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Fig. 8. The family of output phasor trajectories.

By comparison of the notch filter output (#) obtained by using (3), (4),
and (15), with assumption (11) we get the following expressions:
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From these we can get four independent equations using amplitude and
phase equality. From this set of equations we determine constants E and
k and phase angles ¢ and v. It is obvious that (17) for k=0 can be valid
only if §=x/2, which means that unwanted pulsation disappears for
8=u/2 only.
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A New Error Model for Adaptive Systems
YUAN-HAO LIN anp KUMPATI S. NARENDRA

Abstract—A simple error model is described for both discrete and
continuous time adaptive systems. The stability of the model for both
bounded and unbounded inmputs is analyzed for the discrete case and
extended to continuous time models. It is shown that A(k)E/> in the
former case and ¢(1)E£? in the latter case due to the presence of a
feedback signal and these in turn play an important role in the stability
analysis of discrete and continuous time adaptive systems.
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Fig. 1.

I. INTRODUCTION

Model reference adaptive schemes for the identification and control of
continuous and discrete systems have been discussed by numerous
authors in recent years [1]-[9). Among the many approaches that are
currently in vogue, the stability approach using Lyapunov theory and the
hyperstability theory of Popov bhave found wide acceptance. The prob-
lem of convergence of the parameters of a dynamical system to desired
values in identification and control problems is recast, using this ap-
proach, to the equivalent asymptotic stability problem of a set of error
differential or difference equations.

In a recent paper [9] three such error models were described for
continuous systems which arise frequently in problems of adaptation,
Discrete versions of these models are also very desirable since in most
applications which use a computer as a part of the controller, discrete
rather than continuous algorithms are used. While the discrete versions
of the first two models can be obtained in a relatively straightforward
manner from their continuous counterparts, the third error model has
proved to be considerably more difficult. In this paper a simple discrete
error model of the third type which permits a complete stability analysis
is presented and is also extended to the continuous case. This model has
already played a central role in the stability analysis of both discrete and
continuous time adaptive control systems [11], [12] and appears to have
considerable potential for many other adaptive problems.

II. THe New ERROR MODEL

Fig. 1 represents the error model of the third prototype which can be
used for both discrete and continuous time systems.
In the discrete case the equations describing the model are

e(k+1)=Ae(k)+ bo(k)

ey(k) = cTe(k) + do(k) M
o(K) =6 T(Ru(k) - au (T u(K)es(k);  a> 2 T=IT>0,
In the continuous case the corresponding cquations are
e(f)=Ae(t)+ bo(t)
el()=ce(?) 2

o() =0 T(OHu(t) — at T(OTu(t)ey(H); >0 T=TT>0.

In (1) and (2), e(-) and u(-) are n- and m-dimensional vectors and o(-)
and e,(-) are scalars. 4 is a matrix, b and ¢ are vectors of suitable
dimensions, and 4 is a positive scalar. The z-transfer function d+ ¢ 7(z/
— A)~ b in the discrete case and the s-transfer function ¢ 7(s7— 4)~'p in
the continuous case are strictly positive real.

From Fig. 1 it is seen that the model contains a known linear
time-invariant part with a strictly positive real transfer function, a known
time-varying gain an7(-)I'u(-) which depends on the input signal, in the
feedback path and a time varying vector gain ¢(-) in the feedforward
path. The vector ¢(-) is assumed to be unknown but changes in ¢(-) (A¢
in the discrete case and ¢ in the continuous case) can be made using the
measured signals #(-) and e,(-). The objective is to determine suitable
adaptive control laws for updating ¢(-) such that in the limit e (k) (or
ei(9))—0 as k—oo (or r—o0). While relatively complex schemes are
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known in the literature [5], our aim is to develop a scheme, particularly
for the discrete case, which is comparable in its simplicity to those
described in [9]. The principal result of this paper is that the adaptive
laws

Ap(k) & ¢k +1)—¢(k) = —Tey(k)u(k) 3)

and

$(1)=—Tey(H)u(?) @

result in a stable error model in which e(-) and ¢(-) remain uniformly
bounded and lim,_, . e;(k) (or lim, , e(#))=0 if the input u(-) is
uniformly bounded. Only the discrete case is considered in detail; the
extension of the results to the continuous model is merely outlined.

