that depends on the
price of the firm’s product and the amount of advertising.

3.1.  Partial derivatives
Let y = f(x,,...,x,) . The partial derivative of f with respect to x; is defined as

) _ o SO X, + P X,) = [ (6 ,)

ox, 0 h
Other notations: dy/ox; or f,(x) or f (x) 2,
Examples
a. Let f(x,,x,)=x; +3x,x, —x; . Since this is a function of two variables, the two
U (x,,%,) o (x,,%,)

partial derivatives are: =2x, +3x, and

=3x, —2x,.

ox, ox,

b. In the following example you need to use the chain rule. Suppose that g(x,,x,) and
x,(1), x,(¢) . That is g is a function of x,,x, and those variables are themselves
functions of t. Find the derivative g'(¢).

dglx, (1),x, ()] _ Oglx, (8),x, (O] dx, (1)  Oglx, (1),x, ()] dx, (1)

dt ox, dt ox, dt
Sometimes you will see the derivative with simpler notations (for lazy people like

myself): % —g [0+ g, 15,0,

Solution:

* The bold faced letters denote vectors. That is,X = (X, ..., X, ) .



3.2. Differential
Let f(x,,...,x,) be a function. The full differential of this function is defined as follows:

) =TX gy L I® g

Ox, X
The differential gives the change in the value of the function f when we change x, bydx,,
x, by dx,,...,and x, by dx,. The changes dx,,...,dx, are assumed to be small.

Example: consider the following profit function f(x,,x,)=10x, —x; +20x, —x; , where
x, 1s the firm’s output and x, is the amount of advertising. Suppose that initially the firm
produces 4 units of output and 11 units of advertising. Question: What will be the change
in the firm’s profit if it increases the output by 0.1 units and reduces advertising by 0.05
units? Solution: One way to answer this question is simply calculate the initial profit
f(4,11) =123 and the profit after the change f(4.1,10.95) =123.2875. The change in
profit is +0.2875. Another way to calculate the approximate change in profit is using the
differential.
0 0
drox) = 2O g + PO g (10=2x )1+ (20— 2x,) - (-0.5) =
ox, ox,

=(10-2-4)-0.1+(20-2-11)-(-0.05)=0.2+0.1=0.3
The answer we get with the differential is approximation, and the smaller the changes in
the variables, the closer we get to the true change in the value of the function.

3.3. Concave and Convex functions.
f:A— R is a concave function if for all x,,x, € 4,
flox, +(1-a)x,) 2 of (x)) +(1-a) f(x,) Vael0]]
A function is strictly concave if
flax, +(1-a)x,) > of (x))+(1-a) f(x,) Vae(O])
Intuitively, a function is concave if for every pair of points on its graph, the cord joining

them lies on or below the graph.
Concave function:

A

Y

Xy X,

For convex functions, reverse the inequalities on or above. Intuitively, a function is
convex if the cord connecting any two points lies on or above the graph of the function.



Convex function:

Y

Xy X,

3.4. Theorem (characterization of concavity with second derivatives).
3.4.1. Let f be twice continuously differentiable function of one variable. Then

fis concave function if and only if f''(x) <0 for all x in the domain of .
3.4.2. Let f be twice continuously differentiable function of one variable. Then
f1s strictly concave function if and only if f''(x) <0 for all x in the

domain of f.
For convex functions, reverse the inequality. The analogous theorem for multivariate
functions is omitted.

3.5. Implicit function theorem (for functions of two variables), sloppy version.
Consider an expression f(x,y) = c. This is an implicit form. Now, suppose that we wish

to find the derivative % . The implicit function theorem says that if f/is continuously
X

differentiable, and w # 0, then
Y
a. We can solve for y = y(x), i.e., find the explicit form for y.
dy(x) _ of(x,y)/0x
dx of (x,y)/ oy

It should be obvious why the assumption

o (x,y)
0

Y
The implicit function theorem helps us to find the derivative of y with respect to x even if
we don’t have the explicit form for y as a function of x.

