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Abstract

The generation, as well as the detection, of gravitational radiation

by means of charged superfluids is considered. One example of such

a “charged superfluid” consists of a pair of Planck-mass-scale, ultracold

“Millikan oil drops,” each with a single electron on its surface, in which

the oil of the drop is replaced by superfluid helium. When levitated in a

magnetic trap, and subjected to microwave-frequency electromagnetic ra-

diation, a pair of such “Millikan oil drops” separated by a microwave wave-

length can become an efficient quantum transducer between quadrupolar

electromagnetic and gravitational radiation. This leads to the possibility

of a Hertz-like experiment, in which the source of microwave-frequency

gravitational radiation consists of one pair of “Millikan oil drops” driven

by microwaves, and the receiver of such radiation consists of another pair

of “Millikan oil drops” in the far field driven by the gravitational radi-

ation generated by the first pair. The second pair then back-converts

the gravitational radiation into detectable microwaves. The enormous

enhancement of the conversion efficiency for these quantum transducers

over that for electrons arises from the fact that there exists macroscopic

quantum phase coherence in these charged superfluid systems.

The equivalence principle revisited: Does a falling

charge radiate?

Galileo first performed experiments demonstrating that all freely-falling objects,
independent of their mass, accelerate downwards with the same acceleration g

due to Earth’s gravity. Later, Eötvös, and still later, Dicke, performed more
sensitive experiments, which showed that this statement of the equivalence prin-
ciple was true to extremely high accuracy, independent of the mass and of the
composition of these objects [1].

One might therefore expect that a neutral object and a charged object, when
simultaneously dropped from the same height, would hit the ground at the same
instant. See Figure 1.

However, a well-known paradox [2] now arises when we ask the following
question: Is it the falling charged object, or is it the stationary charged object
at rest on the ground, that radiates electromagnetic waves?

On the one hand, a freely-falling observer, who is co-moving with the freely
falling neutral and charged objects, sees these two objects as if they were freely
floating in space. The falling charged object would therefore appear to him
not to be accelerating, so that he would conclude that it is not this charge
which radiates. Rather, when he looks downwards at the charged object which
is at rest on the ground, he sees a charge which is accelerating upwards with
an acceleration −g towards him. He would therefore conclude that it is the
charged object at rest on the ground, and not the falling charge, that is radiating
electromagnetic radiation.

On the other hand, an observer on the ground would come to the opposite
conclusion. She sees the falling charge accelerating downwards with an acceler-
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Figure 1: Equivalence principle for a neutral and a charged object.

ation g towards her, whereas the charged object at rest on the ground does not
appear to her to be undergoing any acceleration. She would therefore conclude
that it is the falling charge which radiates electromagnetic radiation, and not
the charge which is resting on the ground. Which conclusion is the correct one?

As a first step towards the resolution of this paradox, we note that the
concept of “radiation” makes sense only in the far field of moving charged sources
asymptotically. We must therefore ask the further question: What would an
observer at infinity see?

Motivated by this further question, let us change the setting for the formula-
tion of this paradox to that of two nearby objects, one neutral and one charged,
orbiting in free fall around the Earth in the same circular orbit, as seen by a
distant observer. See Figure 2(a).

It now becomes clear that the charged object will gradually spiral in towards
the Earth, since it is undergoing constant centripetal acceleration in uniform
circular motion, and will therefore in principle lose energy due to the emission
of electromagnetic radiation at a rate determined by Larmor’s radiation-power
formula

PEM =
2

3

q2

c3
a2 (1)

where PEM is the total amount of power emitted in electromagnetic radiation
by the charge q undergoing centripetal acceleration a. The energy escaping to
infinity in the form of electromagnetic radiation emitted by the orbiting charged
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Figure 2: (a) Circular orbit around the Earth of a neutral object and a charged
object. (b) Circular orbit of two charged objects.

object must come from its gravitational potential energy (which is related by
the virial theorem to its kinetic energy), and therefore this object will gradually
spiral inwards towards the surface of the Earth. This kind of decaying orbital
motion is the same as that of the electron in Bohr’s planetary model of the
hydrogen atom, when the electron’s motion around the proton is considered
using only classical concepts. Here the classical description is clearly a valid
one.

Now it is true that the neutral object will also in principle undergo orbital
decay, i.e., it will also gradually spiral inwards towards the Earth’s surface, due
to the gradual loss of energy arising from the emission of gravitational radiation
in accordance with the gravitational form of Larmor’s radiation-power formula

P ′

GR = κ
2

3

Gm2

c3
a2 (2)

where κ is a numerical factor that accounts for the quadrupolar nature of grav-
itational radiation, G is Newton’s constant, and m is the mass of the neutral
orbiting object, which is undergoing essentially the same centripetal accelera-
tion a as the charged object [3]. (The prime on P ′

GR denotes the incorporation
of the factor of κ into the formula for radiation power.) The decay of orbital
motion due to the emission of gravitational radiation has been observed in the
case of Taylor’s binary pulsar PSR 1913+16 [4].

