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XI. CONCLUSION

The paper has analyzed a general class of discrete-time adaptive
control algorithms and has shown that, under suitable conditions, they
will be globally convergent. The algorithms have a very simple structure
and are applicable to both single-input single-output and multiple-input
multiple-output systems with arbitrary time delays provided only that a
stable control law exists to achieve zero tracking error. The results
resolve a long standing question in adaptive control regarding the
existence of simple, globally convergent adaptive algorithms.
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Stable Discrete Adaptive Control
KUMPATI S. NARENDRA, FELLOW, IEEB, AND YUAN-HAO LIN

Abstract—The paper presents a proof of stability of the model reference
adaptive control problem for the discrete case.

I. INTRODUCTION

At present there is widespread interest in the stable adaptive control of
unknown linear time-invariant plants using input-output data. Schemes
have been suggested for both direct [1]-[3] and indirect [4], [5] control of
continuous as well as discrete [6), [7] systems and the equivalence of the
two schemes in some cases has also been demonstrated [4], [S]. Probably
the single most important problem to arise in the course of these
investigations concerns the proof of stability of the overall adaptive
control loop.
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Monopoli [1] proposed a scheme for continuous systems involving an
auxiliary signal fed into the reference model and a corresponding aug-
mented error between model and plant outputs. Narendra and Valavani
[2), using positive real operators, suggested a similar approach and
clarified the resulting stability problem when the relative degree of the
plant is greater than or equal to three. They offered a conjecture that the
adaptive loop would also be stable for the general case. Feuer and Morse
[3] proposed a stable solution to the adaptive control problem but the
resulting controller is much too complex for use in practical applications,
Thus, the search has continued for a controller with a simple structure
which will assure the global asymptotic stability of the adaptive loop.
The results presented in this paper demonstrate the desired stability
behavior for discrete versions of the simple controllers suggested in [1]
and [2]. Similar results have also been reported recently in [9] and [10]
for the discrete adaptive control problem and in [11] and {12] for the
continuous case.

This paper examines the discrete version of the problem considered in
[2] recapitulating the basic philosophy as well as the specific technique
used for the design of the adaptive controller in that paper. Hence the
first few sections of this paper have been considerably condensed and
the interested reader is referred to the earlier work for all details. The
principal contribution made here is the verification of the conjecture
made in [2) regarding the stability of the adaptive loop, for the discrete
problem when an additional feedback signal suggested in [8] is used.
Accordingly most of the paper is devoted to the proof of stability. While
the proof given in [11] for continuous systems can be directly extended
to the discrete case, we present here a simpler proof which is valid for
discrete systems.

II. STATEMENT OF THE PROBLEM

A single-input single-output discrete linear time-invariant plant P is
described by the input—output pair {u(k).y,(k)} and can be represented
by the transfer function

Z,(2)
R.(2)

where W,(2) is proper, with R,(z) a monic polynomial of degree », p(z)
a monic stable! polynomial of degree m<n, and k, a constant gain
parameter. The integer n—m is called the relative degree of the plant.
We assume that only 7,7 and the sign of k, as well as an upper bound
on |k,| are known, while the coefficients of Z, and R, are unknown.

A reference model M whose output y,{(k) represents the behavior
desired from the plant when angmented by a suitable controller can be
represented by the transfer function

Wy ()=k, 0]

W) 2 b )

#))
where Ry(z) and Z,,(z) are monic stable polynomials of degrees n and
r <m respectively and &,, is a constant. Hence the relative degree of the
model is assumed to be greater than or equal to that of the plant. The
reference input (k) to the model is specified and is assumed to be
uniformly bounded.

The adaptive control problem is to determine a suitable control
function u(k) such that

Yp(K) =y 5 (k)—0 as k—co. 3)

For the sake of simplicity we shall assume that r=m. As in the
continuous case, the solution to the above problem may be divided into
two parts, The first part which is algebraic in nature addresses itself to
the realizability of a suitable controlier structure. It can be shown exactly
as in the continuous case [2] that a controller can be found which can
achieve (3) with a fixed set of parameters. In the following section the

1With all zeros inside the unit circle.

