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Pig. 8. The family of output phasor trajectories. 

By comparison of the notch filter output e( t )  obtained by using (3), (4), 
and (15),  with assumption (11) we get the following  expressions: 

+J,-2cp+26]+2kcos[(w-2uo)t-y]}  

=kEsin[(w-2wo)t-y]. (17) 

From these we can get four independent equations using amplitude and 
phase equality. From this set of equations we determine constants E and 
k and phase angles J, and y. It is obvious that (17) for k=O can be valid 
only if B = P / ~ ,  which  means that unwanted pulsation disappeats for 
6 = 7r/2 only. 
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Fig. 1. The new error modeL 

I. INTRODUCTION 

Model  reference adaptive schemes for the identification and control of 
continuous and discrete systems have been discussed by numerous 
authors in recent  years 111-[9]. Among the many approaches that are 
currently in vogue, the stability approach using  Lyapunov theory and  the 
hyperstability  theory of Popov have found wide  acceptance. The prob 
lem of convergence of the parameters of a dynamical system to desired 
values in identification and control problems is recask  using this ap- 
proach, to the  equivalent  asymptotic stability problem of a set of mor 
differential or difference  equations. 

In a recent paper [9] three such error models  were described for 
continuous systems which arise frequently in problems of adaptation. 
Discrete versions of these models are also very  desirable since in most 
applications which use a computer as a part of the controller, discrete 
rather than continuous algorithms are used.  While the discrete versions 
of the first two models can be obtained in a relatively straightforward 
manner from their continuous counterparts, the third error model has 
proved to be considerably more difficult. In this paper a  simple  discrete 
error model of the third type which permits a  complete stability analysis 
is presented and is also extended to the continuous case. This model has 
already played  a central role in the stability analysis of both discrete and 
continuous time adaptive control systems [lib [12] and appears to have 
considerable potential for many other adaptive problems. 

II. THFJ NEW ERROR MODEL 

Fig. 1 represents the error model of the third prototype which can be 

In the discrete  case the equations describing the model are 
used for both discrete and continuous time systems. 

e(k+l)=Ae(k)+h(k)  

el(k)=cTe(k)+dw(k) (1) 

~ ( k ) = + ~ ( k ) u ( k ) - a u ~ ( k ) r u ( k ) e ~ ( k ) ;  a >  - r=rT>o. 1 
2 

In the continuous case the corresponding equations are 

i ( t ) = A e ( t ) + h ( t )  

e l ( t )=cTe(t)  (2) 

~ ( t ) ~ 9 ~ ( t ) ~ ( r ) - a u ~ ( t ) r u ( t ) e , ( t ) ;  a>o r=rr>o. 
In (1) and (2), e(-) and u(. )  are n- and m-dimensional  vectors and w ( - )  
and el(.) are scalars. A is a matrix, b and c are vectors of suitable 
dimensions, and d is a  positive scalar. The z-transfer function d+ cT(zI 
- A ) - %  in the discrete case and the s-transfer function cT(sZ-A)-b in 
the continuous case are strictly positive  real. 

From Fig. 1 it is seen that the model contains a known hear 
time-invariant part with a strictly positive  real transfer function, a known 
time-varying gain aur(.)ru(.) which depends on the input sigaal, in the 
feedback path and a  time  varying  vector gain $(-) in the feedforward 
path. The vector +(-) is ved to be &own but changes in +(-) (A+ 
in the discrete case and + in the continuous case) can be made using the 
measured signals u(.) and e l ( - ) .  The objective is to determine suitable 
adaptive control laws for updating +(a) such that in the limit e,@) (or 
e,(r))+O as k+w (or t+w). While  relatively  complex schema are 
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known in the literature [5], our aim is to develop  a  scheme,  particularly 
for the discrete case., which is comparable in its simplicity to those 
described in [9]. The principal result of this paper is that the adaptive 
laws 

Aq~(k) &k+ 1)-+(k)= -re , (k)u(k)  (3) 

and 

&r)= -re , (r)u(t)  (4) 

result in a stable error model in which e( . )  and +(e) remain uniformly 
bounded and limk+,el(k) (or liml+,e,(t))=O if the input u(-) is 
uniformly bounded. Only the discrete w e  is considered in detail; the 
extension of the results to the continuous model is merely outlined. 

