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XI. CONCLUSION 

The paper has analyzed a general  class of discrete-time adaptive 
control algorithms and has shown that, under suitable  conditions,  they 
will be globally  convergent. The algorithms have a  very  simple structure 
and are applicable to both singleinput single-output and multipleinput 
multiple-output  systems  with arbitrary time  delays  provided  only that a 
stable control law exists to achieve zero tracking error. The results 
resolve  a  long standing question in adaptive control regarding  the 
existence of simple,  globally  convergent adaptive algorithms. 
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Stable Discrete Adaptive Control 
KUMPATI S. NARENDRA, m w ,  m, AND YUAN-HA0 L M  

1. INTRODUC~ON 

At present there is widespread interest in the stable adaptive control of 
unknown  linear  time-invariant plants using input-output data. Schemes 
have  been suggested for both direct [1]-[3] and indirect 141, [5] control of 
continuous as well as discrete [a [7] systems and the  equivalence of the 
two schemes in some cases has also been demonstrated [4],  [5]. Probably 
the  single  most important problem to arise in the course of these 
investigations  concerns the proof of stability of the overall adaptive 
control loop. 
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Monopoli [l] proposed  a  scheme for continuous systems  involving an 
auxiliary signal f e d  into the reference  model and a corresponding aug- 
mented error between  model and plant outputs. Narendra and Valavani 
[2], using  positive real operators, suggested a similar approach and 
clarified the resulting stability problem  when the relative  degree of the 
plant is greater than or equal to three. They offered  a conjecture that the 
adaptive loop would also be stable for the general case. Feuer and Morse 
[3] proposed  a stable solution to the adaptive control problem  but the 
resulting  controller is much too complex for use in practical  applications. 
Thus, the search  has continued for  a controller with a simple structure 
which will assure  the  global asymptotic stability of the adaptive loop. 
The results  presented in this paper demonstrate the desired stability 
behavior for discrete  versions of the simple  controllers suggested in [l] 
and [2]. Similar results have also been reported recently in [9] and  [lo] 
for the discrete adaptive control problem and in [ 111 and [ 121 for the 
continuous case. 

This paper examines the discrete version of the problem  considered in 
[2] recapitulating the basic philosophy as well as the specific  technique 
used for the design of the adaptive controller in that paper. Hence the 
first few sections of this paper have been considerably condensed and 
the interested reader is referred to the earlier work for all details. The 
principal contribution made here is the verification of the conjecture 
made in [2] regarding the stability of the adaptive loop, for the discrete 
problem  when an additional feedback  signal  suggested in [8] is used. 
Accordingly  most of the paper is devoted to the proof  of stability. W e  
the proof  given  in 11  11 for continuous systems can be directly  extended 
to the  discrete case, we present  here a simpler proof  which is valid for 
discrete systems. 

11. STATJSIENT OF THE PROBLEM 

A singleinput single-output discrete linear time-invariant plant is 
described by the input-output pair { u(k),y,(k)} and can be represented 
by  the  transfer  function 

where Wp(z) is proper,  with %(z) a  monic polynomial of degree n, Zp(z) 
a  monic  stable'  polynomial of degree m <n, and $ a constant gain 
parameter. The integer n - m  is called the relative  degree of the plant 
We  assume that only m,n and the sign of $ as well as an upper bound 
on l k p l  are known, while the coefficients of Zp and I$ are unknown. 

A reference  model M whose output y d k )  represents the behavior 
desired from the plant when augmented by  a  suitable controller can be 
represented by the transfer function 

where Rdz) and Z d z )  are monic stable polynomials of degrees n and 
r < m respectively and k,,, is a constant. Hence  the  relative degree of the 
model is assumed to be greater than or equal to that of the plant. The 
reference input r(k) to the model is specified and is assumed to be 
uniformly  bounded. 

The adaptive control problem is to determine  a suitable control 
function u(k) such that 

y,(k)-y,(k)+O as k+m. (3) 

For the sake of simplicity we shall assume that r= m. As in the 
continuous case, the solution to the above problem may be divided into 
two parts. The first part which is algebraic in nature addresses itself to 
the realizability of a suitable controller structure. It can be shown  exactly 
as in the continuous case [2] that a controller can be found which can 
achieve  (3)  with  a  fixed  set of parameters. In the following  section the 
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@) 
Fig. 1. (a) Adaptive controller for m-n. @) Paysid realization of (a). 