0018-9286/80/0600-0456800.75 ©1980 IEEE
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Fig. 1. (a) Adaptive controller for m=n. (b) Physical realization of (a).

equations describing the controller are merely stated. The second part is
analytic in nature and deals with the stability of the adaptive error
equations, Again, it is found that when m=n (or m=n—1 in the
continuous case) the adaptive equations can be shown relatively easily to
be globally asymptotically stable, Hence our main interest is in the case
m<n—1 and auxiliary inputs have to be fed into the reference model,
The statement of the stability problem and the proof of stability are
considered in detail in Section V.

III. STRUCTURE OF THE ADAPTIVE CONTROLLER

As in [2], two different structures are needed for the discrete adaptive
control problem corresponding to the two cases m=nr and m<n—1.
When m=n and the model transfer function is assumed to be positive
real? the simple structure shown in Fig. 1(a) can be used.? For the case
when m <n—1, as described in [2], an auxiliary signal has to be fed into
the model and the corresponding structure is shown in Fig. 2. (The
physical realization of this can be achieved along the same lines as in
Fig. 1(b).) A brief description of the controller structure for the two cases
is given below.

Case i} (m=n): The controller consists of (2»+ 1) adjustable parame-
ters which are the elements of a parameter vector #(k) defined by

07(k) = [ko(K)cr(K)+ - ¢, (K)o dy(K), do(K), - dy(K)].

2There is no loss of generality here since by prefiltering the model can be made positive

3Since the plant in this case has a direct transfer, Fig. 1(a) involves an algebraic loop
and is used only for purposes of analysis. The physical realization of the loop is shown in
Fig. 1(b).
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Fig. 2. Adaptive controller for m<n—1.
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Fig. 3. Equivalent representation of Fig. 2.

Two identical auxiliary signal generators of dimension “n” having state
variables o((k) and o®(k) and inputs u(k) and y,(k), respectively, as
shown in Fig. 1(a), from part of the controller. If a vector @(k) is defined
as

(k)" =[r(k), oK), 0D (k) T],
the signal fedback into the plant may be represented by

FT(k)D(k) — (k) TTa(K)ey(R). @

The first term in (4) represents a linear combination of the elements of
@(k) and corresponds to the feedback signal in the continuous case. The
second term which depends on the output error e¢;(k) is found essential
to establish the stability of the error equations as described in [8]. If &(k)
is bounded as the adaptation proceeds, this term is seen to tend to zero
with e (k).

Following the results in [2], it can be shown that a constant vector §*
exists such that when #(k)=0* the transfer function of the plant together
with the controller matches that of the reference model.

The adaptive control problem is to determine the law for updating
8(k) such that §(k)—»&* as k—oo while maintaining overall system
stability.

Case i) (m<n— I): With no loss of generality,* we can assume that
" L(2), a rational function in z (with L~ (z) a strictly proper minimum
phase function), exists such that Wy(z)L(z) is strictly positive real
However, since L(z) is not physically realizable, the same modification
as that suggested in the continuous case has to be used here as well. As
shown below, this involves feeding back signals into both plant and
model such that the error equations have the same form as in Case i) (see
Section IV). Fig. 3 indicates the structure of the controller when the
plant gain k, is known; for simplicity, it is assumed that k,=ky=13
Since in this case only 2n parameters have to be ajdusted, we define
OT(k) = [cy(K), cx(k), * - - €, (K), dy(k), - - -, d,(K)] and (k)=
[oM(k)7,0@(&)T].

The signal fed back into the plant is

4, (k) =0T (k)w(k),
while the signal fed back into the model is
up (k)= L(2)[{ L~ (2)07 (k) — 8T(K)L~'(2) }ulk)
+ oS TS (k)ey(k)] (where L™ (2)w(k)=§(k))

so that the resulting error equations have the form required to generate
stable adaptive laws as described in Section IV.

“It is obvious that a rational function L(z) with denominator polynomial Z,,(z) exists
such that Wy,(z)L(z) is strictly positive real. A particular choice of L{(z) is W !(z) and
results in considerable mmphﬁcauon of the analysis.

SIf kpy#k,, an additi p has to be used to generate the auxiliary
signal uy (k) described later in s this ion. The lysis pr d here also carries over
to this more general case.
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While Z{z) is not physically realizable, Wj,(z)L(z) can be realized and
hence the overall system is as shown in the Fig. 3.

