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Consider a two-layer stratified water basin. The upper and bottom layers have thicknesses h1

and h2, respectively, and densities ρ1 and ρ2, respectively (Fig. 1). For stable stratification, ρ1 < ρ2,

obviously. Consider also the free surface and density interface deformation due to the presence of
long waves of small amplitude. These waves correspond to a free response of the system, in absence

of any forcing such as that exerted by the surface shear stress induced by the wind. The waves can
be generated, for instance, at the end of a wind event that created the set-up of the free surface
and the downward tilt of the density interface, due to the relaxation of the surface shear stress.

In such situation both the free surface and the density interface undergo a free oscillatory motion,
associated with the relaxation of their respective forced deformation.

Applying the Reynolds averaged Navier-Stokes equations to each layer of Fig. 1, assuming 2-D
flow in the x− z plane, yields:
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where ui and wi denote the horizontal and vertical components of the flow velocity in layer i, with

i = 1, 2, p̂i denotes piezometric pressure in layer i, (τxx)i and (τzz)i denote normal stresses in layer i
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Figure 1: Two-layer stratified water basin.
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Figure 2: Definition of free surface and density interface displacements, ξ1 and ξ2, respectively.

in directions x and z, respectively, and (τxz)i and (τzx)i denote shear stresses in layer i in directions
x and z, respectively.

The continuity equation in each layer reads:
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Introducing boundary layer approximations, including assuming hydrostatic pressure in both

layers, equations (1) and (2) reduce to:
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Assume that the oscillations of the system induce vertical displacements ξ1 and ξ2 of the free

surface and density interface, respectively, as shown in Fig. 2. Since pressure is assumed to be
hydrostatic, then the following relationship applies in each layer i:

p̂i = pi + ρigz = constant. (6)

where pi denotes thermodynamic pressure in layer i, which varies with x and z. For points A and
B in Fig. 3, pA = 0 and pB = ρ1g(h1 + ξ1 − ξ2). Using these results, the piezometric pressures are

given by:

p̂1 = p̂A = ρ1g(h1 + h2 + ξ1) (7)

p̂2 = p̂B = ρ1g(h1 + ξ1 − ξ2) + ρ2g(h2 + ξ2) (8)

from where the longitudinal piezometric pressure gradients in layers 1 and 2 are obtained as:
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Figure 3: Determining the piezometric pressure gradient in layers 1 and 2.

Replacing these expressions in equation (4) yields, for each layer:
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On the other hand, equation (3) for each layer is:
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Integrating these equations vertically in each layer, with the aim of obtaining equations gov-

erning the temporal evolution of the depth-averaged velocity in each layer, gives:
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Applying the kinematic boundary condition at the free surface and density interface and the

non-slip and non-penetration conditions at the bottom boundary, defining the depth averaged
velocities in each layer as:
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and neglecting non-linear terms in the left hand side of the resulting equations, assuming small
depth-averaged velocities associated with the small amplitude surface and internal waves, yields:
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The only relevant shear stresses for the depth averaged equations are those evaluated at the
free surface, (τzx)h1+h2 = τs, density interface, (τzx)h2 = τi, and bottom, (τzx)0 = τb. With these

definitions the above system of equations can be rewritten as:
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The system of equations (25) to (28) governs the response of the two-layer stratified water basin,
in terms of depth averaged velocities in each layer and deformation of the free surface and density

interface, to shear stresses τs, τi and τb. Nonetheless, the same system of equations governs the
free oscillations of the system when all the forcing shear stresses vanish. In such a case the right

hand side of all equations (25)-(28) vanishes and the problem reduces to an eigenvalue problem.
From this result two possible situations are considered next.
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Case 1: Non-stratified water basin

This case corresponds to a water basin of depth h1 and constant density ρ1. Free oscillations of
this system correspond to the condition τs = τb = 0. The system of equations (25) to (28) reduces
to:
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To determine the normal modes of oscillation of the system assume a response in the form of a
progressive wave, for which the depth-averaged velocity and free surface deformation are given by:

U1 = Υ1 sin(αx− ωt) (31)