The rate of orbital decay due to the emission of gravitational radiation will
be much smaller than that due to the emission of electromagnetic radiation,
whenever the dimensionless ratio of coupling constants obeys the inequality

κGm2

q2
<< 1. (3)

In such cases, one can neglect the orbital decay due to gravitational radiation
as compared to that due to electromagnetic radiation.
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In any case, however, the orbital motion of a charged object will always
decay faster than that of a neutral object with the same mass. An astronaut
would therefore see a differential motion between these two nearby objects. Even
when inside a windowless spacecraft, the astronaut would still be able to tell
the direction of the center of the Earth, by carefully observing the motion of
the charged object relative to the neutral object inside the spacecraft, since the
charged object would be gradually drifting radially towards the center of the
Earth faster than the neutral object. Although this effect may be extremely
small, and may be masked by large systematic errors, we are discussing here
matters of principle. Here the principle of the conservation of energy demands
the existence of this kind of differential motion.

Is the equivalence principle violated?

The above prediction of a differential motion between charged and neutral ob-
jects in Earth’s orbit seems at first sight to violate the equivalence principle, and
thus would seem to render invalid the concept of “geodesic” in general relativ-
ity, which demands that all freely-falling material objects, independent of their
mass and composition (including charge), traverse the same shortest (geodesic)
path in spacetime connecting any two given spacetime points.

However, it must be kept in mind that the equivalence principle implicitly
assumes that any such material object is to be viewed as a “vanishingly small”
test mass, and furthermore implicitly assumes that any charge associated with
this test mass is be to viewed also as a test charge, whose charge is also “van-
ishingly small.” One is employing here the usual limiting procedure involving
test particles to define the local value of a classical field, both gravitational and
electrical [5].

By contrast, a finitely charged object experiences a nonvanishing electro-
magnetic force due to radiation damping, which is an effectively viscous kind of
force. This implies that a finitely charged object is undergoing approximately,
but not truly exactly, free fall. Hence there is no reason to believe that a finitely
charged object would follow a neutral object along the same geodesic, and the
equivalence principle is therefore not violated.

Charge, at a fundamental level, is a quantum concept. Dirac’s charge-
monopole quantization rule shows that the quantization of electrical charge
arises from global, topological, and quantum-mechanical considerations. The
fact that charge is quantized in integer values of the electron charge e, stands
in contradiction with the usual limiting procedure that is used in all classical
field theories to define the concept of “field,” in which it is assumed that the
test charge (or test mass) which is used to measure the local value of the field,
is a continuous variable that can be smoothly reduced to zero.

In this classical procedure of taking the test-particle limit, one can neglect
the quantum “back-action” of the test particle back onto the field, because the
charge and the mass both smoothly go to zero, and therefore any back-actions
that the test particle might have caused onto the classical electromagnetic and
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gravitational fields, must also go smoothly to zero. However, for a particle with
a finite, quantized charge and mass, for example, for a single electron, this “no
quantum back-action” assumption violates the uncertainty principle.

Therefore quantized charged systems are a good place to examine the con-
ceptual tensions that lie at the interface of quantum mechanics and general
relativity [6]. As will be argued below, single-electron–charged, macroscopically
phase-coherent quantum fluids are particularly promising systems in which to
discover experimentally new phenomena that might emerge from these concep-
tual tensions.

Two charged objects orbiting the Earth

Now let us examine the details of the motion of two finitely charged objects
orbiting around the Earth. See Figure 2(b).

For concreteness, imagine that these two charged objects are two Millikan
oil drops with single electrons attached to them, which are nearby to each other
in the same circular orbit. How massive would these oil drops have to be before
the mutual repulsion due to the electrical force between them, changes to a
mutual attraction due to the gravitational force? When they exceed a certain
critical mass, one expects that the drops will drift towards each other, rather
than drifting farther apart. We shall calculate this critical mass presently.

Now imagine what would happen if a low-frequency gravity wave passes over
these two Millikan oil drops, when this wave propagates at normal incidence into
the plane of the orbit. Such a wave would exert a time-varying tidal gravita-
tional force, which would alternately stretch and squeeze sinusoidally in time
the space between these objects, when one of the polarization axes of the gravity
wave is chosen to be aligned with respect to the line connecting the two drops.
Therefore the distance between these charged objects would become an oscil-
lating function of time, according to the observer at infinity, and this implies
the emission of electromagnetic radiation by these approximately freely-falling
objects. Thus this two-Millikan-oil-drop system would be a kind of transducer,
in which gravitational radiation can be converted into electromagnetic radiation
in a scattering process. For weak radiation fields, such a conversion process
would be linear and reciprocal in nature.

However, for very high-frequency gravity waves, it would be possible to excite
a very large number of internal degrees of freedom of the classical liquid inside
a given Millikan oil drop, so that the branching ratio for the conversion of
gravitational wave energy into the electromagnetic wave channel, as compared
to the very large number of possible internal sound and heat channels, would
be extremely small, just as is the case for the classical Weber bar. For in
the reciprocal process, when one attempts to use a Weber bar as a generator of
gravity waves using its fundamental acoustical mode, the branching ratio for the
generation of gravitational radiation power relative to that of heat generation,
has been calculated to be vanishingly small [7].