A Special Case: As mentioned earlier, considerable simplification is
achieved by choosing L ~1(z)= Wy,(z). Further, if Wy, (2) is chosen to be
equal to z~¢ where d is a positive integer, the problem is to follow the
reference input delayed by d steps [i.e., (k —d)] by the output of the
plant.

From Figs. 2 and 3 we have

ym(E)=r(k—~d);  {(K)=w(k—d);
YKy =[07(k—~ d)lk — d)— 8 T(K)wlk ~ d)]

and
Yp(K)—r(k—d)—y (k)
el(k)= £ T, .
1+ aw’ (k—dw(k—d)
The adaptive laws are given by

A8(k)= —Te,(k)u(k— d).

If tapped delay lines are used as the auxiliary signal generators in Fig,
2 to generate w(k), the results are similar to those obtained in [9).

IV. THE ERROR EQUATIONS
Let the parameter vector #(k) be expressed as®

G(k)y=0*+o(k)

where (k) represents the parameter error vector at time X.
Case i) (m=n): The output error e;(k) in Fig. 1 may be expressed as

a(k)= % [Wa( ) 3T (R)B(K) — & T(RITa(K)ey (k) }

where W,(z) is a strictly positive real operator. From the recent results
in [8] (also given in detail in the next section), it is seen that if ¢(k) is
updated according to the law

#(k+1)=¢(k) —Te (k)@ (k)

e,(k)—0 whether or not @&(k) is bounded. Since in this case the (desired)
output y,,(k) of the model is uniformly bounded, the plant output will
also be uniformly bounded and approach the desired output asymptoti-
cally.

Case ii) (m<n—1): The augmented error e,(k) in Figs. 2 and 3
satisfies the error equation

er(k)=[Wal ) L(){ o T(R)§ (k) ~ at T L (k)ey () }

where W, (2)L(z) is a strictly positive real transfer function and as
defined earlier

LY 2)w(k)= (k).

By the same arguments as in Case i} it follows easily that if the adaptive
law

#(k+1)=o(k)—Te;(k)§(k)
is used, then

e,(k)—0 as k—o00.

However, it no longer follows that the plant output will be bounded
since the model output (which is due to both reference and the auxiliary
inputs) may be unbounded. Hence, to prove the global asymptotic
stability of the adpative system it is necessary to show that neither the
plant output nor the model output can be unbounded, in other words,
verify for the discrete case the conjecture made in [2] for continuous
systems. The rest of this paper is devoted entirely to this problem

$This applies to Case i). For Case ii), #(k) = 8* +&(k).
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PART IIT
THE ERROR MODEL

PART I PART IT
THE PLANT FEEDBACK LOOP THE PREFILTER

Fig. 4. Three parts of adaptive controller for analysis of stability.

V. VERIFICATION OF THE CONJECTURE BY NARENDRA AND
VALAVANI FOR DISCRETE SYSTEMS

A. Description of the Error Model

The error model whose stability is to be analyzed is a complex vector
nonlinear difference equation. For convenience of analysis we shall
consider it in three separate parts which correspond to the three parts of
the system shown in Fig. 4.

Part I—The Plant Feedback Loop: The plant together with the con-
troller can be described by the vector difference equation

x(k+1)=A,,x(k)+ b, [¢ T(k)w(k)+ r(k)]

w(k)=C, x(k). 0]

w(k) represents the output vector of interest, x(k) is the state vector of
the plant together with the controller, and when ¢(k), the parameter
error vector, is identically zero, the plant and model transfer functions
match exactly. The reference input r(k) is uniformly bounded and the
matrices 4,, and C,,, and vector b,, are of appropriate dimensions. As
described in the previous section, 4, is a (3n X 3n) stable matrix, b,, is a
(3nx 1) vector, and C,, is a (2n X 3n) matrix.

Part II—The Prefilter: The second part of the system shown in Fig. 4
consists of a diagonal transfer matrix all of whose elements are the same
and equal to W;(z)=L~!(z) or

k)= LY (2)w (k). ()

L~Y(z) is assumed to be an asymptotically stable system of relative
degree n— m, as described earlier (number of poles— number of zeros=n
—m), and of minimum phase.

