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Fresh water rivers and streams discharging into the ocean are usually affected by salinity in-

trusion. In these estuarial systems, salt water from the ocean tends to move upstream, driven by
buoyancy created by density differences between fresh and salt water. Depending on mixing condi-

tions in the estuary, salinity can be totally or partially mixed in the water column, or not mixed at
all, if a two-layer stratified flow situation occurs, as shown in Fig. 1. In the latter case, called a salt

wedge intrusion, there is little to no mixing at the density interface between the salt water bottom
layer and the freshwater upper layer. Since the less dense freshwater continues moving towards the

ocean, it goes over the salt wedge, which acts basically as a front that intrudes into the fresh water
estuary. However, as the shear stress acting along the density interface balances out the effect of
gravity, the salinity front eventually stops moving upstream and a steady state situation is reached,

at which the salt wedge is said to be arrested, reaching a total length L measured from the river
mouth upstream.

As shown in Fig. 1, the flow in the salt wedge can be represented as a two-layer stratified flow.
In the upper layer the freshwater moves in the direction of the ocean, while in the bottom layer the

salt water recirculates, moving in the direction of the ocean in the top region of the layer and in the
opposite direction, upstream with respect to the freshwater discharge, near the bottom. Because

the salt wedge is arrested, the net salt water discharge in the bottom layer is zero.
The upstream length of the salinity intrusion depends mainly on the freshwater discharge and

the slope of the estuary, S0. Large values of the discharge tends to move the salt wedge towards
the ocean. On the contrary, during periods of low freshwater discharge, the salt wedge tends to
intrude for rather long distances upstream. In such circumstances, salt wedges have been observed

to intrude distances as large as 50 to 100 km upstream from the ocean.
Even under steady freshwater discharges, tidal effects can create a back and forth motion of

the salt wedge, with a period equal to that of the forcing tide. Large excursions of the salt wedge
in response to tidal forcing can induce strong mixing, in some cases enhanced by interactions with

the bathymetry of the estuary. In such cases, the stratification can be weakened enough as to
destroy the two-layer structure of the salt wedge. Accordingly, such cases are classified as well- or

partially-mixed estuaries. Fisher et al. (1979) propose a criterion based on an estuary Richardson
number, defined as:

Rie =
∆ρ g Qf
ρs W u3

t

where ∆ρ = ρs− ρ0 is the density difference between salt and fresh water, with ρs and ρ0 denoting

salt and fresh water density, respectively, g denotes acceleration of gravity, Qf denotes the total
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Figure 1: Arrested salt wedge.

freshwater discharge, W denotes the estuary width, and ut denotes the root-mean-square velocity

in the estuary influenced by tidal effects. If Rie > 0.8, the estuary is considered to be strongly
stratified and the flow dominated by a salt wedge intrusion. If Rie < 0.08, the estuary is considered

to be well mixed and the vertical density variation in the cross section negligible. Other criteria for
estuary classification in terms of mixing characteristics can be found in Martin and McCutcheon

(1999).

1 Governing equations

Using boundary layer approximations and averaging over the turbulence, the governing equations

for the flow situation under consideration are:

ρ0 (1 + φ) {u ∂u
∂x

+ w
∂u

∂z
} = −∂p

∂x
+ ρ0 (1 + φ) g S0 +

∂τ

∂z
(1)

−∂p
∂z
− ρ0 (1 + φ) g = 0 (2)

∂u

∂x
+
∂w

∂z
= 0 (3)

∂(u φ)

∂x
+
∂(w φ)

∂z
= −∂Fφ

∂z
(4)

where (1) represents the momentum equation in x, (2) represents the momentum equation in z, (3)

represents the equation of conservation of volume assuming incompressible fluid and (4) represents
the equation of conservation of mass of salt. In the system of equations, u, w, and p denote flow

velocities in x and z and thermodynamic pressure, respectively, all averaged over the turbulence.
In (1) the total shear stress, τ is given by viscous and Reynolds stresses:

τ = −ρ0 (1 + φ) u′w′ + µ
∂u

∂z
(5)

In (4), Fφ denotes the mean vertical flux of relative density difference due to the presence of salt,
induced by both molecular and turbulent diffusion, which is given by:
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Fφ = φ′w′ −D ∂φ

∂z
(6)

where D denotes the molecular difussivity of salt in water.