equations describing the controller are merely  stated. The second part is 
analytic in nature and deals  with the stabiliv of the adaptive error 
equations. Again, it is found  that when m= n (or m= n - 1 in the 
continuous case) the adaptive  equations can be shown relatively easily to 
be globally  asymptotically  stable. Hence our main in-t is in the case 
m < R - 1 and auxiliary inputs have to be fed into the reference model. 
The  statement of the stability problem and the proof of stability are 
considered in detail in Section V. 

nI. STRUCTURZ OF THE ADAPTIVE chTROLLJ3R 

As in [2], two different structures are needed for  the  discrete  adaptive 
control problem corresponding to the two cases m= n and m <n- 1. 
When m = n  and the  model  transfer function is assumed to be positive 
real,* the simple structure shown in Fig. I(a) can be used.' For the case 
whenm<n-l ,asdescr ibedin[21 ,ana~s ignalhastobefedin~ 
the model and the cOrreSpOnding structure is shown in Fig. 2. (The 
physical  realization of this can be achieved along the same lines as in 
Fig. lo).) A brief description of the controller structure for the two cases 
is given  below. 

Case i) (m = n): The controller consists of (2n + 1) adjustable  parame- 
ters which are  the elements of a parameter vector B(k) defiied by 

e w  [kl(k),c,(k),* c,(k),d,(k),d,(W,. * 4Ak)l. 

m e r e  is no loap of generality here since by prefilcering the model can be made positive 
real 

'Since the plant in this casc has a direct transfer, Fw 1(a) involves an algebraic loop 
and is ased ody for pnrposcs of analysis. The physical realizarion of the loop is shown in 
Fig. le). 
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Fig. 3. Equivalent rcprrsentation of Fig. 2 

Two identical a u x i h y  signal generators of dimension "n" having state 
variables a(')(&) and @(k) and inputs u(k) and y,(k), respectively, as 
shown in Fig.  ](a), from part of the controller. If a  vector qk) is defined 
as 

the signal fedback into the plant may be represented by 

B*(k>~jck) - aqk)Trdk)el(k). (4) 

The first term in (4) represents  a linem combination of the elements of 
qk) and cOrreSpOndS to the feedback signal in the continuous case. The 
second term which depends on the output error el(k) is found essential 
to establish the stability of the error equations as d m i  in [8]. If q k )  
is bounded as the adaptation proceeds, this term is seen to tend to zero 
with el(k). 

Following  the  results in [21, it can be shown that a constant vector 6. 
exists such that when 6(k)& the transfer function of the plant together 
with the controller  matches that of the reference  model. 

The adaptive control problem is to determine the law for updating 
@(k) such that 6(k)&* as &+a, while maintaining overall  system 
stability. 

Case ii) (m < n - I): With no loss of generalityp we can assume that 
Uz), a ratid function in z  (with L-'(z) a strictly proper minimum 
phase function),  exists such that W,(z)L(z) is strictly  positive real 
However, since L(z) is not physidy realizable, the same  modification 
as that suggested in the continuous case has to be used here as well. As 
shown  below, this involves  feeding  back signals into both plant and 
model  such that the error equations have the same form as in Case i) (see 
Section W). Fw 3 indicates the structure of the controller when the 
p h t  gain $, is known; for simplicity, it is assumed that $=kM= 1.5 
Since in this w e  only 2n parameters have to be ajdusted, we define 
e T ( k )  = [c , (k) ,  cZ(k), . , c,(k), d,(k),  * . . , d,(k)] and w '(k) = 
[ ~ ( ' ) ( k ) ~ . u ~ ( k ) ~ J .  

The signal fed back into the plant is 

%(k) =8r(k)4k) .  

while the signal fed  back into the model is 

~~k)=L(r)[{L-l(z)eT(k)-eT(k)L-l(~)}o(k) 

+aS'(WS(k)e,(k)] (whereL-'(z)o(k) = {(k)) 

so that the resulting emor equations have the form required to generate 
stable adaptive laws as described in Section lV. 

such that Wdd(z)Qr) is EtricUy positive real. A particular choice of 4 2 )  is WG'(z) and 
'It is obvious h a t  a rational function 41) with denominator polynomial Z d z )  exists 

51f k,#b, an a d d i t i d  adjustable parameter has to be urd lo generate the auxiliary 
signal uM(k) d s a i  later in this section. The an- prrsented here also canis over 
to this more gencral CBSC. 

results in considcrablc simplification of Le dysis. 

While U z )  is not physically  realizable,  W,(z)L(z) can be realized and 
hence the overall system is as shown in the Fig. 3. 