# 0 is necessary for the second part.

Example: Let f(x,y)=x"+y” =r. Find the derivative dy .

dx

Solution: & = _Fxy)/ox | 2x _ x

dx of (x,y)/ Oy 2y y



4. Homogeneous functions
A function f:R" — R is homogeneous of degree kif f(A1x)=1"f(x) VA>0.
Examples:
a. Let f(x,,x,) = x."x5> . This function is homogeneous of degree 1 since
SO, 2x,) = ()" (20,)™ = x5 = 2 (x,,x,)
b. Let f(x,,x,)=xx,. This function is homogeneous of degree 2 since
S (Ax;, Ax, ) = (Ax) )(Ax,) = llexz = ﬂ'zf(xl »Xy)
c. Let f(x,,x,)=x,/x,.This function is homogeneous of degree 0 since
f(Ax,, Ax,) = Ax, [ Ax, = x,/x, = 2 f(x,,%,) = f(x,,x,).
d. Let f(x,,x,)=x, +x;. This function is not homogeneous.

4.1.  Euler’s theorem for homogeneous functions
Theorem: Let f/: R" — R be homogeneous of degree £. Then

FO0%, + (05, + oot £,(%) = kA £ (x)
Proof: By definition of homogeneous function of degree k
(1) f(Ax,, A%y ey Ax,) = 2 f (X, Xy pen X)) VA >0
Take the derivative of both sides with respect to A :
(2) fi(AX)x, + f,(AX)x, + .ot [, (AX)x, = kX7 £ (x,, %, 5000 X,)
Since (1) is true for all 4 >1 it must be true for 4 =1, which gives us the required result.

5. Optimization.3

5.1.  Unconstrained optimization with one variable.
A function f has a local maximum at the point x, if there is some interval that contains

x, and f(x,) = f(x) for all x in that interval.

A function f has a global maximum at the point x, if f(x,) > f(x) for all x the

domain of 1.
If a function f'has maximum at x,, then x,is called a maximizer of /. We write

x, = argmax f(x), which means that xis an argument that maximizes the function f.

The value of fat x, is called the maximum of f'or the maximum value of /.

5.1.1. Theorem (necessary conditions for maximum)
Let f(x) be twice continuously differentiable function of one variable. If fhas a local

maximum at x, then
a. f'(x,)=0 (First Order Necessary Condition, FONC).
b. f"(x,) <0 (Second Order Necessary Condition).

For local minimum, reverse the inequality in b.

* In this section we restrict attention to differentiable function only.



What do we mean by necessary conditions? We mean that the above conditions must be
satisfied at the point of maximum, but they cannot guarantee maximum. If we check
those conditions for some function and we find that they are satisfied for some point, we
CANNOT conclude that we have a maximum at that point.

Example: let f(x)=x". At x = 0 the above conditions are satisfied, but this function is
monotone increasing and has neither maximum nor minimum.

5.1.2. Theorem (sufficient conditions for maximum).
Let f(x) be twice continuously differentiable function of one variable. If f'(x,)=0
and f""'(x,) <0, then f'has a local maximum at x, .
For local minimum, reverse the last inequality.
The above two conditions ( f'(x,) =0 and f"'(x,) < 0) are together sufficient for
maximum. This means that if they are satisfied at some point of the domain, then the
function has local maximum at that point.
Example: Let f(x)=10x —x”. Verify that fhas a local maximum at x, = 5.

Solution: f'(x)=10-2x, f"(x)=-2.= f'(5)=0, f"(5)=-2<0.

5.2.  Unconstrained optimization with two variables
5.2.1. Theorem (sufficient conditions for maximum)

Let f(x,,x,)be twice continuously differentiable. If f,(x,,x,)=0 for i=12and

fi(x,x3) <0 and f;, - fo, = fir - fo > 0%, then fhas local maximum at (x;,x,).
5.2.2. Theorem (sufficient conditions for minimum)

Let f(x,,x,)be twice continuously differentiable. If f,(x,,x,)=0 for i=12and

fi.(x;,x;)>0and £, - fo, — fir - fo; > 0, then fhas local minimum at (x,,x,).

Example: Find a critical point of the function f(x,,x,) = x, —4x +3x,x, —x; and

check whether it is maximum or minimum.

Solution: We remember form calculus that the point at which all partial derivatives are
equal to zero is a critical point.

i=—8xl +3x,=0
ox,

i:l+3xl -2x,=0
X1

Solving this system gives us x, = % and x, = % (critical point).

Now find the second partial derivatives:
Su=-8<0, fi, =3, [, =3, [, =-2.

= fuSu—So fu=-8(2)-3-3=7>0
Hence, the sufficient conditions for maximum are satisfied.