ξ1 = Ξ1 sin(αx− ωt) (32)

where α = 2π/λ, ω = 2π/T , and λ and T denote the wavelength and period of the surface waves,
respectively. Likewise, Υ1 and Ξ1 denote the amplitudes of the velocity and surface deformation

waves, respectively.
Introducing these definitions in (29) and (30), then the following algebraic problem for Υ1 and

Ξ1 is obtained.
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This is an eigenvalue problem, since in order to have a non-trivial (different from zero) solution

for the amplitudes Υ1 and Ξ1, it is required for the matrix of coefficients in the previous equation
to have a determinant equal to zero. This condition yields a dispersion relationship for the free
oscillations of the system, that is, a relationship that relates the wave period T with a given

wavelength λ. In fact, the condition: determinant of the coefficient matrix in (33) equal to zero,
gives:

ω2

h1
− gα2 = 0 (34)

from where the dispersion relationship results to be:

ω

α
= ±

√
gh1 (35)

or,

c =
λ

T
= ±

√
gh1 (36)

where c denotes the celerity or displacement velocity of the surface waves.

This is a classic result, which in the case of open channel flow yields the definition of Froude
number, allowing the distinction between subcritical and supercritical flow, depending on whether

the flow velocity is lower or higher than that of the surface waves, respectively.
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Figure 4: Surface seiche with wavelength λ = 2L.

From this result the period of oscillation of a surface seiche in a rectangular water basin of

length L, can be determined. Such seiche can be considered to have a wavelength λ = 2L (Fig. 4).
In this case (36) yields:

T =
2L√
gh1

(37)

Case 2: Two-layer stratified water body

This is the case for which equations (25) to (28) were deduced. Imposing the condition τs =

τi = τb = 0 to analyze the free oscillations of the stratified system leads to:
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To determine the normal modes of oscillation, a response in terms of progressive waves can

again be assumed, where the depth-averaged velocities in each layer and surface and interface
deformations are given by:

Ui = Υi sin(αx− ωt) (42)

ξi = Ξi sin(αx− ωt) (43)

where i = 1, 2 denote the surface and bottom layer, respectively. Just as in the one-layer case,

α = 2π/λ, ω = 2π/T , and λ and T denote the wavelength and period of the oscillations of the
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Figure 5: Internal seiche with wavelength λ = 2L.

system, respectively. Likewise, Υi and Ξi denote the amplitudes of the depth-averaged velocity and
surface or interface deformation waves, in each layer i, respectively.

Replacing these definitions in the system of equations (38) to (41) yields the following algebraic

problem for Υi and Ξi.
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An eigenvalue problem is obtained again. In order to have a non-trivial solution for the ampli-

tudes Υi and Ξi the matrix of coefficients in (44) must have a determinant equal to zero. Imposing
such condition yields:
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Simplifying the above equation, introducing the celerity of surface and internal waves: c = ω/α,
leads to:

c4

g(h1 + h2)
− c2 +

(ρ2 − ρ1)

ρ2
(
h1h2

h1 + h2
) g = 0 (46)

which is an equation representing the dispersion relationship of long, small amplitude waves in a
two-layer stratified water basin. Even though this equation has a simple analytical solution for c,

it is convenient to note that the first term of the left hand side is of a lesser order of magnitude
that the rest of the terms in the equation. Taking this into account, it can be shown that, without
much error, c can be approximated by the relationship:

c = ±
√

(ρ2 − ρ1)

ρ2
(
h1h2

h1 + h2
) g (47)
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This is also a classic results that shows that the celerity of interfacial waves in a stratified flow

is much lower than that of surface waves in a non-stratified fluid, the ratio of both being of the
order of

√
∆ρ/ρ2, with ∆ρ = ρ2 − ρ1, which is indeed a small number given the small value of the

density difference ∆ρ usually observed in stratified water bodies such as lakes and reservoirs.
From this result the period of oscillation of an internal seiche in a rectangular basin of length

L can be determined. Such seiche has a wavelength λ = 2L (Fig. 5). In this case, from (47) T is
given by:

T =
2L√

∆ρ
ρ2

h1h2
h1+h2

g
(48)
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