A Specid Cme: As mentioned earlier, considerable  simplification is 
achieved by choosing L-'(z)= Wdz). Further, if W,&) is chosen to be 
equal to z - ~  where d is a  positive  integer, the problem is to follow the 
reference input delayed  by d steps [i.e., r(k - 41 by the output of the 
plant. 

From Figs. 2 and 3 we  have 

y , ( k ) = r ( k - 4 ;  S(k)=o(k-d); 

yu(k)=[BT(k-d)w(k-d)-BT(k)w(k-d)] 

and 

Y,(k) - r(k - 4 - Y m  
e k  

1' )= l+aoT(k-d)ro(k-d)  * 

The adaptive laws are given  by 

AB(k)= -rel(k)w(k-d). 

If tapped &lay lines are used as the auxiliary signal generators in Fig. 
2 to generate dk), the results are similar to those obtained in [9]. 

w. ERROR mUATIONS 

Let the parameter vector B(k) be expressed as6 

where 3k) represents the parameter error vector at time k. 
Case t) (msn) :  The output error el(k) in Fig.  1  may  be expressed as 

where W,(.z) is a strictly positive real operator. From the recent results 
in [8] (also given in detail in the next  section), it is seen that if &k) is 
updated according to the law 

s ( k + 1 ) = ~ k ) - r e I ( k ) 0 ( k )  

e l ( k ) 4  whether or not @k) is bounded.  Since in this case the (desired) 
output y,,,(k) of the model is uniformly  bounded, the plant output will 
also be uniformly bounded and approach the desired output asymptoti- 
d Y .  

Case ii) (m <n-  I): The augmented error el(k) in Figs. 2 and 3 
satisfies the error equation 

where WM(z)Uz) is a  strictly  positive real transfer function and as 
defined earlier 

L-'(z)o(k)=S(k).  

By the  same  arguments as in Case i )  it follows easily that if the adaptive 
law 

+(k+l)=+(k)-re,(k){(k) 

i s m t h e n  

el(k)+O as k+m. 

However, it no longer  follows that the plant output will be bounded 
since the model output (which  is due to both  reference and the auxiliary 
inputs) may be unbounded- Hence, to prove  the  global  asymptotic 
stability of the adpative system it is necessary to show that neither the 
plant output nor the model output can be unbounded, in other words, 
verify for the discrete case the conjecture made in [2] for continuous 
systems. The rest of this paper is devoted entirely to this problem 
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V. VBRIPICATION OF THB CoNJECruRE BY NARENDRA AND 
V U V A N l  FOR DISCRETTJ SYSEbiS 

A. Description of the Error Model 

The error model  whose  stability is to be andm is a  complex  vector 
nonlinear  difference equation. For convenience of analysis we shall 
consider it in three separate parts which  correspond to the three parts of 
the system shown in Fig. 4. 

Part I-% Plant  Feedback Loop: The plant together  with the con- 
troller can be descriied by the vector  difference equation 

~(k+l )=A, , , x (k )+b , , , [+~(k )w(k )+r (k ) ]  

w(k) = C,x(k). (5) 

o(k) represents the output vector of interest, x(k) is the state vector of 
the plant together  with the controller, and when Hk), the parameter 
error vector, is identically  zero,  the plant and model transfer functions 
match exactly.  The  reference input r(k) is uniformly bounded and the 
matrices A,,, and C,,,, and vector b,,, are of appropriate dimensions. As 
described in the previous  section, A ,  is a  (3n X3n) stable matrix,  b,,, is a 
(3n X 1) vector, and C,,, is a (2n X 3n) matrix. 

Pari ZZ-= Prefilter: The second part of the system  shown in Fig. 4 
consists of a diagonal transfer matrix all of whose  elements are the same 
and equal to WL(z)= L-'(z) or 

{,(k)=L-'(Z)wi(k). (6) 

L-'(z) is assumed to be an asymptotically stable system of relative 
degree n - m, as descn'bed earlier (number of poles - number of zeros = n 
- m), and of minimum phase. 