2 Layer-averaged equations

The volumetric fresh water flow discharge per unit width in the upper layer is given by:

qf =

∫ H

h2

u dz (7)

So, defining the thickness of the bottom layer, h2, such that:

∫ h2

0
u dz = 0 (8)

and integrating (3) in the bottom layer defined by 0 < z < h2 (Fig. 1),

∫ h2

0

∂u

∂x
dz +

∫ h2

0

∂w

∂z
dz = 0 =

d

dx

∫ h2

0
u dz − u|z=h2

dh2

dx
+ w|z=h2 (9)

where Leibnitz integration rule was invoked, yields:

u|z=h2

dh2

dx
− w|z=h2 = 0 (10)

Integrating (3) again, but this time in the upper layer (h2 < z < H) and using (10), it is possible
to show that the flow discharge qf remains constant along x:

d

dx

∫ H

h2

u dz =
dqf
dx

= 0 (11)

Integrating (4) in the upper layer, imposing the condition:

Fφ|z=H = 0 (12)

which implies that the mass flux of salt through the free surface is zero, and from (10):

−(u φ)|z=h2

dH

dx
+ (w φ)|z=h2 = 0 = (u φ)|z=h2

dh2

dx
− (w φ)|z=h2 (13)

gives:

d

dx

∫ H

h2

u φ dz = Fφi (14)

where:

Fφi = Fφ|z=h2 (15)

represents the vertical mass flux of salt across the density interface between upper and bottom
layers.
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Analogously, integrating (4) now in the bottom layer and imposing:

Fφ|z=0 = 0 (16)

which implies that the vertical mass flux of salt through the bottom wall is zero, yields:

d

dx

∫ h2

0
u φ dz = −Fφi (17)

In the case of a typical salt wedge, the effect of the strong stratification usually precludes mixing

at the density interface. Accordingly, the following simple assumption is used in what follows:

Fφi ≈ 0 (18)

In order to determine the pressure gradient in x, (2) is integrated vertically, imposing a vanishing
value of the relative thermodynamic pressure at the free surface. This yields:

p = ρ0 g {(H − z) +

∫ H

z
φ dz′} (19)

which is valid in both the upper and bottom layers of the stratified flow in analysis. The pressure
gradient in x is therefore given by:

−∂p
∂x

= −ρ0 g {
dH

dx
+

∂

∂x

∫ H

z
φ dz′} (20)

Replacing this equation in (1) and dividing by ρ0 yields:

(1 + φ) {u ∂u
∂x

+ w
∂u

∂z
} = −g {dH

dx
+

∂

∂x

∫ H

z
φ dz′}+ ρ0 (1 + φ) g S0 +

1

ρ0

∂τ

∂z
(21)

The left hand side of this equation can be transformed as follows:

(1 + φ) {u ∂u
∂x

+ w
∂u

∂z
} = (1 + φ) {∂u

2

∂x
+
∂(u w)

∂z
} =

∂

∂x
{(1 + φ) u2}+

∂

∂z
{(1 + φ) u w}−

u2 ∂φ

∂x
− u w ∂φ

∂z
(22)

but from (3) and (4):

u
∂φ

∂x
+ w

∂φ

∂z
= −∂Fφ

∂z
(23)

hence:

(1 + φ) {u ∂u
∂x

+ w
∂u

∂z
} =

∂

∂x
{(1 + φ) u2}+

∂

∂z
{(1 + φ) u w}+ u

∂Fφ
∂z

(24)

Now, with this result, integrating each term of (21) in the upper layer gives, respectively:

∫ H

h2

(1 + φ) {u ∂u
∂x

+ w
∂u

∂z
} dz =

d

dx

∫ H

h2

(1 + φ) u2 dz −
∫ H

h2

u
∂Fφ
∂z

dz (25)
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−g
∫ H

h2

{dH
dz

+
∂

∂x

∫ H

z′
φdz′′} dz′ = −g h1

dH

dx
− g

∫ H

h2

∂

∂x

∫ H

z′
φ dz′′dz′ (26)

g S0

∫ H

h2

(1 + φ) dz = g S0 {(H − h2) +

∫ H

h2

φ dz} (27)

1

ρ0

∫ H

h2

∂τ

∂z
dz =

1

ρ0
(τ |H − τ |h2) = − τi

ρ0
(28)

where τi denotes the shear stress at the density interface: τi = τ |z=h2 .
Considering that from (21): (25) = (26) + (27) + (28), the following result is obtained for the

upper layer:

d

dx

∫ H

h2

(1 + φ) u2 dz −
∫ H

h2

Fφ
∂u

∂z
dz = −g { h1

dH

dx
+

∫ H

h2

∂

∂x

∫ H

z′
φ dz′′dz′}+

g S0 {(H − h2) +

∫ H

h2

φ dz} − τi
ρ0

(29)

Doing the same vertical integral of each term of (21) as before, but now in the bottom layer
yields, respectively:

∫ h2

0
(1 + φ) {u ∂u

∂x
+ w

∂u

∂z
} dz =

d

dx

∫ h2

0
(1 + φ) u2 dz −

∫ h2

0
u
∂Fφ
∂z

dz (30)

−g
∫ h2

0
{dH
dz

+
∂

∂x

∫ H

z′
φdz′′} dz′ = −g h2

dH

dx
− g

∫ h2

0

∂

∂x

∫ H

z′
φ dz′′dz′ (31)

g S0

∫ h2

0
(1 + φ) dz = g S0 {h2 +

∫ h2

0
φ dz} (32)

1

ρ0

∫ h2

0

∂τ

∂z
dz =

1

ρ0
(τ |h2 − τ |0) =

τi + τ0

ρ0
(33)

where τ0 denotes the bottom shear stress: τ0 = τ |z=0.