Lemma: Given an (nX n) matrix A with all its eigenvalues within the
unit circle, a symmetric positive definite matrix T, vectors b,c €R” with
(A4,5) completely controllable and u(k): Z, —R™ whose elements are
bounded, the equilibrium states of the set of n+ m difference equations
(1), (3) is stable and lim,_, . e(k)=0 if the transfer function d+ c7(zf—
A)~ b is strictly positive real.

Proof: From the discrete version of the Kalman—Yacubovich
lemma [10] it is known that if 4+ cT(zf — A) b is strictly positive real, a
matrix P=P7 >0 exists such that

ATPA—P=—gqT— L
ATPb=c/2+rg
d—bTPb=yp? ©)

for some vector g, matrix L=L7>0 and ¢,» >0.
Defining a Lyapunov function candidate for the set of difference
equations (1), (3) as
V(e(k), ¢(k))=2eT(k) Pe(k)+ ¢ T(k)T~'¢(k)

we obtain

AV(e(k), (k) = AV (k)= V(k+1)— V(k)
=2[eT(k)(A TPA — P)e(k)+2e (k) A TPbu(k) + b TPbo*(k)]
+¢T(k+ DI~ 1¢(k+ 1)~ ¢ T(HT ™ (k).

Choosing the matrix P given by the relations (5):

AV(k)= —2[eT(K)g— ro(K)] — 2ee T(k) Le(k) + 2¢,(k)v(k)
+26T(K)T~ 1 Ap(k) + Ad T(k)T~ 1 A(k).
With the adaptive law (3) for A¢(k) the sum of the last three terms may
be expressed as
2ey(k)o(k) ~26T(K)e (K)u(k) + ej(k)uT(k)Tu(k)
" (—2a+ DuT(k)Tu(k)ei(k).

Hence

AV(k)= —2[eT(k)q— vo(k))* —2ee T(k) Le(k)
+(=2a+ DuT(k)Tu(k)eX(k)

<0 ifa> % (6)
The system (1), (3) is stable and e(k) and ¢(k) are bounded if e(0) and
¢(0) are bounded.

Having established the global stability of the discrete error model we
now state some of its other stability properties.

1) The boundedness of e(k) and ¢(k) are assured even when w(k) is
not bounded.

2) Furthermore, we can prove lim, e(k)—0, lim, e (k)—0
whether or not #(k) is bounded. Defining

Qa—DuT(k)Tu(k) £ &Kk),  &Kk)>0
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we have
AV(k)=—2[eT(k)q— vo(k)]* —2ee T(k) Le(k) ~ £(k)ed(k)

ikioAV(k)|=|V(oo)— V(0 < oo since AV (k) <0
or
k§0 {Z[eT(k)q - m;'(k)]2 +2ee T(k) Le(k) +&(k)el(k) } <. (7)

Hence we conclude lim,_,  e(k)=0 whether u(k) is bounded or not. If
lim; _, ., u(k)=0 then by (1) lim, , e,(k)=0. If u(k) does not tend to
zero as k—co we show that along every subsequence {4;} the error
e,(k;)—0 as follows: if along the subsequence lim, _, , u(k;)=0 the above
result holds and ey(k;)—0.

I limy ., u(k)s=0 then £(k;) does not tend to zero and hence ey(k)—
0 by (7). Hence whether or not «(k) is bounded, e,(kx)—0 along every
subsequence {4;} and the result follows.

3) From (7) lim,_, . &(k)e3(k)=0 and since A¢(k)= —Te(k)u(k) by
(3) we conclude that A¢(k)E/* and hence lim,_, ., Ap(k)=0. However,
we cannot conclude directly that ¢(k) tends to a constant vector ¢*.