Part ZZZ-7'he Error Model [8]: The third part is the model of the 
error equations described in the previous  section and consists of a 
strictly positive  real transfer function in  the feedforward path and 
feedforward and feedback gains +=((k) and aST(k)rg(k), respectively, as 
shown in Fig. 4. It can also be  represented  by  a  3n order difference 
equation 

e(k+l)=A,,,e(k)+bo(k) 

e,(k)  = cTe(k) + do(k) (7) 

=+'(k)l(k)- b T ( k ) W k ) e l ( k )  

a>f,r=rT>o 
where  d+cT(zZ-A,J-'b is strictly positive  real. 

is adjusted according to the law 
The parameter error vector +(k) [and hence the parameter vector B(k)] 

~ + w w - r e ~ ( k ) w )  
(or B(k+l)=B(k)-I'e,(k){(k)). (8) 

The four sets of difference equations (3, (6), (3, and (8) completely 
determine the error model of the overall discrete system. The signal l (k)  
and output error el@) determine how Hk) is updated but this, in turn, 
determines the nature of o(k) and {(k). 

B. Statement of the  Conjecture 

The conjecture in [2]  when applied to the problem above may be 
stated as follows. 

If +(k) is adjusted according to the law (8) to keep the error e,(k) 
bounded, the outputs of the plant, i.e., w(k) will also be bounded. 

Equivalently, the conjecture  implies that the overall nonlheir system 
described  by (3, (6), 0, and (8) is globally stable and that all the signals 
are uniformly  bounded- 

Since the stability in the  large of the above nonlinear system is 
intractable, we shall  consider the three hear blocks in Fig.  4 separately 
to simplify the analysis. 

C. A Quaiitatice Anarysis 

Part I of Fig. 4 is a  feedback loop with a stable timeinvariant forward 
path and a time-varying gain vector +(k) in the feedback path. The 
output vector o(k) can be either un i fody  bounded or unbounded. In 
the former case {(k), the output of the  prefilter is also uniformly 
bounded and the behavior of the error model and, hence, that of the 
entire system are completely known. If, however, it is assumed that o(k) 
and, hence {(k) are unbounded, the analysis in the following section 
shows that we are led to a contradiction. Hence,  only the fiist alternative 
is possible (i.e., w(k) is uniformly bounded) and the conjecture is 
verified. 

Before  proceeding to give an analytic proof, we present here a brief 
qualitative analysis of the various steps involved. 

It is first shown in Section V-D, using the notation defined in the 
Appendix, that the input to the error model +=(k){(&) satisfies the 
relation 

and 
AqJ(k)+o as k 4 m .  

Since W,(z) is asymptotically stable and minimum  phase, it is shown 
in the Appendix that 

SUP I l 4 d I I -  SUP 113(u)ll 
k > v  k>w 

and from Lemma 1 in the Appendix, it is concluded that 

Since r(k) is uniformly bounded and +=(k)w(k) is the feedback signal 
in the plant feedback  loop, it is concluded from (9) that 4.) and hence 
{(-) must also be uniformly bounded. 

D.  Proof  of  the Conjecture 

The Error Model [SI: From the discrete version of the Kalman-Ya- 
cubovich lemma if d+ cT(z1-A,)-'b is strictly positive  real, a matrix 
P = P > 0 and a  vector q exist  such that 

A:PA,,,-P=-qqT-dL; AzPb=c/Z+~q;  d-bTPb=$ 

Hence the system is stable and e(k) and Hk) are bounded if e(0) and 
@(O) are bounded. Furthermore, from (11) and (12) it follows that 

e(k)+O {*(k)rg(k)e?(k)+O and el(k)+O as k+oo (13) 

whether or not {(k) is uniformly bounded. Sice A+(k)= -I'e,(k)l(k), 



460 IBEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-25, NO. 3, JUNE 1980 

from (13)  we  have 

A ( k ) 4  as k + w .  ( 14) 

Further since e,(k)= cTe(k) + W k ) ,  the input u(k) to the strictly positive 
real transfer function also tends to zero. Hence we have 

+T(k){(k)-a{T(k)r{(k)el(k)+O as k+m. (15) 

Since aST(k)rS(k)e1(k)= -aST(k)&(k) by  (14) and (19, 

+=T(~)3(~)=~11IS(k)ll1~ (16) 

The Prefilter: By (6), we have 

WL(Z)W(k) = w .  

