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Abstract

The giant porphyry copper-molybdenum deposits of central Chile formed within a thick sequence of Creta-
ceous to Pliocene volcanic rocks. The predominantly calc-alkaline basaltic andesites of the Cretaceous Las
Chilcas Formation are characterized by La/Sm, ratios of 1.8 to 2.5 and Sm/Yb, of 1.8 to 2.8. The upper
Oligocene to lower Miocene Abanico Formation (variously defined as the Los Pelambres, Abanico, or Coya
Machali Formations) ranges from basalt to rhyolite in composition and exhibits a broad southward transition
from calc-alkaline to tholeiitic. All samples from this formation are characterized by LREE enrichment and
moderately, or locally strongly, fractionated HREE (La/Sm, = 1.3-4.1; Sm/Yb, = 1.5-5.8). The basaltic an-
desites and andesites of the middle Miocene Salamanca Formation have REE chemistry similar to that of the
Upper Cretaceous strata (La/Sm, = 1.5-2.7; Sm/Yb, = 1.6-2.7). The overlying middle Miocene Farellones For-
mation ranges from tholeiitic to calc-alkaline and from basalt to andesitic and has a similar LREE enrichment
and fractionated HREE (La/Sm, = 1.7-2.5; Sm/Yb,, = 1.7-3.3). The Pliocene La Copa Rhyolite Complex, how-
ever, is strongly LREE enriched and HREE depleted (La/Sm, = 3.8-3.9; Sm/Yb, = 4.2-4.7). Overall, the trace
element geochemistry of the Cretaceous to middle Miocene volcanic rocks is characterized by enriched LREE
and negative Nb anomalies, consistent with an arc setting, with only minor differences in the abundance of
most elements. Crustal thickening during the Miocene in central Chile has been suggested to have been re-
sponsible for a transition from an amphibole- to garnet-dominated residual mineralogy resulting in the release
of fluids that enabled the formation of giant copper porphyry deposits. However, the gradual increase in La/Yb
through the early, middle, and late Miocene reported in earlier studies and interpreted to be a response to
crustal thickening is not observed in the regional data. Instead, a rapid change in the geochemical signature be-
tween the end of the eruption of the Farellones Formation and the eruption of the high La/Yb La Copa Rhy-
olite Complex implies a more abrupt change in the tectonic environment. Isotopic data broadly support this,
although lower exq values in the Farellones Formation imply a greater role for crustal contamination in younger
suites. In the absence of gradual crustal thickening, it is suggested that the subduction of the Juan Fernindez
Ridge may have been the key geodynamic process responsible for the genesis of the three middle Miocene to
lower Pliocene giant porphyry copper deposits in central Chile, possibly by promoting crustal-scale faulting and

even acting as a source of metals.

Introduction

THE ca. 500-km-long segment of the central Andean orogen
between latitudes 27° and 34° south hosts an exceptional
number of world-class magmatic-hydrothermal centers (Fig.
1). These include three of the largest known porphyry
copper-molybdenum deposits (El Teniente: 75 Mt Cu; Rio
Blanco-Los Bronces: 49 Mt Cu; Los Pelambres-El Pachén:
21 Mt Cu; Cooke et al., 2005) as well as the unusually high
grade El Indio high- to low-sulfidation epithermal vein
swarm (4.506 Moz Au), the Pascua-Lama and Veladero
high-sulfidation deposits, with an aggregate resource of 34.2
Moz Au, the cluster of high-sulfidation Au-Ag, porphyry Cu-
Au, and porphyry Au centers of the Maricunga district, and,
far to the east in Argentina, the Au-rich porphyry systems of
the Farallén Negro volcanic complex and its outliers (Harris
et al., 2005). All of these are of Neogene age, and the great
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majority were emplaced during the middle Miocene to early
Pliocene (i.e., between ca. 12 and ca. 4.5 Ma). Much of this
segment of the South American plate boundary has experi-
enced subhorizontal subduction of oceanic lithosphere
(Cahill and Isacks, 1992) since the late middle Miocene (e.g.,
Kay et al., 1991, 1999; Kay and Abruzzi, 1996; Yaiiez et al.,
2001), and the ore deposits are located either in the center of
the “flat slab” (the El Indio-Pascua belt) or adjacent to its gra-
dational northern (Maricunga, Farallon Negro) and abrupt
southern (Los Pelambres to El Teniente) boundaries (Fig. 1).
The temporal and spatial conjunction of slab flattening with
outsize and exceptionally metal rich hydrothermal activity has
prompted metallogenic modeling directly linking large-scale
geodynamic processes with Cu and Au mineralization.
Skewes and Stern (1994, 1995, 1996), Kay and Mpodozis
(2001, 2002), and Kay et al. (2005) have addressed the tec-
tonic and geochemical environment of the giant Miocene to
Pliocene porphyry Cu-Mo deposits, and Kay et al. (1994)
have documented the relationships between the chemistry of
the arc volcanic rocks and Au-rich mineralization in the wider
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Fic. 1. Simplified geologic map of central Chile, showing approximate locations of the 88 representative samples analyzed
in this study and major Cu porphyry deposits. Right-hand column illustrates the approximate extent of the traditional termi-
nology applied to the Oligocene volcanic rocks of central Chile, referred to as the Abanico Formation herein (see text for
discussion). Age data in right-hand column from Vergara et al. (1988). Map modified after Rivano et al. (1993), Rivano and
Sepulveda (1986), and Thiele (1979).
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Maricunga-Farallon Negro transect (cf. Sasso and Clark,
1998). Comprehensive metallogenic models incorporating
porphyry Cu-Mo and epithermal Au-Ag (-Cu) deposits have
been proposed by Kay et al. (1999) and Kay and Mpodozis
(2001), who argued that identical geodynamic and petroge-
netic processes were favorable for both. They proposed that
progressive slab flattening through the Miocene caused radi-
cal thickening of the sub-arc continental crust and a con-
comitant depression of the major locus of crustal anatexis.
Specifically, rare earth element data were interpreted as evi-
dence for a transition in residual mineralogy from clinopyrox-
ene, through amphibole to garnet, and the onset of fertile hy-
drothermal activity was ascribed to large-scale breakdown of
hornblende in the deep crust, probably abetted by wide-
spread dewatering at shallower levels. In contrast, Skewes
and Stern (1994, 1995, 1996) argued that the tectonic ero-
sion of the leading edge of the South American plate (Stern,
1989, 1991, 2001) and the resulting contamination of the
sub-arc mantle were the key factors in modifying the chem-
istry of the arc volcanic rocks and promoting fertile hy-
drothermal activity.