A similar lemma can also be stated for the continuous time model
described by (2) and (4). In such a case, using a Lyapunov function of
the form

Vie,o}=eTPe+¢TT ¢ ®)
and the Kalman-Yacubovich lemma we obtain that
Vied]=—eT()qq7+eLle(r)—20e}()uT(ATu(r)<0.  (9)

From (8) and (9) we conclude that e(f) and ¢(#) are uniformly bounded
if ¢(0) and ¢(0) are bounded. Further, from (4) it follows that 6 E£2, If
u(+) and 1(-) are also assumed to be uniformly bounded from (2) and (9)
it follows that V[e,¢] is uniformly bounded and hence Fle,$]—-0 as
t—c0 or e(f)—0 as —o0 and ¢(£)—>0.

In summary, in both the discrete and continuous models the vectors
e(-) and ¢(-) are always uniformly bounded. In the discrete case both
e,(k) and A¢(k) tend to zero as k— oo whether or not u(k) is uniformly
bounded. In the continuous case for arbitrary u(7) defined for all /ER™,
we can only conclude that ¢() €2, If in addition it is known that u(f)
and u(¢) are uniformly bounded then it can be concluded that lim,
e(1)=0 and lim, , _ ¢(r)=0. In both cases very little can be concluded
about the convergence of ¢(-) to a constant vector.

Comments

1) The principal difference between the model described here and
those already known [9] lies in the feedback signal au7(-)Tu(-)ey(+). It is
the presence of this term which assures that A¢(-)&/2 and ¢(-)E£2,
These conditions are essential for the proof of stability of the discrete
and continuous adaptive control problems.

2) For continuous time systems the error model can be directly
realized by suitably feeding the signal auT(HTu(t)e (t) back to the
controller in the adaptive control problem [12]. For discrete systems,
while the error model described is convenient for analysis purposes it
can be physically realized by using the structure given in Fig. 2.

CONCLUSION

Three error models have been analyzed in the adaptive literature [9].
The new error model described here is an extension of the third error
model in [9] by the use of an additional feedback signal. Both discrete
and continuous time versions of the error model are considered here.

For discrete systems, it is shown that A¢(k)E L2 which also implies
that lim,; . A¢{k)=0. In the adaptive problems this corresponds to a
slowly varying parameter error vector. Similarly in continuous time
systems () EL2. The stability proofs for the adaptive control problem
given in [11] and [12] are seen to depend on this behavior of the
parameter error vector and this accounts for the importance of the new
error model.
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Fig. 2. Physical realization of the new error model for the discrete system.

w4(z) |

REFERENCES

R. L. Carroll and D. P. Lindorff, “An adaptive observer for single-input single-out-
put linear system,” IEEE Trans. Automat. Contr., vol. AC-18, pp. 428—435, Oct.
1973,

G. Luders and K. S. Narendra, “Stable adaptive sch for state and
identification of linear systems,” IEEE Trans. Automat. Comtr., vol. AC-19, pp.
841-847, Dec. 1974,

K. S. Narendra and P. Kudva, “Stable adaptive schemes for system identification
and control—Parts 1, IL” JEEE Trans. Syst., Man, Cyber., vol. SMC-4, pp.
542-560, Nov. 1974.

P. Kudva and K. S. Narendra, “An identification procedure for discrete multivari-
able systems,” IEEE Trans. Automal. Contr., vol. AC-19, pp. 549—552, Oct. l974
L D. Landau and H. M. Silveira, “A slabihty with lication daptive
control,” JEEE Trans. Automat, Contr., vol. AC-24, pp. 305—312, Apr. 1979

R. V. Monopoli, “Model reference adaptive control with an auvgmented error
signal,” IEEE Trans. Automat. Contr., vol. AC-19, pp. 474484, Oct, 1974,

T. Ionescu and R. V. Monopoli, “Di model ref adaptive control with an
augmented error signal,” Automatica, vol. 13, pp. 507518, Sept. 1977.

K. S. Narendra and L. S. Valavani, “Stable adaptive controller design—Direct
control,” IEEE Trans. Automat. Contr., vol. AC-23, pp. 570583, Aug. 1978.