The solution to the problem of the extremely small detection efficiency of
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gravitational radiation antennas composed of classical matter, as we shall argue
below, is to freeze out all the internal acoustical and thermal degrees of freedom
of matter at very low temperatures [8], and to replace the classical matter by
macroscopically coherent quantum matter. For example, instead of the Weber
bar, one could use a pair of well separated, ultracold, levitated singly-charged
superfluid helium drops, where only their center-of-mass degrees of freedom can
be excited. There results a zero-phonon, Mössbauer-like motion of an entire
superfluid drop relative to the other drop in response to the application of
high-frequency gravitational or electromagnetic radiation, which can efficiently
generate, as well as detect, gravitational radiation.

In the original Mössbauer effect, an excited nucleus of a certain isotope doped
into a crystal can emit a gamma ray, without the usually large Doppler shift
that accompanies the recoil of the emitting nucleus in the vacuum, because this
nucleus is now tightly bound to the lattice. Since the vibrations of the lattice
are quantized into an integer number of phonons, it is impossible for the system
to emit a fraction of a quantum of sound. There results a large probability that
the excited nucleus will emit the gamma ray in a zero-phonon mode. By the
conservation of momentum, the recoil momentum due to the emission of the
radiation must now be taken up by the center of mass of the entire system.
Thus the mass of the recoiling system is the mass of the entire crystal.

This reduces the recoil Doppler shift by an enormous factor, which is on the
order of the Avogadro’s number of atoms present in the entire crystal. The same
enormous factor also reduces the recoil Doppler shift during the absorption of
the gamma ray by an unexcited nucleus of the same isotope, when this nucleus is
also tightly bound to the same lattice. Extremely narrow gamma-ray resonance-
fluorescence lines have therefore been observed using the same nuclear isotope
doped into two separate crystals as emitter and absorber, one crystal serving as
the source, and the other as the receiver, of the radiation [9].

We shall argue below that a similar Mössbauer-like process can occur in
drops of superfluid helium coated with single electrons, when they are trapped
in a strong magnetic field.

Forces of gravity and electricity between two elec-

trons

Before going on to the harder problem of electron attachment to superfluid
helium drops, let us first consider the simpler problem of the forces experienced
by two electrons separated by a distance r in the vacuum. Both the gravitational
and the electrical force obey long-range, inverse-square laws. Newton’s law of
gravitation states that

|FG| =
Gm2

e

r2
(4)
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where G is Newton’s constant and me is the mass of the electron. Coulomb’s
law states that

|Fe| =
e2

r2
(5)

where e is the charge of the electron. The electrical force is repulsive, and the
gravitational one attactive.

Taking the ratio of these two forces, one obtains the dimensionless constant

|FG|
|Fe|

=
Gm2

e

e2
≈ 2.4 × 10−43 . (6)

The gravitational force is extremely small compared to the electrical force, and
is therefore usually omitted in all treatments of quantum physics.

Gravitational and electromagnetic radiation pow-

ers emitted by two electrons

The above ratio of the coupling constants Gm2
e/e2 also is the ratio of the powers

of gravitational to electromagnetic radiation emitted by two electrons separated
by a distance r in the vacuum, when they undergo an acceleration a relative
to each other. Larmor’s formula for the power emitted by a single electron
undergoing acceleration a is

PEM =
2

3

e2

c3
a2 . (7)

For the case of two electrons undergoing an acceleration a relative to each other,
the radiation is quadrupolar in nature, and the modified Larmor formula is

P ′

EM = κ
2

3

e2

c3
a2 , (8)

where the prefactor κ accounts for the quadrupolar nature of the emitted radia-
tion. Since the electron carries mass, as well as charge, two electrons undergoing
an acceleration a relative to each other, will also emit quadrupolar gravitational
radiation according to the formula [3]

P ′

GR = κ
2

3

Gm2
e

c3
a2 . (9)

It follows that the ratio of gravitational to electromagnetic radiation powers
emitted by the two-electron system is given by

P ′

GR

P ′

EM

=
Gm2

e

e2
≈ 2.4 × 10−43 (10)

which involves the same ratio of coupling constants as for the ratio of the forces
of gravity to electricity given by Equation (6). Thus it would seem at first sight
to be hopeless to try and use the two-electron system as the means for coupling
between electromagnetic and gravitational radiation.
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Figure 3: (a) An electron (black dot) is tightly bound to a vortex, and forms an
electron-vortex composite system at the center of a circular puddle of a super-
fluid helium thin film adsorbed onto a cold, nonwetting substrate (rectangle).
(b) When this system absorbs a microwave photon, the entire circular puddle
recoils in a Mössbauer fashion.

Mössbauer-like response of electron-vortex com-

posites

However, now consider what would happen if one were to firmly attach an
electron to a vortex at the center of a small circular puddle of a nanoscale-thick
thin film of superfluid helium (i.e., 4He) adsorbed onto a cold substrate, which
the superfluid does not wet. See Figure 3(a).