Both of the above interpretations of the Neogene tectonic
and magmatic-hydrothermal evolution of this Andean seg-
ment acknowledge the possibility that slab flattening may
have been caused by the diachronous, north to south, under-
thrusting of the buoyant Juan Ferndndez Ridge (Yafiez et al.,
2001), which would probably have resulted in increased sub-
duction erosion. Kay and Mpodozis (2002), however, argued
that much of the widespread magmatism in the flat-slab fore-
land is unlikely to have resulted from the southward sweep of
the subducting ridge, even if this exerted a >200-km north-
south “swath of influence” on the overlying mantle and crust.
A critical factor in these arguments is the geochronologic
database, which is still incomplete for many key areas. The
implied correlation between ridge subduction and giant por-
phyry Cu-Mo formation (e.g., Skewes and Stern, 1995) relies
largely on the K-Ar evidence (Quirt et al., 1971) for a south-
ward, Miocene to Pliocene migration of hydrothermal activity
from Los Pelambres, through Rio Blanco-Los Bronces, to El
Teniente. However, new geochronologic data for Rio Blanco
(Deckart et al., 2005) demonstrate that this magmatic-hy-
drothermal center formed at broadly the same time as El Te-
niente ~110 km farther south (Maksaev et al., 2002; Muniziga
et al., 2002; Cannell et al., 2003). Similarly, a robust “Ar-9Ar
database for volcanism, hypabyssal intrusion, and hydrother-
mal activity in the El Indio-Pascua Au belt (Bissig et al., 2001)
shows that economic epithermal mineralization began several
million years after the transition to high-pressure anatectic
melting, thereby divorcing ore formation from the postulated
large-scale destruction of amphibole in the deep crust (Bissig
et al., 2002; cf. Kay et al., 1999; Kay and Mpodozis, 2001).

Present study

To address some of these questions, we examine an ex-
panded regional geochemical database on Neogene and
Upper Cretaceous volcanic and hypabyssal rocks from central
Chile. The samples are from latitudes between 32° and 34°15'
S and include samples from the Los Pelambres, Rio Blanco-
Los Bronces, and El Teniente porphyry deposits. Trace ele-
ment data are provided for fresh and least altered samples,
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and a representative subset has been analyzed for Sr and Nd
isotopes. The regional scale of our data set, collected through-
out central Chile from a diverse range of units derived from
different volcanic centers over a significant time range, does
not permit detailed petrogenetic studies of individual forma-
tions. Rather we compare our data set to other more detailed
studies of petrogenetic processes and use the data to make in-
ferences about changes in the tectonic setting of central Chile
since the Cretaceous. The compositional evolution of the An-
dean arc is examined in several transects, including at the lat-
itude of the El Indio-Pascua belt (Bissig et al., 2002), which
provides evidence of the effects of slab flattening on magma
chemistry and the timing relationships between epithermal
mineralization and arc evolution. We also compare our new
analyses with the most detailed geochemical data set for this
region, which formed the basis for the work of S. Kay and A.
Kurtz (1995, unpub. report for CODELCO-Chile, 180 p.)
and focused on the El Teniente district (Kay et al., 1999,
2005; Kay and Mpodozis, 2001). Finally we reevaluate the po-
tential role of ridge subduction on porphyry development in
the light of the new age data for Rio Blanco (Deckart et al.,
2005), El Teniente (Maksaev et al., 2002; Muniziga et al.,
2002; Cannell et al., 2003), and Los Pelambres (Mathur et al.,
2001; Bertens et al., 2003). We also contribute to the
geochronologic database for the critical middle to upper
Miocene igneous rocks of the region with five new “Ar-3%Ar
ages for selected volcanic and intrusive units.