Since the transfer function W'(z) is asymptotically stable and of mini- 
mum phase, we have from Lemma 1 in the Appendix,  using  (14) and 
(10, 

+T(k)o(k)=o[  SUP Ilw(r)ll]. ( 17) 
k > r  

The Piant Feedback Loop: The feedback loop in Part I is described by 
the difference equation 

x(k+ l)=[A,,,+ b,,,+T(k)C,,,]x(k)+b,,,r(k) 

=Amx(k)+b,,,+T(k)o(k)+b,,,r(k). ( 18) 

Since r(k) is uniformly bounded and A,,, is an asymptotically stable 
matrix it follows that if w(k) is unbounded 

Ilx(k)ll<cl SUP I + ' ( v ) ~ ~ ) ~ + c z  c,.cz>O. (19) 
k >v 

BY (17)- ~T(k)w(k)=o[suPk>p.llw(v)lll and hence 

GO[ SUP Ilx(v)ll] (20) 
k > v  

which is a contradiction if x(k)  is unbounded. Hence x(k), dk), and 
{ ( k )  are uniformly bounded and the adaptive control  system is stable. 
Further, the auxiliary input to the model is 

and since CT(k)w(k), +=(k){(k), and el(k)+O as k+m, uM(k)-*O as 
k+m, and the plant output asymptotically approaches the desired 
output. 

VI. CONCLUSION 

The paper  presents  a proof  of the stability of the adaptive control 
system suggested by Narendra and Valavani [2] for the discrete case with 
an additional feedback  signal. The same proof could also be used to 
show that the discrete controller suggested by Ionescu and Monopoli [6] 
is also  stable. 

APPENDIX 

Definition I :  Let { x ( k ) }  and { y ( k ) }  be two sequences  such that x ( . )  
andy(.)Elem. If there exists a sequence { B(k)},  with B(k)+O as k+m 
such that y (k )=  B(k)x(k) then we denote 

Y ( k )  = oIx(k>l. 

Dejinition 2: Let { x(k)}  and { y(k)} be two sequences. If there exists  a 
positive constant M such that 

Iy(k)l <M(x(k)l  for all k E N  

we denote it by 

y(k)==0[x(k)l .  

Dejinition 3: If { x(k) )  and {y(k)} are two sequences  such that 
x(k )=qy(k ) ]  and y(k)=o[x(k)], we say that the two sequences are 
equivalmt and denote it by 

x(k)-Y(k).  

The following definition is found to be useful  while  describing two 

Definition 4: Two sequences { x(k)} and {y(k)} are said to grow at 
sequences  which  evolve at the same rate but are not equivalent. 

the same rate if 

k>v  k > v  
snp 1 4 4 1 -  sup Ir(4l. 

It follows that two sequences  which are equivalent  grow at the same 
rate but not vice versa. 

Let W&) be a rational transfer function of a linear time-invariant 
discrete system with all its poles and zeros within the unit circle and 
input and output x( . )  andy(.). re-spectively. Let h(k) be the impulse 
response of W&). Since h E I , ,  it follows that 

where c1 and cz are positive  constants.  Hence 

SUP IY(V)l  =o[ SUP IxWl] .  
k > v  k >v 

considering y(k) as the input and x(k) as the output, we also have 
[since WL1(z) is stable] 

Ix(k)l <c; SUP b ( v ) 1 + 4  ( A 4  
k + r , > v  

where c; and ci are positive constants and rl is the  relative degree (Le., 
number of poles-number of zeros) of W,(z). If the rate at which  the 
sequencey(k) c8n grow is bounded (e.g., any hear system  with bounded 
coefficients can have only solutions  which  grow  geometrically), it follows 
from (Ad) that 

IX(k)l<ci' SUP IY(~)I  + 4. (-4.3) 
k > v  

c; is a positive constant and c: = cflAll" where A, denotes the maximum 
rate at which y(k) can gow. 

In view  of (A.l) and (A.3) 

and {x(k)}  and { y ( k ) }  grow at the same rate. 
Lemnu 1: Let W,(z) be a transfer matrix with input vector w(k) and 

output vector {(k) where W,(z) is an asymptotically stable and mini- 
mum phase transfer function and Part I is the unit matrix. w(k) and {(k) 
are assumed to grow at most geometrically. Further, suppose that there 
is a  vector +(k) such that 

+T(k)S(k)= o[llb(k)lll (A51 

and 

A+(k)+O ask--*m. (A-6) 

Then 

C=(k)w(k)=o[ k > 9  SUP Ilw(v)ll]. (A.7) 

Proof: It follows from (A.4) that for each pair of components of 
w(-)and {(.X we have 
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or Microprocessor Requirements for Implementing 

a P  ll4p)ll- sup IIJ(p)II (A.9) Modern Control Logic 
k>9 k>P 

Let FLORENCE A. FARRAR, "BW, IEEE, AND RICHARD S. EIDENS 

B(z)  bmzm+bm-lZ*--l+ - *  - +bo 
A ( z )  z"+a, - ,Z"- '+ . - -  +a, 

W,(Z) = - = . (A.10) A ~ - ~  pLdures for establlsbtng BE- 
my complrhrtional cqmbWy, and memory - for hple- 
n#nting ~~~ (LQG) eontrd loglc were developed 
andevatnated.lEedeveloped~wereevalantedandilltrptratedby 

(A.l 1) appUcation to a tbearkd fifth& FlOO turbofan engine modd Reslllts 
wereverltiedmingadigitdRtmnlationofacmthmussgstem/ttkrqnw 
cessorcwtrodler. 