Due to the Pauli exclusion principle, the electron forms a nanoscale bubble
inside superfluid helium, which is attracted to the center of the vortex by the
Bernoulli effect. It then forms a bound state with the vortex with the relatively
large binding energy of around 40 K or 3 meV [10]. In this local minimum-
energy configuration, a tightly bound electron-vortex composite forms at the
center of a circular puddle of superfluid, which possesses a circular boundary
since the superfluid does not wet the substrate. Note the circular symmetry of
this system.

Now imagine what would happen if the electron-vortex system were to absorb
a microwave photon. See Figure 3(b).

In the zero-phonon mode of response, in which no sound waves (nor any
other quantized deformations of the puddle at ultracold temperatures) can be
emitted during the photon absorption process, a given helium atom on the edge
of the puddle cannot cross the circular streamline nearest to the edge. As a
result, this atom is constrained to follow the motion of the vortex center, along
with all the other atoms which make up the entire puddle, in a Mössbauer
fashion.

The circular streamlines centered on the electron at the vortex center obey
the quantized-circulation condition given by the Feynman-Onsager rule [10]

∮

C

v · dl = ±2π
~

m
(11)

where v is the velocity of the streamline in the vicinity of a differential line
element dl of a closed curve C, ~ is Planck’s constant, and m is the mass of
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the helium atom. The physical meaning of this quantization condition is that
there is constructive interference of each helium atom with itself after one round
trip around the vortex center, such as in any circular path within this kind of
matter-wave, ring-interferometer configuration. The round-trip interference of
the helium atom with itself is similar to that of the photon which occurs in a
ring-laser–gyro configuration.

As a result of being in the zero-phonon mode, the entire electron-vortex
system must recoil as a whole unit in a Mössbauer-like response to external
radiation, whenever the system stays adiabatically in its zero-phonon state,
which requires the use of ultralow temperatures [9]. Thus the mass of the
responding system is the mass of the entire puddle.

Note that the Feynman-Onsager quantization rule is a consequence of the
single-valuedness of the macroscopic wavefunction, i.e., a global quantum condi-
tion that the phase of the macroscopic wavefunction (or “complex order parame-
ter”) of the system can only change after one round trip by the quantized values
of 0, ±2π,±4π, ... Furthermore, a vortex is a topological quantum object with a
hole at its center, which possesses a nonzero winding number of ±1 correspond-
ing to counterclockwise and clockwise senses of the superflow around the center,
respectively. Moreover, the circulating currents around the vortex center can
never stop flowing, i.e., there exist persistent currents of helium atoms flowing
around the electron trapped at the center of the vortex, that never decay with
time. This is the behavior of a zero-loss, nonviscous charged quantum fluid.

What’s the difference between quantum and clas-

sical fluids?

In light of the above, there are four answers to this question.

(1) A quantum fluid has a “quantum rigidity” due to the single-valuedness of
the macroscopic wavefunction, which is absent in classical fluids. London called
this property “the rigidity of the wavefunction” in the context of superconduc-
tivity, and Laughlin called this property in the context of the quantum Hall
effect “an incompressible quantum fluid.” This kind of rigidity arises because
of the quantum adiabatic theorem, which states that when a quantum many-
body system is in its ground state, it will remain adiabatically in this state in
the presence of weak, slowly varying perturbations, such as those due to weak
gravitational or electromagnetic radiation, provided that there is an energy gap,
such as the BCS gap, or the roton gap, or the cyclotron-resonance gap, that sep-
arates the ground state from all possible excited states of the system, so that no
transitions can occur to higher-energy states. Since the search for highly effi-
cient detectors of gravitational radiation is the search for extremely rigid matter
[6], quantum fluids operating in the Mössbauer mode are good candidates for
high-efficiency gravity-wave antennas.

(2) A quantum fluid has a “quantum absence of viscosity.” The existence of
persistent currents, such as those in the electron-vortex system, is evidence for
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Figure 4: Comparison of the attractive gravitational force FG with the repulsive
electrical force Fe between two well-separated electron-vortex composites.

this zero-loss property of a quantum fluid. Hence the generation of heat in the
classical materials used in gravity wave detectors such as the Weber bar, where
heat is an undesirable channel of dissipation of gravitational wave energy, is
automatically closed for such quantum fluids. Thus in addition to the property
of “quantum rigidity,” the dissipation-free nature of quantum fluids would allow
heat-free motions of superfluid helium drops, for example, in response to grav-
itational radiation. This frictionless property of superfluids would also greatly
enhance the conversion efficiency of gravity-wave detectors based on such fluids,
as compared to the extremely low efficiencies of the highly dissipative Weber
bar [6].

(3) The recoil momentum upon the emission or absorption of a microwave
photon by the electron-vortex composite system is taken up by the center of
mass of the whole system in a Mössbauer-like effect, which is absent in a classical
fluid. This is yet another aspect of the “quantum rigidity” of the quantum fluid,
which does not occur classically.