Regional Geology

The Cordillera Principal of central Chile between 31°30'
and 34°30' S (Fig. 1) exposes both upper Paleozoic basement
and Triassic to Recent Andean volcanic, intrusive, and sedi-
mentary rocks, the latter incorporating the northern limit of
the Southern Volcanic zone that extends to 46°S. The South-
ern Volcanic zone is underlain by a relatively steeply dipping
(~30°) segment of the Nazca plate, but the dip of the slab de-
creases to the north as the flat-slab zone is approached. The
transition between the Southern Volcanic zone and nonvol-
canic flat-slab segment coincides with a kink in the downgo-
ing slab, the offshore projection of which is aligned with the
Juan Ferndndez Ridge (Yafiez et al., 2002). Clarification of
the geochemical history of the volcanic arc in this region is
hindered by a paucity of modern geochronologic data and the
difficulty of even local correlation of the fundamentally simi-
lar, commonly andesite-dominated volcanic successions. In
this section, we review the stratigraphic relationships and
clarify some of the inconsistent nomenclature.

The oldest unit investigated herein is the Cretaceous Las
Chilcas Formation (Fig. 1), which overlies the Lower Creta-
ceous Lo Prado and Veta Negra Formations in the northern
part of the study area. The Las Chilcas Formation comprises
ca. 3,500 m of predominantly subaerial volcanic units charac-
terized by rapid vertical and horizontal facies changes that are
marked by recurrent episodes of marine incursion (Rivano,
1995). This is interpreted as evidence for emplacement over
relatively thin crust (Rivano, 1995). Andesitic lavas, tuffs, and
agglomerates predominate in the lower part of the formation,
but sedimentary units, including lahars and mass flow units,
are abundant at higher levels (Rivano, 1995). K-Ar ages for
the Las Chilcas Formation range from 64 to 125 Ma (Rivano
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et al., 1993). This large age range may reflect the incomplete
characterization of the formation but more probably results
from errors in the age determinations, which were obtained
mainly by whole-rock analyses of variably altered specimens.

The continental Abanico Formation, best documented
south of the Rio Blanco and Los Bronces mines (Fig. 1), com-
prises relatively unaltered tholeiitic andesitic lavas, breccias,
ignimbrites, and tuffaceous sandstones (Charrier et al., 2002;
Nystrom et al., 2003), inferred to represent a basin infill se-
quence (Godoy et al., 1999). These rocks have K-Ar ages
ranging from 16.1 to 36 Ma (Charrier et al., 2002, and refer-
ences therein) and are probably equivalent to the Coya
Machali Formation in the vicinity of El Teniente mine (Fig.
1), where K-Ar mineral ages of 20.5 to 27.7 Ma have been re-
ported (S. Kay and A. Kurtz, 1995, unpub. report for
CODELCO-Chile, 180 p.), as well as to the Los Pelambres
Formation north of 33°S (Rivano, 1995).

The Salamanca Formation was mapped by Rivano et al.
(1993) in the vicinity of the Pocuro megafault north of the Rio
Blanco-Los Bronces deposit (Fig. 1) and is separated from
the underlying Abanico Formation by an angular unconfor-
mity (Rivano, 1995). It comprises continental andesitic lavas
and andesitic to dacitic volcaniclastic rocks with intercalated
rhyolite and is estimated to have maximum and average thick-
nesses of 2,500 and ~1,300 m, respectively (Rivano, 1995).
Whole-rock K-Ar ages of the formation to the east of the
megafault (Fig. 1) range from 11.4 to 30.1 Ma.

The younger and better defined Farellones Formation (Ri-
vano et al., 1993) is the dominant Miocene arc succession in
central Chile and forms a longitudinal belt ~400 km long and
24 to 65 km wide (Fig. 1; Vergara et al., 1988). It uncon-
formably overlies the Salamanca and older formations but is
locally conformable with the Abanico Formation (Godoy et
al., 1999; Charrier et al., 2002; Nystrom et al., 2003). The
rocks range from basaltic through dacitic to rhyolitic. Felsic
rocks are more abundant in the north (Vergara et al., 1988).
Volcanism has been considered to young from north to south
(Fig. 1), but most of the published K-Ar mineral ages range
from 15 to 18 Ma (Beccar et al., 1986; Vergara et al., 1988).
U-Pb zircon ages of 16.77 + 0.25 (20) and 17.20 + 0.05 Ma for
two andesitic units from the immediate Rio Blanco mine area
(Deckart et al., 2005) confirm that these rocks are middle
Miocene in age. In the Teniente district (Fig. 1), S. Kay and
A. Kurtz (1995, unpub. report for CODELCO-Clhile, 180 p.)
followed Godoy (1993) in assigning a succession of volcanic
rocks, previously incorporated into the Farellones Formation,
to the Teniente Volcanic Complex. This, in turn, is subdivided
into the Maqui Chico Group (ca. 12-15.2 Ma) and the Lower
and Upper Sewell Groups, the eruption of which extended
approximately from 10 to 6 Ma. The argument for crustal
thickening of S. Kay and A. Kurtz (1995, unpub. report for
CODELCO-Chile, 180 p.) and Kay et al. (2005) rely exten-
sively on geochemical analyses of the Teniente Volcanic Com-
plex, which we infer to overlap temporally with the later
stages of eruption of the Farellones Formation.