* By Young’s theorem, for any twice continuously differentiable function f1, = [, » therefore I could

. . . 2
have written the last inequality as f, - f,, — f;,~ >0



5.3. Constrained optimization
This section is the most important for this course. In fact, most of the problems in this
course and in economics in general, are problems of constrained optimization. It is
crucial to understand that constrained optimization usually gives entirely different results
than unconstrained optimization. Suppose that in one case you can chose any car in the
world and in another case you can choose any car who’s price is blow $6000. It is likely
that your choice would be different in both cases.

I demonstrate two methods for solving constrained optimization problems, through a
particular example. Suppose you have 20 fit of rope and you need to construct a
rectangular frame with maximal area. This is a problem of constrained maximization.
Solution. First, we write this problem in a precise mathematical language:

max f(x,y)=x-y
X,y

S.t.

2x+2y =20

fis called the objective function. In our case frepresents the area of the rectangular, with
the sides x and y.

Under the “max” we write the choice variables. In our case these are the lengths of the
sides. “s.t.” means “such that” or “subject to”. After “s.t.” follows the constraint, which in
our case means that the sum of lengths of all sides is equal to 20 fit.

It is very important in this course to be able write the problems in a clear way, such that a
mathematician, who doesn’t know economics, will understand what is written.

5.3.1. Substitution method
The idea is to substitute the constraint into the objective function. First solve for y in the
constraint: y =10 — x, and then plug this in the objective function. The resulting
optimization problem is
mflxx(lo —x)=10x—x>.

Notice that this is maximization problem with one variable.

First Order Necessary Condition: 10 —2x =0

Second Order Necessary Condition: f''(x)=-2<0

The necessary and sufficient conditions for maximum are satisfied. The first order
condition yields x* = 5. Substituting into the constraint we find the optimal value for y:
y* =5 . Hence, the maximizer of the objective function is: (x*, y*) = (5,5). This means
that we should use the rope to construct a squared frame. The maximum value of the
objective function is 5-5 =25 squared fit.

5.3.2. Lagrange method
The following theorem is a special case of Lagrange theorem for maximization of
functions of two variables with single equality constraint. Obviously, there are
generalizations to arbitrary number of variables and inequality constraints.



Theorem: Let fand g be continuously differentiable functions of two variables. Suppose
that (x;,x,) is the solution of the problem

max f(x,,x,)

XXy

S.t.

glx,x,)=c

Suppose further that (x;,x,) is not a critical point’ of g. Then, there is a real number 1’

such that (x;,x,,4") is a critical point of the Lagrange function
L(xl’xzﬂﬂ') = f(x17x2) _ﬂ'[g(xlaxz) _C]
In other words, at (xl* ,x;,ﬁ*)
OL oL oL

—=0, —=0, —=0.
X, X, A

The theorem allows us to convert constrained optimization problem with two unknowns,

into an unconstrained optimization, but with three unknowns: x,,x,,4. Notice that the

theorem applies to constrained maximization problems, as well as to constrained

minimization problems. The theorem provides the first order necessary conditions for

optimum.

The number A is called Lagrange multiplier or shadow price.

Now, lets apply the theorem to our problem with the rope. The Lagrange function is
L(x,y,A)=x-y—A2x+2y—-20]

The first order necessary conditions are:

o Loy 21-0,
X

@ L2210

X,
3) a7L=2x+2y—20

Notice that the last condition just repeats the constraint.

From (1) and (2) it follows that x = y . Plug this in the constraint to get x*= y*=35,
which means that in order to maximize the area of the rectangular, we should make it a
square. The value of the Lagrange multiplier is 2.5.

Remark: there is an economic meaning to the Lagrange multiplier. A * gives the change
of the optimal value of the objective function that results from small unit change in the
constraint. To understand this, suppose that we have 1 more fit of rope to construct the
rectangular. What would be the change in the maximal area? According to the Lagrange
multiplier, it should increase by 2.5. Indeed, Our calculations say that we should form a
square from 21 fit. The side of the square is 5.25 and its area is 27.5625. The Lagrange

> Critical point is a point at which all partial derivatives are equal to zero.
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multiplier gave us a pretty good approximation for the answer, and the smaller the change
in the constraint, the better the approximation.

Second Order Sufficient Condition:
Form the Hessian matrix for the Lagrange function:

L11 L12 L13
H(L) = L21 Lzz L23
L31 L32 L33

The Second order sufficient condition for maximum says that the determinant of this
Hessian should be positive (negative for minimum).
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