(4) The entangled state of the electron-vortex system and an emitted mi-
crowave photon generated in the time-reversed version of the microwave-photon
absorption process, would form a bipartite, nonlocal quantum superposition
state which violates Bell’s inequalities. Moreover, due to the interactions among
the helium atoms, the quantum many-body system of the superfluid is automat-
ically in a macroscopically (i.e., massively) entangled state. The quantum phase
coherence of such a macroscopic superposition state would be quickly destroyed
by decoherence in a classical fluid. However, here decoherence in the super-
fluid is prevented by the presence of an energy gap, or more generally, by the
presence of a “scarcity of low-lying states,” in these ultracold, macroscopically
phase-coherent quantum many-body systems (i.e., “bosonic quantum fields”),
in what has been called “gap-protected entanglement” [6][11].

The Planck mass scale

Let us return to the problem of the ratio of the forces of gravity and electricity,
but now in the context of two well-separated electron-vortex composites at a
distance r from each other. See Figure 4.
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Suppose that each circular puddle contains a Planck-mass amount of super-
fluid helium, viz.,

mPlanck =

√

~c

G
≈ 22 micrograms (12)

where ~ is Planck’s constant, c is the speed of light, and G is Newton’s con-
stant. Planck’s mass sets the characteristic scale at which quantum mechanics
(~) impacts relativistic gravity (c, G). Note that this mass scale is mesoscopic

[12], and not astronomical, in size. This suggests that it may be possible to per-
form some novel nonastronomical, table-top-scale experiments at the interface
of quantum mechanics and general relativity.

The ratio of the forces of gravity and electricity between the two electron-
vortex composites now becomes

|FG|
|Fe|

=
Gm2

Planck

e2
=

G (~c/G)

e2
=

~c

e2
≈ 137 (13)

which is 45 orders of magnitude larger than the ratio given earlier by Equation
(6) for the case of two electrons in the vacuum. Now the force of gravity is 137
times stronger than the force of electricity, so that instead of a mutual repulsion
between these two charged objects, there is now a mutual attraction between
them. The sign change from mutual repulsion to mutual attraction between
these two electron-vortex composites occurs at a critical mass mcrit given by

mcrit =

√

e2

~c
mPlanck ≈ 1.9 micrograms (14)

whereupon |FG| = |Fe|, and the forces of gravity and electricity balance each
other. This suggests that mesoscopic-scale quantum effects can lead to a non-
negligible coupling between gravity and electromagnetism.

The critical mass mcrit is also the mass at which there occurs a comparable
amount of generation of electromagnetic and gravitational radiation power upon
scattering of radiation from the pair of electron-vortex composites (or “Millikan
oil drops,” as we shall see below), each member of the pair with a mass mcrit

and a single electron e attached to it. The ratio of quadrupolar gravitational to
the quadrupolar electromagnetic radiation power ratio is given by

P ′

GR

P ′

EM

=
Gm2

crit

e2
= 1 , (15)

where the numerical factors of κ in Equations (1) and (2) cancel out, since
the charge of the drop co-moves together with its mass. This implies that the
scattered power from these two charged objects in the gravitational wave channel
becomes comparable to that in the electromagnetic wave channel. However, it
should be emphasized that here we are assuming that the system’s charge and
the mass co-move together as a single unit, in accordance with the Mössbauer-
like mode of response to radiation fields. This is purely quantum effect based
on the quantum adiabatic theorem’s prediction that the system will remain
adiabatically in its nondegenerate ground state.



13

Simplification to “Millikan oil drops”

From now on, we shall use the term “Millikan oil drop” with quotation marks (or,
drop, without quotation marks), as the abbreviated nomenclature for “Planck-
mass-scale superfluid-helium drop with a single electron firmly attached to its
surface, which exhibits a Mössbauer-like response to the application of high-
frequency radiation fields.” By going from the 2D thin superfluid-helium film
geometry of the electron-vortex composite to that a 3D superfluid-helium drop,
we avoid experimental complications arising from the choice of wetting versus
non-wetting substrates, and all other such substrate-related physics.

Although for simplicity we shall first consider “Millikan oil drops” with only
a single electron attached to each drop, there is no reason not to consider the
case also where many electrons are attached to each drop, and where a quantum
Hall fluid forms on the surface of the drop in the presence of a strong magnetic
field, as long as the charge-to-mass ratio of the drop is kept fixed so that the
condition

P ′

GR

P ′

EM

= 1 (16)

is still satisfied. The quantum many-body system of the many-electron drop
at ultra-low temperatures will go into its ground state, and can still possess a
macroscopic amount of gravitational mass.

The helium atom is diamagnetic, and liquid helium drops have successfully
been magnetically levitated in an anti-Helmholtz magnetic trapping configura-
tion [13]. Due to its surface tension, the surface of a freely suspended, ultracold
superfluid drop is atomically perfect. When an electron is approaches a drop,
the formation of an image charge inside the dielectric sphere of the drop causes
the electron to be attracted by the Coulomb force to its own image. However,
the Pauli exclusion principle prevents the electron from entering the drop. As a
result, the electron is bound to the surface of the drop in a hydrogenic ground
state. Experimentally, the binding energy of the electron to the surface of liquid
helium has been measured using millimeter-wave spectroscopy to be 8 Kelvin
[14], which is quite large compared to the milli-Kelvin temperature scales for
the proposed experiment. Hence the electron is tightly bound to the surface of
the drop.