Compositionally diverse granitoid rocks, grouped as the
San Francisco batholith in the Rio Blanco-Los Bronces area,
intrude the Farellones Formation and older units. These have
yielded K-Ar ages from 7.4 to 20.1 Ma (Serrano et al., 1996),
and Kurtz et al. (1997) provide similar ©Ar-39Ar (furnace) in-
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cremental-heating ages from 5.3 to 19.8 Ma for five plutonic
complexes between 33°33' and 35°15' S. U-Pb zircon ages
(Deckart et al., 2005) for the granitoid host rocks of the Rio
Blanco deposit define two intrusive episodes at 11.96 and
8.19 to 8.40 Ma. The latter preceded the initiation of Cu-Mo
mineralization at Rfo Blanco at ca. 6.3 Ma (Deckart et al.,
2005). At El Teniente, U-Pb dating of the dacite intrusions in-
dicates emplacement ages of 5.58 to 4.42 Ma, with Re-Os
ages of molybdenite indicating that mineralization occurred
from 5.60 to 4.42 Ma (Maksaev et al., 2002; Muniziga et al.,
2002; Cannell et al., 2003). This contrasts with the molyb-
denite Re-Os ages of 10.75 to 10.40 Ma (Mathur et al., 2001)
and 11.18 to 11.08 Ma (Bertens et al., 2003) from Los Pelam-
bres. The age of the Los Pelambres deposit is also supported
by U-Pb zircon ages for the late porphyries of 11.56 to 11.24
Ma and “Ar/*Ar ages of magmatic and hydrothermal miner-
als associated with the deposit of 12.39 to 10.19 Ma.

The youngest rocks studied herein are those of the Pliocene
La Copa rhyolite complex, which crops out as a large body
comprising numerous felsic intrusive phases and with an ex-
posed vertical extent of at least 900 m along the boundary be-
tween the Rio Blanco and Los Bronces deposits (Toro, 1986;
Davidson et al., 2005). The La Copa complex was the final in-
trusion to be emplaced into the ore deposit and has been
dated at 3.9 to 4.9 Ma (Serrano et al., 1996, and references
therein). The breccias of the dacite chimney that underlie
and predate the La Copa rhyolite complex at Rio Blanco are
strongly seriticized but essentially barren. This dacite has
yielded a SHRIMP U-Pb zircon age of 4.92 + 0.02 Ma
(Deckart et al., 2005). Although the La Copa complex is pre-
dominantly intrusive, there is evidence for an extrusive phase
dominated by rhyolitic tuffs, which are exposed at the top of
the vertical section. On the Los Bronces side of the deposit,
an ignimbrite of the La Copa complex has been recognized
overlying a volcaniclastic mass-flow unit with a soil horizon
developed at its upper contact.

Analytical Techniques and Sampling Methodology

A total of 270 samples, predominantly of Cretaceous and
younger volcanic rocks, were collected from the study area.
Field and petrographic observations were used to select a
subset of 88 least altered samples for analysis (Fig. 1). How-
ever, in order to provide adequate temporal and spatial cov-
erage, a number of weakly to moderately altered samples
were included in the database. Our interpretation of geo-
chemical data focuses on elements that are relatively insensi-
tive to alteration, including Ti, Al, high field strength ele-
ments (HFSE), and, particularly, rare earth elements (REE).

X-ray fluorescence analysis of major and some trace ele-
ments was performed on 88 samples at the School of Earth
Sciences, University of Tasmania, using a Philips PW1480 X-
ray spectrometer. Additional trace element and REE analyses
were carried out on a subset of 45 samples at the Centre for
Ore Deposit Research at the University of Tasmania using an
Agilent HP4500 quadrupole ICP-MS and the methodology of
Yu et al. (2001). Ten samples were analyzed for radiogenic
isotopes at the CSIRO laboratory in North Ryde, and five
were analyzed at the University of Adelaide. At CSIRO, Sr
was separated on AG50W-X8 cation exchange resin. The
REE were collected from this separation and Nd and Sm
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FI1G. 2. AFM ternary diagrams for the differentiation of tholeiitic and calc-alkaline rock series for the Tertiary volcanic
rocks of this study. Older suites are predominantly calc-alkaline, whereas the younger Abanico and Farellones Formations
include both calc-alkaline and tholeiitic rocks. A = Na2O + K20, F = total iron as FeO, M = MgO.

000 e Chilem T Samples CE21, CE44, and CE45 were selected to con-
e strain the age of the upper successions of the Farellones For-
mation in the vicinity of the abandoned La Juanita copper
mine, south of El Teniente (Fig. 1). Samples CE44 and CE45
are andesitic dikes from north of the mine, whereas sample
CE21 is an olivine-phyric basalt from the Rio Pangal valley
~15 km west of the mine. O. Rivera and M. Falcon (1998,
Salamanea Tin, unpub. report for CODELCO-Chile, 200 p.) have reported a
K/Ar whole-rock age of 11.9 + 0.5 Ma for the Rio Pangal-Rio
Paredones volcanic sequence, 1 km to the east of sample
CE21. The hornblende from sample CE45 yielded only two
steps (Fig. 4C) and the imprecise date of 11.6 + 3.0 Ma
should be regarded as a total-fusion age. However, the pla-
100001 Abanico Fin gioclase from samples CE44 and CE21 yielded more steps
’ o (Fig. 4D, E) and acceptable plateau ages of 10.9 + 1.6 and
12.4 + 1.7 Ma, respectively, similar to the hornblende date.
Both samples display u-shaped Ca/K ratio trends (Fig. 4),
possibly as a result of sericitic alteration of the plagioclase.
The similar ages for the three samples suggests that they rep-
resent magmatic cooling ages. The andesitic dikes were in-
truded at ~11 Ma and therefore are broadly synchronous with
published ages for the surrounding volcanic units (e.g., the
Rio Pangal-Rio Paredones sequence) and are also geochemi-
cally similar to these rocks (Table 1, Fig. 3; O. Rivera and M.
Falcon, 1998, unpub. report for CODELCO-Chile, 200 p.).
The inferred age range of these rocks (ca. 11-12.5 Ma) over-
La Copa thyolite laps with that determined by S. Kay and A. Kurtz (1995,
unpub. report for CODELCO-Chile, 180 p.) for the upper
part of the Maqui Chico Group in the El Teniente area.
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new age data reported herein or previously published ages for
adjacent mapped units. Positive exq values (1.7-5.2) are indi-
cated by all samples. The values are lower for the Farellones
Formation (3.0-3.8, n = 4) than for the older Abanico
(3.4-5.4, n = 4) and Salamanca (4.7-5.3, n = 3) Formations.
The Sr and Nd isotope data are therefore decoupled for these
units. The Cretaceous Las Chilcas Formation (n = 2) contains
more radiogenic Sr (0.70511 and 0.71025, n = 2) but has
higher exq (4.9-5.2) than the Miocene rocks. The Pliocene La
Copa rhyolite is only slightly more enriched in 87Sr than most
of the Miocene units (0.70429, n = 1) but has the lowest exq
value (1.7), which is still significantly higher than the range of
values reported by Nystrom et al. (1993).