~~ Given an (n  X n) matrix A with all its eigenvalues  within the 
unit circle,  a  symmetric  positive definite matrix r, vectors b,  c E IF with 
( A b )  completely controllable and u(k): Z++W whose  elements are 
bounded, the equilibrium states of the set of n + m  difference equations 
(I), (3) is stable and limk,,e(k)=O if the transfer function d+c'(zI- 
A)-'b is strictly  positive real 

Prmfi From the discrete version of the Kalman-Yacubovich 
lemma [lo] it is known that if d+ c'(zI-A)-'b is strictly  positive real, a 
matrix P=  PT>O exists such that 

ATPA-P=-qqT-EL 

ATPb=c/2+vq 

d-bTPbcv2 ( 5 )  

for some  vector q, matrix L=LT>O and c,v>O. 
Defining a Lyapunov function candidate for the set of difference 

equations (I), (3) as 

~(e (k ) , cp (k ) )=2e ' (k )~e (k )++' (k ) r - '~k)  

we obtain 

AV(e(k) ,+(k))&AV(k)=Y(k+l)-  V(k) 
=2[eT(k)(A 'PA -P)e(k)+2eT(k)ATPbo(k)+bTPboZ(k)] 

+gT(k+l)r-l((k+i)-+T(k)r-l~(k). 

Choosing the matrix P given  by the relations (5): 

A V ( ~ ) =  -2 [e ' (k )q -po(k ) l2 -2€e ' (k )~e (k )+~e , (k )~k)  

+ ~ T ( k ) r - l A ( k ) + ~ ' ( k ) r - l ~ k ) .  

With the adaptive law (3) for A+(k) the sum of the last three terms may 
be e x p r d  as 

or 
(-&X+ l)uT(k)ru(k)e:(k). 

Hence 

A V ( ~ ) =  -2 [e ' (k )q -yo (k ) lZ-2~e ' (k )~(k )  

+(-2a+l)u'(k)ru(k)~(k) 

< o  i fa>3  1 
(6) 

The system (l), (3) is stable and e(k) and +(k) are bounded if e(0) and 
(MO) are bounded. 

Having established the global stability of the discrete error model  we 
now state some of its other stability  properties. 

1) The  boundednes of e(k) and +(k) are assured even  when u(k) is 
not bounded 

2) Furthermore, we can prove limk,,e(k)+O, limk,,e,(k)+O 
whether or not u(k) is bounded Defining 

(la- I)uT(k)ru(k) ~ ( k ) ,  E ( ~ ) > o  

we have 

or 

Hence we conclude limk,,e(k)=O whether u(k) is bounded or not. If 
b,, u(k)=O then by (1) l imk-, e,(k)=O. If u(k) does not tend to 
zero as k-00 we show that along  every  subsequence (3) the error 
el($)+O as follows: if along the subsequence limb+,u($)=0 the above 
result  holds and e,($)+O. 

If lim+.,u($)#O then &k,) does not tend to zero and hence e,($)+ 
0 by (7). Hence  whether or not u(k) is bounded, e,(k)+O along every 
subsequence {$) and the  result  follows. 

3) From (7) limk,,&k)e:(k)=O and since A(k)= -Tel(k)u(k) by 
(3) we conclude that A(k)EIZ and hence limk,,Acp(k)=O. However, 
we cannot conclude directly that (k) tends to a constant vector $I*. 

A similar lemma can also be stated for the continuous time  model 
described  by (2) and (4). In such  a case, using  a  Lyapunov function of 
the form 

~ [ e , + ] = e ' ~ e + + T - l +  ( 8 )  

and the Knlmnn-Yacubovich lemma we obtain that 

From (8) and (9) we conclude that e(t) and +(t) are uniformly Funded 
if 40) and +(O) are bounded. Further, from (4) it follows that +~t?. If 
u(-) and ti( .) are.,& assumed to be uniformly  bounded from (2) and (9) 
it follows that Q e , + ]  is uniformly bounded and hence V ( e , + ] 4  as 
t+ca or e ( r ) 4  as t+00 and +(t)+O. 

In s u m m a r y ,  in both the discrete and continuous models the vectors 
e ( - )  and +(*) are always uniformly bounded. In the discrete case both 
e,(k) and A$@) tend to zero as k - m  whether or not u(k) is uniformly 
bounded. In the continuous.case for arbitrary u(r) defined for all r ER+, 
we can only conclude that .$(MI)€ k?. If in addition it is known that u(t) 
and U(t) are uniformly bounded then it can be concluded that Iim,-, 
e,(t)=O and lim,,,+(r)=O. In both cases very little can be concluded 
about the convqence of +(*) to a constant vector. 

C o m n f i  

1) The principal  difference between the  model descriied here and 
those already known [9] lies in the feedback signal auT( .)ru(.)e,( e). It is 
the presence of this term which assures that A+(.)€ l 2  and .$(-)E f?. 
These conditions are essential for the proof of stability of the discrete 
and continuous adaptive control problems. 