Then we have  the  vector  equation 

A(z)S(k) = B(z)w(k). 

Remultiply  both sides of (A1 1)  by +=(k); we obtain 

+=(k)A(z)S(k)=cg=(k)B(z)o(k). (A.12) I. INTRODLICITON 

Since 

9 =( k )  A (2 )  f (k) = 9 =( k)[ S( k + n) + an - 1 {( k + n - 1) + ' . + d( k)] control implementation. Digital eleC&oics provide  the m w  by  which 

The primary impetus for applying LQG control concepts is improved 
system performance combined with the  advent of digital electronic 

- + ~ ( ~ + ~ ) ~ ( k + ~ ) + ~ , _ , + = ( k + ~ - 1 ) ~ ( k + ~ - 1 )  complex c o n t ~ ~ k s  associated  with W theory be implemented 

+ * f - +*T(k)S(k) lar, microprocessors-will lead to increased use of modem control logic 

+[+=(k)-+=(k+n)lS(k+n)+a,-, 

The  current  trend toward  increased use of digital electronics-in partiw- 

including  system  identification,  modeling, estimation, and multivariable 
control methodologies [ 11. 

However, prior to widespread use of microprocessors for  modem 
control logic  implementation, key issues Bssociated with  microprocessor 

accuracy, 2) computational capability including  arithmetic as well as 
by (A.3, ( A . 9  (kg), and  the  fact  that {(k) can grow at most geometri-  interface and 3) memorY r@ements 121- these 
d y ,  (A.13)  implies that ments will establish criteria for selecting  the appropriate computer sys- 

tem for  control implementation. consequently, this study was directed 

-[+=( k ) - + T ( k + n - l ) ] { ( k + n - l ) . . .  

+a,[+=(k)-+=(k+ 1)1S(k+ 1) (A.13) implementation  must be addressed and resolved. These issues include 1) 

+=(k)A(z)S(k)=o[ SUP Ilo(r)ll]. ( ~ 1 4 )  toward  establishing  microprocessor  requirements for implementing con- 
k > r  tinuous-time LQG control logic so that system performance with a 

S i i l y ,  
microprocessor  controller is close to system performance  with the opti- 
mal analog controller. 

+=(k)B(.)w(k)=B(~)+=(ow(k)+o[  k > 9  SUP Ilu(~)ll]. ('4.151 

B(z)+=(k)w(k)=o[ k > v  SUP ll4p)ll]. (A.16) 

+=(k)w(k)=o{ o[ sup I l4~) l l ] ]  (A.17) 

n. Ch'lTtOL OF LINEAR STOCHASTIC SYSTEhfS 

Therefore, by (AJ2),  (A14),  and (k15), it  follows that Open-loop hear timeinvariant  continuous system dynamics are de- 
' s c r i i  by the differential and algebraic  equations 

i ( t )=Ax( t )+Bu( t )+Ht )  

z ( O = W t ) + ? I ( t )  

Since B(z) has all its zeros  inside  the unit circle, y( t )=Cx(t)+Du(t)  (1) 

k $I where x, u, y,  and z represent n states, rn inputs. p outputs, and I 

and the  lemma is proved. measurements,  respectively. The  random process vectors 6 and 7 repre- 
sent white  zero-mean Gaussian noise. Under  appropriate conditions  the 
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optimal input u+ exists [3] and is described by 
_ _  - 

; ( t )=F; ( t )+H(z ( t ) -E i ( t ) )  

u*(t)  = Gi( f )  (2) 

F & A + B G  

where the notation ( ) denotes  the estimate of the  variable in parenthe- 
ses and G and H represent the deterministic  feedback control gains and 
steady-state Kalman filter gains, respectively. 

Equation (2) indicates that  the optimal input is a continuous function. 
To implement this control law on digital electronics  the control law  must 
be discretized.  Note that the  regulator control problem  may be for- 
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