Three of the four samples from the Abanico Formation plot
within the range of the data of S. Kay and A. Kurtz (1995,
unpub. report for CODELCO-Chile, 180 p.) for the Coya
Machali Formation in the El Teniente region. Sample CA60,
however, has a markedly higher $7Sr/%6Sr ratio (0.71025), as
well as a lower exq value (3.4) than the other samples, and is
inferred to record contamination by older crustal material.
Similarly, the radiogenic isotope data for the three samples
from the Salamanca Formation are within the ranges reported
for the Coya Machali Formation by S. Kay and A. Kurtz (1995,
unpublish. report for CODELCO-Chile, 180 p.; Fig. 5).

Discussion

The Cretaceous to middle Miocene volcanic rocks analyzed
in this study have broadly similar major and trace element
compositions, characterized by LREE enrichment, negative
Nb anomalies in primitive mantle-normalized diagrams (Fig.
3), and La/Ta ratios generally exceeding 25 (Table 1). All fea-
tures are characteristic of magmas derived ultimately from a
sub-arc mantle source (e.g., Kay and Mpodozis, 2002). The ob-
served depletion of HFSE (Nb, Ta, Hf, Zr, Ti), and especially
the Nb-Ta trough (Fig. 3), is also characteristic of this tectonic
environment. The youngest analyzed rocks, the Pliocene La
Copa rhyolites, also have geochemical characteristics of arc
magmas, but they exhibit distinctive REE compositions.

Earlier workers in the area, and particularly S. Kay and A.
Kurtz (1995, unpub. report for CODELCO-Chile, 180 p.)
and Kay et al. (1999, 2005), reported similar geochemical

characteristics. However, because the three major
Miocene-Pliocene porphyry copper-molybdenum deposits
in the region lie in different settings relative to the major
warp in the subducting plate and may have been generated
in different environments as the plate flattened, we subdi-
vide our geochemical data into three populations, corre-
sponding to the areas surrounding, respectively, the Los
Pelambres, Rio Blanco-Los Bronces, and El Teniente de-
posits, (i.e., 31°45' S-32°45" S; 32°45' S—-33°30'S; 33°30'
S—34°15' S). We combine these new results with data from
the same areas previously reported by Skewes and Stern
(1995), S. Kay and A. Kurtz (1995, unpub. report for
CODELCO-Chile, 180 p.), Reich et al. (2003), Nystrom et
al. (2003), and Kay et al. (2005). The geochronologically
well-constrained analytical database of Bissig et al. (2003)
for the El Indio-Pascua Au belt to the north of the study
area provides a template for the geochemical response to
slab-flattening and is used as a comparison for the evolution
of the more southerly transects.

Crustal thickening in central Chile

The history of crustal thickening through the Miocene is
clearly documented for the axial flat-slab transect by the geo-
morphologic studies of Bissig et al. (2002), which support the
tectonic studies of Kay et al. (1991) and Martin et al. (1995).
Farther south, S. Kay and A. Kurtz (1995, unpub. report for
CODELCO-Chile, 180 p.) and Kurtz et al. (1997) extended
the tectonic reconstruction of Godoy and Lara (1994) with
40Ar-39Ar and aluminum-in-hornblende studies of the cooling
and exhumation history of two Miocene plutons (19.6 and 8.4
Ma, respectively) in the El Teniente region and with similar
data for units of the San Francisco batholith (ca. 8.6-20.1
Ma), which hosts the Rio Blanco-Los Bronces porphyry cen-
ter (Skewes and Holmgren, 1993). These studies employed
radically different approaches to recognize episodes of uplift,
exhumation, and, hence, crustal thickening in the early
Miocene (ca. 15-19 Ma) and late middle Miocene (6-10 Ma).
Uplift and crustal thickening during the intervening period
(12.5-14 Ma) are recorded geomorphologically in the El
Indio transect. Although this has not been confirmed in the
Rio Blanco-Los Bronces and El Teniente mine areas for the
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same time period, it is apparent that the Miocene tectonic
histories of the axis and southern boundary of the flat-slab do-
main were similar, providing a coherent regional framework
for comparison of the geochemistry.