Such a “Millikan oil drop” is just as much a macroscopically phase-coherent
quantum object as is the electron-vortex composite discussed earlier. In its
ground state, the drop possesses a zero circulation quantum number (i.e., con-
tains no vortices), and one unit (or an integer multiple) of the charge quantum
number. As a result of the drop being at ultra-low temperatures, all degrees
of freedom other than the center-of-mass degree of freedom are frozen out, so
that there results a zero-phonon Mössbauer-like effect, in which the entire mass
of the drop moves as a single unit in response to radiation fields. Also, since
it remains adiabatically in the ground state during weak, but possibly arbi-
trary, perturbations due to these radiation fields, the “Millikan oil drop,” like
the electron-vortex composite, possesses a quantum rigidity and a quantum
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Figure 5: (a) A charged quantum fluid acts as a transducer that converts gravity
waves into electromagnetic waves. (b) The reciprocal transducer action that
converts electromagnetic waves into gravity waves.

absence of viscosity that are the two most important quantum properties for
achieving a high conversion efficiency for gravity-wave antennas.

Note that a pair of spatially separated “Millikan oil drops” have the correct
quadrupolar symmetry in order to couple to gravitational radiation, as well as to
quadrupolar electromagnetic radiation. When they are separated by a distance
on the order of a wavelength, they become an efficient quadrupolar antenna for
generating, as well as detecting, gravitational radiation.

A pair of “Millikan oil drops” as a transducer

Let us now place a pair of “Millikan oil drops” separated by approximately a mi-
crowave wavelength as indicated inside a black box, which represents a quantum
transducer that can convert gravitational (GR) waves into electromagnetic (EM)
waves, as indicated schematically in Figure 5(a). This kind of transducer action
is similar to that discussed earlier for a low-frequency gravity wave passing over
a pair of charged, freely falling objects orbiting the Earth indicated in Figure
2(b). It should again be stressed that these finitely charged, and approximately,
but not truly exactly, freely falling objects in fact do radiate electromagnetic
waves, since these waves are observable by an observer at infinity, and that the
emission of this radiation does not truly lead to a violation of the equivalence
principle, as was discussed earlier.

By time-reversal symmetry, the reciprocal process (b), as indicated in Fig-
ure 5(b), in which a charged quantum fluid such as another pair of “Millikan
oil drops,” converts an electromagnetic wave into a gravitational wave, must
also occur with the same efficiency as the forward process (a) of Figure 5(a).
The time-reversed (or “back-action”) process (b) is important because it allows
the generation of gravitational radiation, and can therefore become a practical
source of such radiation.
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Figure 6: A Hertz-like experiment, in which a quantum transducer converts
electromagnetic (EM) waves into gravity (GR) waves, and a second quantum
transducer in the far field of the first back-converts gravity (GR) waves into
detectable electromagnetic (EM) waves.

Hertz-like experiment

This raises the possibility of performing a Hertz-like experiment, in which pro-
cess (b) becomes the source, and its reciprocal process (a) becomes the receiver,
of gravity waves, as indicated in Figure 6.

Faraday cages, indicated by rectangles in Figure 6, prevent the transmission
of electromagnetic waves, so that only gravitational waves, which can easily pass
through all classical matter such as the normal (i.e., dissipative) metals of which
standard Faraday cages are composed, are transmitted between the two halves
of the apparatus that serve as the source and the receiver, respectively. Such
an experiment would be practical to perform using standard microwave sources
and receivers, if the scattering cross-sections and the transducer conversion ef-
ficiencies of the two charged quantum fluids are not too small.

An experiment using YBCO, which is a superconductor at liquid nitrogen
temperatures, as the material for the two charged quantum-fluid transducers in
the Hertz-like experiment, has been performed at 12 GHz [6]. The conversion
efficiency of each YBCO transducer in the two-transducer system, assuming that
the two transducers are identical, has been measured to be less than 15 parts
per million (probably due to the high microwave losses of YBCO, as compared
to the extremely low characteristic impedance of free space for gravity waves,
ZG = 16πG/c = 1.1 × 10−17 SI units [6]).
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Figure 7: Two levitated “Millikan oil drops” in a magnetic trap.

Mössbauer-like response of “Millikan oil drops”

in a magnetic trap

As a more practical realization of a quantum transducer using a charged quan-
tum fluid, let us consider a pair of “Millikan oil drops” in a magnetic trap, where
the drops are separated by a distance on the order of a microwave wavelength,
which is chosen so as to satisfy the impedance-matching condition for a good
quadrupolar microwave antenna. See Figure 7.