K. S. Narendra, “Stable identification schemes,” in System Identification: Advances
and Case Studies. New York: Academic, 1976.

C. P. N nn, “F d in stability criteria in nonlinear automatic con-
trol,” Doctoral dlsscrtauon, Harvard Univ., Cambridge, MA, 1967.

K. S. Narendra and Y.-H. Lin, “Stable discrete adaptive control,” this issue, pp.
456-461.

K. S. Narendra, Y.-H. Lin, and L. S. Valavani, “Stable adaptive controller de-
sign—Part II: Proof of stability,” this issue, pp. 440448,

1]

[2]

(3]

4

A Suboptimal Controller for Minimum Sensitivity of
Closed Loop Eigenvalues to Parameter Variations

K. GOMATHI, 8. S. PRABHU, anp M. A. PAI

Abstract—The design of a suboptimal controller for linear time in-
variant multivariable systems, which assigns the closed loop eigenvalues at
desired locations and minimizes their sensitivity with respect to plant
parameters, is outlined. The dominant open loop poles are shifted in
groups employing a dyadic structure of state feedback for each group.
Freedom available in choosing the constants of proportionality of the
different rows of the dyadic matrices is used for eigenvalue sensitivity
minimization, Since the final controller matrix is the sum of different
dyadic matrices, the sensitivity of the final closed loop poles can be made
less than that obtained by shifting all the dominant eigenvalues in one
stage using unity rank feedback. An example illustrating the design
method is given.

INTRODUCTION

Consider, with the usual notations, a linear time invariant multivari-
able and controllable system

x=Ax+ Bu (¢)]
where x ER" and u € R™, With state feedback of the form
u=Kx 2
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all the eigenvalues of 4 can be shifted to desired closed loop locations
[1}, [2]. Freedom available in choosing X, can be utilized to minimize a
performance criterion such as eigenvalue sensitivity to variations in
parameters [3] of 4, gains of controller matrix [4], etc. By restricting to
dyadic feedback, the computational complexities inherent in multivari-
able optimization can be reduced.

Pole assignment in groups {4] and utilization of unity rank feedback to
each group retain the computational advantages of using dyadic feed-
back matrices and result in an improvement in the performance index, at
the optimum point. This idea is applied to the pole assignment problem
to obtain minimum closed loop pole sensitivity to parameter variations,

PrROBLEM
For a dyadic feedback
u=gk7x 3
the system given by (1) can be represented as
x=Ax+bii @
where b( Bg)E€R" and 4( = k7x) is a scalar.
The corresponding closed loop system is given by
x=A.x ®

where A, = A+ Bgk”,
The sensitivity S} of the ith closed loop eigenvalue A, to variations in
the jith parameter of A is given by [3]

s,';=?(‘ﬁu[P(q)adj(Ail—Aph)P-‘(q)%] ©

where a; is the jith element of 4,g(2) denotes the characteristic poly-
nomial of A8 N)=09g/0A\ ). P(g) represents the transformation
matrix which transforms the single input system (4) to its phase variable
canonical form and A is the companion form of A4,. For given closed
loop eigenvalue locations .S}, is a function of g and g can be determined
to minimize a sensitivity based performance index J of the general form

J= 2 2 E(Sﬁ)

im] jem] lw=]

M

k can then be determined to do the desired pole assignment [1], [2]. P(g)
is expressible as a function of ¢ using the Leverrier algorithm [5].
Let the dominant eigenvalues (<#) be shifted in “r” groups. Let

,
=( > qu@’)x. (®)
i=1
The system can be represented by
LA
x=Ax+ X b 9)
i=1
where
b2 Bgt) (10)
and
i 2 KOy, (11

Assignment of the “r” groups of dominant eigenvalues with sensitivity
minimization is done as follows.

Firstly gV is determined to minimize J (7) with respect to the closed
loop eigenvalues of group 1 and the eigenvalues which are nondominant.
Then kM is determined for the pole assignment in group 1 {1}, [2}. The

0018-9286 /80/0600-0587$00.75 ©1980 IEEE