Kay et al. (1999) and Kay and Mpodozis (2001) argued for
a direct link between Neogene crustal thickening, igneous
geochemistry, and mineralization. This link is also discussed
by Kay et al. (1999) and Bissig et al. (2003) for the El Indio-
Pascua epithermal Au(-Ag, Cu) belt (ca. 30°S), now at the
center of the Chilean flat-slab domain, north of the present
study area. In contrast, Stern and Skewes (1995) proposed
that magma compositional trends in the volcanic rocks reflect
the tectonic erosion and subduction of the diverse lithologies
making up the leading edge of the South American plate.

Rare earth element geochemistry

It is relevant to subdivide the igneous suites into those
which predated hydrothermal activity (i.e., the Las Chilcas
through Farellones Formations > ~11 Ma), and those which

were associated with or closely followed ore formation. All
samples from the Upper Cretaceous to middle Miocene Las
Chilcas, Abanico, Salamanca, and Farellones Formations
exhibit similar REE patterns (Fig. 3). They are LREE en-
riched (La/Sm, ranging from 1.5-4.1 but with most values
<2.5) and exhibit only moderately fractionated HREE
(Sm/Yb, = 1.5-5.8, with most values <2.5; Fig. 3). Thus the
volcanic and hypabyssal rocks erupted over almost 100 m.y.
were remarkably uniform. Although most rocks are calc-alka-
line, the basalts and basaltic andesites of the more southerly
Abanico (Coya Machali) Formation basalts and basaltic an-
desites and some of the mafic units of the Salamanca Forma-
tion are tholeiitic, and basalt and andesite of the Farellones
Formation lie along the tholeiitic-calc-alkaline boundary (Fig.
2). The greatest LREE enrichment (La/Sm, = 4.1) and
HREE fractionation (Gd/Yb, = 5.8) occur in the calc-alkaline
rocks of the more northerly Abanico Formation.

These data indicate that, with few exceptions, the central
Chilean arc had a consistent REE chemistry from the Late
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Cretaceous to the late middle Miocene. Previous investiga-
tions have suggested that whereas the Coya Machali (Aban-
ico) Formation is dominantly tholeiitic, a trend to more cale-
alkalic compositions occurred during the eruption of the
Farellones Formation (S. Kay and A. Kurtz, 1995, unpub. re-
port for CODELCO-Chile, 180 p.). Our data show that calc-
alkalic compositions occur in the majority of the rocks from
the more northerly Abanico (Los Pelambres) Formation.
Furthermore, the geochemistry of the Abanico and Farel-
lones Formations is transitional rather than abrupt, as pro-
posed by Charrier et al. (2002), and contrasts with the grad-
ual change in the nature of the source region for these suites
since ~26 Ma argued by others (e.g., Kay et al., 1999; Kay and
Mpodozis, 2001, 2002).

Yifiez et al. (2002) described the Abanico Formation be-
tween 33° and 35° S as being tholeiitic with low La/Yb ratios
and less LILE enrichment than other volcanic units of central
Chile. Together with the absence of hydrous mineral phases,
this was interpreted as indicating low primary water contents
in the magmas. The transition from tholeiitic rocks in the
south to more calc-alkaline rocks in the north implies a
change in the nature of the mantle source of the parental
magma from southern to northern central Chile during the
Miocene. Yéiiez et al. (2002) interpreted the tholeiitic nature
of the southern portion of the Abanico Formation as reflect-
ing a diminished fluid supply from the downgoing slab, possi-
bly as the result of its detachment south of the Juan Ferndn-
dez Ridge. The north-south transition from calc-alkaline to
tholeiitic volcanism in the Abanico Formation supports this
model and the idea that the processes by which parental mag-
mas were generated and the depth at which this occurred was
controlled by geographically localized processes associated
with the margin of the flat slab rather than crustal thickening.

S. Kay and A. Kurtz (1995, unpub. report for CODELCO-
Chile, 180 p.) and Kay and Mpodozis (2001, 2002) have docu-
mented a gradual trend to increasing LREE abundances and
HREE fractionation with decreasing age for the ~25 to ~5 Ma
rocks in the vicinity of El Teniente. This was interpreted to be
the result of increasing crustal thicknesses and a change from a
pyroxene- to an amphibole- and finally a garnet-dominated
lower crustal mineral assemblage. However, our regional data
set shows very little difference in the LREE (La/Sm,) or HREE
(Sm/Yb,) ratios between the Cretaceous Las Chilcas and the
Miocene Abanico and Farellones Formations (Fig. 3, Table 1).
Rather, the La/Yb ratios do not vary until the Pliocene with the
peak La/Yb values migrating southward over time (Fig. 6)