Now let a beam of electromagnetic waves in the Hermite-Gaussian TEM11

mode [15], which has a quadrupolar transverse field pattern that has a sub-
stantial overlap with that of a gravitational plane wave, impinge at a 45◦ angle
with respect to the line joining these two charged objects, as indicated in Fig-
ure 6. As a result of being thus irradiated, the pair of “Millikan oil drops” will
be driven into motion in an anti-phased manner, so that the distance between
them will oscillate sinusoidally with time, according to the observations by an
observer at infinity [16]. Thus the simple harmonic motion of the two drops rel-
ative to one another produces a time-varying mass quadrupole moment at the
same frequency as that of the driving electromagnetic wave. This oscillatory
motion will in turn scatter (in a linear scattering process) the incident electro-
magnetic wave into gravitational and electromagnetic scattering channels with
comparable powers, provided that the ratio of quadrupolar Larmor radiation
powers given by Equation (15) is of the order of unity, which will be case when
the mass of both drops is on the order of the critical mass mcrit for the case of
single electrons attached to each drop. The reciprocal process should also have
a power ratio of the order of unity.

As a more detailed discussion of the Mössbauer-like response of “Millikan oil
drops,” let us consider what would happen if one were replace an electron in the
vacuum with a single electron which is firmly attached to the surface of a drop
of superfluid helium (4He) in the presence of a strong magnetic field, so that the
electron and the superfluid drop would form a macroscopic quantum system in
its ground state. Such a quantum system can possess a sizeable gravitational
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mass. For the case of many electrons attached to a massive drop, where a
quantum Hall fluid forms on the surface of the drop in the presence of a strong
magnetic field, there results a nondegenerate Laughlin ground state.

In the presence of Tesla-scale magnetic fields, an electron is effectively pre-
vented from moving at right angles to the local magnetic field line around which
it is executing tight cyclotron orbits. The result is that the surface of the drop,
to which the electron is tightly bound, cannot undergo liquid-drop deformations,
such as the oscillations between the prolate and oblate spheroidal configurations
of the drop which would occur at low frequencies in the absence of the mag-
netic field. After the drop has been placed into Tesla-scale magnetic fields at
milli-Kelvin operating temperatures, both the single- and many-electron drop
systems will be effectively frozen into the ground state, since the characteristic
energy scale for electron cyclotron motion in Tesla-scale fields is on the order of
Kelvins. Due to the tight coupling of the electron(s) to the surface of the drop,
this would also freeze out all shape deformations of the superfluid drop.

Since all internal degrees of freedom of the drop, such as its microwave
phonon excitations, will also be frozen out at sufficiently low temperatures, the
charge and the entire mass of the “Millikan oil drop” should move together as
a single unit, in a Mössbauer-like response to applied radiation fields. This is
a result of the elimination of all internal degrees of freedom by the Boltzmann
factor at sufficiently low temperatures, so that the system stays in its ground
state, and only the external degrees of freedom of the drop, consisting only of
its center of mass motions, remain.

The criterion for this “zero-phonon,” or Mössbauer-like, mode of response
of the electron-drop system is that the temperature of the system is sufficiently
low, so that the probability for the entire system to remain in its nondegenerate
ground state without even a single quantum of excitation of any of its internal
degrees of freedom, is very high, i.e.,

Prob. of zero internal excitation ≈ 1 − exp

(

−Egap

kBT

)

→ 1 as
kBT

Egap

→ 0, (17)

where Egap is the energy gap separating the nondegenerate ground state from
the lowest permissible excited states, kB is Boltzmann’s constant, and T is the
temperature of the system. Then the quantum adiabatic theorem ensures that
the system will stay adiabatically in the nondegenerate ground state of the
many-body system during perturbations, such as those due to weak, externally
applied radiation fields. By the principle of momentum conservation, since there
are no internal excitations to take up the radiative momentum, the center of
mass of the entire system must undergo recoil in the emission and absorption
of radiation. Thus the mass involved in the response to radiation fields is that
of the whole system.

For the case of a single electron (or many electrons in the case of the quantum
Hall fluid) in a strong magnetic field, the typical energy gap is given by

Egap = ~ωcyclotron =
~eB

mc
>> kBT , (18)
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an inequality which is valid for the Tesla-scale fields and milli-Kelvin tempera-
tures being considered here.

The Mössbauer-like mode of response to external perturbations is the most
important prediction of the quantum many-body theory in connection with the
Hertz-like experiment, since it is necessary for the charge and mass of the drop
to co-move together as a single unit in response to radiation fields. This crucial
quantum many-body prediction must therefore be checked out by a preliminary
experiment, perhaps by testing the elasticity of gentle collisions between two
drops.