Part III—The Error Model [8]: The third part is the model of the
error equations described in the previous section and consists of a
strictly positive real transfer function in the feedforward path and
feedforward and feedback gains ¢ 7(k) and af 7(k)T'{(k), respectively, as
shown in Fig. 4. It can also be represented by a 3» order difference
equation

e(k+1)=A,e(k)+ bo(k)

e,(k)=cTe(k) + dv(k)
o(k) =9 T(K)$(k) — et T(k)TE(K)ey(K)
a>1,I=TT>0

M

where d+ ¢ T(z1— A,)” ' is strictly positive real.
The parameter error vector ¢(k) [and hence the parameter vector 6(k)]
is adjusted according to the law

¢(k+1)=¢(k)~Te,(k)$ (k)

(or 8(k+1)=8(k)—Te;(k)I(k)). 3)

The four sets of difference equations (5), (6), (7), and (8) completely
determine the error model of the overall discrete system. The signal {(k)
and output error e,(k) determine how ¢(k) is updated but this, in turn,
determines the nature of w(k) and {(k).

B, Statement of the Conjecture

The conjecture in [2] when applied to the problem above may be
stated as follows.

459

If (k) is adjusted according to the law (8) to keep the error e,(k)
bounded, the outputs of the plant, i.e., w(k) will also be bounded.

Equivalently, the conjecture implies that the overall nonlinedr system
described by (5), (6), (7), and (8) is globally stable and that all the signals
are uniformly bounded.

Since the stability in the large of the above nonlinear system is
intractable, we shall consider the three linear blocks in Fig. 4 separately
to simplify the analysis.

C. A Qualitative Analysis

Part I of Fig. 4 is a feedback loop with a stable time-invariant forward
path and a time-varying gain vector ¢(k) in the feedback path. The
output vector w(k) can be either uniformly bounded or unbounded. In
the former case {(k), the output of the prefilter is also uniformly
bounded and the behavior of the error model and, hence, that of the
entire system are completely known. If, however, it is assumed that w(k)
and, hence {(k) are unbounded, the analysis in the following section
shows that we are led to a contradiction. Hence, only the first alternative
is possible (i.e., w(k) is uniformly bounded) and the conjecture is
verified.

Before proceeding to give an analytic proof, we present here a brief
qualitative analysis of the various steps involved.

It is first shown in Section V-D, using the notation defined in the
Appendix, that the input to the error model ¢7(k){(k) satisfies the
relation

¢ (k)3 (k)= o[II§(X)]

and
Ap(k)—0 as k—>o0.

Since Wy (z) is asymptotically stable and minimum phase, it is shown
in the Appendix that

sup [lw(#)l|~ sup §(2)I]
k>v k>v
and from Lemma 1 in the Appendix, it is concluded that

$7(k)a(k)=of sup [o(x)] | ®
k>v

Since r(k) is uniformly bounded and ¢ T(k)w(k) is the feedback signal
in the plant feedback loop, it is concluded from (9) that «(-) and hence
¢(-) must also be uniformly bounded.

D. Proof of the Conjecture

The Error Model [8): From the discrete version of the Kalman—Ya-
cubovich lemma if d+ ¢7(z7— 4,,)”'b is strictly positive real, a matrix
P=P7T>0 and a vector ¢ exist such that
d—bTPb=»?

(10)

ATPA, —P=—gqT—el; ALZPb=c/2+vg;

for some L=L7>0 and scalars ¢,»>0,
If a Lyapunov function candidate for the set of equations (10) is
chosen as

Vie(k), o(k)] = V(k)=2e(k) Pe(k) +o (KT~ 'o(k),  (11)

it was shown in [8] that AV(e(k),»(k)) £ AV(K)= V(k +1)— V(k) may
be expressed as
AV(k)= —2[e7(k)q— ro(k)] — 2ee T(k) Le(k)
+(1-2a)¢ (k)T S (K)e ()
<0  ifa> % (12)

Hence the system is stable and e(k) and ¢(k) are bounded if ¢(0) and
¢(0) are bounded. Furthermore, from (11) and (12) it follows that

e(k)-0 {T(KTL(k)e}(k)—0
whether or not {(k) is uniformly bounded. Since A¢p(k)= —Te,(k){(k),

and e(k)-»0 ask—co (13)
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from (13) we have
Ap(k)—0 (14)

Further since e,(k)= c Te(k) + do(k), the input v(k) to the strictly positive
real transfer function also tends to zero. Hence we have

as k—o00.