When compared with data from the flat slab region of cen-
tral Chile (Bissig et al., 2003) significant differences can be
observed. Unlike the Miocene porphyry belt discussed in this
study, samples from the El Indio belt show a gradual increase
in La/Yb ratios in younger rocks, starting at values compara-
ble to those of the Miocene porphyry belt, reaching a peak
La/Yb ratio of ~40 at ~7 Ma before dropping to much lower
values (Fig. 6). Bissig et al. (2003) interpreted the geochemi-
cal trends in the El Indio belt to be consistent with crustal
thickening but observed that this thickening and associated
large-scale breakdown of amphibole was not the key control
on ore deposit formation. The absence of a gradual increase
in the La/Yb ratios south of the current flat slab suggests that
gradual crustal thickening was not important and that an
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Cachapoal andesite are from Stern and Skewes (1995). All other data are
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abrupt shift in the nature of the source regime at ~10 Ma near
Los Pelambres and ~4 to 5 Ma south of Rio Blanco was more
likely (Fig. 6). The change in the geochemistry of the volcanic
rocks in the vicinity of the northern transect occurred at ap-
proximately the same time as the shift to a strongly compres-
sional tectonic regime in the magmatic arc of central Chile
(31-34° S; Kurtz et al., 1997; Yafiez, et al., 2002); however,
the younger geochemical shift to the south does not appear to
be related to any major tectonic event. The fact that the peak
in La/Yb occurred at the same time in the vicinity of both El
Teniente and Rio Blanco is consistent with the new age data
for the deposits, which suggests they are broadly coeval (Can-
nell et al., 2003; Deckart et al., 2005).

Radiogenic isotopes and crustal contamination

Various authors have observed a trend of increasing
87Sr/%6Sr and decreasing exd values with time in the volcanic
and intrusive rocks of central Chile (e.g., Stern and Skewes,
1995; Kay et al., 1999). This trend requires incorporation into
the parental magma of an older, isotopically distinct compo-
nent, but the source of this older material remains the subject
of considerable debate. Some workers have argued for crustal
contamination within the lower continental crust (Hildreth
and Moorbath, 1988; Kay et al., 1999), whereas others have
argued for incorporation of crustal material into the sub-arc
mantle source region (Stern, 1989; Stern and Skewes, 1995).
The regional Miocene and Pliocene samples from this study,
which are comparable to those documented at El Teniente by
Kay et al. (1999), are not characterized by systematic varia-
tions in either major or trace element geochemistry. Further-
more, although eng values decrease and $7Sr/%6Sr increases
with age (Fig. 5), the younger Farellones Formation samples
do not have systematically higher SiO; or Sr contents than the
older samples analyzed in this study (Table 1). This argues
against contamination by intracrustal assimilation combined
with fractional crystallization, as this process would result in
elevated SiOz and Sr. Instead, Stern (1991) has shown that in-
corporation of only 1 percent of tectonically eroded Paleozoic
basement into the sub-arc mantle could generate andesites
with Sr isotope signatures comparable to those of the north-
ern Southern Volcanic zone. Indeed, Kay et al. (1999) ob-
served that the enriched isotopic signatures in Pliocene to Re-
cent mafic volcanic rocks in the central Andes cannot be
attributed to pre-Miocene processes. Taken in conjunction
with the geographic distribution of enriched and depleted
isotopic signatures, they suggested that not all of the isotopic
enrichment can be the result of crustal contamination and
that there must be some enrichment of the mantle source.
Localized assimilation of crustal material within the mantle
wedge as a result of subduction erosion adjacent to a zone of
ridge subduction best accounts for the geochemical trends
observed in this study and is consistent with the proposed
subduction erosion model of Skewes and Stern (1995).

Implications for the Formation of Giant Porphyry
Copper Deposits

For the latter part of the twentieth century, the three giant
Cu-Mo porphyry centers of central Chile were considered to
young progressively southward (e.g., Quirt et al., 1971; Silli-
toe, 1988) based on the available geochronological data (e.g.,
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10 Ma ages of Los Pelambres-El Pachén: Kay et al., 1999; 7
Ma ages of Rio Blanco-Los Bronces: Warnaars et al., 1985; 5
Ma ages of El Teniente: Cuadra, 1986). Mineralization is in-
ferred to have been coincident with the southward migration
of the flat-slab segment in central Chile. This apparent tem-
poral and spatial association led to considerable speculation as
to the role of slab flattening in the genesis of giant orebodies.
However, the most recent geochronological studies have
shown that this relationship is not clear-cut, with mineraliza-
tion at Rio Blanco temporally overlapping the emplacement
of dacitic porphyries with ages from 6.32 + 0.09 to 5.23 + 0.07
Ma (Deckart et al., 2005), while at El Teniente mineralization
occurred at ~4.7 to 5.9 Ma (Muniziga et al., 2002; Maksaev et
al., 2002; Cannell et al., 2003). The overlap in the ages implies
near-simultaneous formation of the two giant orebodies. Fur-
thermore, Ar-Ar step-heating data for adularia from the
Rosario breccia of the Rosario de Rengo prospect, ~80 km
south of El Teniente, yield ages of 7.49 + 0.16 and 7.58 + 0.20
Ma (A.H. Clark, unpub. data). These results require modifi-
cation of the currently accepted model for tectonic controls
on ore formation in central Chile. The following discussion
evaluates current models that relate slab flattening and ridge
subduction to ore genesis in the light of these new
geochronological and geochemical data.