Again, considering that from (21): (30) = (31) + (32) + (33), the following result is obtained
for the bottom layer:

d

dx

∫ h2

0
(1 + φ) u2 dz −

∫ h2

0
Fφ

∂u

∂z
dz = −g { h2

dH

dx
+

∫ h2

0

∂

∂x

∫ H

z′
φ dz′′dz′}+

g S0 {h2 +

∫ h2

0
φ dz} − (τi + τ0)

ρ0
(34)

The negative sign chosen for τ0 responds to the need of using the convention τ0 > 0 to represent

a bottom shear stress that opposes the fluid motion in the nearby region, within the salt water
layer, which in this case is in the upstream direction with respect to the fresh water discharge.

Fig. 2 shows vertical profiles of u and φ in a salt wedge, observed in a laboratory experiment.
Flow velocities in the bottom layer are much lower than those of the freshwater flow of the upper

layer. Given the definition of h2 in (8), chosen just to let the net salt water discharge to vanish in
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Figure 2: Vertical velocity profiles in the salt wedge. Experimental results show self similarity along
the salt wedge and small dependence on the densimetric Froude number of the flow

the bottom layer, it is easy to see that the following approximation reproduces, at least at a coarse
level, the observed velocity profile:

u(x, z) =

{
U(x) ; z ≥ h2

0 ; z < h2
(35)

This is known as top hat approximation. The vertical structure of φ can be approximated similarly

as:

φ(x, z) =

{
Φ1(x) ; z ≥ h2

Φ2(x) ; z < h2
(36)

Replacing (35) in (7) yields:

qf =

∫ H

h2

u dz = U h1 (37)

On the other hand, replacing (35) and (36) in (14) and using (18) yields:

∫ H

h2

u φ dz = U Φ1 h1 = 0 (38)

which implies that:

qf Φ1 = 0 (39)

and since qf 6= 0, then it is concluded that Φ1 = 0.

Similarly, replacing (35) and (36) in (29), with Φ1 = 0 gives:

d(U2h1)

dx
= −g h1

dH

dx
+ g S0 h1 −

τi
ρ0

(40)
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Figure 3: Vertical relative density difference profiles in the salt wedge. Experimental results show

self similarity along the salt wedge and small dependence on the densimetric Froude number of the
flow

but from (37):

U2 h1 =
q2
f

h1
(41)

then, replacing in (40) yields:

d(q2
f/h1)

dx
= −g h1

dH

dx
+ g S0 h1 −

τi
ρ0

(42)

which represents the equation governing the streamwise momentum change in the x direction, in

the upper layer. The first term of the right hand side corresponds to the net pressure force acting
on the upper layer, the second one corresponds to the gravity force acting on the upper layer,

projected in the streamwise direction, and the third one corresponds to the friction force acting on
the upper layer, exerted by the interfacial shear stress.

Replacing (35) and (36) in (34) and calling Φ2 = Φ yields:

−g {h2
dH

dx
+ B∗}+ g S0 h2 (1 + Φ) +

τi + τ0

ρ0
= 0 (43)

where:

B∗ =

∫ h2

0

∂

∂x

∫ H

z′
φ dz′′dz′ = Φ

∫ h2

0

∂

∂x

∫ h2

z′
dz′′dz′ = Φ

∫ h2

0

∂

∂x
(h2 − z′) dz′ = Φ h2

dh2

dx
(44)

Replacing this result in (43) finally gives:

−g {h2
dH

dx
+ Φ2 h2

dh2

dx
}+ g (1 + Φ) h2 S0 +

τi + τ0

ρ0
= 0 (45)
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In most applications, the flow velocities within the bottom layer, in the vicinity of the bottom

wall, are so small that the bottom shear stress, τ0, results to be negligible compared with the
interfacial shear stress, τi. On the other hand, the mean bottom slope of estuaries is frequently

very small, such that S0 can also be neglected in (42) and (45). With these approximations the
latter set of equations is reduced to:

(−
q2
f

g h3
1

+ 1)
dh1

dx
= −dh2

dx
− τi
ρ0 g h1

(46)

dh2

dx
= (−dh1

dx
+

τi
ρ0 g h2

) (
1

1 + Φ
) ≈ (1− Φ) (−dh1

dx
+

τi
ρ0 g h2

) (47)

where the relationship: H = h1 + h2 has been invoked.
Replacing (47) in (46) and using the following resistance closure for the interfacial shear stress:

τi = ρ0 cfi U
2 = ρ0 cfi

q2
f

h2
1

(48)

where cfi denotes an interfacial friction coefficient, yields:

(−
q2
f

g h3
1

+ Φ)
dh1

dx
= −

q2
f

g h3
1

cfi (1 + (1− Φ)
h1

h2
) (49)

which, dividing by Φ, can be rewritten as:

(1− Fr2
d)
dh1

dx
= −Fr2

d cfi (
h1 + h2 − Φ h1

h2
) ≈ −Fr2

d cfi
H

h2
(50)

where Frd denotes the flow densimetric Froude number, defined as:

Fr2
d =

q2
f

g Φ h3
1

(51)

Equation (50) can be further reduced to:

dh1

dx
= − cfi Fr

2
d H

(1− Fr2
d) h2

(52)

which is equivalent or analogous to the equation for backwater curves in open channel hydraulics,

and can be used to determine the variation in x of the thickness of the upper layer along the salt
wedge.

On the other hand, (47) can also be reduced to:

dh2

dx
= −(1− Φ)

dh1

dx
+ (1− Φ) cfi

q2
f

g h3
1

h1

h2
(53)

which, neglecting terms of order Φ and cfi, leads to:

dh2

dx
= −dh1

dx
(54)

or:
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d(h1 + h2)

dx
=
dH

dx
= 0 (55)

equation that shows that the total flow depth, H = h1 +h2, remains constant along the salt wedge,

such that: H = H0, where H0 denotes the value of H at the location x = 0.

3 Length and shape of the arrested salt wedge

The densimetric Froude number can be rewritten as:

Fr2
d =

q2
f

g Φ2 h
3
1

=
q2
f

g Φ2 H
3
0

H3
0

h3
1

= Fr2
0

1

r3
(56)

where the dimensionless parameter r = h1/H0 has been introduced.
With this definition:

H

h2
=

H0

H0 − h1
=

1

1− r (57)

which, replaced in (52), yields:

dr

dX
= − Fr2

0 cfi
r3 (1− Fr2

0/r
3) (1− r) =

cfi Fr
2
0

(Fr2
0 − r3) (1− r) (58)

where:

r =
h1

H0
; X =

x

H0
; Fr2

0 =
q2
f

g Φ2 H
3
0

(59)

Assuming that cfi is a constant, (58) can be integrated along the salt wedge, starting from its

tip or upstream end (x = 0, where r = 1) so as to obtain the shape of the salt wedge. This leads
to the following dimensionless expression:

Fr2
0 r −

r4

4
− 1

2
Fr2

0 r
2 +

r5

5
− 1

2
Fr2

0 +
1

20
= cfi Fr

2
0 X (60)

The downstream boundary condition, at the outlet to the ocean or river mouth (x = L),
corresponds to a critical flow condition, analogous to that of a final overfall in open channel flow.

This critical flow condition is expressed, for the two-layer stratified flow in analysis, in terms of the
densimetric Froude number of the flow, as has been discussed in a separate set of notes on internal

hydraulics. This critical flow condition is thus expressed as:

Fr2
d = 1 =

Fr2
0

r3
c

(61)

which yields:

rc|X=L/H0
= Fr

2/3
0 (62)

Replacing this condition in (60) leads finally to:
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Figure 4: Dimensionless shape of salt wedge as a function of the densimetric Froude number Fr0.

L

H0
=

1

4 cfi
{ 1

5 Fr2
0

− 2 + 3 Fr
2/3
0 − 6

5
Fr

4/3
0 } (63)

expression that can be used to estimate the length of intrusion of the arrested salt wedge, given

the uniform fresh water flow depth, H , and corresponding volumetric discharge per unit width, qf ,
and the Φ value of the salt water within the salt wedge. This solution for L was originally given

by Schijf and Schonfeld in 1953.
Now, taking the ratio between (58) and (63), and defining the dimensionless variables:

ξ =
x

L
; h∗2 =

h2

h2c
; h2c = H0 (1− rc) (64)

the following equation for the dimensionless shape of the salt wedge is obtained, which results to

be just a function of Fr0:

(Fr2
0 − 1)

h∗2
2

2
+ (1− Fr2/3

0 ) h∗2
3 {1− 3

4
(1− Fr2/3

0 ) h∗2 +
1

5
(1− Fr2/3

0 )2 h∗2
2} = K ξ (65)

where:

K = −Fr
2
0

4
(

1

5 Fr2
0

− 2 + 3 Fr
2/3
0 − 6

5
Fr

4/3
0 ) (1− Fr2/3

0 )−2 (66)

The dimensionless shape of the salt wedge predicted by (65) is plotted in Fig. 4 for different

values of Fr0.
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