ST(K)S (k) — o T(K)TE(K)e;(k)—0  as k—co. a5)
Since af T(K)T¢(k)e (k)= — a$ T(k)A¢(k) by (14) and (15),
o T(R)S (k) =ol||$(R)II]- (16)

The Prefilter: By (6), we have
Wy (2)e(k) = (k).

Since the transfer function W (z) is asymptotically stable and of mini-
mum phase, we have from Lemma 1 in the Appendix, using (14) and
(16),

$7(k)w(k)=of sup ()] - a7
k>vp

The Plant Feedback Loop: The feedback loop in Part I is described by
the difference equation

x(k+1)=[4,,+ bd T(K)C,, ] ¥(K) + b,,r(k)
= A, x(k) + b, $ T(K)o(k) + b, (k). (18)

Since r(k) is uniformly bounded and A,, is an asympiotically stable
matrix it follows that if w(k) is unbounded

Ix(R)l <y :‘;P o7 (P(¥)[+c2 >0 19)
By (17), $7(k)ek) = ofsupy.»,lleX#)1]) and hence
Ix(R)=of sup I Cx ()il
k>»
<of sup |x()1l] (20)
k>v

which is a contradiction if x(k) is unbounded. Hence x(k), w(k), and
{(k) are uniformly bounded and the adaptive control system is stable.
Further, the auxiliary input to the model is

()= L(2) { [L™ {(2)6(K) ~4(k) L~ ()] (k) + ae, (k)¢ T(RITE(K) }

and since ¢7(k)x(k), ¢ T(K)(K), and e,(k)—0 as ko0, uy(k)—0 as
k—oc0, and the plant output asymptotically approaches the desired
output.

V1. CONCLUSION

The paper presents a proof of the stability of the adaptive control
system suggested by Narendra and Valavani {2] for the discrete case with
an additional feedback signal. The same proof could also be used to
show that the discrete controller suggested by Ionescu and Monopoli [6}
is also stable.

APPENDIX

Definition 1: Let {x(k)} and {y(k)} be two sequences such that x(-)
and y(-)€.>. If there exists a sequence { 8(k)}, with 8(k)—0 as k>0
such that y(k)= B(k)x(k) then we denote

y(k)=olx(k)].

Definition 2: Let {x(k)} and {y(k)} be two sequences. If there exists a
positive constant M such that

¥R <M|x(k)] foralkEN
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we denote it by
y(k)=0[x(k)].

Definition 3: f {x(k)} and {y(k)} are two sequences such that
x(k)=0{y(k)] and y(k)=0[x(k)], we say that the two sequences are
equivalent and denote it by

x(k)~y(k).

The following definition is found to be useful while describing two
sequences which evolve at the same rate but are not equivalent.

Definition 4: Two sequences {x(k)} and {y(k)} are said to grow at
the same rate if

sup |x(#)]~ sup |p(»)].
k>v k>r

It follows that two sequences which are equivalent grow at the same
rate but not vice versa.

Let W;(z) be a rational transfer function of a linear time-invariant
discrete system with all its poles and zeros within the unit circle and
input and output x(+) and y(-), respectively. Let A(k) be the impulse
response of W, (z). Since hE€1,, it follows that

(k)] <e sup [x(P)}+c; (A1

where ¢, and ¢, are positive constants. Hence
sup |y(3)| =0[ sup [x(»)] |
k>» k>»p

Considering y(k) as the input and x(k) as the output, we also have
[since W, (z) is stable]

|x(k) <ef 5 MO a2

+r>p

where ¢} and cj are positive constants and r, is the relative degree (i.e.,
number of poles—number of zeros) of W, (z). If the rate at which the
sequence y(k) can grow is bounded (e.g., any linear system with bounded
coefficients can have only solutions which grow geometrically), it follows
from (A.2) that

Ix(K)| <ef sup [y (@) +c3. (A3)

¢y is a positive constant and c{ = ¢{[A,|" where A; denotes the maximum
rate at which y(k) can grow.
In view of (A.1) and (A.3)

sup |x(v)|~ sup | »(»)| (A4)
k>» k>»
and {x(k)} and {y(k)} grow at the same rate.