Estimate of the scattering cross-section

Let dσa→β be the differential cross-section for the scattering of a mode a of
radiation of an incident gravitational wave to a mode β of a scattered electro-
magnetic wave. (We shall denote GR waves by Roman-letter subscripts, and
EM waves by Greek-letter subscripts.) Then, by time-reversal symmetry

dσa→β = dσβ→a . (19)

Since electromagnetic and weak gravitational fields both formally obey Maxwell’s
equations [17] (apart from a difference in the signs of the source density and
the source current density), the solutions for the modes for the two kinds of
scattered radiation fields must also have the same mathematical form. Let a
and α be a pair of corresponding solutions, and b and β be a different pair of
corresponding solutions to Maxwell’s equations for GR and EM modes, respec-
tively. For example, a and α could represent plane waves which copropagate in
the same direction, and b and β plane waves which copropagate in a different
direction. Then for the case of a pair of critical-mass drops with single-electron
attachment, there is an equal conversion into the two types of scattered radiation
fields in accordance with Equation (15), and therefore

dσa→b = dσa→β , (20)

where b and β are corresponding modes of the two kinds of scattered radiations.
By the same line of reasoning, for this pair of critical-mass drops

dσb→a = dσβ→a = dσβ→α . (21)

It therefore follows from the principle of reciprocity that

dσa→b = dσα→β . (22)

In order to estimate the size of the total cross-section, it is easier to consider
first the case of electromagnetic scattering. Let us consider the special case of the
scattering of microwaves from two drops in the configuration shown in Figure
7, with radii R and a separation r on the order of a microwave wavelength.
Let these “Millikan oil drops” be in a quantum Hall plateau state (or Laughlin
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state), where we know that the longitudinal conductivity of the electrons is
infinite. The drops then behave like perfectly conducting spheres, for which we
know that the total cross section for the scattering of electromagnetic radiation
is given approximately by the geometric cross-sectional areas of the two spheres

σα→all β =

∫

dσα→β ≃ 2πR2 (23)

where R is the typical radius of a drop.
However, if, as one might expect on the basis of classical intuitions, that

the total cross-section σa→all b for the scattering of gravitational waves from the
two-drop system would be extremely small, then by reciprocity, the total cross-
section σα→all β for the scattering of electromagnetic waves from the two-drop
system must also be extremely small, which would contradict Equation (23).

From the reciprocity principle, one therefore concludes that for these scaled
critical-mass drops (scaled so that the charge-to-mass ratio is kept fixed for the
many-electron case) it must be the case that

σa→all b = σα→all β ≃ 2πR2 . (24)

Signal-to-noise considerations

The signal-to-noise ratio expected for the Hertz-like experiment depends on the
current status of microwave source and receiver technologies. Based on the
experience gained from the experiment done on YBCO using existing off-the-
shelf microwave components [6], we expect that we would need geometric-sized
cross-sections and a minimum conversion efficiency on the order of a few parts
per million per transducer, in order to detect a signal.

It should be stressed that in the Hertz-like experiment, one is not trying
to detect the strain of space (which may be extremely small), but rather the
power that is being transferred by radiation from one quantum transducer to
the other. The overall signal-to-noise ratio depends on the initial microwave
power, the scattering cross-section, the conversion efficiency of the quantum
transducers, and the noise temperature of the microwave receiver (i.e., its first-
stage amplifier).

Microwave low-noise amplifiers can possess noise temperatures that are com-
parable to room temperature (or even better, such as in the case of liquid-helium
cooled paramps used in radio astronomy). The minimum power Pmin detectable
in an integration time τ is given by

Pmin =
kBTnoise∆ν√

τ∆ν
(25)

where kB is Boltzmann’s constant, Tnoise is the noise temperature of the first
stage microwave amplifier, and ∆ν is its bandwidth. Assuming an integration
time of one second, and a bandwidth of 1 GHz, and a noise temperature Tnoise =
300 K, one gets Pmin(τ =1 sec) = 1.3 × 10−25 Watts.
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Why such an enormous enhancement?

The question immediately arises: Why is there such an enormous enhancement
of over 40 orders of magnitude in the quantum transducer conversion efficiency
predicted by Equation (15) over the case of two electrons in the vacuum sepa-
rated by the same distance, predicted by Equation (10)?

The answer is that the macroscopic quantum phase coherence of superfluid
helium allows an enormous number of atoms in the superfluid to all move to-
gether coherently in unison, so that there exists an enormous enhancement of
the oscillating mass quadrupole moment by a factor of Natom, the number of
coherent atoms. Hence there is a corresponding enhancement in the amount of
gravitational radiation that is emitted by a pair of “Millikan oil drops,” over
that emitted by a pair of electrons separated by the same distance in the vac-
uum, by a factor of N2

atom. In the case of the Planck mass, Natom ∼ 1018 helium
atoms, and in the case of the critical mass, Natom ∼ 1017 helium atoms. The
N2

atom enhancement factor, which arises from macroscopic quantum coherence,
is similar to that observed in Dicke superradiance. At a fundamental level,
this enhancement factor originates from the superposition principle of quantum
mechanics.

Here I am assuming that there exists no appreciable intrinsic decoherence of
macroscopically entangled states, in which the superposition principle of quan-
tum mechanics breaks down due to the presence of gravitational fields acting
on matter at the Planck mass scale [18]. The Hertz-like experiment, if properly
performed, could be a test of the validity of the superposition principle of quan-
tum mechanics for Planck-mass objects such as “Millikan oil drops.” I hope to
be able to perform the Hertz-like experiment with my colleagues at Merced.
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