Kay et al. (1999) and Kay and Mpodozis (2001) argued that
all of the major Neogene central Andean copper and gold de-
posits formed in areas of thickened crust, where uplift was as-
sociated with crustal shortening over a shallowing subduction
zone at a time of waning magmatism. They further speculated
that increasing crustal thicknesses and the associated change
in the residual mineralogy from amphibole- to garnet-domi-
nated assemblages released large volumes of H>O that may
have played a role in the formation of the deposits in the Mar-
icunga and El Indio belts. Clearly this model is of consider-
able importance to explorationists, as it offers a potential
method for identifying packages of rocks that may be hosts for
significant copper and gold deposits. However, Skewes and
Stern (1995) have shown that the large volumes of fluid re-
leased by the amphibole to garnet transition during crustal
thickening are not required to form large porphyry copper
deposits, and the data presented in this study suggest that
crustal thickening was not a critical factor in the magmatic
evolution of the central Chilean porphyry belt. Stern and
Skewes (1995) further argued that there is no temporal cor-
relation between the isotopic composition of Andean magmas
and crustal thickness. Because ridge subduction enhances the
effects of subduction erosion (Cande and Leslie, 1986; von
Huene et al., 1997), Stern and Skewes (1995) concluded that
increased subduction erosion rather than crustal thickening
was responsible for the geochemical and isotopic variations
observed in the region.

Although there is evidence that crustal thickening has oc-
curred in central Chile since the middle Miocene (Allmendi-
ger et al., 1990; Kay et al., 1991), data from this study suggest
that an abrupt rather than a gradual geochemical shift oc-
curred. During the early Miocene, the Juan Fernindez Ridge
is interpreted to have collided with the continental margin as
a result of oblique convergence of the Farallon and South
American plates, with the locus of the collision migrating
southward at ~200 km/m.y. (Yafiez et al., 2001). Following the
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breakup of the Farallon plate at ~25 Ma the interaction be-
tween the Nazca and South American plates evolved from an
oblique to an almost normal convergence, resulting in only
~275 km of south-directed migration of the ridge collision in
the last 12 m.y. (Yafez et al., 2002).

Data from this study and others (e.g., Stern and Skewes,
1995) is consistent with increased crustal contamination of the
sub-arc mantle, as a result of slab flattening and a reduction in
the size of the mantle wedge. In addition to the enhanced sub-
duction erosion and crustal thickening in central Chile associ-
ated with the collision of the Juan Ferndndez Ridge (Stern and
Skewes, 1995; von Huene et al., 1997), the ridge itself may
have contributed directly to the formation of the giant orebod-
ies. Ydnez et al. (2002) have proposed that passive ridge sub-
duction may be a contributor to the generation of magmas be-
neath an arc because of the high volatile content and the large
volumes of oceanic crust within the root of the ridge. In addi-
tion to magma generation, analogue modeling of seamount
subduction (Dominguez et al., 2000) has demonstrated that
considerable sediment may be subducted behind irregularities
on the ridge. Once subducted this water-laden sediment may
be underplated to the overlying continental crust where it can
contribute to the hydration and oxidation of the mantle and
possibly become a significant source of both fluids and metals.

HOLLINGS ET AL.

Concluding Remarks

The general absence of coeval volcanism associated with
porphyry copper deposits means that genetic models must ex-
trapolate from adjacent rocks to infer the tectonic setting.
Data from this study demonstrate that geochemical trends
observed on a district scale differ from those observed at a
more regional scale, where there is evidence for a relatively
consistent source region for the volcanic rocks from the Cre-
taceous to the Pliocene. Similarly, radiogenic isotopes suggest
a uniform source region prior to ~15 Ma, with the Farellones
Formation showing the first evidence for contamination by
older crustal material that is not reflected in the trace ele-
ment geochemistry. This is best interpreted as the result of in-
corporation of older crustal material in the mantle wedge as a
result of ridge subduction and slab flattening. We suggest that
the subduction of the Juan Ferndndez Ridge may have played
a greater role in the changes in the mantle source than crustal
thickening, and, therefore, ridge subduction may be more im-
portant for giant ore deposit genesis than slab flattening. Fig-
ure 7 illustrates the migration of the Juan Ferndndez Ridge
over the past 12 m.y. in a north-south schematic section and
shows that the location of the flexure between normal and
flat subduction may have had a considerable impact on tran-
sient low-angle reverse faulting and ore deposit formation. In
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FI1G. 7. Schematic diagram illustrating the southward progression of the Juan Fernindez Ridge and the central Chile flat
slab zone over the past 12 m.y. based on Yanez et al. (2002). Depth contours of seismicity (25-km interval) from Cahill and
Isacks (1992) are shown and can be used to infer the upper surface of the downgoing slab. Stars illustrate the locations of
the three major porphyry copper deposits. From north to south, these are Los Pelambres-El Pachon (LP), Rio Blanco-Los
Bronces (RB), and El Teniente (ET). The dashed line in the top panel shows the location of the north-south cross sections
in the right-hand panels. These cross sections show inferred southward progression of the flexure that separates zones of nor-
mal and flat subduction and potential structural controls on ore deposit localization and formation.
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addition, the current location of the steepest flexures in the
Nazca plate lie beneath the two areas of highest topographic
elevation in central Chile and Argentina, suggesting a strong
link between the shape of the downgoing slab and thrust tec-
tonics in the upper crust (Fig. 8). Ridge subduction may be
responsible for both increased subduction erosion and in-
creased sediment input in the mantle wedge, all of which may
contribute to the generation of giant ore deposits.

Plaste

MNazca Plate

Fic. 8. Schematic block diagram illustrating the current geometry of the
subducting Nazca plate and its relationship to surface topography (shaded) in
central Chile. Dashed lines = contour lines for the upper surface of the
downgoing plate, solid lines = form lines illustrating the geometry of the slab.
Note the spatial association between topographic highs and flexure zones in
the downgoing slab. JFR = Juan Ferndndez Ridge. Arrow is the current con-
vergence direction from Yanez et al. (2002).
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