Lemma 1: Let W;(2) be a transfer matrix with input vector w(k) and
output vector {(k) where W (z) is an asymptotically stable and mini-
mum phase transfer function and Part I is the unit matrix. w(k) and (k)
are assumed to grow at most geometrically. Further, suppose that there
is a vector ¢(k) such that

TS (k)= o[ (a5)
and
AB(k)=0  as k—co. (A6)
Then
#7(R)a()=o[ sup () | (A7)

Proof: It follows from (A.4) that for each pair of components of
w(-)and {(-), we have

sup l;(¥)|~ sup [{(»)] (A8)
k>» k>p
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or
sup [|e(7)}j~ sup [|$(»)]|. (A9)
k>» k>v
Let
_B(2 _ buzm+ b, 1z 14 +by
WL(Z)_A(Z) 2" a,_ 2" Ve ay (A-10)
Then we have the vector equation
A@)Y(R) = B(2Yo(k). (A1D)
Premultiply both sides of (A.11) by ¢ 7(k); we obtain
T(K)A(2)$(k) =9 T(K) B(2)w(k). (A.12)
Sinctf,
oT(K) A (k)= T(K)[S(k+n)+a,_ §(k+n—1)+--- +agk(k)]

=¢T(k+n){(k+n)+a,_1$T(k+n—1Di(k+n—1)
+ 0 +agd T(K)S(k)
+[¢T(k)— ¢ T(k+m)]¢(k+n)+a,_
[eT(k) - T(k+n~D)]g(k+n—1)...

+a[oT(kK)—¢T(k+ DI (k+1) (A13)

by (A.5), (A.6), (A.9), and the fact that {(k) can grow at most geometri-
cally, (A.13) implies that

T = ] sup ()] ] Aa14)
Similarly,
T B()a(K)= B T(a(k) +of sup [l | (A19)
Therefore, by (A.12), (A.14), and (A.15), it follows that
B(:)$7(R)a(k)=of sup ()] (a16)
Since B(z) has all its zeros inside the unit circle,
#7(Ru(R)=0{ o[ sup Iu(>)I |} @1

and the lemma is proved.
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Microprocessor Requirements for Implementing
Modern Control Logic

FLORENCE A. FARRAR, MEMBER, IEEE, AND RICHARD S. EIDENS

Abstract—Analytical procedures for establishing microprocessor ac-
curacy, computational capability, and memory requirements for imple-
menting linear-quadratic-Ganssian (LQG) control logic were developed
and evaluated. The developed procedures were evaluated and illustrated by
application to a linearized fifth-order F100 turbofan engine model. Results
were verified using a digital simulation of a continuous system /micropro-
cessor controller.

I. INTRODUCTION

The primary impetus for applying LQG control concepts is improved
system performance combined with the advent of digital electronic
control implementation, Digital electronics provide the means by which
complex controflers associated with LQG theory can be implemented.
The current trend toward increased uvse of digital electronics—in particu-
lar, microprocessors—will lead to increased use of modern control logic
including system identification, modeling, estimation, and multivariable
control methodologies [1].

However, prior to widespread use of microprocessors for modern
control logic implementation, key issues associated with microprocessor
implementation must be addressed and resolved. These issues include 1)
accuracy, 2) computational capability including arithmetic as well as
interface speed, and 3) memory requirements [2]. Defining these require-
ments will establish criteria for selecting the appropriate computer sys-
tem for control implementation. Consequently, this study was directed
toward establishing microprocessor requirements for implementing con-
tinuous-time LQG control logic so that system performance with a
microprocessor controller is close to system performance with the opti-
mal analog controller.

II. CONTROL OF LINEAR STOCHASTIC SYSTEMS

Open-loop linear time-invariant continuous system dynamics are de-
scribed by the differential and algebraic equations
x(£)=Ax()+ Bu() +£(2)
¥(0=Cx(8)+ Du(?)
2(0)=Ex(8)+q(t)
where x, u, y, and z represent n states, m inputs, p outputs, and /
measurements, respectively. The random process vectors £ and % repre-

sent white zero-mean Gaussian noise. Under appropriate conditions the
optimal input u* exists [3] and is described by

n

(0) = Fx() + H(z() — EZ(£))
u*()=Gx(2)
FZ A+BG

@

where the notation ( ~ ) denotes the estimate of the variable in parenthe-
ses and G and H represent the deterministic feedback control gains and
steady-state Kalman filter gains, respectively.

Equation (2) indicates that the optimal input is a continuous function.
To implement this control law on digital electronics the control law must
be discretized. Note that the regulator control problem may be for-
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