2) For continuous time  systems the error model can be directly 
realized  by  suitably  feeding the signal au'(t)I'u(t)e,(t) back to the 
controller in the adaptive control problem [12]. For discrete systems, 
while the error model  described is convenient for analysis  purposes it 
can be physically  realized  by using the structure given in Fig. 2. 

CONCLUSION 

Three error models have been analyzed in the adaptive literature [9]. 
The new error model  described  here is an extension of the third error 
model in [9] by the use of an additional feedback signal. Both  discrete 
and continuous time versions of the error model are considered  here. 

For discrete  systems, it is shown that AHk) E ez which also implies 
that limk,,A$(k)=O. In the adaptive problems this corresponds to a 
slowly v-g parameter error vector.  Similarly in continuous time 
systems cp(r)€E2. The stability proofs for the adaptive control problem 
given in [ l l ]  and [I21 are seen to depend on this behavior of the 
parameter error vector and this accounts for the importance of the new 
error model. 
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Fig, 2 Physical realiration of d e  new error model for the dircrctc system. 
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A Suboptimal Controller for Minimum Sensitivity of 
Closed Loop Eigenvalues to Parameter Variations 

K. GOMATHI, S. S. PRABHU, AND M. A. PAI 

Ahstmct-Ihe aesign of a saboptimal contrdler for linear time in- 
vsrlantdtsystem,wbichassignsthedosedloopelgenvaluesat  
desfredl-and . ' .  t b e i r ~ v i t y w l l h r e s p e c t t o p l a n t  
parametersisLed.Ihedominantopenlooppolesareshiftedh 
gmnp employing a dyadic shueture of state feedback for eacb group. 
Freedom available in choosing the mmtants of proportbdity of the 
different rows of the dyadic dces is used for e@vdw semitivftg 
minimizatioaSiaeethefinalcontroIIermahSxisthesnmd~erent 

lessthanthatobtainedbyshatingalltbedominanteigenvaloesinone 
stage upins unity rank feedback An example ulustrsting the design 
method is given 

d y ~ m a ~ t h e s e ~ t y o f t h e f i n a l c l o s e d l o o p p o l e s e a n b e m a d e  

INTRODUCTION 

Consider,  with the usual notations, a linear time invariant multivari- 
able and controllable system 

i = A x + B u  ( 1) 

where x E R and u E R "'. With state feedback of the form 

U = K X  (2) 
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all the eigenvalues of A can be shifted to desired  closed loop locations 
[11, [2]. Freedom available in choosing K, can be utilized to minimk. a 
perfonnance criterion such as eigenvalue  sensitivity to variations in 
parameters [3] of A ,  gains of controller matrix [4], etc. By restricting to 
dyadic feedback, the computational complexities inherent in multivari- 
able optimization can be reduced, 

Pole  assignment in groups [4] and utilization of unity rank feedback to 
each group retain the computational advantages of using dyadic feed- 
back matrices and result in an improvement in the performance index, at 
the optimum  point. This idea is applied to the pole  assignment  problem 
to obtain minimum closed loop pole sensitivity to parameter variations. 

PROBLEM 

For a dyadic feedback 

u=qkTx 

the system given  by (1) can be represented as 

i = A x + b i  

where i( A & ) € I t n  and i( L kTx) is a scalar. 
The corresponding  closed loop system is given by 

i = A,x (5) 

where A, = A  + Bqk T. 

the jZth parameter of A is given  by [3] 
The sensitivity of the ith closed loop eigenvalue h, to variations in 

where is the jZth element of A,&) denotes the characteristic poly- 
nomial of A,,&?&)=ag/aAIA,h. P(q) represents the transformation 
matrix which transforms the single input system (4) to its phase variable 
canonical form and A,,, is the companion form of A,. For given  closed 
loop eigenvalue locations 4; is a function of q and q can be determined 
to minimize a  sensitivity  based performance index J of the general form 

k can then be determined to do the  desired pole assignment [I& [2]. P(q) 
is expressible as a function of q using the Leverrier algorithm [q. 

Let the dominant eigenvalues (< n )  be shifted in "r" groups.  Let 

The system can be represented by 

where 

and 

Assignment of the "r" groups of dominant eigenvalues  with  sensitivity 
minimkation is done as follows. 

Firstly q(') is determined to minhize J 0 with respect to the closed 
loop eigenvalues  of group 1 and the eigenvalues  which are nondominant. 
Then k(') is determined for the pole  assignment in group 1 [I], [2]. The 

0018-9286/80/0600-0587$00.75 01980 IEEE 


